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ABSTRACT

Multi-armed bandit models are widely studied sequential
decision-making problems that exemplify the exploration-
exploitation trade-off. We study a novel correlated multi-
armed bandit model where the rewards obtained from the
arms are functions of a common latent random variable. We
propose and analyze the performance of the C-UCB algorithm
that leverages the correlations between arms to reduce the cu-
mulative regret (i.e., to increase the total reward obtained after
T rounds). Unlike the standard UCB algorithm that pulls all
sub-optimal arms O(log T') times, the C-UCB algorithm takes
only O(1) times to identify that some arms, which we refer
to as non-competitive arms, are optimal. Thus, we effectively
reduce a K-armed bandit problem to a C' + 1—armed bandit
problem with C' < K denoting the number of competitive,
where C' can be computed from the reward functions. A key
consequence is that when C' = 0, our algorithm achieves a
constant (i.e., O(1)) regret instead of the standard O(log T)
scaling with the number of rounds 7T'. Establishing lower
bounds for the regret, we show that the C-UCB algorithm is
order-wise optimal and demonstrate its superiority against
other algorithms via numerical simulations.

Index Terms— Multi-Armed Bandits, Sequential decision
making, Online learning, Statistical learning, Regret bounds

A full version of this paper with additional examples and
proofs is accessible at: arxiv.org/abs/1808.05904 [1|].

1. INTRODUCTION

The multi-armed bandit (MAB) framework is a special case of
reinforcement learning where actions do not change the system
state. At each time step we obtain a reward by pulling one of K
arms which have unknown reward distributions, and the objec-
tive is to maximize the cumulative reward. The seminal work
of Lai and Robbins [2]] proposed the upper confidence bound
(UCB) arm-selection algorithm, and studied its performance
limits in terms of bounds on regret. Subsequently, multi-armed
bandit algorithms [3]] have been used in numerous applications
including medical diagnosis [4]], system testing [5]], scheduling
in computing systems [6]], and web optimization [[7].

Most existing works on MABs assume that rewards from
arms are mutually independent at each step. However, in most
of the envisioned applications of the model, rewards are ex-

pected to be correlated with each other through a common
randomness. Consider the example of dynamic pricing, where
a company needs to sequentially decide prices p; € P to maxi-
mize their long term revenue. Here, the revenue corresponding
to different prices are correlated with each other and depend
on the unknown time-varying market size X;. The estimated
revenue, R(p¢, X¢), is known as a function F'(p;, X;) of the
unknown market size X and the chosen price p; as given in [§].
Similarly, consider the application to energy-efficient commu-
nication [9], where a device needs to decide the transmit power
level in each round. The reward, which is the received signal
strength depends on the unknown time-varying channel state
X; and is known as a function of the channel state. In both
these applications, while the reward is known given the realiza-
tion of the hidden random variable, the underlying randomness
is hidden and its distribution is unknown.

Motivated by these applications and the limitations of us-
ing classic bandit algorithms in these settings, we consider a
correlated multi-armed bandit framework in which rewards
corresponding to different arms are correlated through a la-
tent random variable X . The rewards from different arms are
known functions gx () of X but the realizations of X and its
probability distribution are unknown, which is the case for
the dynamic pricing and the energy-efficient communication
applications described above. Although we focus on the case
where rewards are deterministic functions g (X) of X, the
algorithms designed and regret bounds can be extended to a
setting where the rewards are random and only their upper and
lower bounds are known, as discussed briefly in Section @

Another common application of multi-armed bandits is ad-
vertisement recommendation systems, where responses corre-
sponding to different ads depend on the age/occupation/income
features of the user to whom the ad is displayed. Contextual
bandit algorithms [[10]], observe the context (age/occupation
information) of the user arriving into the system and find best
recommendation for that user. Our work differs from contex-
tual bandits in that the context is the unknown and random
X but the reward mappings as a function of this hidden con-
text are known. In contrast to contextual bandits, which are
designed to provide personalized recommendation in the con-
text of ads, our model can be applied in a scenario where a
company needs to decide a single product recommendation for
a user population X with an unknown feature demographic



Fig. 1: The correlated multi-armed bandit framework. The
reward of arm k at round t is gi(x:), where x; is an i.i.d.
realization of the latent random variable X .

px . Another class of related models is the structured bandit
framework [[11417] (i.e., linear bandit [18]], generalized linear
bandit [19], Lipschitz bandits [20] etc. ). Structured bandit
models assume that the means pi(6) of the rewards of different
arms depend on a common fixed parameter §. But the reward
realizations are not necessarily correlated — they are typically
independent given 6. In this work we explicitly model such
correlations through the presence of a latent random source X
instead of a fixed parameter 6.

