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Abstract
We consider a novel multi-armed bandit frame-
work where the rewards obtained by pulling dif-
ferent arms are correlated. We develop a unified
approach to leverage these reward correlations
and present fundamental generalizations of clas-
sic bandit algorithms to the correlated setting. Re-
gret analysis of C-UCB and C-TS (the correlated
bandit versions of Upper-confidence-bound and
Thompson sampling) reveals that the algorithms
end up pulling certain sub-optimal arms, termed
as non-competitive, only O(1) times, as opposed
to the O(log T ) pulls required by classic bandit
algorithms such as UCB, TS etc. We validate
the proposed algorithms via experiments on the
MovieLens dataset, and show significant improve-
ment over classical bandit algorithms.

The full version of the paper with additional exam-
ples, results, proofs and experiments is available at:
https://www.andrew.cmu.edu/user/samarthg/MABCorr.pdf

1. Introduction
Classical Multi-armed Bandits. In the classical multi-
armed bandit (MAB) problem, there are K possible actions,
referred to as arms, with each arm having an unknown re-
ward distribution. At each round t, we need to choose an
arm kt ∈ K and we receive a random rewardRt drawn from
the reward distribution of arm kt. The goal is to maximize
the cumulative reward over a horizon of T time slots. In
order to maximize cumulative reward, it is important to bal-
ance the exploration-exploitation trade-off, i.e., learning the
mean reward of each arm while trying to make sure that the
arm with the highest mean reward is played as many times
as possible. The problem has been extensively studied (Lai
and Robbins, 1985) and has proven to be useful in numer-
ous applications including A/B Testing (White, 2012), ad
placement, recommendation systems, clinical trials (Villar
et al., 2015), system testing (Tekin and Turgay, 2017).
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Figure 1: A user’s ratings for different versions of the same
ad are correlated. If a user likes the first ad, there is a
good chance that they will also like the second since it
is also related to tennis. However, since the population
composition (the fraction of people liking the first/second
or the last version) is unknown, it is not clear what is a good
global recommendation for the population.

Consider the application of advertisement selection, where a
company needs to decide the which ad-version to display to
it’s users in order to maximize the user engagement over the
course of their ad-campaign (See Figure 1). The response
of a user corresponding to two different ad-versions is likely
to be correlated in practice, for instance, a user reacting
positively (by clicking, ordering, etc.) to the first version
of the ad with a girl playing tennis might be more likely to
click the second version as it is also related to tennis; of
course one can construct examples where there is negative
correlation between click events to different ads. The model
we study in this paper explicitly captures these correlations,
something that has not been studied previously. Unlike con-
textual bandits (Zhou, 2015), we do not observe the context
(age/occupational/income) features of the user and do not
focus on providing personalized recommendation. Instead
our goal is to provide global recommendations to a popu-
lation whose demographics is unknown. Unlike structured
bandits (Combes et al., 2017), we do not assume that the
mean rewards are functions of a hidden context θ.

Model overview. We capture correlation between rewards
from different arms in the form of pseudo-rewards, which
provide upper bounds on the conditional expectation of
rewards. In the context of displaying ad versions, pseudo-
rewards represent an upper bound on the probability that
user likes version B of the ad if it liked/disliked version A.

https://www.andrew.cmu.edu/user/samarthg/MABCorr.pdf
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Figure 2: Upon observing a reward r from an arm k, pseudo-
rewards s`,k(r), give us an upper bound on the conditional
expectation of the reward from arm ` given that we observed
reward r from arm k. These pseudo-rewards models the
correlation in rewards corresponding to different arms.

Figure 2 presents an illustration of our correlation model,
where the pseudo-rewards, denoted by s`,k(r), provide an
upper bound on the reward that we could have received
from arm ` given that pulling arm k led to a reward of r. In
practice, pseudo-rewards can be obtained via expert/domain
knowledge (for example, common ingredients in two drugs
that are being considered to treat an ailment) or controlled
surveys (for example, beta-testing users who are asked to
rate different versions of an ad). A key advantage of our
framework is that pseudo-rewards are just upper bounds on
the conditional expected rewards and can be arbitrarily loose.
This also makes the proposed framework and algorithm
directly usable in practice – if some pseudo-rewards are
unknown due to lack of domain knowledge/data, they can
simply be replaced by the maximum possible reward entries,
which serves a natural upper bound.

Aside from the novel correlated bandit model, we propose
an approach that fundamentally generalizes any classical
bandit algorithm to the correlated-bandit setting and provide
regret bounds for them through a unified regret analysis.

