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Abstract—We consider a new random key predistribution
scheme for securing heterogeneous wireless sensor networks.
Each of the n sensors in the network is classified into r classes
according to a probability distribution µ = {µ1, . . . , µr}.
Before deployment, a class-i sensor is assigned Ki cryptographic
keys that are selected uniformly at random from a pool of P keys.
Once deployed, a pair of sensors can communicate securely if and
only if they have a key in common. The communication topology
of this network is modeled by an inhomogeneous random key
graph. We establish scaling conditions on the parameters P
and {K1, . . . ,Kr} so that this graph is connected with high
probability. The result is given in the form of a zero-one law with
the number of sensors n growing unboundedly large. Our result
is shown to complement and improve those given by Godehardt
et al. and Zhao et al. for the same model, therein referred to as
the general random intersection graph.

Index Terms—Heterogeneous wireless sensor networks; key
predistribution; random graphs; connectivity.

I. INTRODUCTION

Random key graphs have been introduced by Yağan and
Makowski [22] to study the Eschenauer-Gligor (EG) random
key predistribution scheme [8], a widely recognized solution
for securing wireless sensor network (WSN) communications
[4], [7]. Denoted by G(n,K, P ), a random key graph is
constructed on the vertices V = {v1, v2, . . . , vn} as follows.
Each vertex vi is assigned independently a set Σi of K
cryptographic keys that are selected uniformly at random from
a pool of size P . Any pair of vertices vi, vj are then deemed
adjacent if they share a key, i.e., if Σi ∩Σj 6= ∅. Random key
graphs have recently received attention in a wide range of areas
including modeling small world networks [21], recommender
systems [11], and clustering and classification analysis [10];
they are also referred to as uniform random intersection graphs
in the literature. Properties that have been studied include
absence of isolated nodes [22], connectivity [13], [22], [24],
k-connectivity [26], and k-robustness [25], among others.

This paper is the second in a series of publications (the first
one is [18]) where we introduce a variation of the EG scheme
that is more suitable for heterogeneous WSNs. Our motivation
is that many military and commercial WSN applications will
consist of heterogeneous nodes [14], [16] with varying level of
resources (e.g., computational, memory, power) and possibly
with varying level of security and connectivity requirements.
As a result of this heterogeneity, it may no longer be sensible
to assign the same number of keys to all sensors in the
network as prescribed by the EG scheme. Instead, we consider
a scheme where the number of keys assigned to each sensor

is drawn independently from K = {K1, . . . ,Kr} according
to a probability distribution µ = {µ1, . . . , µr}. Put differently,
each vertex vx is independently assigned to a priority class-
i with probability µi > 0 and then receives a key ring with
the size Ki associated with this class. As before, we assume
that once its size is fixed, the key ring Σx is constructed by
sampling the key pool randomly and without replacement.

Let G(n;µ,K, P ) denote the random graph induced by
the heterogeneous key predistribution scheme described above,
where again a pair of nodes are adjacent as long as they share
a key; see Section II for precise definitions. Inspired by the
recently studied inhomogeneous Erdős-Rényi (ER) graphs [3],
[5], we refer to this graph as the inhomogeneous random key
graph. This model was first introduced by the author in [18],
where zero-one laws for the property of absence of isolated
nodes were presented. The main goal of the current paper is
to extend these results to the connectivity of G(n;µ,K, P ).
Namely, we seek to understand how the parameters n,µ,K, P
should behave so that the resulting graph is connected almost
surely. Such results can be useful in deriving guidelines
for designing heterogenous WSNs so that they are securely
connected. By comparison with the results for the standard
random key graph, they can also shed light on the effect of
heterogeneity on the connectivity properties of WSNs.

Our main result is a zero-one law for the connectivity in
G(n;µ,K, P ) (see Theorem 1). Namely, we scale the param-
eters K and P and provide critical conditions on the scaling
such that the resulting graph is almost surely connected and
almost surely not connected, respectively, when the number
of nodes n goes to infinity. The critical scaling is shown to
coincide that obtained for the absence of isolated nodes in
G(n;µ,K, P ) [18], meaning that absence of isolated nodes
and connectivity are asymptotically equivalent properties for
the inhomogeneous random key graph. Other well-known
models that exhibit the same behavior include ER graphs [2],
random key graphs [22], and random geometric graphs [12].

