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Abstract— There is a consensus that integrated cyber-
physical systems (CPSs), such as the smart-grid, will emerge
as the underpinning technology for major industries. A major
concern regarding such systems are the seemingly unexpected
large scale failures. Such events are often attributed to a small
initial shock getting escalated due to intricate dependencies
within and across the individual (e.g., cyber and physical)
counterparts of the system. This phenomenon, also known as
cascade of failures, has the potential of collapsing an entire
infrastructure. In this paper, we develop a novel interdependent
system model to capture this phenomena. Our framework
consists of two networks that have inherently different charac-
teristics governing their intra-dependency: i) a cyber-network
where a node is deemed to be functional as long as it belongs to
the largest connected (i.e., giant) component; and ii) a physical
network where nodes are given an initial flow and a capacity,
and failure of a node results with redistribution of its flow to
the remaining nodes, upon which further failures might take
place due to overloading (i.e., the flow of a node exceeding its
capacity). Furthermore, it is assumed that these two networks
are inter-dependent. For simplicity, we consider a one-to-one
interdependency model where every node in the cyber-network
is dependent upon and supports a single node in the physical
network, and vice versa. We provide a thorough analysis
of the dynamics of cascading failures in this interdependent
system initiated with a random attack. The system robustness is
characterized in terms of all network parameters involved (e.g.,
degree distribution, load/capacity values, etc.). These analytic
results are also supported by a numerical study.

Index Terms— Cascading failures; Robustness; Cyber-
physical systems

I. INTRODUCTION

Today’s worldwide network infrastructure consists of a
web of interacting cyber-networks (e.g., the Internet) and
physical systems (e.g., the power grid). There is a consensus
that integrated cyber-physical systems (CPSs) will emerge as
the underpinning technology for major industries in the 21st
century. The smart grid is an archetypal example of a CPS
where the power grid network and the communication net-
work for its operational control are coupled together; the grid
depends on the communication network for its control, and
the communication network depends on the grid for power.
While this coupling with a communication network brings
unprecedented improvements and functionality to the power
grid, it has been observed [28] that such interdependent
systems tend to be fragile against failures, natural hazards,
and attacks. For instance, in the event of an attack or random
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failures in an interdependent system, the failures in one of
the networks can cause failures of the dependent nodes in the
other network and vice versa. This process may continue in
a recursive manner, triggering a cascade of failures that can
potentially collapse an entire system. In fact, the cascading
effect of even a partial Internet blackout could disrupt major
national infrastructure networks involving Internet services,
power grids and financial markets [5]. For example, it was
shown [23] that the electrical blackout that affected much of
Italy on 28 September 2003 had started with the shutdown
of a power station, which led to failures in the Internet
communication network, which in turn caused the breakdown
of more stations, and so on.

As we embark on a future where interdependent systems
are becoming an integral part of our daily lives, a fun-
damental question arises as to how we can design them
in a robust and reliable manner. Numerous applications of
interdependent systems – including those that concern the
nation’s security, the health care system, monitoring and
protecting natural landscapes, the electrical power system,
and emergency services – clearly put the successful and
efficient operation of them at the core of technologies that
are vital to us. To that end, a major focus has to be put on
understanding their vulnerabilities, and in particular the root
cause of the seemingly unexpected but large scale cascading
failures. These events are often attributed to a small initial
shock getting escalated due to the intricate dependencies
within and across the individual (e.g., cyber and physical)
counterparts of the system. Therefore, a good understanding
of the robustness of many real-worlds systems passes through
an accurate characterization and modeling of these inherent
dependencies.

Traditional network science falls short in providing such
a characterization since the focus has mainly been on single
networks in isolation; i.e., networks that do not interact
with, or depend on any other network. Despite some recent
research activity aimed at studying interdependent networks
[5], [6], [10], [15], [22], [35], very few consider engineering
aspects of inter-dependent networks and very little is known
as to how such systems can be designed to have maximum
robustness under certain design constraints; see [7], [26],
[32], [34] for rare exceptions. The current literature is also
lacking interdependent system models that capture funda-
mental differences between physical and cyber networks, and
enable studying robustness of systems that integrate networks
with inherently different behavior; e.g., the functionality of
the physical subsystem would be primarily governed by the
physical flows and capacities associated with its components,



while in a cyber-network system-wide connectivity would
be the prominent requirement for maintaining functionality.
There is thus a need to develop a new approaches for
modeling and analyzing cascading failures in interdependent
cyber-physical systems.

In this paper, we develop a model that will help understand
how failures would propagate in an interdependent system
that constitutes physical and cyber networks. This requires
characterization of intra-dependency models for each con-
stituent network as well as an inter-dependency model de-
scribing the spread of failures across networks; see Section
II-A for a detailed discussion on the differences between
them. As already mentioned, the main drawback of the
current literature on interdependent networks is that the focus
has almost exclusively been on percolation-based failure
models, where a node can function only if it belongs to the
largest connected (i.e., giant) component in the networks.
While suitable for cyber or communication networks, such
models are not appropriate for networks carrying physical
flows; e.g., in the power grid, islanding is a commonly used
strategy for preventing cascades [11].

Our interdepedent system model consists of two networks:
i) a cyber-network where a node is assumed to be functional
as long as it belongs to the largest connected (i.e., giant) com-
ponent; and ii) a physical network where nodes are given an
initial flow and a capacity, and failure of a node results with
redistribution of its flow to the remaining nodes, upon which
further failures might take place due to overloading (i.e., the
flow of a node exceeding its capacity). For simplicity, we
consider a one-to-one interdependency model where every
node in the cyber-network is dependent upon and supports
a single node in the physical network, and vice versa. Thus,
a node in the cyber-network (resp. physical network) will
continue to function if and only if its support in the physical
network (resp. cyber-network) is functional and it belongs to
the largest connected subgraph of the cyber-network (resp. its
capacity is larger than its current flow); see Section II for a
detailed description of the system model.

We provide a thorough analysis of the dynamics of cascad-
ing failures in this interdependent system, where failures are
initiated by a random attack on a certain fraction of nodes.
The system robustness, defined as the steady-state fraction of
nodes that survive the cascade, is characterized in terms of all
network parameters involved (e.g., degree distribution of the
cyber-network, load-capacity values, attack size, etc.). These
analytic results are also supported by an extensive numerical
study. Interesting findings include the observation that the
system tends to go through a complete breakdown through
a discontinuous (i.e., first-order) transition with respect to
increasing attack size. In other words, the variation of the
“fraction of functional nodes at the steady state” with respect
to “attack size” has a discontinuity at the critical attack
size above which the system collapses. This is reminiscent
of large but rare blackouts seen in real world, in a way
explaining how small initial shocks can cascade to disrupt
large systems that have proven stable with respect to similar
disturbances in the past. Finally, we also comment on how

system robustness can be improved by properly assigning
node capacities in the physical network, when the total
capacity of all nodes is fixed.

We believe this work brings a new and fresh perspective to
the field of robustness of interdependent networks by steering
the literature away from heavily-studied percolation models
towards flow-redistribution models, and models that combine
networks with inherently different cascade characteristics (of
which CPS is an arctypal example).