2. Problem Formulation
Consider a multi-armed bandit setting with K arms
{1, 2, . . .K}. At each round t, a user enters the system and
we need to decide an arm kt to display to the user. Upon dis-
playing arm kt, we receive a random reward Rkt ∈ [0, B].
Our goal is to maximize the cumulative reward over time.
The expected reward (over the population of users) of arm
k, is denoted by µk. If we knew the arm with highest mean,
i.e., k∗ = arg maxk∈K µk beforehand, then we would al-
ways pull arm k∗. We now define the cumulative regret,
minimizing which is equivalent to maximizing cumulative
reward:

E [Reg(T )] = E

[
T∑
t=1

µkt − µk∗
]

=
∑
k 6=k∗

E [nk(T )] ∆k.

(1)

r s2,1(r) r s1,2(r)
0 0.7 0 0.8
1 0.4 1 0.5

(a) R1 = 0 R1 = 1
R2 = 0 0.2 0.4
R2 = 1 0.2 0.2

(b) R1 = 0 R1 = 1
R2 = 0 0.2 0.3
R2 = 1 0.4 0.1

Table 1: The top row shows the pseudo-rewards of arms
1 and 2, i.e., upper bounds on the conditional expected
rewards (which are known to the player). The bottom row
depicts two possible joint probability distribution (unknown
to the player). Under distribution (a), Arm 1 is optimal
whereas Arm 2 is optimal for distribution (b).

Here, nk(T ) denotes the number of times a sub-optimal arm
is pulled till round T and ∆k denotes the sub-optimality gap
of arm k, i.e., ∆k = µk∗ − µk. The standard multi-armed
bandit setting does not explicitly account for known correla-
tions between rewards. In many practical scenarios, rewards
corresponding to different arms are known to be correlated.
Motivated by this, we consider a setup where the condi-
tional distribution of the reward from arm ` given reward
from arm k is not equal to the probability distribution of
the reward from arm `, i.e., fR`|Rk(r`|rk) 6= fR`(r`), with
fR`(r`) denoting the probability distribution function of the
reward from arm `. Consequently, due to such correlations,
we have E [R`|Rk] 6= E [R`]. We model this correlation ex-
plicitly by the knowledge of pseudo-rewards that constitute
an upper bound on conditional expected rewards.

Definition 1 (Pseudo-Reward). Suppose we pull arm k and
observe reward r, then the pseudo-reward of arm ` with
respect to arm k, denoted by s`,k(r), is an upper bound on
the conditional expected reward of arm `, i.e.,

E[R`|Rk = r] ≤ s`,k(r). (2)

These pseudo-rewards can be learned from historical data
or through offline surveys in which users are presented with
all K arms allowing us to sample R1, . . . , RK jointly. For
example in Table 1, we can look at all users who obtained 0
reward from Arm 1 and calculate the corresponding average
reward µ̂2,1(0) from Arm 2. If the training data is large, this
value is close to E [R2|R1 = 0] and can be used directly as
s2,1(0). Alternately, we can set s2,1(0) = µ̂2,1(0)+σ̂2,1(0),
where σ̂2,1(0) is the empirical standard deviation of the
conditional reward of arm 2, which is added as a safety
buffer. In the absence of joint samples, the pseudo-rewards
can be set to the maximum possible reward of that arm.

Remark 1. When all pseudo-reward entries are unknown,
then all pseudo-reward entries can be filled with maximum
possible reward for each arm. In such a case, the pro-
posed C-BANDIT algorithm reduces to the underlying clas-
sic BANDIT (for e.g., UCB, TS etc.) algorithm.

Comparison with parametric models As mentioned in
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Section 1, a seemingly related model is the structured ban-
dits model (Lattimore and Munos, 2014). Structured bandits
is a class of problems that cover linear bandits (Abbasi-
Yadkori et al., 2011), generalized linear bandits (Filippi
et al., 2010), Lipschitz bandits (Magureanu et al., 2014),
global bandits (Atan et al., 2015), regional bandits (Wang
et al., 2018) etc. In the structured bandits setup, mean re-
wards corresponding to different arms are related to one
another through a hidden parameter θ. The underlying value
of θ is fixed and the mean reward mappings θ → µk(θ) are
known. Similarly, (Pandey et al., 2007) studies a dependent
armed bandit problem, that also has mean rewards corre-
sponding to different arms related to one another. All of
these models are fundamentally different from the problem
setting considered in this paper. In this work we explicitly
model the correlations in the rewards of a user correspond-
ing to different arms. While, mean rewards are related to
each other in structured bandits and (Pandey et al., 2007),
the reward realizations are not necessarily correlated. An-
other key difference is that the model studied here is non-
parametric in the sense that there is no hidden feature space
as is the case in structured bandits and (Pandey et al., 2007).