Our result is compared with those obtained by Zhao et al.
[25] and Godehardt et al. [10] for the k-connectivity and con-
nectivity, respectively, of G(n;µ,K, P ); there G(n;µ,K, P )
was referred to as a general random intersection graph. We
show that earlier results are constrained to parameter ranges
that are unlikely to be feasible in real world WSN implemen-
tations due to excessive memory requirement or very limited
resiliency against adversarial attacks. On the contrary, our
results cover parameter ranges that are widely regarded as
feasible for most WSNs; see Section III-C for details.
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A rather surprising conclusion derived from our main result
is that the minimum key ring size in the network has a signif-
icant impact on the connectivity of G(n;µ,K, P ). In partic-
ular, for the (homogeneous) random key graph G(n;K,P )
the critical threshold for connectivity is known [13], [22]
to be given by K2

P ∼ c logn
n and the resulting graph is

asymptotically almost surely connected (resp. not connected)
if c > 1 (resp. c < 1). For the inhomogeneous random key
graph G(n;µ,K, P ) one would be tempted to think that an
equivalent result holds under the scaling

K2
avg

P ∼ c logn
n , with

Kavg =
∑r
j=1 µjKj denoting the mean key ring size. Instead,

we show that the zero-one law for connectivity holds under
KminKavg

P ∼ c logn
n , where Kmin stands for the minimum of

{K1, . . . ,Kr}; see Corollary 2. This implies that under the
heterogeneous scheme, the mean number of keys required per
sensor node to achieve connectivity can be significantly larger
than that required in the homogeneous case. For instance, the
expense of allowing an arbitrarily small fraction of sensors to
keep half as many keys as in the homogeneous case would be
to increase the average key ring size by two-fold.

We close with a word on notation. All limiting statements
are understood with the number of sensor nodes n going to
infinity. An event is said to hold with high probability (whp) if
it holds with probability 1 as n→∞. With arbitrary sequences
{an}, {bn}, we use an = o(bn), an = w(bn), an = O(bn),
an = Ω(bn), and an = Θ(bn), with their meaning in the
standard Landau notation. We also use an ∼ bn to denote the
asymptotic equivalence limn→∞ an/bn = 1.

II. MODEL DEFINITIONS

Consider a network that consists of n sensor nodes labeled
as v1, . . . , vn. The main idea is to classify the nodes into r
sets (e.g., depending on their level of importance) and then
ti assign different number of cryptographic keys to sensors
based on their class. Assume that each of the n nodes in the
network are independently assigned to a class according to
some probability distribution µ : {1, . . . , r} → (0, 1). Namely,
with tx denoting the class (or, type) of node vx, we have

P [t` = i] = µi > 0, i = 1, . . . , r,

for each ` = 1, . . . , n. Then, a class-i node is assigned Ki

keys that are selected uniformly at random from a pool of
size P , for each i = 1, . . . , r. It is further assumed that the
rvs Σ1, . . . ,Σn are independent and identically distributed.

Let K = (K1, . . . ,Kr) and µ = (µ1, . . . , µr). Without loss
of generality we assume that K1 ≤ K2 ≤ · · · ≤ Kr. Consider
a random graph G defined on the vertex set V = {v1, . . . , vn}
such that two nodes vx and vy are adjacent, denoted vx ∼ vy ,
if they have at least one key in common in their corresponding
key rings. Namely, we have

vx ∼ vy if Σx ∩ Σy 6= ∅. (1)

The adjacency condition (1) defines the inhomogeneous
random key graph, hereafter denoted G(n;µ,K, P ). The
name is reminiscent of the recently studied inhomogeneous

random graph [3] model where nodes are again divided into
r classes, and a class i node and a class j node are connected
with probability pij , independent of everything else. This
independence disappears in the inhomogeneous random key
graph case, but one can still compute pij as

pij := 1−

(
P−Ki
Kj

)(
P
Kj

) , i, j = 1, . . . , r. (2)

In view of (2), our key predistribution scheme results in higher
priority nodes (i.e., nodes with more assigned keys) connecting
with each other with higher probability; see [19]. In presenting
our results below, we shall make use of the mean probability
of edge occurrence for each node class. Namely, we define

λi :=

r∑
j=1

pijµj , i = 1, . . . , r. (3)

It is easy to see that the mean number of edges incident on a
node (i.e., the degree of a node) of class-i is given by (n−1)λi.

