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Abstract—We introduce a new random key predistribution
scheme for securing heterogeneous wireless sensor networks. Each
of the n sensors in the network is classified into r classes
according to some probability distribution µ = {µ1, . . . , µr}.
Before deployment, a class i sensor is assigned Ki cryptographic
keys that are selected uniformly at random from a common pool
of P keys, for each i = 1, . . . , r. Once deployed, a pair of
sensors can establish a secure communication channel if and only
if they have a key in common. We model the communication
topology of this network by an inhomogeneous random key
graph. We establish scaling conditions on the parameters P and
{K1, . . . ,Kr} so that the this graph has no isolated nodes with
high probability. The result is given in the form of a zero-one
law with the number of sensors n growing unboundedly large.
An analogous result is also conjectured for the property of graph
connectivity.

Keywords—Heterogeneous wireless sensor networks; key pre-
distribution; random graphs; connectivity.

I. INTRODUCTION

Random key graphs are naturally induced by the
Eschenauer-Gligor (EG) random key predistribution scheme
[8], which is a widely recognized solution for securing wireless
sensor network (WSN) communications [4], [7]. Denoted by
G(n,K, P ), random key graph is constructed on the vertices
V = {v1, v2, . . . , vn} as follows. Each vertex vi is assigned
independently a set Σi of K cryptographic keys that are
picked uniformly at random from a pool of size P . Then,
any pair of vertices vi, vj are adjacent if they share a key,
i.e., if Σi ∩ Σj 6= ∅. Random key graphs have recently
received attention in a wide range of areas including modeling
small world networks [19], recommender systems [12], and
classification analysis [10]. Properties that have been studied
include absence of isolated nodes [18], connectivity [14], [20],
k-connectivity [22], and k-robustness [21], among others.

In this paper we propose and study a variation of the
EG scheme that is more suitable for heterogeneous WSNs;
it is in fact envisioned that many military and commercial
WSN applications will consist of heterogeneous nodes [15],
[16]. Namely, we assume that the network consists of sensors
with varying level of resources (e.g., computational, memory,
power) and possibly with varying level of security and con-
nectivity requirements. As a result of this heterogeneity, it may
no longer be feasible to assign the same number of keys to
all sensors in the network as prescribed by the EG scheme.
Instead, we consider a scheme where the number of keys that
will be assigned to each sensor is independently drawn from
the set K = {K1, . . . ,Kr} according to some probability

distribution µ = {µ1, . . . , µr}, for some fixed integer r. We
can think of this as each vertex vx being assigned to a priority
class-i with probability µi > 0 and then receiving a key ring
with the size Ki associated with this class. As before, we
assume that once its size is fixed, the key ring Σx is constructed
by sampling the key pool randomly and without replacement.

Let G(n;µ,K, P ) denote the random graph induced by
the heterogeneous key predistribution scheme described above,
where again a pair of nodes are adjacent as long as they
share a key; see Section II for precise definitions. Inspired
by the recently studied inhomogeneous Erdős-Rényi graphs
[3], [5], we refer to this graph as the inhomogeneous random
key graph. The main goal of this paper is to study connectivity
properties of G(n;µ,K, P ) and to understand how the param-
eters n,µ,K, P should behave so that the resulting graph is
connected almost surely. Such results can be useful in deriving
guidelines for designing heterogenous WSNs so that they are
securely connected. By comparison with the results for the
standard random key graph, they can also shed light on the
effect of heterogeneity on the connectivity properties of WSNs.

Our main result is a zero-one law for the property that
G(n;µ,K, P ) has no isolated nodes; see Theorem 1. Namely,
we scale the parameters K and P and provide critical con-
ditions on this scaling such that the resulting graph almost
surely has no isolated node and almost surely has at least
one isolated node, respectively, when the number of nodes n
goes to infinity. Although weaker than connectivity, absence of
isolated nodes is often a good indicator that the graph is likely
to be connected. In fact, in many known random graph models
including Erdős-Rényi graphs [2], random key graphs [20],
and random geometric graphs [13], absence of isolated nodes
and connectivity are known to be asymptotically equivalent
properties. Hence, we conjecture that our main result do also
hold for the connectivity of G(n;µ,K, P ).

