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Abstract—To be considered for an IEEE Jack Keil Wolf ISIT
Student Paper Award. The seminal q-composite key predistribu-
tion scheme [3] (IEEE S&P 2003) is used prevalently for secure
communications in large-scale wireless sensor networks (WSNs).
Yağan [10] (IEEE IT 2012) and we [13] (IEEE ISIT 2013) ex-
plore topological properties of WSNs employing the q-composite
scheme in the case of q = 1 with unreliable communication
links modeled as independent on/off channels. However, it is
challenging to derive results for general q under such on/off
channel model. In this paper, we resolve such challenge and
investigate topological properties related to node degree in WSNs
operating under the q-composite scheme and the on/off channel
model. Our results apply to general q, yet there has not been any
work in the literature reporting the corresponding results even
for q = 1, which are stronger than those about node degree in
[10], [13]. Specifically, we show that the number of nodes with
any degree asymptotically converges to a Poisson distribution,
present the asymptotic probability distribution for the minimum
node degree of the network, and establish the asymptotically
exact probability for the property that the minimum node degree
is at least an arbitrary value. Numerical experiments confirm the
validity our analytical findings.

Index Terms—key predistribution, minimum degree, random
graphs, security, topological properties, wireless sensor networks.

I. INTRODUCTION

Key predistribution scheme has been recognized as a typical

solution to secure communication in wireless sensor networks

and studied extensively in the literature over the last decade

[2], [3], [6], [9]–[14]. The idea is to randomly assign crypto-

graphic keys to sensors before network deployment.

The q-composite key predistribution scheme proposed by

Chan et al. [3] as an extension of the Eschenauer-Gligor

scheme [6] (the q-composite scheme in the case of q = 1) has

received much interest [2], [9]–[14] since its introduction. The

q-composite scheme when q ≥ 2 outperforms the Eschenauer-

Gligor scheme in terms of the strength against small-scale net-

work capture attacks while trading off increased vulnerability

in the face of large-scale attacks.

The q-composite scheme works as follows. For a WSN with

n sensors, prior to deployment, each sensor is independently

assigned Kn different keys which are selected uniformly at

random from a pool of Pn keys, where Kn and Pn are both

functions of n, with Kn ≤ Pn. Then two sensors establish a

link in between after deployment if and only if they share at

least q keys and the physical link constraint between them

is satisfied. Examples of physical link constraints include

the reliability of the transmission channel and the distance

between two sensors close enough for communication.

In this paper, we investigate topological properties related

to node degree in WSNs employing the q-composite key

predistribution scheme with general q under the on/off channel

model as the physical link constraint compromising indepen-

dent channels which are either on or off. The degree of a

node v is the number of nodes having links with v; and the

minimum (node) degree of a network is the least among the

degrees of all nodes. Specifically, we demonstrate that the

number of nodes with any degree asymptotically converges

to a Poisson distribution, establish the asymptotic probability

distribution for the minimum degree of the network, and derive

the asymptotically exact probability for the property that the

minimum degree is no less than an arbitrary value. Yağan [10]

and we [12], [13] consider the WSNs with q = 1 and show

results for several topological properties, yet results about

node degree in both work are even weaker than our analytical

findings when the general q is set as 1.

Our approach to the analysis is to explore the induced

random graph models of the WSNs. As will be clear in

Section II, the graph modeling a WSN under q-composite

scheme and the on/off channel model is an intersection of two

graphs belonging to different kinds, which renders the analysis

challenging due to the intertwining of the two distinct types

of random graphs [10].

We organize the rest of the paper as follows. Section II

describes the system model in detail. Afterwards, we elaborate

and discuss the results in Section III. Subsequently, we present

numerical experiments in Section IV to confirm our analytical

results, whereas Section V is devoted to relevant results in

the literature. Next, we conclude the paper in Section VI and

identify future research directions. At the end, the Appendix

offers the proof of a lemma.

II. SYSTEM MODEL

We elaborate the graph modeling of a WSN with n sensors,

which employs the q-composite key predistribution scheme

and works under the on/off channel model. We consider a node

set V = {v1, v2, . . . , vn} to represent the n sensors (a sensor

is also referred to as a node). For each node vi ∈ V , the set

of its Kn different keys is denoted by Si, which is uniformly

distributed among all Kn-size subsets of a key pool of Pn

keys, and is referred to as the key ring of node vi.