Throughout, we assume that the number of classes r is
fixed and do not scale with n, and so are the probabilities
µ1, . . . , µr > 0. All other parameters are scaled with n, and we
are interested in the properties of the resulting inhomogeneous
random key graph as n grows unboundedly large.

III. MAIN RESULTS AND DISCUSSION

A. The results

To fix the terminology, we refer to any mapping
K1, . . . ,Kr, P : N0 → Nr+1

0 as a scaling as long as

1 ≤ K1,n ≤ K2,n ≤ · · · ≤ Kr,n < Pn (4)

holds for n = 2, 3, . . .. Let Kn = (K1,n,K2,n, . . . ,Kr,n).
Our main result, presented below, is a zero-one law for the
connectivity of inhomogeneous random key graphs.

Theorem 1. Consider a probability distribution µ =
(µ1, . . . , µr) with µi > 0 for i = 1, . . . , r, and a scaling
K1, . . . ,Kr, P : N0 → Nr+1

0 such that

λ1(n) ∼ c log n

n
(5)

for some c > 0. Under the assumptions

Pn = Ω(n) (6)

and

(K1,n)2

Pn
= w

(
1

n

)
, (7)

we have

lim
n→∞

P [G(n;µ,Kn, Pn) is connected ] =

 0 if c < 1

1 if c > 1.
(8)

The proof of Theorem 1 is omitted here due to space
limitations. All details can be found in [19].
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In words, Theorem 1 states that the inhomogeneous random
key graph G(n;µ,Kn, Pn) is connected whp if the mean
degree of “the nodes that have the least number of keys”
is scaled as (1 + ε) log n for some ε > 0; in view of [19,
Proposition 4.1], the nodes that are assigned the least number
of keys have the minimum mean-degree in the graph. On the
other hand, if this minimal mean degree scales like (1−ε) log n
for some ε > 0, then whp G(n;µ,Kn, Pn) is not connected.
The additional conditions (6) and (7) are enforced here merely
for technical reasons and are required only for the one-law part
of the connectivity result, Theorem 1. A detailed discussion
on these additional conditions is given in Section III-B, where
we explain why they are likely to hold in many real-world
WSN applications. There, we also discuss how and when these
conditions can be relaxed or replaced by milder conditions.

In [18, Theorem 1], the author established an analog of
Theorem 1 for the “absence of isolated nodes” property in
inhomogeneous random key graphs. Namely, they showed that
under the scaling (5), G(n;µ,Kn, Pn) has no isolated nodes
(resp. has at least one isolated node) whp if c > 1 (resp. if
c < 1); the conditions (6) and (7) were not needed for this
result to hold. With this in mind, Theorem 1 complements and
extends the absence of isolated nodes result given in [18] to
the stronger (and more desired) property of connectivity. The
results given here also demonstrate that the inhomogeneous
random key graph provides one more example random graph
model where the properties of absence of isolated nodes and
connectivity are asymptotically equivalent. Other well-known
examples include Erdős-Rényi graphs [2], random key graphs
[22], random geometric graphs [12], intersection of random
key graphs and ER graphs [17], and intersection of random
K-out graphs and ER graphs [15], [23].

Our result is also analogous to the recent findings by Lev-
roye and Freiman [5] for the connectivity of inhomogeneous
Erdős-Rényi graph model, where nodes are classified into r
classes independently according to a probability distribution µ
and an edge is drawn between a class-i and a class-j node with
probability pij(n) independent of everything else. With λi(n)
defined as λi(n) :=

∑r
j=1 pij(n)µj , their result states that if

mini=1,...,r λi(n) ∼ c log n/n then with c > 1 (resp. c < 1)
the corresponding graph is connected (resp. not connected)
whp, under some additional technical conditions.