Our results are also compared with the existing results
by Zhao et al. [21] and Godehardt et al. [10] for the k-
connectivity and connectivity, respectively, of G(n;µ,K, P );
in those references G(n;µ,K, P ) was referred to as a general
random intersection graph. We show that earlier results are
constrained to parameter ranges that are unlikely to be feasible
in real world due to excessive memory requirement or very
limited resiliency against adversarial attacks. On the contrary,
our results cover parameter ranges that are widely regarded as
feasible for most WSNs; see Section III-B for details.

In addition, our main result indicates that the minimum
key ring size in the network has a significant impact on the
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connectivity of G(n;µ,K, P ), perhaps in a way that would be
deemed surprising. In particular, for the standard random key
graph G(n;K,P ) the critical threshold for connectivity and
absence of isolated nodes is known [14], [20] to be given by
K2

P ∼ c lognn and the resulting graph is asymptotically almost
surely connected (resp. not connected) if c > 1 (resp. c < 1).
For the inhomogeneous random key graph G(n;µ,K, P ) one
would be tempted to think that an equivalent result holds under
the scaling

K2
avg

P ∼ c lognn , with Kavg =
∑r
j=1 µjKj denoting

the mean key ring size. Instead, we show that the zero-one law
for absence of isolated holds under KminKavg

P ∼ c lognn , where
Kmin stands for the minimum of {K1, . . . ,Kr}; see Corollary
3. This implies that in the heterogeneous key predistribution
scheme, the mean number of keys required per sensor node
to achieve connectivity can be significantly larger than that
required in the homogeneous case. For instance, the expense
of allowing an arbitrarily small fraction of sensors to keep half
as many keys as in the homogeneous case would be to increase
the average key ring size by two-fold.

We close with a word on notation in use. All limiting
statements and asymptotic equivalences are understood with
the number of sensors n going to infinity. The random variables
(rvs) under consideration are all defined on the same proba-
bility triple (Ω,F ,P). Probabilistic statements are made with
respect to this probability measure P and the corresponding
expectation operator is denoted by E. The indicator function
of an event E is denoted by 1 [E]. We say that an even
holds with high probability (whp) if it holds with probability
1 as n → ∞. In comparing the asymptotic behaviors of the
sequences {an}, {bn}, we use an = o(bn), an = w(bn),
an = O(bn), an = Ω(bn), and an = Θ(bn), with their
meaning in the standard Landau notation. We also use an ∼ bn
to denote the asymptotic equivalence limn→∞ an/bn = 1.

II. MODEL DEFINITIONS

Our key predistribution idea is based on classifying the
nodes in the network into r sets (e.g., depending on their level
of importance) and then assigning different number of keys to
sensors that belong to different classes. Assume that each of the
n nodes in the network are independently assigned to a class
according to some probability distribution µ : {1, . . . , r} →
(0, 1). Namely, with tx denoting the class (or, type) of node
vx, we have

P [t` = i] = µi > 0, i = 1, . . . , r,

for each ` = 1, . . . , n. Then, a class-i node is assigned Ki

keys that are selected uniformly at random from a pool of size
P , for each i = 1, . . . , r. More precisely, the key ring Σx
of a node x is an PKtx -valued random variable (rv) where
PA denotes the collection of all subsets of {1, . . . , P} which
contain exactly A elements – Obviously, we have |PA| =

(
P
A

)
.

It is further assumed that the rvs Σ1, . . . ,Σn are i.i.d..