The rest of the paper is organized as follows. In Section
II, we present our interdependent system model in details,
starting with the distinction between intra-dependency and
inter-dependency. In Section III, we present the main result
of the paper, which allows computing the fraction of sur-
viving nodes at each step of cascading failures initiated by
a random attack. Here, we also provide an outline of the
proof, while full proof is given in Appendix. In Section IV,
we present numerical results demonstrating the accuracy of
our analysis in the finite node regime. The paper is concluded
in Section V with several suggestions for future work.

II. SYSTEM MODEL

A. Intra-dependency vs. Inter-dependency

Our modeling framework is motivated with the inherent
dependencies that exist in many real-world systems including
cyber-physical systems (CPSs). Namely, we will characterize
how component failures propagate and cascade, both within
the cyber or the physical parts of the system (due to
“intra-dependency”), as well as across them due to “inter-
dependency”. The actual meaning of “failure” is expected to
be domain-dependent and can vary from a component being
physically damaged to a node’s inability to carry out its tasks.
For ease of exposition, we consider two sub-systems, say A
and B.

Assume that network A consists of nodes {a1, . . . , aN}
and network B consists of nodes {b1, . . . , bN}. For illus-
tration purposes, we can think of network A as the power
network consisting of generators and substations (i.e., the
physical network), and network B as the control and com-
munication network consisting of control centers and routers
(i.e., the cyber network) – This is a classical example of an
interdependent CPS, with the power stations sending data
to and receiving control signals from routers, and routers
receiving power from substations. Modeling the dependen-
cies within and between networks A and B amounts to
answering three questions. First, for both networks we have
to decide on the set of rules governing how failures would
propagate within that network, leading to a characterization
of the intra-dependencies. For example, we should identify
how the failure of a power node ai affects other substations
and generators in the power network A. Second, the same
question should be answered for network B, i.e., with respect
to the failure of a communication node bj . Finally, we must
characterize the inter-dependence of the two systems, and
how this interdependence may lead to propagation of failures
across them. Namely, we must have a set of rules that specify



Fig. 1. An illustration of failure propagation model in an interdependent
system.

how the failure of a power station ai impacts the nodes
{b1, . . . , bN} in the communication network and vice versa.

Once these modeling questions are answered, the prop-
agation of failures in an interdependent system (consisting
of networks A and B) can be studied. Without loss of
generality, assume that the failures are initiated in network
A, either due to random failures, or due to adversarial
attacks. To get a better idea about the role of intra- and
inter-dependencies in the cascade of failures, consider an
asynchronous failure update model, where the effect of
intra-dependencies and inter-dependencies are considered in
two separate batches, following one another. See Figure 1
for an illustration of the asynchronous failure propagation
model. The asynchronous failure update assumption eases
the implementation and analysis of the model, and can be
shown to yield the same steady-state network structures with
a synchronous failure update model; just note that failure
propagation process is monotone and that nodes can not heal
once failed.

B. The Model

Despite the vast literature on interdependent networks [5],
[25], [32], [33], there has been little (if any) attempt to
characterize the robustness of interdependent systems where
the constituent networks have different intra-dependency
behaviors. In the case of CPS, it would be expected that
the cyber and physical counterparts obey inherently different
rules governing how failures would propagate internally in
each network. To this end, we study in this paper an inter-
dependent system model that consists of two networks with
different characteristics governing their intra-dependency: i)
a cyber-network where a node is deemed to be functional
as long as it belongs to the largest connected (i.e., giant)
component; and ii) a physical network where nodes are given
an initial flow and a capacity, and failure of a node results
with redistribution of its flow to the remaining nodes, upon
which further failures might take place due to overloading
(i.e., the flow of a node exceeding its capacity). To the best of
our knowledge, this is the first work in the literature that stud-
ies interdependence between networks with fundamentally
different intra-dependency; most existing works are focused

Network A

Network B

Fig. 2. System model illustration for the cyber-physical systems, where
network A can be the physical grid, and network B can be the communication
network that sends control signals. The interdependence across the two
networks are realized through random one-to-one support links shown by
dashed lines.

on the interdependency between two physical networks (that
obey a flow-redistribution-based model) [24], or two cyber-
networks (that obey a giant-component-based intra-failure
model) [5].

For simplicity, the interdependence across the two net-
works is assumed to be one-to-one; i.e., every node in the
cyber-network is dependent upon and supports a single node
in the physical network, and vice versa; see Figure 2. More
precisely, we assume that for each i = 1, . . . , N , nodes ai
and bi are dependent on each other meaning that if one fails,
the other will fail as well. Although simplistic, the one-to-one
interdependence model is considered to be a good starting
point and has already provided useful insights in similar
settings; more complicated inter-dependence models shall
be considered in future work including regular allocation
strategy, i.e., each node in A is connected to k nodes in B
and vice versa, or a more general case where some nodes do
not have interdependent links and can only function inside
each constituent network.

Intra-dependency in Network A. Let network A represent
a flow network on nodes a1, . . . , aN . Each node ai is given
an initial load (e.g., power flow) L1, . . . , LN . The capacity
Ci of node ai defines the maximum flow that it can sustain,
and is given by

Ci = Li + Si, i = 1, . . . , N, (1)

where Si denotes the free-space (or, redundancy) available
to node ai. It is assumed that a node fails (i.e., outages)
if its load exceeds its capacity at any given time. The key
assumption of our intra-dependency model for network A is
that when a node fails, the load it was carrying (right before
the failure) is redistributed equally among all remaining
nodes. This leads to an increase in load carried by all
remaining nodes, which in turn may lead to further failures of
overloaded nodes, and so on, potentially leading to a cascade
of failures.

Throughout we assume that the load and free-space pairs
(Li, Si) are independently and identically distributed with
PLS(x, y) := P [L ≤ x, S ≤ y] for each i = 1, . . . , N . The
corresponding (joint) probability density function is given by
pLS(x, y) = ∂2

∂x∂yPLS(x, y). In order to avoid trivial cases,



we assume that Si > 0 and Li > 0 with probability one
for each ai. Finally, we assume that the marginal densities
pL(x) and pS(y) are continuous on their support.

The equal load redistribution rule takes its roots from
the democratic fiber bundle model [1], [9], and has been
recently used by Pahwa et al. [21] in the context of power
systems; see also [31], [34]. The relevance of the equal load-
redistribution model for power systems stems from its ability
to capture the long-range nature of the Kirchhoff’s law, at
least in the mean-field sense, as opposed to the topological
models where failed load is redistributed only locally among
neighboring lines [8], [29].

Intra-dependency in Network B. Let network B represent
a cyber (e.g., communication) network consisting of nodes
b1, . . . , bN . In this network, we assume that a node keeps
functioning as long as it belongs to the largest (i.e., giant)
connected component of the network. If a node loses its con-
nection to the giant core of the network, then it is assumed
to have failed and can no longer carry out its functions.
This percolation-based failure rule, though not suitable for
physical systems carrying a flow, can be regarded as a
reasonable model for cyber-networks (e.g., sensor networks)
where connectivity to a giant core would be crucial for a
node’s capability to deliver its tasks.