We now present a corollary of Theorem 1 under a different
scaling condition than (5). This alternative formulation makes
it easier to derive design guidelines for dimensioning hetero-
geneous key predistribution schemes, namely in adjusting key
ring sizes K1, . . . ,Kr and probabilities µ1, . . . , µr such that
the resulting network is connected whp.

Corollary 2. Consider a probability distribution µ =
(µ1, . . . , µr) with µi > 0 for i = 1, . . . , r and a scaling
K1, . . . ,Kr, P : N0 → Nr+1

0 . Let |Σ|n denote a rv that takes
the value Ki,n with probability µi for each i = 1, . . . , r. If

K1,nE [|Σ|n]

Pn
∼ c log n

n
(9)

holds for some c > 0, then we have the zero-one law (8) if the
additional conditions (6) and (7) are also satisfied.

A proof of Corollary 2 is given in [19], where we show
that the scaling conditions (5) and (9) are indeed equivalent
to each other, meaning that one can obtain Theorem 1 from
Corollary 2, and vice versa. We remark that E [|Σ|n] gives
the mean number of keys assigned to a sensor in the network.
With this in mind, Corollary 2 provides various design choices
to ensure that resulting network is connected. One just has to
set the minimum and average key ring sizes such that their
multiplication scales as (1 + ε)Pn logn

n for some ε > 0, and
has to ensure that the additional conditions (6)-(7) are satisfied.

To compare with the homogeneous random key predistribu-
tion scheme, set r = 1 and consider a universal key ring size
Kn in Corollary 2. This leads to zero-one laws for connectivity
in the standard random key graph G(n;Kn, Pn). Namely, with

K2
n

Pn
∼ c log n

n
, c > 0 (10)

analogs of (8) are obtained for G(n;Kn, Pn); these results
had already been established in [22] in stronger forms. An
interesting observation is that minimum key ring size has a
dramatic impact on the connectivity properties of inhomoge-
neous random key graph. To provide a simple and concrete
example, set Pn = n log n. In the homogeneous case, we
see from (10) that the universal key ring size has to scale
as Kn = (1 + ε) log n for some ε > 0 to ensure that the
network is connected. In the heterogeneous case, one gains
the flexibility of having a positive fraction of sensors in the
network with substantially smaller number of keys. However,
from Corollary 2 we see that this comes at the expense of
having to assign a substantially larger key rings to a positive
fraction of other sensors. To give a concrete example, we see
from (11) that the minimum key ring size K1,n can be kept on
the order of O(

√
log n) and connectivity can still be achieved

if the mean key ring size is O((log n)1.5).

B. Comments on the technical conditions (6)-(7)

We now provide a detailed discussion on the technical
conditions (6) and (7) enforced in Theorem 1. We will focus
on i) the feasibility of these additional conditions for real-
world WSN implementations, and ii) when and how they can
be replaced with milder conditions.

We start with the condition (6) that states the key pool size
grows at least linearly with the network size n. In terms of
applicability in the context of heterogeneous key predistribu-
tion schemes in WSNs, this condition is not stringent at all. In
fact, it is often needed that key pool size Pn be much larger
than the network size n [6], [8] as otherwise the network will
be extremely vulnerable against node capture attacks. From a
technical point of view, the case where Pn = Ω(n) is also
the more interesting and challenging one as compared to the
case where Pn = o(n). For instance, when Pn = O(nδ) for
some 0 < δ < 1/2, the inhomogeneous random key graph
G(n;µ,Kn, Pn) can be shown to be connected for any µ as
long as K1,n ≥ 2 ; see [20, Lemma 8.1] for a proof of a similar
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result for the standard random key graph. This means that if
Pn = O(nδ) with δ < 1/2, even two keys per sensor node is
enough to get network connectivity whp. Finally, we remark
that the scaling condition (5) or its equivalent (9) already
implies that Pn = Ω( n

logn ) since K1,nE [|Σ|n] ≥ 1.
Next, we look at the condition (7) and start with discussing

possible relaxations. First of all, (7) is stronger than what is
actually needed for our proof to work; it is enforced to enable
a shorter proof and an easier exposition of the main result. As
discussed in [19], we can replace (7) with

K2
1,n

Pn
≥

2 log 2+log(1−µr)+ε
βν

n and K1,n = w(1), if µr ≤ 0.75

K2
1,n

Pn
= Ω

(
1

n(logn)M

)
and K1,n = w(1), if µr > 0.75

(11)

for any ε > 0 and any finite integer M ; here β > 0 and ν > 0
are variables specified in the proof of Theorem 1.