The q-composite key predistribution scheme is modeled by

a graph denoted by Gq(n, Kn, Pn), which is defined on the

vertex set V such that any two different nodes vi and vj sharing
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at least q keys (such event is denoted by Γij) have an edge in

between. Clearly, Γij equals event
[

|Si ∩Sj | ≥ q
]

, where |A|
with A as a set means the cardinality of A.

Under the on/off channel model, each node-to-node channel

independently has probability pn of being on and probability

(1 − pn) of being off, where pn is a function of n. Denoting

by Cij the event that the channel between distinct nodes vi

and vj is on, we have P [Cij ] = pn, where P[E ] denotes the

probability that event E happens, throughout the paper. The

on/off channel model is represented by an Erdős-Rényi graph

G(n, pn) [4] defined on the node set V such that vi and vj

have an edge in between if event Cij happens.

Finally, we denote by Gq(n, Kn, Pn, pn) the underlying

graph of the n-node WSN operating under the q-composite key

predistribution scheme and the on/off channel model. We often

write Gq rather than Gq(n, Kn, Pn, pn) for notation brevity.

Graph Gq is defined on the node set V such that there exists

an edge between nodes vi and vj if events Γij and Cij happen

at the same time. We set event Eij := Γij ∩ Cij . It is clear

that Gq can be seen as the intersection of Gq(n, Kn, Pn) and

G(n, pn), meaning

Gq = Gq(n, Kn, Pn) ∩ G(n, pn).

We define ps,q as the probability that two different nodes

share at least q keys and pe,q as the probability that two

distinct nodes have a link in between. ps,q and pe,q both rely

on Kn, Pn and q, while pe,q also depends on pn. By definition,

ps,q is determined through

ps,q = P[Γij ] =

Kn
∑

u=max{q, 2Kn−Pn}

P[|Si ∩ Sj | = u], (1)

where

P[|Si ∩ Sj | = u]

=







(Kn
u )(Pn−Kn

Kn−u )
(Pn

Kn
)

, for max{0, 2Kn − Pn} ≤ u ≤ Kn,

0, otherwise,

(2)

since Si and Sj are independently and uniformly selected from

all Kn-size subsets of a key pool with size Pn. Then by the

independence of Cij and Γij , we obtain

pe,q = P[Eij ] = P[Cij ] · P[Γij ] = pn · ps,q. (3)

III. THE RESULTS AND DISCUSSION

We present and discuss the results in this section. Through-

out the paper, q is a positive integer and does not scale with

n; N0 stands for the set of all positive integers; R is the set

of all real numbers; e is the base of the natural logarithm

function, ln; and the floor function ⌊x⌋ is the largest integer

not greater than x. We consider e∞ = ∞ and e−∞ = 0.

The term “for all n sufficiently large” means “for any n ≥ N ,

where N ∈ N0 is selected appropriately”. We use the standard

asymptotic notation o(·), ω(·), O(·),∼. In particular, for two

positive functions f(n) and g(n), f(n) ∼ g(n) signifies

limn→∞[f(n)/g(n)] = 1; namely, f(n) and g(n) are asymp-

totically equivalent.

A. The Results of Graph Gq

Denoting by δ the minimum node degree of graph Gq, we

detail the results of Gq below.

Theorem 1. Consider scalings K : N0 → N0, P : N0 → N0

and p : N0 → [0, 1] with Kn = ω(1) and Kn
2/Pn = o(1). If

pe,q =
ln n ± O(ln lnn)

n
, (4)

(i.e.,
npe,q−ln n

ln ln n is bounded for all n), the following properties

(a) and (b) for graph Gq hold.

(a) The number of nodes in Gq with any degree converges

to a Poisson distribution as n → ∞.

(b) Defining ℓ and βn by

ℓ :=

⌊

npe,q − ln n + (ln lnn)/2

ln lnn

⌋

+ 1, (5)

and

βn := npe,q − ln n − (ℓ − 1) ln lnn, (6)

and recalling δ as the minimum node degree of Gq, we obtain

• (δ 6= ℓ) ∩ (δ 6= ℓ − 1) with a probability going to 0 as

n → ∞;

• if limn→∞ βn = β∗ ∈ (−∞,∞), then as n → ∞,






δ = ℓ with a probability converging to e−
e−β∗

(k−1)! ,

δ = ℓ − 1 with a probability tending to

(

1−e−
e−β∗

(k−1)!

