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Abstract—In today’s world, individuals interact with each
other in more complicated patterns than ever. Some individuals
engage through online social networks (e.g., Facebook, Twitter),
while some communicate only through conventional ways (e.g.,
face-to-face). Therefore, understanding the dynamics of infor-
mation propagation calls for a multi-layer network model where
an online social network is conjoined with a physical network.
Here, we study information diffusion in a clustered multi-layer
network model, where all constituent layers are random networks
with high clustering. We assume that information propagates
according to the SIR model and with different information
transmissibility across the networks. Taking advantage of the
isomorphism between bond percolation and information propaga-
tion processes, we give results for the conditions, probability, and
size of information epidemics. We show that increasing the level
of clustering in either one of the layers increases the epidemic
threshold and decreases the final epidemic size.

I. INTRODUCTION

The study of dynamical processes on real-world complex
networks has been an active research area over the past
decade. An interesting phenomenon that occurs in many such
processes is the spreading of an initially localized effect
throughout the whole (or, a very large part of the) network.
These events are usually referred to as (information) cascades
and can be observed in processes as diverse as the adoption
of cultural fads, the diffusion of norms in social networks
[4], [18], disease contagion in human and animal populations
[12], [23], and the spread of failures in interdependent power
systems [3], [22].

This work focuses on an important class of dynamical
process known as the information propagation. Although well-
studied in the past, the information diffusion problem has
recently taken a new form by the emergence of online social
networks (e.g., Facebook). In particular, due to the existence
of multiple online social networks, information is now likely
to spread in an unprecedented speed and scale. Although
there has been a recent surge of research on multi-layer and
multiplex networks (e.g., see [8], [23]), the current literature
still falls short in fully quantifying this phenomenon. For
instance, Yağan et al. analyzed [20], [23] the diffusion of
information in a multi-layer network, but only for the cases
where all constituent layers are generated by the configuration
model [14]. However, the configuration model produces [10],
[15] networks that can not accurately capture some important
aspects of real-world social networks, most notably the prop-
erty of high clustering [17], [19]. Informally known as the
phenomenon that “friends of our friends” are likely to be our

friends, clustering has been shown to impact significantly the
dynamics of various diffusion processes [6], [16], [21].

With these in mind, we study information propagation
in clustered multi-layer networks. Our framework consists
of a physical network where information spreads amongst
people through conventional communication media (e.g., face-
to-face communication), and overlaying this network, there are
online social networks as alternative ways for the spread (e.g.,
Facebook). The coupling across these networks results from
nodes they have in common, i.e., individuals who participate
in multiple networks simultaneously.

In this setting, we analyze the propagation of information
assuming that information propagates according to the SIR
epidemic model; the analogy between the spread of diseases
and information has long been recognized [5]. Namely, an
individual is either susceptible (S) meaning that she has not
yet received a particular information, or infectious (I) meaning
that she is aware of the information and is spreading it to
her contacts, or recovered (R) meaning that she is no longer
spreading the information. Let Tij denote the probability
that an infectious individual i transmits the information to
a susceptible contact j. Throughout, we account for the fact
that individuals’ information spreading behaviors may differ
from one network to another; e.g., one may be more active
in Facebook than Twitter, or vice versa. The varying rate
of information diffusion across different social networks is
captured in our formulation by having the transmissibility Tij
depend on the network that the link i ∼ j belongs to.

Our main contributions are as follows. We solve analytically
for the threshold, probability, and mean size of information
epidemics, i.e., cases where information starts from a single
individual and reaches a positive fraction of the population;
see Section II-C for precise definitions. Our analytical ap-
proach is based on mapping the SIR propagation model to
a bond percolation process and then utilizing a multi-type
branching process to solve for the quantities of interest; the
isomorphism between the SIR model and bond percolation has
been established for certain cases in [7], [9]. The analytical
results are validated via computer simulations. Several inter-
esting conclusions are drawn from these results including i)
clustering makes it more difficult for a single person to spread
the information to the masses; and ii) even if the information
reaches to the masses, we show that clustering decreases the
total fraction of individuals informed. Due to limited space,
most details are skipped here. They are given in [24].