Let K = (K1, . . . ,Kr) and µ = (µ1, . . . , µr). Without
loss of generality we assume that K1 ≤ K2 ≤ · · · ≤ Kr.
Consider a random graph G defined on the vertex set V =
{v1, . . . , vn} such that two nodes vx and vy are adjacent,
denoted vx ∼ vy , if they have at least one key in common
in their corresponding key rings. Namely, we have

vx ∼ vy if Σx ∩ Σy 6= ∅. (1)

The adjacency condition (1) defines the inhomogeneous
random key graph, hereafter denoted G(n;µ,K, P ). The
name is reminiscent of the recently studied inhomogeneous
random graph [3] model where nodes are again divided into r
classes, and a class i node and a class j node are connected
with probability pij independent of everything else. This
independence disappears in the inhomogeneous random key
graph case, but one can still compute pij as

pij = 1−

(
P−Ki
Kj

)(
P
Kj

) , i, j = 1, . . . , r. (2)

In view of (2), our key predistribution scheme results in higher
priority nodes (i.e., nodes with more assigned keys) connecting
with each other with higher probability; see Proposition 6.

Throughout, we assume that the number of classes r is
fixed and do not scale with n, and so are the probabilities
µ1, . . . , µr. All remaining parameters are assumed to be scaled
with n, and we shall be interested in the properties of the
resulting inhomogeneous random key graph as n gets large. In
presenting our results below, we shall make use of the mean
probability of edge occurrence for each node class. Namely,
we define

λi(n) :=

r∑
j=1

pij(n)µj , i = 1, . . . , r, (3)

where pij(n) denotes the probability that a node of class-i and
a node of class-j have an edge in between; see (2). It is easy
to see that the mean number of edges incident on a node (i.e.,
the degree of a node) of class-i is given by (n− 1)λi(n).

III. MAIN RESULTS AND DISCUSSION

A. The results

Our main result is presented next. To fix the terminology,
we refer to any mapping K1, . . . ,Kr, P : N0 → Nr+1

0 as a
scaling as long as the conditions

K1,n ≤ K2,n ≤ · · · ≤ Kr,n < Pn (4)

are satisfied for all n = 2, 3, . . .. To simplify the notation, we
also let Kn = (K1,n,K2,n, . . . ,Kr,n).

Theorem 1. Consider a scaling K1, . . . ,Kr, P : N0 → Nr+1
0

such that
λ1(n) ∼ c log n

n
(5)

for some c > 0. Then, we have

lim
n→∞

P [G(n;µ,Kn, Pn) has no isolated nodes ]

=

{
0 if c < 1

1 if c > 1.
(6)

A proof of Theorem 1 can be found in Section V. The
scaling condition (5) will often be used in the equivalent form

λ1(n) = cn
log n

n
(7)

with limn→∞ cn = c > 0.
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In words, Theorem 1 states that the inhomogeneous random
key graph G(n;µ,Kn, Pn) has no isolated node whp if the
mean degree of the nodes that have the least number of keys is
scaled as (1+ε) log n for some ε > 0; in view of Proposition 6,
the nodes that are assigned the least number of keys have the
minimum mean-degree in the graph. On the other hand, if this
minimal mean degree scales like (1− ε) log n for some ε > 0,
then whp G(n;µ,Kn, Pn) has a node that is isolated. This
result is analogous to that established by Levroye and Freiman
[5] for the connectivity of inhomogeneous Erdős-Rényi graph
model, where nodes are classified into r classes independently
according to a probability distribution µ and an edge is drawn
between a class-i and a class-j node with probability pij(n)
independent of everything else. With λi(n) defined as in (3),
their result states that if mini=1,...,r λi(n) ∼ c log n/n then
with c > 1 (resp. c < 1) the corresponding graph is connected
(resp. not connected) whp.1

It can also be inferred from [5] that a similar zero-one law
applies also for the property of absence of isolated nodes; i.e.,
absence of isolated nodes and connectivity are asymptotically
equivalent properties. This naturally prompts us to ask whether
a similar version of Theorem 1 can be established for the
property of graph connectivity in G(n;µ,Kn, Pn). After all,
we readily get from Theorem 1 that

lim
n→∞

P [G(n;µ,Kn, Pn) is connected] = 0 if c < 1

under the scaling condition (5); this follows since the existence
of isolated nodes automatically implies that the graph is not
connected. We conjecture below that the one-law holds as well.