As we look at (11), we see that K1,n = w(1) is needed for
any µr. In fact, this condition can easily be satisfied in real-
world WSN implementations given that key ring sizes on order
of O(log n) are regarded as feasible for most sensor networks
[6]. Considered in combination with (9), other conditions
enforced in (11) bound the variability in the key ring sizes
used in the network. In particular, given that

E [|Σ|n]

K1,n
=

K1,nE[|Σ|n]
Pn

(K1,n)2

Pn

= Θ

(
log n

n

)(
(K1,n)2

Pn

)−1

,

(11) implies E[|Σ|n]
K1,n

= O (log n) when µr ≤ 0.75 and
E[|Σ|n]
K1,n

= O
(
(log n)M

)
when µr > 0.75. Thus, we see that

when more than 75 % of the sensors receive the largest key
rings, one can afford to use much smaller key rings for the
remaining sensors, as compared to the case when µr ≤ 0.75.

Collecting, while conditions enforced in (11) take away
from the flexibility of assigning very small key rings to a
certain fraction of sensors (as we were allowed to do for
the absence of isolated nodes [18], [19]), they can still be
satisfied easily in most real-world implementations. To provide
a concrete example, one can set Pn = n log n and have
K1,n = (log n)1/2+ε and E [|Σ|n] = (1 + ε)(log n)3/2−ε with
any ε > 0; in view of Theorem 1 and (11) the resulting net-
work will be connected whp. With the same Pn, it is possible
to have much smaller K1,n when µr > 0.75. For example, we
can have K1,n = log log · · · log n and E [|Σ|n] = Ω((log n)2).
Of course, one can also have all key ring sizes on the same
order and set K1,n = c1 log n and E [|Σ|n] = c2 log n with
c1c2 > 1, to obtain a connected WSN whp.

C. Comparison with related work

The model G(n;µ,Kn, Pn) considered here is also known
as general random intersection graph in the literature; e.g.,
see [1], [9], [25]. To the best of our knowledge this model has
been first considered by Godehardt and Jaworski [9] and by
Goderhardt et al. [10]. Results for both the absence of isolated
nodes and graph connectivity have been established; see below

for a comparison of these results with ours. Recently, Zhao
et al. [25] established results for the k-connectivity and k-
robustness of the general random intersection graph.

We now compare our results with those established in the
literature. Our main argument is that previous results for the
connectivity of inhomogeneous random key graphs are con-
strained to very narrow parameter ranges that are impractical
for wireless sensor network applications. In particular, we will
argue below that the result by Zhao et al. [25] is restricted
to very large key ring sizes, rendering them impractical for
resource-constrained sensor networks. On the other hand, the
results by Godehardt et al. [1], [9] focus on fixed key ring sizes
that do not grow with the network size n. As a consequence,
in order to ensure connectivity, their result requires a key
pool size Pn that is much smaller than typically prescribed
for security and resiliency purposes.

To fix the terminology, let Dn : {1, 2, . . . , Pn} → [0, 1]
be the probability distribution used for drawing the size of
the key rings Σ1, . . . ,Σn; as before, once its size is fixed a
key ring is formed by sampling a pool of size Pn randomly
without replacement. The graph G(n;Dn, Pn) is defined on
the vertices {v1, . . . , vn} and contains an edge between any
pair of nodes vx and vy as long as Σx ∩ Σy 6= ∅. The model
G(n;µ,Kn, Pn) considered here constitutes a special case of
G(n;Dn, Pn) under the assumption that the support of Dn has
a fixed size of r. With these in mind, we now state the results
by Zhao et al. [25] and Goderhardt et al. [10], consecutively.