2. PROBLEM FORMULATION

Consider a latent random variable X whose probability distri-
bution is unknown. The random variable can be either discrete
or continuous. For discrete X, we denote the sample space
by W = {z1,22,...2;}, and use p; to denote the probabil-
ity Pr(X = z;) such that Z}]:1 p; = 1. For continuous X,
fx () denotes the pdf of X over z € R. As shown in Figure[l]
the reward obtained by pulling one of the K arms in rounf ¢
is a function of the realization X; of the latent random vari-
able. In other words, taking action k; € K = {1,2,..., K}
in round ¢ yields reward g, (X;) and X is an i.i.d. realiza-
tion of X. Our objective is to choose the optimal sequence of
arm pulls k1, ..., k7 so as to maximize the cumulative reward
Zthl gk, (x¢). This is equivalent to minimizing the cumulative
regret which is defined as

T
Reg(T) £ E | (gr-(X1) — i, (X31)) ¢))
t=1

where k* is the optimal arm. Put differently, Reg(T') quantifies
the total reward lost until time 7" as a consequence of making
some sub-optimal decisions. The optimal arm £* satisfies

k* = argmax E[gp(X)] = arg

ke{1,2,... K}
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where /i, denotes the mean reward of arm k. Let A, £
i+ — pi be defined as the sub-optimality gap of arm k with
respect to the optimal arm £*. We also assume that the reward
functions are bounded within an interval of size B, that is,
(maxzew gk () — mingeyw gx(z)) < B for all arms k& € K.
We do not make any other assumptions such as the functions
g1, - - - gk being invertible.

Remark 1 (Connection to Classical Multi-armed Bandits).
Although we consider a scalar random variable X for brevity,
our framework and algorithm can be generalized to a latent
random vector X = (X1, Xo,...X,,), as we explain in [[1]].
The classical multi-armed bandit framework with independent
arms is a special case of this generalized model when X =
(X1, Xs,... Xk) where X; are independent random variables
and g(X) = X}, for k € K[

3. THE PROPOSED C-UCB ALGORITHM

Our proposed generalizes the UCB Algorithm [21] to the cor-
related bandit setting. The UCB algorithm at each round ¢ 4 1
pulls the arm with the highest UCB index,

2logt
nk(t)

In(t) =+ B . 3)
Here /i), denotes the empirical mean of arm & and ny(¢) de-
notes the number of times arm & has been pulled till round
t. Before describing our proposed algorithm, we define the
notion of pseudo-rewards and empirical competitiveness.

3.1. Pseudo-Reward of Arm / with respect to Arm &

The pseudo-reward of arm ¢ with respect to arm k is an ar-
tificial sample of arm ¢’s reward generated using the reward
observed from arm k. It is defined as follows.

Definition 1 (Pseudo-Reward). Suppose we pull arm k and
observe reward r. Then the pseudo-reward of arm { with
respect to arm k is

max  ge(x). 4)

sek(r) £ gx ()
z:gr (z)="r

The pseudo-reward s 1, (r) gives the maximum possible re-
ward that could have been obtained from arm ¢, given the
reward observed from arm k.

Definition 2 (Empirical and Expected Pseudo-Reward). After
t rounds, arm k is pulled ny(t) times. Using these ny(t)
reward realizations, we can construct the empirical pseudo-
reward (lge}k(t) for each arm £ with respect to arm k as follows.

Sy Li—kser(re)
nk(t) ’

Gui(t) & te K\ {k}. (5

The expected pseudo-reward of arm £ with respect to arm k is
defined as

bek = E[ser(gr(X))]. (6)

'The framework we study leads to rewards from different arms being
correlated for general functions g1, ..gx and general pdf of X, i.e., fx ().
However, there are specific reward functions and distributions fx (x), where
rewards across (some) arms might be uncorrelated or independent.



3.2. Competitive and Non-competitive arms

Using the pseudo-reward estimates defined above, we can
classify each arm ¢ # k as competitive or non-competitive
with respect the arm k. To this end, we first define the notion
of the pseudo-gap.

Definition 3 (Pseudo-Gap). The pseudo-gap Agyk of arm {
with respect to arm k is defined as

Aoy 2t — do, @)

i.e., the difference between expected reward of arm k and the
expected pseudo-reward of arm £ with respect to arm k.