Conjecture 2. Consider a scaling K1, . . . ,Kr, P : N0 →
Nr+1

0 such that (5) holds for some c > 0. Then, we have

lim
n→∞

P [G(n;µ,Kn, Pn) is connected ] =

{
0 if c < 1

1 if c > 1.

Next, we give a corollary of Theorem 1 that states the
same zero-one law under a different scaling condition than
(5). This alternative formulation will make it easier to de-
rive design guidelines for dimensioning key predistribution
schemes, namely in adjusting key ring sizes K1, . . . ,Kr and
probabilities µ1, . . . , µr such that the resulting network has no
isolated sensors whp.

Corollary 3. Consider a probability distribution µ =
(µ1, . . . , µr) with µi > 0 for i = 1, . . . , r and a scaling
K1, . . . ,Kr, P : N0 → Nr+1

0 . Let Xn denote a rv that takes
the value Ki,n with probability µi for each i = 1, . . . , r. If it
holds that

K1,nE [Xn]

Pn
∼ c log n

n
(8)

for some c > 0, then we have the zero-one law (6).

A proof of Corollary 3 is given in Section VIII. We remark
that E [Xn] gives the mean number of keys assigned to a
sensor in the network. With this in mind, Corollary 3 provides
various design choices to ensure that no sensor is isolated in

1Results in [5] cover more general cases than presented here; e.g., the case
where the number of classes r is not bounded.

the network: One just has to set the minimum and average key
ring sizes such that their multiplication scales as (1+ε)Pn logn

n
for some ε > 0.

To compare with the homogeneous random key predistri-
bution scheme, set r = 1 and consider a universal key ring
size Kn in Corollary 3. This leads to a zero-one law for the
absence of isolated nodes in the standard random key graph
G(n;Kn, Pn). Namely, with

K2
n

Pn
∼ c log n

n
, c > 0 (9)

an analog of (6) is obtained for G(n;Kn, Pn); a result that has
already been established [18], [20] by the authors (in stronger
forms). An interesting observation is that minimum key ring
size has a dramatic impact on the connectivity properties of
inhomogeneous random key graph. To provide a simple and
concrete example, set Pn = n log n. In the homogeneous case,
we see from (9) that the universal key ring size has to scale as
Kn = (1 + ε) log n for some ε > 0 to ensure that the network
is free of isolated nodes. In the heterogeneous case, one gains
the flexibility of having a positive fraction of sensors in the
network with arbitrarily small number of keys; i.e., they can
have as few as one key per node. However, from Corollary
3 we see that this comes at the expense of having to assign
a substantially larger key rings to a positive fraction of other
sensors in the network. More precisely, if K1,n = O(1) then
we must have Kr,n = Ω((log n)2) to have no isolated nodes
under the same setting.

B. Comparison with related works

The random graph model G(n;µ,Kn, Pn) considered
here is also known as general random intersection graphs
in the literature; e.g., see [1], [9], [21]. To the best of our
knowledge this model has been first considered by Godehardt
and Jaworski [9] and by Goderhardt et al. [10]. Results for
both the existence of isolated nodes and graph connectivity
have been established; see below for a comparison of these
results with those established here. Later, Bloznelis et al.
[1] analyzed the component evolution problem in the general
random intersection graph and provided scaling conditions for
the existence of a giant component. There, they also estab-
lished that under certain conditions G(n;µ,Kn, Pn) behaves
very similarly with a standard Erdős-Rényi graph [2]. Taking
advantage of this similarity, Zhao et al. [21] established various
results for the k-connectivity and k-robustness of the general
random intersection graph by means of a coupling argument.