)

;

• if limn→∞ βn = ∞, then as n → ∞,
{

δ = ℓ with a probability approaching to 1,

δ 6= ℓ with a probability going to 0;
and

• if limn→∞ βn = −∞, then as n → ∞,
{

δ = ℓ − 1 with a probability tending to 1,

δ 6= ℓ − 1 with a probability converging to 0.

Remark 1. Theorem 1 for graph Gq establishes that the

number of nodes with any degree follows an asymptotic

Poisson distribution and presents the asymptotic probability

distribution for the minimum degree of the network, where an

asymptotic Poisson distribution of a variable ν means that

there exists another variable µ such that P[ν = i] ∼ P[µ = i]
for any non-negative integer i.

Remark 2. Equations (5) and (6) are determined by finding

ℓ and βn with − 1
2 ln lnn ≤ βn < 1

2 ln lnn such that pe,q =
ln n+(ℓ−1) ln ln n+βn

n .

The detailed proof of Theorem 1 is given in our technical

report [14] and is omitted here owing to the space limitation.

A corollary of Theorem 1 is as follows.

Corollary 1. Consider scalings K : N0 → N0, P : N0 → N0

and p : N0 → [0, 1] with Kn = ω(1) and Kn
2/Pn = o(1).

For a positive integer k, with probability pe,q satisfying

pe,q =
ln n + (k − 1) ln lnn + αn

n
, (7)

2



with limn→∞ αn = α∗ ∈ [−∞,∞], then as n → ∞,

P[δ ≥ k] → e−
e−α∗

(k−1)! =

{

1, if α∗ = ∞,

0, if α∗ = −∞.
(8)

Remark 3. Corollary 1 for graph Gq presents the asymptot-

ically exact probability and a zero-one law [11] for the event

that Gq has a minimum node degree no less than k.

Remark 4. Setting pn as 1 in Theorem 1 and Corollary 1,

we obtain corresponding results for topological properties in

graph Gq(n, Kn, Pn).

Remark 5. In the case of q = 1, we have proved the results of

Theorem 1 and Corollary 1 without the condition Kn
2/Pn =

o(1), yet under a weaker condition: Pn ≥ 3Kn for all n
sufficiently large. The details can be found in our technical

report [14] and is again omitted due to the space limitation.

We now explain the steps of proving Corollary 1 through

Theorem 1.

B. Establishing Corollary 1 Given Theorem 1

Given (7) (a condition in Corollary 1), we determine ℓ and

βn through (5) and (6) in Theorem 1. Then

ℓ =

⌊

(k − 1) ln lnn + αn + (ln lnn)/2

ln lnn

⌋

+ 1

= k +

⌊

αn

ln lnn
+

1

2

⌋

, (9)

and

βn = (k − 1) ln lnn + αn −

(

k +

⌊

αn

ln lnn
+

1

2

⌋

− 1

)

ln lnn,

= αn −

⌊

αn

ln lnn
+

1

2

⌋

ln lnn. (10)

Given condition limn→∞ αn = α∗ ∈ [−∞,∞] in Corollary

1, we consider the following three cases: ¬ − 1
2 ln lnn ≤ αn <

1
2 ln lnn, ­ αn ≥ 1

2 ln lnn and ® αn < − 1
2 ln lnn.

Case ¬: − 1
2 ln lnn ≤ αn < 1

2 ln lnn. Then from (9) and

(10), we obtain ℓ = k and βn = αn. It further holds that

limn→∞ βn = limn→∞ αn = α∗ ∈ [−∞,∞]. Therefore, by

Theorem 1,

P[δ ≥ k] →















1, if α∗ = ∞,

0, if α∗ = −∞,

e−
e−α∗

(k−1)! , if α∗ ∈ (−∞,∞).

Then with e∞ = ∞ and e−∞ = 0, (8) follows in case ¬.

Case ­: αn ≥ 1
2 ln ln n. Then from (9) and (10), it holds

that ℓ ≥ k + 1. Hence, P[δ ≥ k] → 1 by Theorem 1, leading

to (8) in case ­.

Case ®: αn < − 1
2 ln lnn. Then from (9) and (10), it holds

that ℓ ≤ k − 1. Consequently, P[δ ≥ k] → 0 by Theorem 1,

resulting in (8) in case ­.

