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Abstract—The study of complex contagions over networks
has been receiving increasing attention across many scientific
domains. Especially, linear threshold models are widely studied
due to the ability to capture the mechanism that multiple sources
of exposure are required for nodes in the network to take action.
Most related works on influence propagation only concentrate
on a single content spreading over networks. However, complex
contagions usually involve multiple correlated contents spreading
simultaneously, demonstrating significant implications for many
real-life systems. In this work, we propose a multi-dimensional
threshold model as an extension of the classical linear threshold
model to incorporate multiple correlated contents spreading
simultaneously over networks. We also provide analytical re-
sults that accurately predict probability of emergence of global
cascades for correlated contents. These results reveal the inter-
play between the underlying network structure and contents’
correlation on the spreading processes. Thus, our work advances
analysis, prediction and control strategies for complex contagions
over networks.

Index Terms—Influence propagation; Linear threshold model;
correlated contents; Complex networks.

I. INTRODUCTION

The mathematical modeling of spreading processes over
networks has drawn increasing attention in different contexts,
including cascading failures [1], social contagions [2], epi-
demics [3], traffic jams [4], risks in banking systems [5], and
networks of spiking neurons [6]. These spreading processes are
typically studied through two different phenomena [7]. Simple
contagions, also referred to as information propagation, are
used to model cases where a single source of exposure is
enough for an individual to get infected and start spreading the
content to their contacts (e.g., news articles, disease spreading,
etc.); complex contagions are used to model spreading pro-
cesses where multiple sources of exposure to a content (e.g.,
an opinion, a product, a neuronal spike, etc.) are needed for
nodes to change their states.

This paper focuses on analysis of complex contagions, also
referred to as influence propagation. Spreading event examples
include the rise of collective action to join riots, the diffusion
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of beliefs, political revolutions [8], successful technologies [9],
and cultural market sensations [10]. In addition, cascading fail-
ures observed in critical infrastructure networks, transportation
systems and cloud computing services have sometimes been
studied using complex contagion models [11], [12].

The linear threshold model has been widely used in the
literature for modeling complex contagions over networks
[11]. In this model, each node can be in one of the two states,
active or inactive. Initially, all of the nodes are inactive, and a
small number of nodes are chosen at random to become active
as seeds. An inactive node with degree k, where m of these
k neighbors are active, is activated with probability

F [m, k] ≜ P
[m
k

> τ
]

(1)

where F [m, k] is referred to as the response function, and τ
describes the smallest fraction of active neighbors for an inac-
tive node to turn active. The threshold τ for an individual in
the population is drawn from a distribution P (τ). This model
provides a framework for a single content spreading over a
network with binary influence. There has been an interest in
studying threshold models with an increasing complexity of
the underlying contact network (e.g., multiplex networks [13],
[14]) and extension to more than two states [15].

To the best of our knowledge, existing works on complex
contagions consider only a single content spreading through
a network. However, real-life complex contagions may of-
ten involve simultaneous spreading of multiple correlated
contents. For example, in political events such as elections,
multiple opinions spread among the population at the same
time, potentially with correlations among the topics [16]. In
the context of adopting new technological devices, multiple
products might gain traction in a population simultaneously
(e.g., iPhone and iPad by Apple Inc.), affecting each other.
Finally, in the context of cascading failures in critical infras-
tructures, nodes may be subject to multiple types of failures
(e.g., affecting different functionalities such as computing and
communication) and failures of different types might spread in
the network simultaneously in a correlated manner [17], [18].
Modeling the simultaneous spreading of multiple correlated
contents is critical to establish an understanding of these



phenomena and provide insights into developing spreading
control and mitigation strategies.

Borodin et al. proposed a threshold model for the simulta-
neous spread of two contents [19]. In their model, nodes can
either adopt content-1 or content-2. Although there are two
contents in the spreading process, there is limited correlation
between contents 1 and 2 because both contents cannot be
adopted together. Zhuang et al. proposed a vector threshold
model which allows for the simultaneous adoption of two con-
tents [20]. Each node can be in one of the four states indicating
all possible adoption scenarios of the two contents: state-0
represents adoption of neither, state-1 represents adoption of
only content-1, state-2 represents adoption of only content-
2, and state-3 represents adoption of both contents. State-0
is inactive and the others are active. However, each possible
state’s response function relies on a mutually exclusive parti-
tion of the two-dimensional proportion vector space, making
it hard to extend to an arbitrary number of contents due to
the increasing complexity of specifying all possible states in
a high-dimensional space. In addition, Zhuang et al. did not
provide an analysis of the emergence of global cascades for
the influence spreading of correlated contents.