Theorem 3. [25, Theorem 1] Consider a general random
intersection graph G(n,Dn, Pn). Let |Σ|n be a random variable
following the distribution Dn. With αn defined via

E[|Σ|n]2

Pn
=

log n+ (k − 1) log log n+ αn
n

, (12)

if Pn = Ω(n), var[|Σ|n] = o
(

E[|Σ|n]2

n(logn)2

)
, and αn = o(log n),

lim
n→∞

P [G(n,Dn, Pn) is k-connected ] =

{
0 if αn → −∞
1 if αn →∞.

Theorem 4. [10, Theorem 2] Consider a general random
intersection graph G(n,D, Pn), where D(`) = 0 for all ` > L
and ` = 0. Namely, all key ring sizes are bound to be on
the interval [1, L]. Let |Σ| be a random variable following the
probability distribution D. Then if

n

Pn
(E [|Σ|]−D(1))− logPn →∞ (13)

then limn→∞ P [G(n,D, Pn) is connected] = 1.

We now argue why the results established in Theorems 3
and 4 are not likely to be applicable for real-world sensor
networks. First, Theorem 4 focuses on the case where all
possible key rings have a finite size that do not scale with n.
With E [|Σ|] fixed, the scaling condition (13) clearly requires

Pn = O (n/log n) . (14)

In contrast with (14), it is often needed that key pool size Pn
be much larger than the network size n [6], [8] as otherwise
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the network will be extremely vulnerable against node capture
attacks. In fact, one can see that with (14) in effect, an
adversary can compromise a significant portion of the key pool
(and, hence network communication) by capturing o(n) nodes.

We now focus on Theorem 3, where the major problem
arises from the assumption

var[|Σ|n] = o

(
E[|Σ|n]2

n(log n)2

)
. (15)

For the model to be deemed as inhomogeneous random key
graph, the variance of the key ring size should be non-zero.
Given that key ring sizes are integer-valued, even the simplest
case of assigning either K or K + 1 keys to each node with
some probabilities µ and 1 − µ, respectively, will lead to
var[|Σ|] = µ(1 − µ) > 0 (with 0 < µ < 1). Therefore,
(15) can only be satisfied if E[|Σ|n]2

n(logn)2 = w(1), or, equivalently

E [|Σ|n] = w
(√
n log n

)
. (16)

Put differently, Theorem 3 enforces mean key ring size to be
much larger than

√
n log n. However, a typical wireless sensor

network will consist of a very large number of sensors, each
with very limited memory and computational capability [6],
[8]. As a result, key rings with size w(

√
n log n) are unlikely

to be implementable in most practical network deployments.
In fact, it was suggested by Di Pietro et al. [6] that key rings
with size O(log n) are acceptable for sensor networks.

In comparison, our result Theorem 1 does not require either
of the unrealistic conditions (14) or (16). To see this, note that
the scaling condition (5) implies (see [19, Lemma 4.3])

K1,nKr,n

Pn
= Θ

(
log n

n

)
. (17)

Obviously, this condition does not require (14), and in fact
already enforces Pn = Ω(n/ log n). Also, the additional
conditions (6)-(7) of our connectivity result and (17) can be
satisfied simultaneously without requiring the prohibitively
large key ring sizes given at (16). To provide concrete ex-
amples, we can use Pn = Θ(n log n), K1,n = Θ(log n) and
Kr,n = Θ(log n), or Pn = Θ(n log n), K1,n = Θ(

√
log n)

and Kr,n = Θ((log n)3/2). With proper choice of constants
in these scalings, we will ensure that i) the resulting WSN is
connected whp; ii) the key pool size is much larger than the
network so that the resulting WSN has good level of resiliency
against node capture attacks; and iii) the maximum key ring
size used in the network is on the order of the ranges log n or
(log n)3/2 that are usually regarded as feasible [6], [8]; these
choices also lead to a much smaller mean key ring size than
that prescribed in (16).
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[23] O. Yağan and A. M. Makowski. Modeling the pairwise key predistribu-
tion scheme in the presence of unreliable links. IEEE Transactions on
Information Theory, 59(3):1740–1760, 2013.

[24] J. Zhao, O. Yagan, and V. Gligor. Connectivity in secure wireless
sensor networks under transmission constraints. In 52nd Annual Allerton
Conference on Communication, Control, and Computing, 2014.
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