Fig. 1. Nodes in the upper circle and lower circle indicate the individuals in
social network (F) and physical network (W) respectively. Some of the nodes
connected across the two networks by a red line indicates the fact that they
represent the same individual.

II. PROBLEM FORMULATION

A. Random Graphs with Clustering

Our modeling framework is based on random networks
with clustering as introduced independently by Miller [11]
and Newman [13]. This model considers a vertex set V =
1, 2, . . . , n, where each vertex is independently assigned a
random number of stubs according to a joint degree distri-
bution {pst}∞s,t=0 that gives the probability that a node has s
single edges and t triangles. Namely, each node will be given
s stubs labeled as single and 2t stubs labeled as triangles with
probability pst, for any s, t = 0, 1, 2, . . .. Then, stubs that are
labeled as single are randomly joined to form single edges that
are not part of a triangle, whereas pairs of triangle stubs from
three nodes are randomly matched to form triangles between
the three participating nodes; of course the total degree of a
node will be distributed by pk =

∑
s,t:s+2t=k pst.

The resulting level of clustering of the model described
above can be quantified in a number of ways. Here we consider
two widely used metrics known as the global clustering
coefficient [13] and local clustering coefficient [1].

B. Multilayer Network Models with Clustering

In this paper, we consider a multilayer network where each
layer is generated independently and constitutes a random
graph with clustering as introduced in Section II-A. For
brevity, we only consider two layers but most of the arguments
can easily be extended higher number of layers. Namely, we let
W and F denote the two constituent layers of networks with
the possible motivation that W models the physical contact
network among individuals, i.e., models face-to-face relation-
ships, while network F stands for an online social network, say
Facebook. In line with this terminology, we assume that the
network W is defined on the vertices N = {1, . . . , n}, while F
contains only a subset of the nodes in N to account for the fact
that not every individual participates in online social networks;
see Figure 1 for an illustration of the two-layer network model
we are considering. To specify this model further, we assume
that each vertex in N participates in F independently with
probability α ∈ (0, 1]. This implies that the fraction of nodes
that belong to F is α in the large n limit.

We assume that both F and W are random networks
with clustering. In particular, we let {pfst, s, t = 0, 1, . . . }

and {pwst, s, t = 0, 1, . . . } denote the joint distributions for
single edges and triangles for F and W, respectively. Then
both networks are generated independently according to the
algorithm described in Section II-A, and they are denoted
respectively by F = F(n;α, pfst) and W = W(n; pwst).
We define the multi-layer network H as the disjoint union
H = F

∐
W and represent it by H(n;α, pfst, p

w
st). Here,

the disjoint union operation implies that we still distinguish
F-edges from W-edges in network H, and this is done to
accommodate the possibly different rates (or, even rules) of
information propagation across the two networks.

With these definitions in mind, let dfs and dws to denote the
random variables corresponding to the number of single edges
for a vertex in F and W, respectively, while nft and nwt are
defined similarly for the number of triangles assigned. Then
the colored degree d of a vertex is given by

d = (dfs, 2nft, dws, 2nwt) (1)

meaning that the vertex has dfs single edges and 2nft triangle
edges in network F, and dws single edges and 2nwt triangle
edges in network W. Then the distribution of this colored
degree is given by

pd =
(
αpfdfsnft

+ (1− α)1[dfs = 0 ∧ nft = 0]
)
pwdwsnwt

(2)

where the term (1 − α)1[dfs = 0 ∧ nft = 0] accounts for
the fact that if the node does not belong to F (which happens
with probability 1−α), then its degree from single and triangle
edges will both be zero.

C. Problems of Interest

We consider the propagation of information in H according
to SIR model. As we explain in details in [24], the SIR
propagation model is isomorphic to a bond percolation process
[2] for the purposes of computing the threshold, probability,
and expected size of epidemics. Then it can be assumed
that information propagates over W (resp. over F) as if all
transmission probabilities were equal to Tw (resp. to Tf ). The
outbreak is triggered by infecting a randomly selected node
and propagates in the network according to the SIR model.
The final size of an outbreak is defined as the number of
nodes that are recovered at the steady-state, and its relative
final size is its final size divided by the total size n of the
network. Following [7], we define a self-limited outbreak as
an outbreak whose relative final size approaches zero, and an
epidemic to be an outbreak whose relative final size is positive,
both in the limit of large n. There is a critical boundary in the
space of all network parameters, often defined as the epidemic
threshold, or epidemic boundary, that separates the cases for
which the probability of an epidemic is zero from those that
lead to P[epidemic] > 0 (i.e., super-critical) with n→∞.