Robustness of networks under the giant-component based
failure model has been extensively analyzed in the case of
single networks [2], [19], [20]. The focus has recently been
shifted towards interdependent networks with the work of
Buldyrev et al. [5], where robustness of two interdependent
networks, both operating under the giant-component based
intra-dependence rule, was studied. Their model, and most
works that follow, are unable to capture the true nature
of a cyber-physical network, where the cyber-network and
the physical-network should obey a different set of rules
determining their intra-dependencies.

We define the structure of the network B through its
degree distribution, namely the probabilities {dk, k =
0, 1, . . .} that an arbitrary node in B has degree k; clearly,
we need to have

∑∞
k=0 dk = 1. In particular, each node

b1, . . . , bN is assigned a degree drawn from the distribution
{dk}∞k=0 independently from any other node. Once the
degree sequence, degree(b1), . . . , degree(bN ), of the network
is generated, network B is constructed by selecting uniformly
at random a graph among all graphs on N nodes with
the given degree sequence; see [4], [17], [20] for details
of such constructions. This class of networks is known in
the literature as the configuration model or random graphs
with arbitrary degree distribution. Degree distribution is often
regarded as the core property defining a graph, and random
networks with arbitrary degree distributions are extensively
used as a starting point in the literature on complex networks.

Interdependent System Model. With the intra-dependency
models of both networks specified, we adopt a one-to-one
inter-dependency model across networks A and B; i.e., nodes
ai and bi depend on each other for each i = 1, . . . , n.
With these in mind, we are interested in understanding the

dynamics of cascading failures in this interdependent system,
where failures are initiated by attacking a 1 − p fraction of
nodes from network A. As explained in Figure 1, we assume
an asynchronous cascade model, where intra-propagation and
inter-propagation of failures are considered in a sequential
manner. At any stage t = 1, . . . of the cascade process,
a node ai in network A will still be functioning if and
only if (i) its current flow is less than its capacity; and (ii)
its counterpart bi in network B is still functioning (which
is equivalent to bi being contained in the larges connected
subgraph of B). Similarly, a node bj in network B survives
cascade step t if and only if i) it belongs to largest connected
component of B; and (ii) its counterpart aj in network A is
still functioning (which is equivalent to aj carrying a flow
less than its capacity).

Since the cascade process is monotone, a steady-state will
eventually be reached, possibly after all nodes have failed.
Let Nsurviving ⊂ {1, . . . , N} be the set of node id’s that
are still functioning at the steady state. In other words,
the surviving interdependent system will consist of nodes
{ai : i ∈ Nsurviving} where each ai has more capacity than
its flow and {bi : i ∈ Nsurviving} that constitutes a connected
subgraph of network B. The primary goal of this paper is to
derive the mean fraction of nodes that survive the cascades
as a function of the initial attack size 1−p, in the asymptotic
limit of large network size N . More precisely, we would like
to characterize S(p) defined as

S(p) := lim
N→∞

E [|Nsurviving(p)|]
N

III. MAIN RESULT

Our main result is presented next. The approach is based
on recursively deriving the mean fraction of surviving nodes
from both networks at each stage t = 1, 2, . . . of the
cascade process. The cascade process starts at time t =
0 with a random attack that kills 1 − p fraction of the
nodes from network A. As mentioned earlier, we assume
an asynchronous cascading failure model where at stages
t = 1, 3, . . . we consider the failures in network A and
in stages t = 2, 4, . . . we consider the failures in network
B. In this manner, we keep track of the subset of vertices
A1 ⊃ A3 ⊃ . . . ⊃ A2i+1 and B2 ⊃ B4 ⊃ . . . ⊃ B2i

that represent the functioning (i.e., surviving) nodes at the
corresponding stage of the cascade. We let fAi denote the
relative size of the surviving set of nodes from network A
at stage i, i.e.,

fAi =
|Ai|
N

, i = 1, 3, 5, . . .

We define fBi similarly as

fBi =
|Bi|
N

, i = 2, 4, 6, . . .

Our main result, presented next, shows how these quantities
can be computed in a recursive manner.

Theorem 3.1: Consider an interdependent system as de-
scribed in Section II, where the load and free-space values



of nodes a1, . . . , aN are drawn independently from the dis-
tribution pLS , and network B is generated according to the
configuration model with degree distribution {dk}∞k=0; i.e.,
we have P [degree of node bi = k] = dk for each k = 0, 1, . . .
and i = 1, . . . , N . Let mean degree be denoted by 〈d〉, i.e.,

let 〈d〉 =
∑∞

k=0 kdk. With fB0
= pB0

= p, fA−1
= 1,

and Q−1 = 0, the relative size of the surviving parts of
network A and B at each stage of the cascade, initiated by a
random attack on 1−p fraction of the nodes, can be computed
recursively as follows for each i = 0, 1, . . .

pA2i+1 =
fB2i

fA2i−1

(2)

Q2i+1 = Q2i−1 + min

{
x ∈ (0,∞] :

P [S > Q2i−1 + x]

P [S > Q2i−1]
(x+Q2i−1 + E [L | S > x+Q2i−1]) ≥ Q2i−1 + E [L]

pA2i+1

}
(3)

fA2i+1
= fA2i−1

· pA2i+1
· P [S > Q2i+1 | S > Q2i−1] (4)

pB2i+2 = pB2i

fA2i+1

fB2i

(5)

u2i+2 = max

{
u ∈ [0, 1] : u = 1−

∞∑
k=0

kdk
〈d〉

(1− u · pB2i+2)k−1

}
(6)

fB2i+2
= pB2i+2

(
1−

∞∑
k=0

dk
(
1− u2i+2 · pB2i+2

)k)
(7)

The notation used in Theorem 3.1 is summarized in Table
III. In these iterations, it is assumed that if at any stage
i, it happens to be the case that no x < ∞ satisfies the
inequality at (3), we set Q2i+1 = ∞. It is then understood
that the entire network A (and thus B) have failed, and we
get fA2i+1

= fB2i+2
= 0. Similarly, it can be seen that the

equality in (6) always holds with u = 0. Thus, if at any stage
i, there is no u > 0 satisfying the equality in (6), we will
get u2i+2 = 0 leading to fB2i+2 = 0; i.e., the entire network
B (and thus A) will have collapsed.

Ultimately, our goal is to obtain the final system size, i.e.,
the relative size of the surviving nodes at the steady-state. In
view of the one-to-one interdependence model, the surviving
size of the networks A and B will be the same at the steady-
state. Thus, we conclude that

S(p) = lim
i→∞

fAi = lim
i→∞

fBi

Next, we provide an outline of the proof, while the
full details are available in Appendix. In [34], we already
analyzed the cascade dynamics and derived the final system
size in a single flow carrying network (similar to network A

Ai set of surviving nodes in network A at stage i = 1, 3, 5, . . .
Bi set of surviving nodes in network B at stage i = 2, 4, 6, . . .
fAi fraction |Ai|/N of surviving nodes in A at stage i
fBi fraction |Bi|/N of surviving nodes in B at stage i
Qi extra load per surviving node in A at stage i = 1, 3, 5, . . .