From the definition of pseudo-reward, it follows that the
expected pseudo-reward ¢, is greater than or equal to the
expected reward iy from arm ¢. Thus, a positive pseudo-
gap Ag’k > 0 indicates that it is possible to classify arm ¢
as sub-optimal using only the rewards observed from arm &
(with high probability as the number of pulls for arm k gets
large); thus, arm ¢ needs not be explored. Such arms are called
non-competitive, as we define below.

Definition 4 (Competitive and Non-Competitive arms). An
arm £ is said to be non-competitive if its pseudo-gap with
respect to the optimal arm k* is positive, that is, Ag,k* > 0.
Similarly, an arm { is said to be competitive ing_yk* < 0. The
unique best arm k* has Ak*,k* = 0 and is not counted in the
set of competitive arms.

Since the distribution of X is unknown, we can not find the
pseudo-gap of each arm and thus have to resort to empirical
estimates based on observed rewards. In our algorithm, we
use a noisy notion of the competitiveness of an arm defined as
follows. Note that since the optimal arm k™ is also not known,
empirical competitiveness of an arm £ is defined with respect
to each of the other arms k # /.

Definition 5 (Empirically Competitive and Non-Competitive
arms). An arm { is said to be “empirically non-competitive
with respect to arm k at round t" if its empirical pseudo-
reward is less than the empirical reward of arm k, that is,
fr(t) — (de}k(t) > 0. Similarly, an arm £ # k is deemed
empirically competitive with respect to arm k at round t, if
fik(t) — dex(t) < 0.

3.3. The C-UCB Algorithm

The central idea in our correlated UCB algorithm is that after
pulling the optimal arm k* sufficiently many times, the non-
competitive (and thus sub-optimal) arms can be classified as
empirically non-competitive with increasing confidence, and
thus need not be explored. However, the competitive arms
cannot be discerned as sub-optimal with high confidence just
by using the rewards observed from the optimal arm. Moti-
vated by this, in each round ¢, the proposed C-UCB algorithm
performs the following steps:

1. Select arm k™ = arg maxy, ni(t — 1), that has been
pulled the most until round ¢ — 1.

2. Identify the set A; of arms that are empirically competi-
tive with respect to arm k£”** at round ¢.

3. Pull the arm k; € {A; U k"™} with the highest UCBI
index It (t — 1) (defined in (3)).

4. Update the empirical pseudo-rewards sy j, for all £, the

empirical reward ¢y 1, (t), and the UCB1 indices of all
arms based on the observed reward r;.

Note that the set of competitive arms is not known beforehand,
due to which we identify the set of empirically competitive
arms based on the samples of k™, as it is likely to provide
the best estimate. Moreover, an empirically non-competitive
arm at round ¢ can be empirically competitive in subsequent
rounds as empirical competitiveness is a noisy notion.

4. REGRET ANALYSIS AND BOUNDS

We now characterize the performance of the C-UCB algorithm
by analyzing the expected value of the cumulative regret ((I))).
The expected regret can be expressed as

K
E[Reg(T)] = Y E[ni(T)] Ay, ®)
k=1

where A, = E [gg+ (X)] — E [g1(X)] = poer — i and ng (T)
is the number of times arm k& is pulled in 7" slots. For the
regret analysis, we assume without loss of generality that
the reward functions gy (X) satisfy 0 < g5 (X) < 1 for all
k € {1,2,... K}. Theorem|[l|and Theorem [2]below show that
E [nx(T)] scales as O(1) and O(logT") for non-competitive
and competitive arms respectively.

Theorem 1 (Expected Pulls of a Non-competitive Arm). The
expected number of times C-UCB pulls a non-competitive arm
is bounded as,

T ¢ -2 T
E [ny,(T)] < Kto + K% ) S(K) +Y O

t=Ktg

= 0(1),

where to = inf {7’ > 21 Apin, Dgpr > 4,/%}.

Theorem 2 (Expected Pulls of a Competitive Arm). The ex-
pected number of times a competitive arm is pulled by C-UCB
is bounded as
T
log(T") tA2,
E T) < 2 t ———m 11
[mi(T)] < 875+ +; exp |~ ). (D)

=0(logT) if Apin = m}jnAk > 0.