In this paper, we propose a multi-dimensional threshold
model (MDTM), a more natural extension of Watts’ linear
threshold model [11], to incorporate an arbitrary number of
contents with correlations. Our method explicitly quantifies the
correlation among contents with normalized coefficients, and
can be easily extended to incorporate non-linear correlation.
We provide analytical results of probability of emergence (PE)
of global cascades for active states, in which the spreading
process leads to the activation of a positive fraction of the
population in the limit of the number of nodes going to
infinity. Our analytical solutions disentangle the impact of mul-
tiple factors, including the degree distribution of the contact
network and correlation among contents on the existence of
global cascades. Extensive simulations validate our analytical
results with near-perfect matches in the finite node regime. Our
results provide insight into complex contagions with multiple
correlated contents, helping develop efficient spreading control
and mitigation strategies.

II. MODEL
A. Network model

Consider a population of size n with individuals labeled as
N = {1, . . . , n}. Within the network, each node corresponds
to an individual in N , and an edge is drawn between two
nodes if they have a chance to transmit contents to each other.
To be able to incorporate arbitrary degree distributions, we
generate the contact network G by the configuration model
[21], [22]. Put differently, the topology of the network G is
generated randomly from its degree distribution {pk}, where
k = 0, 1, . . . . Here, {pk} gives the probability that an arbitrary
node on network G has degree k. We denote the random
networks size of n generated via configuration model with
degree distribution {pk}, k = 0, 1, ... as G(n, {pk}). Our
analytical solutions are valid for well-behaved distributions

(i.e., moments of arbitrary order being finite [23], [24]), e.g.,
Poisson degree distributions, power-law degree distributions
with exponential cutoff, etc. However, it is worth noting that
if the second moment of the degree distribution is finite when
n approaches infinite, the expected clustering coefficient of a
typical node approaches zero. This indicates that the graph is
locally treelike.

B. Threshold model with correlation

Here we introduce our proposed MDTM model as an
extension of Watts’ linear threshold model to incorporate an
arbitrary number of contents, together with their correlation.
Consider M ≥ 1 different contents, denoted as content-1, ...,
content-M , respectively. For each content-i, each node in the
population makes a binary decision of whether to support
it or not. We use matrix D size of N ×M to represent
nodes’ binary decisions in the population size of N for all
M contents:

DN×M [u, i] = 1[node u supports content-i],

where i = 1, ...,M , u = 1, ..., N , and 1[·] is an indicator
function that returns 1 if the condition inside is true and 0
otherwise. A node’s state is active if it supports at least one
content and inactive if it does not support any content. In this
work, we assume that once an inactive node turns active, it
cannot change its state.

In an influence propagation process, each inactive node
keeps receiving influence from its contacts. We classify con-
tents’ influences on nodes into different categories. In our
model, the influence a node receives from contacts is mea-
sured by the accumulative influence from different correlated
contents. For 1 ≤ i, j ≤ M , the correlation from content-j
to content-i is measured by a normalized coefficient wij ∈
[−1, 1]. The largest coefficient value of one will be reached
when i = j, if i ̸= j, wij < 1. This means that a content
most highly influences the same content, and other correlated
contents only have additional influence, which, scaled by the
coefficient, might increase or decrease the main influence.

Formally, the accumulative influence of content-i a node
receives is given by

Influencei =
M∑
j=1

wij ·mj (2)

where i, j = 1, ...,M , and mj represent the fraction of node
v’s neighbors that support content-j. Specifically, we have

mj =

∑
u∈Nv

D[u, j]

k
. (3)

where Nv denotes the set of node v’s direct neighbors, k
denotes node v’s degree, and |Nv| = k.