TABLE I
KEY NOTATION IN THE ANALYSIS OF CASCADING FAILURES

in our analysis), when 1−p fraction of its nodes are randomly
removed; the result enables computing the final system size
in terms the initial attack size 1− p, as well as the load and
free space distributions PLS(x, y). The results established
in [34] are incorporated in the recursions above through
expression (3) that allows us to calculate, in a recursive
manner, the extra load that each of the surviving nodes at a
particular stage will be carrying, in addition to their initial
load.

In the failure propagation model described above for inter-
dependent systems, we know that at odd stages, failures from
network B can propagate to network A, causing a fraction
of nodes to be removed randomly. When new failures take
place at the odd stages t = 2i+ 1, i = 1, 2, · · · , we can treat
the nodes left in network A as a new network A2i+1, with the
appropriately updated size and load, free-space distributions.
The random removal of nodes caused by failures in network
B (through the one-to-one interdependency links) from last
cascade stage can be viewed as a new random attack that
keeps only pA2i+1

fraction of nodes alive. Then following
the similar approach, we can compute the size of network
A, fA2i+1

, at the end of each time stage when cascading
failures stop. One thing to notice is that the load and free-
space distributions need to be updated for each new network
A2i+1, since the surviving nodes in A2i+1 are added with
Q2i−1 amount of extra load, and at the same time the free-
space of each surviving node must be at least Q2i−1. We
show in the detailed proof in Appendix that the changes
of the distribution can be represented by the initial load and
free-space distribution with Q2i+1 representing the extra load
in each stage. In other words, each time failures propagate



between the two networks, network A will shrink to a group
of nodes that have a higher free space and that are now
carrying more load. The fractional size of this surviving
subset of nodes at each time stage can be computed via the
equivalent attack size pA2i+1

(caused by failures in network
B propagated via the one-to-one dependent links), extra load
Q2i+1 and the load free-space distribution PLS(x, y).

Following the same approach, in network B we treat each
new failure that comes from network A as a new random
attack (or failure) on the existing network B2i+2. For a
node in network B to function, it must belong to the largest
connected (i.e., giant) component, so actually the functioning
network B2i+2 at time stage t = 2i + 2, i = 0, 1, 2, · · ·
is the giant component after the random attack propagated
from network A. A key insight here is that the sequential
process of applying a first random attack on the cyber-
network, then computing the giant component, and then
applying a second random attack and then computing the
giant component is equivalent to (in terms of the fractional
size of the set of nodes that survives) the process where
the second random attack is applied directly after the first
one without computing the giant component. This way,
the result of a series of random attack/giant component
calculation processes can be emulated by a single random
attack/giant component calculation, with an appropriately
calculated equivalent random attack size. In our calculations,
this equivalent attack size for stage 2i + 2 is represented
by 1 − pB2i+2 and can be computed recursively as given
in (5). This formula is based on treating all new failures
propagated from network A in the following time stage as
the new random attack size launched on B, which is then
used to update the equivalent attack size 1−pB2i+2 that will
be used to emulate the entire cascade sequence up until that
stage. Then the size of network B, namely the size of the
giant component after randomly removing 1 − pB2i+2

, can
be computed using the technique of generating functions [5],
[14], [19], [20], [27]. The formula that gives the network size
fB2i+2 at each time stage t = 2i+ 2 is given at (6) and (7).

Once we know how to compute final network size fA2i+1

and fB2i+2 , propagation of failures between the two networks
is seen to be governed via (2) and (5) that reveal how the key
quantities pA2i+1 and pB2i+2

needed in computing fA2i+1

and fB2i+2
, respectively, need to be updated based on the

result of the last cascade stage. Collecting, a thorough anal-
ysis that reveals a full understanding of the system behavior
and robustness during the failure process is presented in
equations (2)- (7).

IV. NUMERICAL RESULTS

In this section, we confirm our analytic results through nu-
merical simulations under wide range of parameter choices.
For physical networks carrying certain flow such as the
power network (network A in our analysis), we consider
different combination of commonly known distributions for
the load and free-space variables. Throughout, we consider
two commonly used families of distributions that are known
to occur in various applications: Uniform distribution and
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Fig. 3. Final system size under different network settings, including
different load-free space distributions in the physical network and different
mean degree in the cyber network. Analytic results are represented by lines,
whereas simulation results are represented by symbols (averaged over 20
independent runs). We see that in each case theoretical results match the
simulation results very well.

Weibull distribution. The corresponding probability density
functions are defined below for a generic random variable
L.
• Uniform Distribution: L ∼ U(Lmin, Lmax). The density

is given by

pL(x) =
1

Lmax − Lmin
· 1 [Lmin ≤ x ≤ Lmax]

• Weibull Distribution: L ∼ Weibull(Lmin, λ, k). With
λ, k, Lmin > 0, the density is given by

pL(x) =
k

λ

(
x− Lmin

λ

)k−1

e
−
(
x−Lmin
λ

)k
1 [x ≥ Lmin] .

The case k = 1 corresponds to the exponential distri-
bution, and k = 2 corresponds to Rayleigh distribution.
The mean load is given by E [L] = Lmin +λΓ(1+1/k),
where Γ(·) is the gamma-function given by Γ(x) =∫∞
0
tx−1e−tdt.

For the cyber-network where a node is only functional
when it belongs to the giant component (network B in
the analysis), we model it as an Erdős-Rényi network [3],
[12], [13] with average degree 〈d〉. Erdős-Rényi model is
one of the most widely used network models for this type
of problem and often serve as the benchmark in various
simulations. In our numerical study, we start with N nodes,
and with probability p = 〈d〉/N , we connect each pair of
vertices with an edge. When N is large, this is equivalent to
generating the network via the configuration model using a
Poisson degree distribution with mean 〈d〉. Our analysis is
valid under more complicated graphs with arbitrary degree
distributions as mentioned in Sec. II. However, for simplicity,
we restrict our attention to the ER model in our numerical
study.

First, we confirm our numerical results regarding the final
system size S(p) presented in Sec. III, i.e. the fraction of



alive nodes when the system is stable after cascading failures
caused by an initial random attack that removes 1−p fraction
of nodes in network A. In all simulations, we fix the number
of nodes in both networks at N = 105, and for each set of
parameters being considered (i.e., the distribution pLS(x, y),
the attack size 1 − p in network A, and the mean degree
〈d〉 in network B), we run 20 independent experiments. The
results are shown in Figure 3 where symbols represent the
empirical value of the final system size S(p) (obtained by
averaging over 20 independent runs for each data point), and
lines represent the analytic results computed from (3) and (6).
We see that theoretical results match the simulations very
well in all cases. The specific distributions used in Figure 3
are as follows: From left to right, we have i) in network A
(the physical network), L is Weibull with Lmin = 10, λ =
100, k = 0.4 and S = αL with α = 1.74; in network B (the
cyber network) the mean degree 〈d〉 = 40; ii) in network
A, L is Weibull with Lmin = 10, λ = 100, k = 0.4 and S
is Uniform over [100, 120]; in network B 〈d〉 = 30; iii) L
is Uniform over [10, 30] and and S = αL with α = 0.7; in
network B 〈d〉 = 40; iv) L is Uniform over [10, 30] and S is
Uniform over [40, 50]; 〈d〉 = 4; v)L is Uniform over [10, 30]
and S is Uniform over [40, 50]; 〈d〉 = 10.