With these definitions in place, this work seeks to identify
i) the epidemic boundary; ii) the relative final size of epi-
demics in the super-critical case; and iii) the exact probability
P[epidemic] in the super-critical regime.



III. MAIN RESULTS

As described in Section II-B, the clustered multilayer net-
work in this paper consists of four kinds of edges, single edges
in F, triangle edges in F, single edges in W, and triangle
edges in W; these will be denoted by fs−, ft−, ws−, and
wt−edges, respectively.

We now explain our approach based on generating functions
precisely. Let H(x) denote the generating function for the
“finite number of nodes that are reached and informed” in the
propagation process. We will derive an expression for H(x)
using four other generating functions, hfs(x), hft(x), hws(x),
and hwt(x), where hfs(x) stands for the “finite number of
nodes reached and informed by following a randomly selected
fs-edge,” and hws(x) defined similarly for the ws−edges.
The definitions for hft(x) and hwt(x) are a bit different
in the sense that they correspond to the “finite number of
nodes reached and informed by following a randomly selected
triangle in F (resp. in W)” for hft(x) (resp. hwt(x)). In other
words, we consider the whole triangle at once, rather than
focusing on its edges separately.

With these definitions in place, we now write H(x) as

H(x) = x
∑
d

pdhfs(x)
dfshft(x)

nfthws(x)
dwshwt(x)

nwt (3)

where pd denotes the colored degree distribution given by
(2). The validity of (3) can be seen as follows. The term
x stands for the node that is selected randomly and given
the information to initiate the propagation. This node has a
degree d with probability pd. The number of nodes reached
and informed by each of its dfs (resp. dws) single edges in
F (resp. W) has a generating function hfs(x) (resp. hws(x)).
Similarly, the number of nodes informed by following each
of the nft (resp. nwt) triangles it participates in F (resp. W)
has a generating function hft(x) (resp. hwt(x)). Combining,
we see from the powers property of generating functions [14]
that the number of nodes reached and informed in this process
when the initial node has degree d has a generating function
hfs(x)

dfshft(x)
nfthws(x)

dwshwt(x)
nwt . Averaging over all

possible degrees d of the initial node, we get (3).
For (3) to be useful, we shall derive expressions for the

generating functions hfs(x), hft(x), hws(x), hwt(x), the epi-
demic threshold, and final epidemic size in following sections.

A. Information Propagation via Single Edges in Network F

We start by deriving recursive equations for hfs(x) and
hws(x). For hfs(x), we pick one of the single edges in F
uniformly at random and assume that it is connected at one
end a node who is in the infected state. Then, we compute
the generating function for the number of nodes informed by
following the other end of the edge. In what follows, we only
derive hfs(x) because of the similar manner of hws(x).

Similar to [23], we obtain the following expression for the
generating function hfs(x):

hfs(x) = (1− Tf )+ (4)

Fig. 2. The top vertex u is infected, and information is transferred through
an edge only if it is occupied (happens with probability Tf in network F).

Tfx
∑
d

dfspd
〈dfs〉

hfs(x)
dfs−1hft(x)

nfthws(x)
dwshwt(x)

nwt .

We now explain each term appearing at (4) in turn. First of
all, the term (1− Tf )x0 to hfs(x) means that the probability
of the underlying random variable (encoded by the generating
function hfs(x)) being zero is incremented by 1−Tf . On the
other hand, if the selected edge is occupied, which happens
with probability Tf , then the node at the other end of the edge
will be informed. This means that the number of informed
edges in this process will be one plus all the nodes that are
then informed by the node at the other end of the selected edge.
Adding one to a random variable is equivalent to multiplying
its generating function by x, whence we get the term Tfx.