If wij > 0 (resp., wij < 0), it means content-j is positively
(resp., negatively) correlated to content-i, and thus contributes
positively (resp., negatively) to the accumulative influence of
content-i. If wij = wji = 0, it indicates that content-i and j
are independent of each other. Note that it is not required that
wij = wji because the impact of one content on another may



not be symmetric in real life. For example, a popular movie
series may help increase the selling of related posters but the
posters may not be able to help promote the movie as much.
However, in the social influence propagating context, wij and
wji should share the same sign to retain consistency. For
notational convenience, we represent the correlation among
all M contents as a correlation matrix WM×M , where

WM×M [i, j] = wij ,−1 ≤ wij ≤ 1. (4)

As mentioned, the diagonal elements of W are ones, and W
may not be symmetric.

Next, we describe the rule for an inactive node, say, node v,
to become active by receiving accumulative influence from its
neighbors. Similar to Watts’ linear threshold model, we sample
a threshold τi from a distribution P (τi), as the minimum
received accumulative influence for an inactive node to adopt
content-i, for each i = 1, ...,M . The probability for the
inactive node v to support content-i is thus given by:

P[Influencei ≥ τi]. (5)

Note that even though (2) is a linear combination of the
fraction of neighbors supporting each content, we can extend
(2) to a non-linear function of mi, i = 1, ...,M due to the
flexibility of function design.

C. Influence propagation

Now we describe the influence propagation process in this
work. For clarity, we present a case when M = 2 (i.e., there
are two contents considered). Analysis for M > 2 can be
achieved in a similar manner.

Suppose content-1 and content-2 are in the influence prop-
agation process, and nodes in the population can have four
mutually exclusive states in total: state-0 for supporting neither
contents, state-1 for supporting only content-1, state-2 for
supporting only content-2, and state-3 for supporting both
contents. As mentioned, state-0 is inactive, and the rest are
active. For notational convenience, we say a node is i-active
if it is in an active state-i. The probability for an inactive node
to become i-active, i = 1, 2, 3 is given by

F1(W,m) = P[Influence1 ≥ τ1, Influence2 < τ2]; (6)
F2(W,m) = P[Influence2 ≥ τ2, Influence1 < τ1]; (7)
F3(W,m) = P[Influence1 ≥ τ1, Influence2 ≥ τ2], (8)

respectively. In other words, (6)-(8) are the response functions
for the corresponding active states. In addition, we also reserve
F0 to denote the probability that an inactive node remains
inactive:

F0(W,m) = P[Influence1 < τ1, Influence2 < τ2]. (9)

Assume all nodes are initially inactive (i.e., not supporting any
contents). A node is chosen uniformly at random and set to
be active for all contents (i.e., 3-active when M = 2) as the
seed. Other nodes start changing their states according to (6)-
(8) synchronously at times t = 0, 1, ... (i.e., the influence starts
propagating throughout the network). We assume once an

inactive node turns active, it cannot change its state. Therefore,
the contagion process is monotone and will eventually stop,
i.e., reach a steady state.

In fact, (6)-(9) provide a mutually exclusive partition of the
two-dimensional space spanned by the m vector into different
regions for possible states. Figure 1 shows examples of space
partitions when the two contents are positively correlated
(1(a)) and negatively correlated (1(b)). We can see the positive
correlation increases the area for state-3 compared to the
independent case (red dashed lines), resulting in a higher
probability of a node supporting both content-1 and content-
2. On the contrary, the negative correlation decreases the area
for state-3, indicating the negative impact on the accumulative
influence from each other.
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Fig. 1. An example of the two-dimensional vector space partition for possible
states where the first dimension represents m1, and second dimension repre-
sents m2. In (a), content-1 and 2 are positively correlated where w12 = 0.18,
w21 = 0.22; in (b) they are negatively correlated where w12 = −0.18,
w21 = −0.22. In both (a) and (b), τ1 = 0.2, τ2 = 0.25. Green lines
separate the space of supporting content-1 from not supporting content-1. Blue
lines separate the space of supporting content-2 from not supporting content-
2. Red dashed lines represent the partition when content-1 and content-2 are
independent of each other. si, i = 0, 1, 2, 3 denote state-0, 1, 2 and 3,
respectively.