3. Proposed C-BANDIT Algorithms
We now propose an approach that extends any classical
multi-armed bandit algorithm (such as UCB, Thompson
Sampling, KL-UCB) to the correlated MAB setting by mak-
ing use of the pseudo-rewards.
Definition 2 (Empirical and Expected Pseudo-Reward). If
arm k is pulled nk(t) times in t rounds, these nk(t) reward
realizations can be used to construct the empirical pseudo-
reward φ̂`,k(t) for each arm ` with respect to arm k, which
is defined as follows.

φ̂`,k(t) ,

∑t
τ=1 1kτ=k s`,k(rτ )

nk(t)
, ` ∈ {1, . . . ,K}\{k}.

w.l.o.g., we set φ̂k,k = µ̂k. As nk(t) → ∞, φ̂`,k(t) →
φ`,k , E [s`,k(R)], the expected pseudo-reward of arm `
with respect to arm k.

Note that the empirical pseudo-reward φ̂`,k(t) is defined
with respect to arm k and they provide an estimate on the
upper bound of the mean of arm `, i.e, µ`, through only the
reward samples obtained from arm k. In each round, the
algorithm performs the following steps:

1. Identify the set of significant arms St:
St = {k : nk(t) > t

K }. Furthermore, define
kemp(t) = arg maxk∈St µ̂k(t).

2. Identify empirically competitive arms At: Identify
the setAt of arms that are empirically competitive with
respect to the set St, i.e.,

At = {k ∈ K : µ̂kemp(t) ≤ min
`∈St

φ̂k,`(t)}.

3. Choose an arm from {At∪kemp(t)} using a BANDIT
algorithm (eg. UCB, Thompson sampling, KL-UCB
etc.): For instance, the C-UCB pulls the arm

kt+1 = arg max
k∈{At∪kemp}

Ik,t,

where Ik,t = µ̂k(t) + B
√

2 log(t)
nk(t)

, the UCB in-
dex (Auer et al., 2002). Similarly, C-TS pulls the
arm kt+1 = arg maxk∈{At∪kemp} Sk,t, where Sk,t ∼
N
(
µ̂k(t), βB

nk(t)

)
, the sample obtained from the poste-

rior distribution of µk (Agrawal and Goyal, 2013),

4. Update the empirical pseudo-rewards φ̂`,kt(t+ 1) for
all `, the empirical reward for arm kt+1.

At each round t, through samples of arms in St, we eliminate
some arms which are not empirically competitive at round
t and do not consider them in step 3 of the algorithm. By
performing this elimination at each round, we reduce the
amount of exploration in our algorithms as some arms may
be viewed as sub-optimal for round t based on just the
samples of arms in St. Note that this elimination is done
only for a single round, i.e., an arm that is not empirically
competitive at round t may become empirically competitive
in future rounds. A key strength of our approach is that we
can use any standard bandit algorithm (UCB, TS, KL-UCB
(Garivier and Cappé, 2011), Bayes-UCB (Kaufmann et al.,
2012) etc.) in step 3 of the above algorithm.

4. Regret Analysis and Bounds
In order to bound E [Reg(T )], we can analyze the ex-
pected number of times sub-optimal arms are pulled, that
is, E [nk(T )], for all k 6= k∗. Theorem 1 and Theorem 2
below show that E [nk(T )] scales as O(1) and O(log T ) for
non-competitive and competitive arms respectively.

Definition 3 (Non-Competitive and Competitive arms). An
arm ` is said to be non-competitive if the expected reward of
optimal arm k∗ is larger than the expected pseudo-reward of
arm ` with respect to the optimal arm k∗, i.e, if, the pseudo-
gap of arm `, ∆̃`,k∗ , µk∗ − φ`,k∗ > 0. Similarly, an arm
` is said to be competitive if ∆̃`,k∗ = µk∗ − φ`,k∗ <= 0.
The unique best arm k∗ has ∆̃k∗,k∗ = µk∗ − φk∗,k∗ = 0
and is counted in the set of competitive arms.
Theorem 1. The expected number of times a non-
competitive arm with pseudo-gap ∆̃k,k∗ is pulled by C-UCB
is upper bounded as