The plots in Figure 3 show how different load-free space
distributions in network A as well as the mean degree in
network B can affect the system behavior. For example when
the mean degree of network B is fixed to 〈d〉 = 40, Weibull
distribution (orange triangle) and Uniform distribution (blue
diamond) create totally different behavior: Weibull distribu-
tion creates a first-then-second order transition before the
system size drops to zero through a final first-order transition,
while Uniform distribution just gives an abrupt first-order
transition at the final breakdown1. These behaviors are due to
the intrinsic characters of different distributions, and should
be considered in designing CPS where the physical network
may be governed by different flow distribution types. On
the other hand, when we fix the distribution in network A,
the change of mean degree from 〈d〉 = 4 (purple triangle) to
〈d〉 = 10 (green circle) brings an increase on the final system
size, i.e., the interdependent system becomes more robust.
This is quite intuitive since with higher 〈d〉 value, network
B has more connectivity and thus can sustain larger attacks
while keeping a relatively large fraction of nodes in the giant
component after failures. We can also see that in all cases,
the final drop down of the system size is first-order, making
it very difficult to predict system behavior (in response to
attacks) from previous data. In fact, this is reminiscent of the
real-world phenomena of unexpected large-scale system col-
lapses; i.e., cases where seemingly identical attacks/failures
leading to entirely different consequences.

From a design perspective, it is desirable to improve or
even maximize the robustness of the interdependent systems
under certain constrains. Here, we fix the mean degree in
network B, and explore the effect of the distribution of node

1The nomenclature concerning the order of transitions is adopted from the
studies on phase transition in Physics; simply put, first (resp. second) order
transitions are associated with discontinuous (resp. continuous) variations.
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Fig. 4. Final system size under equal free space or equal tolerance factor
when mean degree in network B is fixed. The symbols are empirical results
over 20 independent runs on network size N = 105, and lines (dashed or
solid) represent analytical results. p? marks the critical attack size above
which the system collapse completely. We can see in both cases equal free
space greatly improves system robustness by allowing the system to sustain
a larger initial attack size, i.e., for Weibull distributed loads, the system
can sustain almost four times larger initial attacks (the critical attack size
improved from p?1 to p?4), and when load follows Uniform distribution the
robustness is improved for more than 50% (from p?2 to p?3).

capacities in the physical network in improving the system
robustness. It is evident that the free-space distribution is key
to understanding the system robustness as it determines how
much extra load a node can take before it fails. In most real
world applications, the free space is set to be proportional
to the initial load, i.e., S = αL, where α is called tolerance
factor and is usually a fixed value [8], [16], [18], [30]. We
already showed in [34] that in a single flow carrying network,
giving every node equal free space will provide a better
robustness than the commonly used setting of equal tolerance
factor (with the comparison made when the total free-space
in the entire network is fixed); in fact in single flow networks
the robustness is shown to be maximized when all nodes are
given the same free space.

Our numerical simulations, presented in Figure 4, shows
that this conclusion still applies in interdependent networks.
Namely, assigning every node the same free space provides
a much better overall system robustness as compared to the
widely used setting of equal tolerance factor. To provide
an overall evaluation of the system robustness, we define
the critical attack size p? as the minimum attack size that
breaks down the whole system, i.e., it is the initial attack
size when system size first drops to zero. So the larger p?

is, the more robust the system is since it can sustain larger
attacks. As shown in Figure 4, when keeping the expected
free space E[S] the same (i.e., the total free space in the
network is constrained), we see that for Weibull distributions,
p? increases from p?1 = 0.1616 to p?4 = 0.636. This means
that compared to the equal tolerance factor scheme, the
system can sustain almost four times larger attacks when
equal free space strategy is deployed. Similarly, for Uniform
distribution, the equal tolerance factors gives p?2 = 0.2586
whereas equal free space leads to p?3 = 0.4138, an increase
of more than 50%.



V. CONCLUSION

We have studied the robustness of an interdependent sys-
tem against cascading failures initiated by a random attack.
This is done through a novel model where the constituent
networks exhibit inherently different intra-dependency char-
acteristics. In particular, inspired by many applications of
inter-dependent cyber-physical systems (CPSs), our model
consists of a flow network where failure of a node leads
to flow redistribution and possible further failures due to
overloading (i.e., the flow on a node exceeding its capacity),
and a cyber-network where nodes need to be a part of the
largest connected cluster to be functional. We derive relations
for the dynamics of cascading failures, characterizing the
fraction of surviving nodes from each network at every stage
of the cascade. This leads to deriving the mean fraction of
nodes that ultimately survive the cascade as a function of
the initial attack size. Through numerical simulations, we
confirm our analysis and derive useful insights concerning
the robustness of interdependent CPSs.

There are many open directions for future work. First of
all, the simplistic one-to-one inter-dependence model used
here can be replaced by more sophisticated and realistic
dependency model. A good starting point would be to
consider the model where every node is assigned k inter-
links and can continue to function as long as at least one
of its k support nodes in the other network is functional. It
would be interesting to study the trade-off between the num-
ber of interlinks and the resulting improvements in overall
system robustness; one might also consider a heterogeneous
allocation of inter-links and study the optimal (in the sense
of maximizing robustness) way to assign inter-links subject
to certain constraints [32]. It would also be interesting the
consider more complicated flow redistribution models based
on network topology, rather than the equal redistribution
model considered here. Finally, it would be interesting to
study the system robustness under targeted attacks (where
the set of nodes to be attacked is chosen carefully by an
adversary) rather than random attacks.
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APPENDIX

PROOF OF THE MAIN RESULT

A. Computing the Functional Component in Physical Net-
work

Initially, 1−pA1
fraction of nodes are attacked (or, failed)

randomly in network A, where pA1 ∈ [0, 1]. The flow in the
failed nodes will get redistributed (equally) to all remaining
nodes that are not attacked. Each such node will now have an
increased load on them. If the extra load received is greater
than the free-space on a node (equivalently, if the current
load is greater than their capacity), it will fail resulting in
another round of redistribution, and so on and so forth.
The authors’ previous work [34] analyzed the cascading
failures in a single flow network, and can be used there
to compute i) the fraction of additional nodes that will
fail as a result of load redistribution cascades; and ii) the
extra load that each surviving line will be carrying, once
the steady-state is reached for the purposes of intra-failures
in network A. Of course, for the model under consideration,
further failures might take place due to interdependence with
network B, which we will discuss later. Let L(1) and S(1)

denote random variables following the original load and free
space distributions, i.e., L(1), S(1) ∼ pLS(x, y). Then, we
know from [34] that the fraction of nodes that are still
functioning when the intra-failures in network A stops is
given by

nA1
= pA1

P
[
S(1) > x?1

]
(A.1)

where x?1 denotes the smallest x in (0,∞) that satisfies the
inequality

P
[
S(1) > x

] (
x+ E

[
L(1) | S(1) > x

])
≥

E
[
L(1)

]
pA1

(A.2)
If (A.2) does not hold for any x in (0,∞), we set x?1 =∞.