III. EMERGENCE OF GLOBAL CASCADES

This section presents the analytical results of the probability
and threshold of emergence for global cascades under the
proposed MDTM model. We start by giving formal definitions
of probability of emergence and cascade threshold for the
considered influence propagation process.
Definition II.1 (Probability of Emergence of Global Cas-
cades). Global cascades refer to how in an initially inactive
population, a randomly chosen node set to be active for
all contents (i.e., seed) can initiate an influence propagation
that eventually reaches a positive fraction of active nodes in
the entire population. Consider M contents for the influence
propagation process, and there will be 2M different states.
Specifically, for i = 1, 2, ..., 2M − 1, let a random variable
Si(n) denote the fraction of nodes reached and turned i-
active in the population size of n by the seed, probability
of emergence of global cascades for i-active nodes (PEi) is
defined as

PEi = P[ lim
n→∞

Si(n) > 0].



Definition II.2 (Cascade Threshold). Cascade threshold
refers to a boundary in the parameter space that sepa-
rates the regions where global cascades can take place (i.e.,
P[limn→∞ ∪i=1,...,2M−1{Si(n) > 0}] > 0) from the regions
where they cannot (i.e., P[limn→∞ ∪i=1,...,2M−1{Si(n) >
0}] = 0).

Consider random graphs G(n, {pk}) generated by the con-
figuration model. To study the influence propagation over
network G, we consider a branching process that starts by
randomly choosing a node to be the seed, and then recursively
discovers the set of nodes that are reached and activated by
exploring its neighbors based on (6)-(8). We derive the survival
probability of the aforementioned branching process through
a mean-field analysis by using the method of probability
generating functions (PGF) [22], [25].

Here we provide an analysis for M = 2 for simplicity.
Analysis for M > 2 can be conducted in a similar manner.
For i, j = 1, 2, 3, let hij(x) denote the generating function for
“the finite number of nodes reached and activated to become j-
active by following a randomly selected edge from an i-active
node.” Put differently, we have hij(x) =

∑s=∞
s=0 vsx

s, where
vs denotes the “probability that an arbitrary edge emanating
from an i-active node leads to a finite component of j-active
nodes of size s.” Similarly, let Hi(x) denote the generating
function for “the finite number of nodes reached and activated
to i-active by following a randomly selected state-3 seed
node”.

We now derive hij(x) for each i, j = 1, 2, 3, recursively.
Consider an i-active node, say node v, and an edge incident
on it. Consider the node on the other end of this edge, say
node u. We find that the following self-consistency equations
hold:

hij(x) =

∞∑
k=1

pkk

⟨k⟩

[
F0 + x · Fj · hk−1

jj (x)+

∑
ℓ∈{1,2,3}−j

Fℓ · hℓj(x)
k−1

]
(10)

for i, j, ℓ = 1, 2, 3.
We now explain each term appearing in (10). We first

condition on the degree of node u being k, which is given
by pkk

⟨k⟩ . Conditioning on node u’s degree being k, the fraction
of u’s neighbors that support content-i is given by

mi =
1[node v is in state-i or 3]

k
, i = 1, 2.

Note that we add state-3 nodes for each content because state-
3 supports both contents. Given the correlation matrix W, we
can obtain node u’s state based on (6)-(9). If node u remains
inactive (i.e., state-0), it will have no offspring which explains
the F0 term in (10).

If node u is activated to j-active w.p. Fj , the number of
nodes reached and activated to j-active will increase by one,
and this is captured by the multiplicative term x before Fj in
(10). In addition to this, the total size of this branch will also
include all subsequent nodes that might be activated to state-j
by u via its remaining k−1 edges, given the fact that node u is

reached and activated via an edge connecting node v. Besides,
recall that the number of nodes reached and become j-active
by node u via one of its k − 1 edges is generated through
hjj(x). By using the powers property of generating functions
[22], and considering that node u influence its neighbors via
these k − 1 edges independently due to the locally treelike
structure, we obtain the term hk−1

jj (x).
If node u is activated to other active states other than j,

say state-ℓ ∈ {1, 2, 3} − j, we do not need to count node u
itself into the collection. We need to count all the subsequent
nodes that may become j-active via the remaining k−1 edges
of node u, which gives rise to the last term in (10). Above
completes the derivation of (10).