The summation term at (4) stands for the number of nodes
informed by the aforementioned end node of the randomly
selected edge. More specifically, as it is already known to
have at least one fs-edge, the probability that a node has
degree d is dfspd

〈dfs〉 . Then, the number of people it will inform
is generated by hfs(x)

dfs−1hft(x)
nfthws(x)

dwshwt(x)
dwt ,

with the minus one term on dfs accounting to the fact that
one of its single edges in F has carried the information to this
node and has already been taken into account. Averaging over
all possible d, we get (4).

B. Information Propagation via Triangles in Network F
We now derive hft(x), i.e., the generating function for the

number of nodes informed by following a random triangle in
F; similar arguments hold for hwt(x). We demonstrate this
situation in Figure 2, where the top vertex u is infected, and
we are interested in computing the generating function for the
number of nodes that will be informed by nodes v and w.
By conditioning on the state of the three edges forming this
triangle, we compute the probabilities for neither, one, or both
of v and w being informed, respectively. We have

P[none of v and w are informed] = (1− Tf )2

P[one of v and w are informed] = 2Tf (1− Tf )2

P[both of v and w are informed] = 2T 2
f (1− Tf ) + T 2

f .

Then, the generating function hft(x) can be obtained in
the same vein as hfs(x) by conditioning on the three events
discussed above. We get

hft(x) (5)

= (1− Tf )2 +
(
2Tf (1− Tf )2

)
x
∑
d

(
nftpd
〈nft〉

hfs(x)
dfs

· hft(x)nft−1hws(x)
dwshwt(x)

nwt

)
+
(
2T 2

f (1− Tf ) + T 2
f

)



·

(
x
∑
d

nftpd
〈nft〉

hfs(x)
dfshft(x)

nft−1hws(x)
dwshwt(x)

nwt

)2

.

C. Computing the Final Epidemic Size

To compute the final epidemic size, we take advantage of the
“conservation of probability” property of generating functions,
i.e., the fact that H(1) = 1 when the number of nodes reached
and informed is always finite. If on the other hand H(1) < 1,
we understand that there is a positive probability 1−H(1) to
lead to an infinite component of informed nodes. In this case,
1−H(1) stands for the relative final size of epidemics.

With these in mind, the threshold and size of information
epidemics can be obtained by seeking a fixed point of the de-
rived recursive equations hfs(x), hft(x), hws(x), and hwt(x)
at the point x = 1. For convenience, define h1 := hfs(1),
h2 := hft(1), h3 := hws(1), and h4 := hwt(1). Then, for a
given fixed point solution h1, h2, h3, h4, we have

H(1) =
∑
d

pdh
dfs

1 h
nft

2 hdws
3 hnwt

4 . (6)

It is clear that the recursions, hfs(x), hft(x), hws(x), and
hwt(x), exhibit a trivial fixed point h1 = h2 = h3 = h4 = 1,
which leads to H(1) = 1, meaning that all informed compo-
nents have finite size. However, the solution h1 = h2 = h3 =
h4 = 1 is physical only when it is a stable fixed point. We
check the stability of this solution via linearization of the four
recursions around x = 1. Namely, the solution will be stable
if the largest eigenvalue in absolute value of the corresponding
Jacobian matrix J is larger than one. Otherwise, another fixed
point with h1, h2, h3, h4 < 1 will be the stable solution leading
to H(1) < 1. The corresponding deficit 1 − H(1) is then
attributed to the fact that an infinite informed component
exists. Collecting, we have i) the threshold of information
epidemics is given by σ(J) = 1, where σ(J) is the spectral
radius of the Jacobian matrix; and ii) the mean epidemic
size can be computed by first finding the pointwise smallest
solution of the four recursions, and then reporting the result
into (6) to get the mean size of epidemics, 1−H(1); see [24]
for more details.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Networks with Doubly Poisson Distributions

Consider the case where both pfst and pwst are doubly
Poisson; i.e., the number of single edges and triangles in
both networks are independent and they all follow a Poisson
distribution. Namely, we set

pfst = e−µf,1
(µf,1)

s

s!
e−µf,2

(µf,2)
t

t!
, s, t = 1, 2, . . . , (7)

and

pwst = e−µw,1
(µw,1)

s

s!
e−µw,2

(µw,2)
t

t!
, s, t = 1, 2, . . . , (8)

where s and t are the number of single edges and triangles in
the corresponding networks while µf,1 and µf,2 (resp. µw,1
and µw,2) are the mean number of them respectively in F
(resp. in W).