In words, x represent the possible extra load per alive node
at each step during the cascading failure process, by finding
the smallest solution, i.e. x?1, we find the minimum extra
load per alive node at which no further failure will happen.
In other words, the extra load per alive node will remain
x?1 since the network is stable and no further failure will
happen. Detailed explanation and derivation can be found in
[34]. The current network size in network A is

NA1
= nA1

∗N (A.3)

Notice that x?1 is also the extra load per node when
cascading failure stops after randomly attacking 1 − pA1

fraction of nodes initially. In other words, the nodes that
survive the cascading failure caused by random attack of
size 1 − pA1

must be unattacked from the beginning and
have at least x?1 amount of free space.

Let A1 be the set of alive nodes when network A is stable
after random attack of size 1−pA1

. As we mentioned before,
due to the interdependent relationships between network A
and B, when cascading failures stop at network A, not only
all the failed nodes are removed from network A (including
the initial failed ones and the ones that fail subsequently

due to excess load), all their dependent nodes in network B
will also be removed due to the one-to-one coupling links
between the two networks. So at time stage t = 2, network
B fragments into network B̄2 which is the same size as A1.
Remember that not all nodes left are functional, only the
ones that belong to the giant component B2 can function
normally. The functioning nodes in B2 is a subset of B̄2,
i.e., B2 ⊆ B̄2, then due to the interdependent relations, all
nodes that don’t belong to the giant component B2 will be
removed (see Fig.xx for illustration).

At time stage t = 3, the dependent nodes of the |B̄2| −
|B2| nodes removed in last time stage will be removed in
network A. Because the one-to-one support links between
two networks are random, the removal of the dependent links
can be seen as another random attack in the remainings A1

that survived the initial attack 1−pA1
. Suppose this random

attack kills 1−pA3
fraction of nodes in A1 (we will compute

pA3 in Sec. C when computing giant component size in cyber
networks). Namely, after network A is stable from the initial
attack (or first attack) of size 1−pA1

, another random attack
is deployed in the remaining nodes that survived the first
attack.

Before the random attack that removes 1 − pA3 fraction
of nodes, we can see that the remaining network A1 is a
network of size N1 given by equation (A.3), and the load on
each surviving node follows distribution L(3) ∼ L(1) + x?1,
and free space follows distribution S(3) ∼ S(1)−x?1 | S(1) >
x?1. Using again the results in [34] and treat the remaining
network A1 as a new network, we know that at the stable
network size n3 after the random attack that keeps only pA3

fraction of nodes in A1 is:

nA3
= pA3

P
[
S(3) > x?3

]
(A.4)

where x?3 is the smallest solution of the inequality

P
[
S(3) > x

] (
x+ E

[
L(3) | S(3) > x

])
≥

E
[
L(3)

]
pA3

,

(A.5)
over x in (0,∞).

Since L(3) is a new random variable that is a constant
increment of the original load distribution L(1) (or L), i.e.
L(3) ∼ L(1) + x?1, we know that

E
[
L(3)

]
= E

[
L(1) + x?1

]
= E [L] + x?1 (A.6)

Similarly, S(3) is a new random variable that is the original
random variable for free space S(1) minus a fixed amount,
i.e. S(3) ∼ S(1) − x?1 | S(1) > x?1, so we have

P
[
S(3) > x

]
= P

[
S(1) − x?1 > x | S(1) > x?1

]
=

P [S − x?1 > x, S > x?1]

P [S > x?1]

=
P [S > x?1 + x]

P [S > x?1]
(A.7)

since x > 0.



We know that L(3) and S(3) are related to the initial load
L(1) and free space S(1), so the conditional expectation in
(A.2) can be simplified as:

E
[
L(3) | S(3) > x

]
= E

[
L(1) + x?1 | S(1) > x+ x?1

]
= x?1 + E [L | S > x+ x?1] (A.8)

Since the possible extra load per alive node x is always
greater than zero, the condition S(1) > x + x?1 in the
above expectation implies that S(1) > x?1. x?1 is a constant
representing the extra load per alive node when cascading
failure at initial attack p1 stops, so we can easily move it
out from the expectation.

Bring equations (A.6-A.8) back to (A.2), we have

P [S > x?1 + x]

P [S > x?1]
(x+ x?1 + E [L | S > x+ x?1] ≥ E [L] + x?1

pA3

(A.9)
The stable network size nA3

at stage 3, pA3
in (A.1) can

also be simplified using (A.7):

nA3
= pA3

∗ P [S > x?3 + x?1]

P [S > x?1]
(A.10)

where x?3 is the smallest solution of (A.9). And the number
of alive nodes at this time is

NA3
= nA3

∗NA1
(A.11)

Let A3 denote the set of alive nodes that survived the
cascading failure caused by the random attack at t = 3 of
size pA3

. At t = 4, further nodes failures will happen in
network B due to the interdependent links, and this in return
results another fraction of nodes being removed in network
A at t = 5. Notice that the updates and removal of nodes in
network A always happen in even time stage, so the subscript
of notations in network A are all even numbers. As before,
we can regard the removal at t = 5 as a random attack that
removes 1−pA5 fraction of nodes in the remaining network
A3 from the last random attack, then following the same
strategy, we can treat A3 as a new network with size N3,
and load follows distribution L(5) ∼ L(3) + x?3, free space
follows distribution S(5) ∼ S(3) − x?3 | S(3) > x?3. Then the
network size after randomly attacking 1− pA1

, then 1− pA3

among the alive ones, then 1− pA5 among the further alive
ones, is given by

nA5 = pA5P
[
S(5) > x?5

]
(A.12)

where x?5 denotes the smallest x in (0,∞) that satisfies the
inequality

P
[
S(5) > x

] (
x+ E

[
L(5) | S(5) > x

])
≥

E
[
L(5)

]
pA5

(A.13)

Breaking each item in (A.13), we see that

P
[
S(5) > x

]
= P

[
S(3) − x?3 > x | S(3) > x?3

]
=

P
[
S(3) − x?3 > x, S(3) > x?3

]
P
[
S(3) > x?3

]
=

P
[
S(3) − x?3 > x

]
P
[
S(3) > x?3

]
=

P
[
S(3) > x?3 + x

]
P
[
S(3) > x?3

]
=

P[S>x?3+x?1+x]

P[S>x?1]
P[S>x?3+x?1]

P[S>x?1]

=
P [S > x?1 + x?3 + x]

P [S > x?1 + x?3]
(A.14)

using (A.7). And the conditional expectation becomes

E
[
L(5) | S(5) > x

]
(A.15)

= E
[
L(3) + x?3 | S(3) > x+ x?3

]
= E

[
L(1) + x?3 + x?1 | S(1) > x+ x?3 + x?1

]
= x?3 + x?1 + E [L | S > x+ x?3 + x?1] (A.16)