Utilizing (10), we now derive generating function Hi(x).
For each i = 1, 2, 3, we have

Hi(x) = x1[i=3]
∞∑
k=0

pk · h3i(x)
k. (11)

Here, the factor x1[i=3] corresponds to the initial node selected
arbitrarily and activated to state-3. The selected node has
degree k w.p. pk. The number of nodes it reaches and activated
to i-active by each of its k links is generated through h3i(x).
Similarly, by using the powers property of generating functions
and averaging over all possible degrees, we obtain (11).

With equations (10) in hand, the generating function
Hi(x) can be computed in the following manner. Given
any x, we can solve for the recursive relations (10)
to obtain h11(x), ..., h33(x)

1, which in turn will yield
H1(x), H2(x), H3(x) in light of (11).

We are interested in cases where the number of nodes
reached and activated by the initial node is infinite, rep-
resenting cases where a randomly chosen node who is 3-
active triggers a global cascade. There exists a trivial solution
hij(1) = 1 to (10) (yielding Hi(1) = 1) for each i, j =
1, 2, 3 when the number of nodes reached and activated is
always finite. In other words, the underlying branching process
is in the sub-critical regime, and all infected components
have a finite size. However, when the branching process is
in the supercritical regime, there is a positive probability
the branching process will lead to an infinite component,
indicating hij(1) = 1 for all i, j = 1, 2, 3 is not a stable
solution. In this case, there exist p, q ∈ {1, 2, 3} so that
hpq(1) < 1 which in turn yields Hq(1) < 1. The conservation
of probability property of generating functions indicates that
Hq(1) + P[limn→∞ Sq(n) > 0] = 1 if there is a component
reached and become q-active by the seed node has infinite size.
Therefore, we have PEq = 1−Hq(1).

We can check the stability of the fixed point hij(1) = 1 for
i, j = 1, 2, 3 by the linearization of the recursion (10) around
it. This yields the Jacobian matrix J9×9 in which

J [a, b] =
∂hij(1)

∂hpq(1)
,

1Note that, for i, j = 1, 2, 3, if an i-active node can never activate an
inactive neighbor to j-active in a naive population, i.e., a population where
all other nodes are state-0, this branch will have zero j-active offspring. In
this case, hij(x) = 1, for all |x| ≤ 1.



where i, j, p, q = 1, 2, 3; a = M2D(i, j), b = M2D(p, q).
M2D is a 3-base to 10-base converter, mapping the tuple ij
to an integer ranging from one to nine for the ease of matrix
indexing. For example, when we take the derivative of hij(x)
in (10) with respect to one of its inputs hpq(x) when x = 1

(denoted by ∂hij(1)
∂hpq(1)

), the result corresponds to an element in
the matrix J with coordinates (a, b), where a = M2D(i, j)
and b = M2D(p, q) are integers within 1 ≤ a, b ≤ 9.

If all eigenvalues of J are less than one in absolute value
(i.e., if the spectral radius ρ(J) of J satisfies ρ(J) ≤ 1),
then the solution hij(1) = 1 for all i, j = 1, 2, 3 is stable. In
this case, the fraction of active nodes will tend to zero as the
number of nodes n goes to infinity. In contrast, if ρ(J) > 1,
the trivial fixed point is not stable, which indicates that the
branching process is in the supercritical regime (i.e., there is
a positive probability that the branching process will lead to
an infinite activated component). In this case, the fraction of
active nodes infected will be strictly greater than zero as the
number of nodes n goes to infinity.

Finally, we conclude that the cascade threshold for an active
states, i.e., the boundary that separates the parameter regions
where P[limn→∞ ∪i=1,...,2M−1{Si(n) > 0}] > 0 from those
that yield P[limn→∞ ∪i=1,...,2M−1{Si(n) > 0}] = 0 is given
by ρ(J) = 1 for i = 1, 2, 3. The probability of emergence
of i-active global cascades (with a 3-active initiator) is thus
given by PEi = limn→∞ P[Si(n) > 0] = 1−Hi(1).