Tw = Tf
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Fig. 3. Simulation for doubly Poisson degree distributions.

Under this setting, the mean epidemic size as well as the
epidemic threshold can be computed from the analytical results
presented in Section III-C. To check the validity of our analysis
for finite-sized networks, we have also conducted an extensive
numerical study. In particular, we consider n = 5×105 nodes
in the population and three different values α = 0.1, 0.5, 0.9
for the size of network F. We let µf,1 = µf,2 = λfs =
λft = 0.5 and similarly µw,1 = µw,2 = λws = λwt = 0.5.
For various information transmissibility parameters Tw = Tf
we generate 100 independent realizations of the multi-layer
network H and compute the size of the largest connected
component in each case. The results are then averaged over
100 experiments to obtain the empirical size of epidemics.

The results are depicted in Figure 3, where the curves stand
for the theoretical results in Section III-C, while the markers
stand for the empirical results obtained from simulation ex-
periments. We see that there is a perfect agreement between
the analytical and experimental results confirming the validity
of our results even when n is finite. We also see that as α
increases, the critical threshold is reduced and the epidemic
size is enlarged. This is an intuitive consequence given that
the network becomes denser with increasing α.

B. Impact of clustering on information epidemics

An important goal of this work is to understand how
clustering affects the dynamics of information propagation in
multi-layer networks. We control the level of clustering in
network W while keeping its mean total degree fixed. More
precisely, we use Poisson distributions for the number of single
edges and triangles in both networks with parameters given
in Table I. Put differently, network F has a fixed clustering
coefficient while with c ∈ [0, 4] the clustering of W varies
between the two extremes: i) when c = 4, W will have no
single-edges and consist only of triangles resulting with a
clustering coefficient close to one; and ii) with c = 0, there
will be no triangles in W and hence its clustering coefficient
will be close to zero. Thus, with increasing c, the clustering
coefficient of W increases, which in turn increases clustering
in the multilayer network H; see Table II for specific clustering
coefficients corresponding to several c values considered.

In Figure 4(a), for each parameter pair (c, α), the curves
separates the region where information epidemics can take
place (north-east of the curves) from the region where they can
not (south-west of the curves). We see that with the same Tf ,
clustering increases the minimum Tw needed for information
epidemics to be possible. In other words, we see again that



Network F Network W
Distribution of single-edges Poi(2λF) 2 Poi( 4−c

2
λW)

Distribution of triangles Poi(λF) Poi
(
c
2
λW

)
TABLE I

PARAMETERS OF THE DOUBLY POISSON DISTRIBUTION. FIGURE 4(A) IS
WITH λF = λW = 0.5, FIGURE 4(B) IS WITH λF = 0.36 AND λW = 0.5.

α Clust. Coef. c = 0.01 c = 2.00 c = 3.99

0.1
Global 0.005 0.095 0.185
Local 0.006 0.230 0.453

0.9
Global 0.023 0.075 0.126
Local 0.044 0.152 0.260

TABLE II
STATISTICS OF THE NETWORK H IN FIGURE 4(A).

clustering increases the threshold of epidemics. Next, we
look at the effect of clustering on the relative final size of
information epidemics for specific percolation probabilities.
From Figure 4(b), we see that the epidemic size decreases as
the clustering coefficient increases, again confirming that high
clustering reduces the epidemic size.
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Fig. 4. a) Comparison of the epidemic boundary under several cases; the
north and east of each curve specifies the region of (Tf , Tw) values for
which epidemics are possible, while the south and west part of each curve
stands for the region where epidemics can not take place. b) Illustration of
how clustering affects the size of epidemics when Tf = Tw = 0.3.

V. CONCLUSION

We analyze the propagation of information in clustered
multilayer networks. We solve analytically for the threshold,
probability, and mean size of information epidemics, and con-
firm our findings via extensive computer simulations. We show
that clustering increases the epidemic threshold and decreases
the final epidemic size in multi-layer networks. There are
many open problems one might consider for future work. For
instance, one can consider networks that exhibit clustering

not only through triangles, but also through larger cliques.
Extending the work to the case of influence propagation (i.e.,
complex contagions) would also be interesting.
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