Summarizing cases ¬ ­ and ® above, Corollary 1 holds

by Theorem 1.

C. Analogs of Theorem 1 and Corollary 1 with an Approxi-

mation of pe,q

Analogous results of Theorem 1 and Corollary 1 can be

given with pe,q in G substituted by a quantity expressed by

Kn, Pn and q; i.e., with ps,q replaced by 1
q!

(

Kn
2

Pn

)q
given

Lemma 1 below, and hence with pe,q replaced by pn·
1
q!

(

Kn
2

Pn

)q

due to pe,q = pn · ps,q from (3) (Lemma 1 applies owing to
Kn

2

Pn
= o(1) which holds in both Theorem 1 and Corollary

1). Thus, with (4) (resp., (7)) replaced by pn · 1
q!

(

Kn
2

Pn

)q
=

ln n±O(ln lnn)
n (resp., pn · 1

q!

(

Kn
2

Pn

)q
= ln n+(k−1) ln ln n+αn

n ),

and keeping all the conditions in Theorem 1 (resp., Corollary

1, we demonstrate that the properties (a) and (b) in Theorem

1 (resp., (8) in Corollary 1) still hold. The details of the proof

can be found in our technical report [14].

Lemma 1. If Kn
2

Pn
= o(1), then ps,q ∼ 1

q!

(

Kn
2

Pn

)q
.

See Appendix for the proof of Lemma 1.

D. The Practicality of the Conditions in Theorem 1 and

Corollary 1

We check the practicality of the conditions in Theorem 1

and Corollary 1: Kn = ω(1), Kn
2/Pn = o(1), (4) and (7).

Clearly, condition Kn
2

Pn
= o(1) implies Pn ≥ 3Kn for all n

sufficiently large. The condition Kn = ω(1) follows trivially

in wireless sensor network applications since Kn is often at

least logarithmic with n, the number of sensor nodes in the

network. In addition, the condition Kn
2

Pn
= o(1) satisfies in

practice since the key pool size Pn is expected to be several

orders of magnitude larger than the key ring size Kn [3], [6].

Finally, (4) and (7) present the range of pe,q that is of interest.

IV. NUMERICAL EXPERIMENTS

To confirm the results in Theorem 1, we now provide

numerical experiments in the non-asymptotic regime; i.e.,

when parameter values are set according to real-world wireless

sensor network scenarios. As we will see from the simulation,

the experimental observations are in agreement with our

theoretical findings.

In all experiments, we fix the number of nodes at n = 2, 000
and the key pool size at P = 10, 000. In Figure 1, we

plot the probability distribution for the number of nodes with

degree h in graph Gq(n, K, P, p) for h = 2, 3 from both

the simulation and the analysis, with q = 2, K = 36 and

p = 0.7. On the one hand, for the simulation, we generate

2, 000 independent samples of Gq(n, K, P, p) and record the

count (out of a possible 2, 000) that the number of nodes

with degree h for each h equals a particular non-negative

number M . Then the empirical probabilities are obtained

by dividing the counts by 2, 000. On the other hand, we

approximate the analytical curves by the asymptotic results

as explained below. Property (a) of Theorem 1 notes that

with the parameter conditions therein, the number of nodes in

Gq(n, Kn, Pn, pn) with any degree approaches to a Poisson

distribution as n → ∞; and in our technical report [14], for
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Fig. 1. A plot of the probability distribution for the number of nodes with
degree h for h = 2, 3 in graph Gq(n, K, P, p) with n = 2, 000, q = 2,
P = 10, 000, K = 36 and p = 0.7.

the asymptotic Poisson distribution of the number of nodes

with degree h for any non-negative integer h, we specify the

mean as n(h!)−1(npe,q)
he−npe,q (denoted by λh). We derive

λh by computing the corresponding probability of pe,q in

Gq(n, K, P, p) through pe,q = p ·
∑K

u=q

[(

K
u

)(

P−K
K−u

)/(

P
K

)]

given (1-3) and P > 2K . Then for each h, we plot a

Poisson distribution with mean λh as the curve corresponding

to the analysis. We observe that the curves generated from the

simulation and those obtained by the analysis are close to each

other, confirming the result on asymptotic Poisson distribution

in property (a) of Theorem 1.