12)

Substituting the bounds on E [n(7)] derived in Theorem
and Theorem 2]into (8], we get the following regret bound



Corollary 1 (Upper Bound on Expected Regret). The expected
cumulative regret of the C-UCB algorithm is,

E[Reg(T)] <Y AU (T + Y ApUS(D),
keC k'eK\{CUk*}

=C-O(logT) + O(1),

where C C {1,..., K} \ {k*} is set of competitive arms with
cardinality C, U,ic) (T) is the upper bound on E [ny(T)] for
competitive arms given in (1)), and U ,i"c) (T) is the upper
bound for non-competitive arms given in (9).

Reducing dimension of Bandit problem. For the UCB1 al-
gorithm [21]], a regret bound similar to (T)) is known to hold,
but with the first sum taken over all arms. In this sense, we can
say that our C-UCB algorithm reduces the K-armed bandit
problem to a C' + 1-armed bandit problem.
Achieving Bounded Regret. If the set of competitive arms
C is empty (i.e., the number of competitive arms C' = 0),
then our algorithm will lead to (see Corollary [T)) an expected
regret of O(1), instead of the typical O(log T') regret scaling in
classic multi-armed bandits. A simple case where C is empty
is when the reward function g~ (X) corresponding to the arm
k* is invertible. This is because, for all arms ¢ # k*, the
pseudo-gap satisfies Aé,k* = Ay > 0 resulting in them being
non-competitive. The set C can be empty in more general
cases where none of the arms are invertible, in which case our
algorithm still achieves an expected regret of O(1).

Next, we present a lower bound on the expected regret
E [Reg(T)]. Intuitively, if an arm ¢ is competitive, it can not
be deemed sub-optimal just by using the samples from the
optimal arm k*. Theorem [3| shows that O(logT') regret is
unavoidable in such cases.

Theorem 3 (Lower Bound on Expected Regret). For any al-
gorithm that achieves a sub-polynomial regret,

Q(logT)
Q(1)

E [Reg(T)] = { e

ifC=0.
Bounded regret whenever possible. From Corollary [I| we
see that when C' > 0, our algorithm achieves a regret of
O(log T'), matching the lower bound given in Theorem[3|order-
wise. When C' = 0, our algorithm achieves O(1) regret,
meaning that it achieves bounded regret whenever possible.

S. SIMULATION RESULTS

We now present simulation results for the case where X is a
discrete random variable (simulations for continuous X and
random vector X can be found in [[1]]). We consider the reward
functions g1(X), g2(X) and g3(X) shown in Figure [2| for
all simulation plots. However, the probability distribution
Px = (DgysDays---Pus) of X is different for each of the
following cases given below. For each case, Figure[3|shows the
cumulative regret versus the number of rounds. The cumulative
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Fig. 2: Reward Functions used for the simulation results pre-
sented in Figure

regret is averaged over 500 simulation runs, and for each run
we use the same reward realizations for both the algorithms.

Case 1: No competitive arms. Here, we set Py =
(0.1,0.2,0.25,0.25,0.2). In this setting, arm 1 is optimal,
and arms 2 and 3 are non-competitive. We see in Figure [3a]that
the proposed C-UCB algorithm achieves a constant regret and
is significantly superior to the UCB1 algorithm as it is able to
exploit the correlation of rewards between the arms.

Case 2: One competitive arm. Let Px = (0.25,0.17,
0.25,0.17,0.16) which results in arm 3 being optimal, while
arm 1 is non-competitive and arm 2 is competitive. We see in
Figure [3b|that C-UCB performs less exploration than UCB as
only one arm is competitive.

Case 3: Two competitive arms. Here, we set Px =
(0.05,0.3,0.3,0.05,0.3), under which arm 3 is optimal and
arms 1 and 2 are competitive. Since both arms are competitive,
exploration is necessary for both arms and hence in Figure
the regret obtained under C-UCB and UCBI is similar.
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Fig. 3: For the reward functions in Figure@ the cumulative
regret of C-UCB is smaller than UCBI in all the three cases.

6. DISCUSSION AND FUTURE WORK

While this work focuses on a setting where the rewards are
deterministic functions g (X) of the latent random source X.
The algorithm, regret analysis and bounds can be extended to
a setup where rewards are random variables R, that correlated
with the common X . If upper and lower bounds on R, denoted
by gi(x) and g, () are known, then the current algorithm and
regret bounds can be directly extended by redefining pseudo-
reward sy () as

max  ge(7).
g, (@) <r<gr(z)
Open future directions include improving the current algo-
rithm by using correlation information from all arms instead
of just considering the arm that is pulled the most times, and
designing best-arm identification algorithms for the correlated
bandit setting.

S[’k(T) =
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