IV. NUMERICAL RESULTS

We next present simulation results with an eye towards
validating our analytical results (which are exact in the limit
of the number of nodes n goes to infinity) in the finite node
regime. In doing so, we also aim to shed light on how various
parameters used in the model affect the spreading process,
e.g., in terms of probability of emergence of global cascades
for active states. Throughout, the contact network G(n, {pk})
was generated via the configuration model with Poisson degree
distribution with mean degree ⟨k⟩ and n = 2, 000, 000
vertices. To generate the plots, we took an average over
1, 000 independent trials where, in each trial, a new contact
network was generated. In what follows, we assume there are
two contents, i.e., content-1 and content-2, in the influence
propagation process. Nodes in the population can be in states
0 to 3 depending on if they support these two contents.

In the first experiment, we investigate the impact of network
structure on the probability of emergence of global cascades
for active states 1, 2 and 3. Figure 2 shows the probability
of emergence when content-1 and content-2 have the positive
and negative correlation given in Figure 1. First, we see the
simulation results match the analytical solutions with near-
perfect accuracy. This validates our analytical results and
confirms the usefulness of our results in the finite node regime.

In addition, as mean degree ⟨k⟩ increases, there exist
two phase transition points, i.e., the point from which the
probability of emergence change from zero to a positive
value or vice verse, for active states that have transition
points. These two phase transition points are reported in many

works [11], [15], [26] and provide insights on the impact of
network connectivity on the emergence of global cascades. The
first transition indicates that only when the connectivity of a
network reach a certain value, global cascades can exist. On
the other hand, the second transition point around high mean
degree values presents when there is too much connectivity,
causing the stability of nodes to increase. In other words, when
nodes have a large number of neighbors, it is difficult for them
to get influenced by a few active friends. In this case, these
nodes are more stable in terms of remaining in their inactive
state. Consequently, the second phase transition appears.

It is also observed that PE3 remains zero in Figure 2(b)
while in 2(a), it has two transition points. In addition, PE1

has lower values in Figure 2(b) than it does in 2(a). These
differences show the impact of positive and negative corre-
lation on the emergence behavior of global cascades. When
content-1 and 2 are positively correlated, nodes who support
content-1 are likely to support content-2 as well. In this case,
state-1 nodes contribute positively to the emergence of state-
3’s global cascades. When negatively correlated, due to the
negative impact from content-1, node that supports content-1
will not support content-2, leading to PE3 = 0 in Figure 2(b).
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Fig. 2. Probability of Emergence of global cascades with varying mean degree
⟨k⟩ for state-1, 2, and 3, i.e., PE1, PE2 and PE3, respectively. Content-1
and 2 are positively correlated in (a), where w12 = 0.18, w21 = 0.22, and
negatively correlated in (b), where w12 = −0.18, w21 = −0.22. In both (a)
and (b), τ1 = 0.2, τ2 = 0.25. Simulation results (marked as sim in the legend)
show near-perfect agreement with our theoretical results (marked as th in the
legend).

In Figure 3, we give an example of the m vector space
partition using a mixed correlation between content-1 and
2. The space is split into four sub-areas by four line seg-
ments. The four segments intersect in the center point with
coordinates [0.12, 0.2]. The coordinates of the intercept on
the x-axis are [0.18, 0.0], followed by [0, 0.22], [1, 0.87] and
[1, 0.2] for the rest of the end points clockwise. This space
partition exemplifies mixed correlation between contents, i.e.,
having both positive and negative correlation. For example,
before m2 reaches 0.2, content-1 and content-2 are positively
correlated, while after m2 exceeds 0.2, they are negatively
correlated. Influence calculation and response functions are
adapted accordingly to reflect this mixed correlation. With this
complicated correlation, our analytical results still accurately



predict the probability of emergence of global cascades for
each active state within the limit node regime, even around
the two phase transition points, demonstrating the validity of
the analysis for the proposed model.
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Fig. 3. Space partition of mixed correlation (a), and the corresponding
probability of emergence for active states (b).

V. CONCLUSION

In this paper, we propose the multi-dimensional threshold
model (MDTM) for the simultaneous spread of multiple corre-
lated contents over complex networks. We provide analytical
solution for the probability of emergence of the considered
influence propagation process. Numerical results by extensive
simulations validated the analytical solution with near-perfect
match. The analytical results disentangle the interplay between
multiple factors on the emergence behavior of global cascades,
including the underlying network structure and the correlation
among contents. Our results provide insights into understand-
ing complex contagions with multiple correlated contents and
help develop control and mitigation strategies for influence
propagation processes.
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