In Figure 2, we depict the probability that graph

Gq(n, K, P, p) has a minimum node degree at least k from

both the simulation and the analysis, for q = 2 and p = 0.8
and K varying from 29 to 36 (we still set n = 2, 000
and P = 10, 000). Similar to the experiments for Figure 1

above, we also generate 2, 000 independent samples of graph

Gq(n, K, P, p) and record the count that the minimum degree

of graph Gq(n, K, P, p) is no less than k; and the empirical

probability of Gq(n, K, P, p) having a minimum degree at

least k is derived by averaging over the 2, 000 experiments.

The analytical curves in Figure 2 are also approximated by

the asymptotical results as follows. First, we compute the

corresponding probability of pe,q in Gq(n, K, P, p) through

the aforementioned form pe,q = p ·
∑K

u=q

[(

K
u

)(

P−K
K−u

)/(

P
K

)]

.

Then we determine αn by (7). We write αn as α here as n is

fixed. Then with an approximation to the asymptotical results

in Corollary 1, we plot the analytical curves by considering

that the minimum degree of Gq(n, K, P, p) is at least k with

probability e−
e−α

(k−1)! . The observation that the curves generated

from the simulation and the analytical curves are close to each

other is in accordance with Corollary 1.

V. RELATED WORK

Erdős and Rényi [4] and Gilbert [7] propose the random

graph model G(n, pn) defined on a node set with size n such

that an edge between any two nodes exists with probability pn

independently of all other edges. For graph G(n, pn), Erdős

and Rényi [4] derive the asymptotically exact probabilities

for connectivity the property that the minimum degree is at
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Fig. 2. A plot of the probability that graph Gq(n, K, P, p) has a minimum
node degree at least k as a function of K for k = 4 and k = 8 with q = 2,
n = 2, 000, P = 10, 000, and p = 0.8.

least 1, by proving first that the number of isolated nodes

converges to a Poisson distribution as n → ∞. Later, they

extend the results to general k in [5], obtaining the asymptotic

Poisson distribution for the number of nodes with any degree

and the asymptotically exact probabilities for k-connectivity

and the event that the minimum degree is at least k, where k-

connectivity is defined as the property that the network remains

connected in spite of the removal of any (k − 1) nodes.

For graph Gq(n, Kn, Pn), Bloznelis et al. [2] demonstrate

that a connected component with at at least a constant fraction

of n emerges asymptotically when probability pe,q exceeds

1/n. Recently, still for Gq(n, Kn, Pn), Bloznelis [1] estab-

lishes the asymptotic Poisson distribution for the number of

nodes with any degree. Our results in Theorem 1 by setting pn

as 1 imply his result; in particular, the result that he obtains

is a special case of property (a) in our Theorem 1.

Yağan (a co-author of this paper) [10] presents zero-one

laws in graph G1 (our graph Gq in the case of q = 1) for

connectivity and for the property that the minimum degree is

at least 1. We extend Yağan’s results to general k for G1 in

[12], [13]. We also derive asymptotically exact probabilities

for k-connectivity and the event that the minimum degree no

less than k for G1 in our technical report [14]. (As noted in

Remark 5, we establish in [14] the results of Theorem 1 and

Corollary 1 under weaker conditions for the case of q = 1;

and in this paper, we do not present the corresponding details

given in [14] due to the space limitation.)

Krishnan et al. [8] and Krzywdziński and Rybarczyk [9]

describe results for the probability of connectivity asymptoti-

cally converging to 1 in WSNs employing the q-composite key

predistribution scheme with q = 1 (i.e., the Eschenauer-Gligor

key predistribution scheme), not under the on/off channel

model but under the well-known disk model [8], [9], [10],

where nodes are distributed over a bounded region of a

Euclidean plane, and two nodes have to be within a certain

distance for communication. Simulation results in our work

[12] indicate that for WSNs under the key predistribution

scheme with q = 1, when the on-off channel model is replaced

by the disk model, the performances for k-connectivity and

for the property that the minimum degree is at least k do not

change significantly.
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VI. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we analyze several topological properties

related to node degree in WSNs operating under the q-

composite key predistribution scheme with on/off channels.

Numerical simulation is shown to be in agreement with our

theoretical findings.

Two future research directions are as follows. To begin with,

we can derive the asymptotically exact probability and thus a

zero-one law for k-connectivity in graph Gq once we show

Gq becomes k-connected whenever its minimum node degree

becomes at least k. This will extend our results for G1 in our

technical report [14] to Gq.