Using (A.14) and (A.15) in (A.13), we have

P [S > x?1 + x?3 + x]

P [S > x?1 + x?3]
(x+ x?3 + x?1 + E [L |S > x+ x?3 + x?1])

≥ x?1 + x?3 + E [L]

pA5

(A.17)

The stable network size nA5
after the randomly attack pA5

in (A.12) can also be simplified using equation (A.14):

nA5
= pA5

∗ P
[
S(5) > x?5

]
= pA5 ∗

P [S > x?1 + x?3 + x?5]

P [S > x?1 + x?3]
(A.18)

where x?1 and x?3 are constant acquired from the first two
attacks, and x?5 is the smallest solution of (A.17). And the
number of alive nodes at this time is

NA5
= nA5

∗NA3
(A.19)

Define Q2i−1 as the cumulative extra load on the alive
nodes after the ith attack that removes 1 − pA2i−1

fraction
of nodes on the remaining network:

Q2i−1 =

i∑
k=1

x?2k−1, i = 1, 2, 3, ... (A.20)

Q2i−1 is just the summation of a sequence of constants that
represent the extra load per alive line when the steady state
is reached after each random attack. And Q2i+1 = Q2i−1 +
x?2i+1, where x?2i+1 needs to be solved from the equations in
the current equivalent random attack that removes 1−pA2i+1

fraction of nodes.



Then the recursive relations are clear: the final network
size after applying i + 1 random attacks of size 1 − pA1 ,
1− pA3 , · · · , 1− pA2i+1 on the remaining network is given
by

nA2i+1 = pA2i+1 ∗ P
[
S(2i+1) > x?2i+1

]
= pA2i+1

∗ P [S > Q2i+1]

P [S > Q2i−1]
(A.21)

where Q2i−1 is constant acquired from previous steps, and
Q2i+1 = Q2i−1+x?2i+1, where x?2i+1 is the smallest solution
of

P [S > Q2i−1 + x]

P [S > Q2i−1]
(x+Q2i−1 + E [L | S > x+Q2i−1])

≥ Q2i−1 + E [L]

pA2i+1

(A.22)

The number of alive nodes NA2i+1 after the (i + 1)th

randomly attack that removes 1 − pA2i+1
fraction of nodes

in the remaining network is:

NA2i+1
= nA2i+1

∗NA2i−1
(A.23)

Now NA2i+1
gives us the size of the functioning nodes in

physical network A at any stage during the interdependent
cascading failure process, we will next look at how to
compute the size of functioning component in the cyber
network.

B. Computing Giant Component in Cyber Network

Since the one-to-one coupling links between two networks
are completely random, each time the removal of nodes
(in network A or B) brought by the failures of the other
network (network B or A) through these support links can
be seen as random attacks inside the sub-network. So as
before, we will compute the functioning giant component in
the cyber network, then introduce the iterative relations in
the interdependent system.

Suppose network B is a cyber network with degree
distribution pk and size N , the same size as network A.
As stated before, the first removal and updates in network
B occurs at time t = 2, where the effect of removal can
be seen as a random attack that removes 1 − pB2 fraction
of nodes (the subscript in pB2 is consistent with the time
stage number t = 2, same as in network A, so in network B
all the subscripts are odd number). For the convenience of
notation, let p = pB2

be the probability that a node remains
in the equivalent random attack at t = 2 (which is also the
initial random attack in network B). After this initial attack
in network B, the remaining network B̄2 has size pN . As in
[5], [14], [19], [20], [27], we use the techniques of generating
functions to compute the giant component B2 ⊆ B̄2. Define
the generating function of the degree distribution in network
B as

G0(z) =

∞∑
k=0

pkz
k (B.24)

Analogously, we introduce the generating function of the
underlying branching processes as

G1(z) =
G′0(z)

G′0(1)
(B.25)

where G′0(1) is the mean degree calculated by G′0(1) =∑
k kpk = 〈k〉.
Random removal of 1 − p nodes will change the distri-

bution of the remaining nodes, as a result, the generating
function of the new distribution is equal to the generating
function of the original distribution with argument 1−p(1−
z) [19]. Then the fraction of nodes that belong to the giant
component B2 of network B̄2 is given by

gB(p) = 1−G0[1− p(1− u)] (B.26)

where u is a function of p satisfying

u = G1[1− p(1− u)] (B.27)

So the functioning giant component has size

|B2| = gB(p) ∗ p ∗N (B.28)

Now suppose at t = 4, another equivalent random attack
happens in the giant component B2 as a result of failure
happened in network A at t = 3, which removes 1 − pB4

fraction of nodes. The remaining network B̄4 is of size pB4 ∗
|B2|, and we want to find the size of the functioning giant
component B4 ⊆ B̄4. The effect of randomly remove 1 −
pB4

fraction of nodes in B2 have the same effect as taking
out the same portion from B̄2, i.e. the remaining network
after initial attack of size p [5]. In other words, this second
removal is equivalent to the removal of (1 − pB4

) fraction
of nodes from B̄2, which is p ∗ (1− pB4

) fraction from the
original network B. As 1 − p fraction of nodes are already
removed in the initial attack, the effect of the random attack
at t = 2 and t = 4 can be seen as an initial attack of size
(1− p) + p ∗ (1− pB4) = 1− p ∗ pB4 . Or, the effect of the
random attack at t = 4 is equivalent to a random attack in
which p is replaced by p′B4

= p∗pB4
. So the giant component

B4 after the second attack is

|B4| = gB(p′B4
) ∗ p′B4

N (B.29)

When another equivalent random attack happens in net-
work B at t = 6 due to failures of network A from last time
stage t = 5, 1 − pB6 fraction of nodes are removed from
network B4. The remaining network B̄6 is of size pB6 ∗|B4|.
Using a similar approach, we can equivalent this attack on
network B4 as one on the network that removes 1 − p′B4

fraction of nodes from the original network. As a result,
effect of the random attack at t = 6 is equivalent to an initial
removal of size (1−p′B4

)+p′B4
∗ (1−pB6) = 1−p′B4

∗pB6 ,
i.e. this is equivalent to an initial random attack in which p is
replace by p′B6

= p′B4
∗ pB6

. And the size of the functioning
giant component B6 ⊆ B̄6 is given by

|B6| = gB(p′B6
) ∗ p′B6

N (B.30)



Follow this pattern, we can see that the effect of the ith

random attack that removes 1 − pB2i fraction of nodes on
the functioning giant component of network B can be seen
as an initial attack where p is replaced by

p′B2i
= p′B2i−2

∗ pB2i
, i = 1, 2, 3, ... (B.31)

and the size of the functioning giant component at this stage
is

|B2i| = gB(p′B2i
) ∗ p′B2i

N (B.32)

Now we know what happens when consecutive random
failures (or attacks) happen in network B, we can bring two
networks together and analyse the iteration relations in the
interdependent system.