E [nk(T )] ≤ Kt0 +K2
T∑

t=Kt0

3

(
t

K

)−2

+

T∑
t=1

t−3, (3)

= O(1), (4)

where, t0 = inf

{
τ ≥ 2 : ∆min, ∆̃k,k∗ ≥ 4

√
K log τ

τ

}
. (5)
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Figure 3: Cumulative regret for UCB, C-UCB and C-TS
corresponding to the problem shown in Table 1. For the
setting (a) in Table 1, Arm 1 is optimal and Arm 2 is non-
competitive, in setting (b) of Table 1 Arm 2 is optimal while
Arm 1 is competitive.

Theorem 2. The expected number of times a competitive
arm is pulled by C-UCB algorithm is upper bounded as

E [nk(T )] ≤ 8
log(T )

∆2
k

+

(
1 +

π2

3

)
+

T∑
t=1

t exp

(
− t∆

2
min

2K

)
,

= O(log T ) where ∆min = min
k

∆k > 0. (6)

Substituting the bounds on E [nk(T )] derived in Theorem
1,2 into (1), we get the upper bound on expected regret as

E [Reg(t)] ≤ (C − 1) ·O(log T ) + (K − C) ·O(1).

Reduction in effective number of arms. Since the dis-
tribution of reward of each arm is unknown, the C-UCB
and C-TS algorithms initially do not know which arms are
competitive. Even then, Theorem 1 shows that C-UCB
makes sure that non-competitive arms are pulled only O(1)
times. Due to this, only the competitive sub-optimal arms
are pulled O(log T ) times. Moreover, the pre-log terms in
the upper bound of UCB and C-UCB (and correspondingly
TS and C-TS) for these arms is the same. In this sense, our
C-BANDIT approach reduces a K-armed bandit problem
to a C-armed bandit problem. Only C − 1 ≤ K − 1 arms
are pulled O(log T ) times, while the algorithm stops pulling
other arms after O(1) rounds. When C = 1, i.e., all sub-
optimal arms are non-competitive, our proposed C-UCB
and C-TS algorithms achieve O(1) regret, see Figure 3. 1

5. Experiments
We use the MOVIELENS dataset (Harper and Konstan, 2015)
to perform our experiments, which contains a total of 1M
ratings for 3883 movies (split into 18 different genres) by a

1The rigorous proofs for C-TS showing O(log T ) pulls for
competitive arms and O(1) pulls for non-competitive arms, and
unified proof technique for all C-Bandit algorithms is available in
the full version of the paper.
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Figure 4: Cumulative regret for UCB, C-UCB and C-TS for
the application of recommending the best genre (out of 18
genres) in the Movielens dataset, where p fraction of the
pseudo-entries are replaced with maximum reward i.e., 5.
In (a), p = 0.25, for (b), p = 0.50 and p = 0.70 in (c). The
value of C is 4,11 and 13 in (a), (b) and (c) respectively.

6040 unique users on scale of 1 to 5. We split this dataset
randomly into two halves, train and test dataset. We consider
the goal of recommending the best of 18 possible movie
genres to a population with unknown demographic. We
use the training dataset to learn the pseudo-reward entries.
The pseudo-reward entry s`,k(r) is evaluated by taking the
empirical average of the ratings of genre ` that are rated by
the users who rated genre k as r. To capture the fact that it
might not be possible in practice to fill all pseudo-reward en-
tries, we randomly remove a fraction p of the pseudo-reward
entries. The removed pseudo-reward entries are replaced by
the maximum possible rating, i.e., 5 (as that gives a natural
upper bound on the conditional mean reward). Using these
pseudo-rewards, we evaluate our proposed algorithms on the
test data. Our experimental results for this setting are shown
in Figure 4, with the fraction of removed pseudo-reward
entries p = 0.25, 0.50 and 0.70. The proposed C-UCB and
C-TS algorithms stop pulling some of the 18 arms within
finite time and thus significantly outperform UCB in all
three settings.

In our plots, all data points are averaged over 100 runs.
The shaded area represents error bars with one standard
deviation.

6. Conclusion
This work studies the problem of regret minimization in
a novel correlated Multi-Armed Bandit setting. The pro-
posed algorithmic approach allows extension of any clas-
sical bandit algorithm to the correlated bandit setting and
they significantly outperform classical bandit algorithms
both theoretically and empirically. Open future directions
include the design of best-arm identification algorithms for
the correlated bandit setting.
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