Another extension of our work is to consider physical link

constraints different with the on/off channel model, where one

candidate is the aforementioned disk model.
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[9] K. Krzywdziński and K. Rybarczyk. Geometric graphs with randomly
deleted edges – connectivity and routing protocols. Mathematical

Foundations of Computer Science, 6907:544–555, 2011.
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[11] O. Yağan and A. M. Makowski. Zero-one laws for connectivity

in random key graphs. IEEE Transactions on Information Theory,
58(5):2983–2999, May 2012.
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APPENDIX: ESTABLISHING LEMMA 1

We elaborate the proof Lemma 1 below. We simplify

Si ∩ Sj by writing it as Sij . Clearly, Pn ≥ 2Kn for all

n sufficiently large, due to Kn
2

Pn
= o(1). Then from (1),

ps,q =
∑Kn

u=q P[|Sij | = u] follows. Therefore, Lemma 1 holds

once we establish the following (11) and (12):

P[|Sij | = q] ∼ (q!)−1
(

Kn
2/Pn

)q
, (11)

and

P[|Sij | = q] ∼

Kn
∑

u=q

P[|Si ∩ Sj | = u]. (12)

We will first establish (11) by providing an upper bound

and a lower bound for P[|Sij | = q], respectively.

For all n sufficiently large, given Pn ≥ 2Kn and (2), we

derive that for u = 0, 1, . . . , Kn,

P[|Sij | = u] =

(

Kn

u

)(

Pn − Kn

Kn − u

)

/

(

Pn

Kn

)

. (13)

Setting u as q in (13), it is clear that

P[|Sij |=q] =
1

q!

[

Kn!

(Kn − q)!

]2

·
(Pn − Kn)!

(Pn − 2Kn + q)!
·
(Pn − Kn)!

Pn!
.

(14)

For the upper bound on P[|Sij | = q], using (14) and Kn
2

Pn−Kn
=

o(1) which holds from Kn
2

Pn
= o(1), and applying the fact that

1 + x ≤ ex for any real x, we have

P[|Sij | = q]

≤ (q!)−1Kn
2qPn

Kn−q(Pn − Kn)−Kn

= (q!)−1
(

Kn
2/Pn

)q[
1 + Kn/(Pn − Kn)

]Kn

≤ (q!)−1
(

Kn
2/Pn

)q
e

Kn
2

Pn−Kn

≤ (q!)−1
(

Kn
2/Pn

)q
· [1 + o(1)]. (15)

For the part of finding the lower bound, we employ (14),
Kn

2

Pn
= o(1) and

(

1− 2Kn

Pn

)Kn
→ 1 as n → ∞ which follows

by Kn
2

Pn
= o(1) and Fact 3 in our paper [12]. We also use

(Kn−q)2

Pn−2Kn
∼ Kn

2

Pn
due to Kn = ω(q) by Kn = ω(1), and

Pn = ω(Kn) by Kn
2

Pn
= o(1). Therefore,

P[|Sij | = q]

≥ (q!)−1(Kn − q)2q(Pn − 2Kn)Kn−qPn
−Kn

= (q!)−1
[

(Kn − q)
2
/(Pn − 2Kn)

]q
·
(

1 − 2Kn/Pn

)Kn

∼ (q!)−1
(

Kn
2/Pn

)q
; (16)

i.e., (q!)−1
(

Kn
2/Pn

)q
· [1 − o(1)] is a lower bound for

P[|Sij | = q]. Then (11) follows from (15) and (16).

Below we focus on proving (12). From (13), for u ≥ q,

P[|Sij | = u]/P[|Sij| = q]

=q!(u!)−1

[u−q−1
∏

r=0

(Kn − q − r)

]/[u−q−1
∏

r=0

(Pn − 2Kn + u − r)

]

≤[(u − q)!]−1
(

Kn
2/Pn

)u−q
.

Setting t := u − q and using Kn
2

Pn
= o(1), we obtain (12) by

{ Kn
∑

u=q

P[|Sij | = q]

}/

P[|Sij | = q]

≤

∞
∑

t=0

[

t!−1
(

Kn
2/Pn

)t]
= eKn

2/Pn → 1, as n → ∞.

The proof of Lemma 1 is completed with (11) and (12).
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