C. Iteration Relations in the System

When the cyber network is coupled with the physical
network, at each stage, failures in the physical network
(network A) will result the same fraction of nodes being
removed in the cyber network (network B), due to the one-
to-one dependent links. Similarly, each time failure happens
in the cyber network, the same fraction of nodes will be
removed in the physical network. Let pAt and pBt denote
the fraction of nodes that stays in the network when random
attack (or failure) happens, i.e., 1− pAt or 1− pBt fraction
of nodes are removed in every random attack at stage t. Also
define fAt and fBt as the size of the functioning component
in each network at stage t, or the fraction of nodes that
remains functioning.

Initially at t = 1, random attacks happen in a network.
Without loss of generality, we assume that the attacks starts
in network A (we can follow the same analysis if random
attacks start in network B). So at the beginning, network A
experiences a random attack that removes 1 − pA1 fraction
of nodes. The failure of these nodes will cause load redis-
tribution, and further failure may occur as a result, leading
to a cascade of failures. When cascading failures stop, the
remaining network A1 is the functioning component of size
fA1 which can be solved from equations (A.1) and (A.2):

fA1
= nA1

= pA1
P
[
S(1) > x?1

]
(C.33)

and the number of nodes in the functioning component is
|A1| = fA1

∗N .
At t = 2, failures happen in network A will affect network

B through the one-to-one interdependent links. That is to say,
now network A lost 1− fA1 fraction of nodes, the nodes in
network B that depend on these failed nodes will also be
removed. Since nodes in network A and B are inter-linked
randomly, we can equivalent this effect of failures in network
B as a random attack that keeps only pB2

= fA1
fraction

of nodes alive. After this random attack, the remaining
network B̄2 has size pB2N . The size of the functioning giant
component B2 ⊆ B̄2 can be computed from equations (B.26)
- (B.28):

fB2
= gB(pB2

) ∗ pB2
(C.34)

and the number of nodes in B2 is |B2| = fB2
∗N .

For network B, besides the initial attack that removes 1−
pB2

fraction of nodes, another |B̄2|−|B2| = (fA1
−fB2

)∗N
nodes are removed. So at t = 3, this additional amount of
nodes will be removed in the remaining network A1. The
removal is equivalent to a random attack on A1 that keeps
only pA3 fraction of nodes alive, where

pA3
= 1− |B̄2| − |B2|

|A1|
= 1− fA1 − fB2

fA1

=
fB2

fA1

(C.35)

After randomly remove 1− pA3
fraction of nodes in A1,

network A is left with Ā3 = pA3
∗ |A1| nodes. Note that

Ā3 is the same size as B2 from the last time stage, i.e.,
|B2| = |Ā3|, because the two networks are kept with the
same size at the beginning of each time stage due to the one-
to-one interdependent links. Further failure will happen in Ā3

due to load redistribution, and when failures stop, network A
is left with a functioning component A3 ⊆ Ā3 of size nA3

:

nA3
= pA3

P
[
S(3) > x?3

]
(C.36)

and the number of nodes in the current functioning compo-
nent of network A is |A3| = nA3

∗ |A1| = fA3
∗N , where

fA3 = nA3 ∗ nA1 .
At t = 4, all the dependent nodes in network B of the

nodes failed from last stage in network A will be removed,
which is (|Ā3| − |A3|)/|Ā3| fraction on network B2 (recall
that |B2| = |Ā3|). This is equivalent to a random attack that
keeps only pB4 fraction of nodes in network B2:

pB4
= 1− |Ā3| − |A3|

|Ā3|
= 1− pA3

− nA3

pA3

=
nA3

pA3

(C.37)

After the random attack at t = 4, the remaining network
B̄4 is of size pB4

∗ |B2|, which is the same size as A3 from
last time stage.

As we show in Sec.B, the effect of attacking 1 − pB4

randomly in B2 is equivalent to remove the same fraction
from B̄2, hence the effect of the 4th stage failure in network
B is equivalent to a random attack in which p is replaced
by p′B4

= pB2
∗ pB4

. Following the same analysis, we can
get the size of the functioning giant component B4 ⊆ B̄4:

fB4 = gB(p′B4
) ∗ p′B4

(C.38)

and the number of nodes in the functioning giant component
B4 is |B4| = fB4

∗N .
At t = 5, the additional amount of nodes to be removed

in network A is (|B̄4| − |B4|)/|B̄4| = (|A3| − |B4|)/|A3|
(recall that |B̄4| = |A3|), which is equivalent to a random
attack that keeps only pA5

fraction of nodes in network A3:

pA5
= 1− |A3| − |B4|

|A3|
= 1− fA3

− fB4

fA3

=
fB4

fA3

(C.39)

After randomly removing 1−pA5 fraction of nodes in A3,
the remaining network Ā5 is of size pA5 ∗ |A3|. After the
redistribution followed by the failure, more nodes may fail,
and when failure stops, network A is left with the functioning
component A5 ⊆ Ā5 of size nA5

:

nA5
= pA5

P
[
S(5) > x?5

]
(C.40)



and the number of nodes in the current functioning compo-
nent of network A is |A5| = nA5 ∗ |A3| = fA5 ∗N , where
fA5 = nA5 ∗ nA3 ∗ nA1 .

At t = 6, (|Ā5| − |A5|)/|Ā5| fraction of nodes will
be removed from the functioning giant component B4 in
network B, due to the failures happened in network A from
last time stage. This is equivalent to a random attack on B4

that keeps only pB6 fraction of nodes in the functioning giant
component:

pB6
= 1− |Ā5| − |A5|

|Ā5|
= 1− pA5

− nA5

pA5

=
nA5

pA5

(C.41)

After removing 1 − pB6
fraction of nodes from B4, the

remaining network B̄6 is of size pB6
∗|B4| (note that |B̄6| =

|A5|). Combining the removal of 1 − pB6
fraction and the

1− p′B4
fraction from the previous failure in network B, the

effect is equivalent to a initial random attack that only keeps
p′B6

= p′B4
∗pB6

fraction of nodes from the original network.
So the size of the functioning giant component at this stage
B6 ⊆ B̄6 is given by

fB6
= gB(p′B6

) ∗ p′B6
(C.42)

and the number of nodes in the functioning giant component

B6 is |B6| = fB6
∗N .

Now the iterative relations in the system is clear: initially
at t = 1, 1− pA1 fraction of nodes are attacked randomly in
network A; at t = 2, only pB2

= fA1
fraction nodes are left

in network B, then at odd time stage we update network A:
For each i = 0, 1, . . .,

pA2i+1 =
fB2i

fA2i−1

(C.43)

nA2i+1
= pA2i+1

P
[
S(2i+1) > x?2i+1

]
(C.44)

fA2i+1
= fA2i−1

nA2i+1
= nA1

· nA3
· · ·nA2i+1

(C.45)

and at even time stage we update network B:

pB2i+2 =
nA2i+1

pA2i+1

=
nA2i+1fA2i−1

fB2i

=
fA2i+1

fB2i

(C.46)

p′B2i+2
= p′B2i

∗ pB2i+2
(C.47)

fB2i+2 = gB(p′B2i+2
) ∗ p′B2i+2

i = 1, 2, .. (C.48)

This iterative relation stops when neither network A nor
network B fragment further, i.e., when fA2i−1

= fA2i+1
and

fB2i
= fB2i+2

.