We now compare our results with those established in the
literature. Our main argument is that previous results for the
connectivity of inhomogeneous random key graphs are con-
strained to very narrow parameter ranges that are impractical
for wireless sensor network applications. In particular, we will
argue below that the result by Zhao et al. [21] is restricted
to very large key ring sizes, rendering them impractical for
resource-constrained sensor networks. On the other hand, the
results by Godehardt et al. [1], [9] focus on fixed key ring sizes
that do not grow with the network size n. As a consequence,
in order to ensure connectivity, their result requires a key pool
size Pn that is much smaller than typically prescribed for
security and resiliency purposes.
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To fix the terminology, let Dn : {1, 2, . . . , Pn} → [0, 1] be
the probability distribution used for drawing the size of the key
rings Σ1, . . . ,Σn; as before, once its size is fixed a key ring
is formed by sampling a key pool with size Pn randomly and
without replacement. The graph G(n;Dn, Pn) is then defined
on the vertices {v1, . . . , vn} and contains an edge between any
pair of nodes vx and vy as long as Σx ∩ Σy 6= ∅. The model
G(n;µ,Kn, Pn) considered here constitutes a special case of
G(n;Dn, Pn) under the assumption that the support of Dn has
a fixed size of r.

With these definitions in mind we now state the results by
Zhao et al. [21] and by Goderhardt et al. [10], respectively.

Theorem 4. [21, Theorem 1] Consider a general random
intersection graph G(n,Dn, Pn). Let Xn be a random variable
following the probability distribution Dn. With a sequence αn
for all n defined through

E[Xn]2

Pn
=

lnn+ (k − 1) log log n+ αn
n

, (10)

if E[Xn] = Ω
(√

log n
)
, var[Xn] = o

(
E[Xn]2
n(logn)2

)
and |αn| =

o(log n), then

lim
n→∞

P
[
G(n,Dn, Pn) is k-connected.

]
=


0, if limn→∞ αn = −∞,
1, if limn→∞ αn =∞,

e−
e−α

∗

(k−1)! , if limn→∞ αn = α∗ ∈ (−∞,∞).

Theorem 5. [10, Theorem 2] Consider a general random
intersection graph G(n,D, Pn), where D(`) = 0 for all ` > r
and ` = 0. Namely, all key ring sizes are bound to be on
the interval [1, r]. Let X be a random variable following the
probability distribution D. Then if

n

Pn
(E [X]−D(1))− logPn →∞ (11)

then
lim
n→∞

P [G(n,D, Pn) is connected] = 1.

Also, if D(r) = 1 for some r ≥ 2, and it holds that

n = Pn
logPn + o(log logPn)

r2
, (12)

then
lim
n→∞

P [G(n,D, Pn) is connected] = 0.

In comparing Theorems 1, 4 and 5, it is worth noting that
k-connectivity is a stronger property than connectivity, which
in turn is stronger than absence of isolated nodes. However,
although Theorems 4 and 5 consider more complicated graph
properties, we now argue why the established results are not
likely to be applicable for real-world sensor networks. First,
Theorem 5 focuses on the case where all possible key rings
have a finite size that do not scale with n. In addition, with
E [X] fixed, it is clear that the scaling conditions (11) and (12)
both require

Pn = O

(
n

log n

)
. (13)

Unfortunately, it is often needed that key pool size Pn be much
larger than the network size n [6], [8] as otherwise the network

will be extremely vulnerable against node capture attacks. In
fact, one can see that with (13) in effect, an adversary can
compromise a significant portion of the key pool (and, hence
network communication) by capturing o(n) nodes.

We now focus on Theorem 4, where the major problem
arises from the assumption

var[Xn] = o

(
E[Xn]2

n(log n)2

)
. (14)

For the model to be deemed as inhomogeneous random key
graph, the variance of the key ring size should be non-zero. In
fact, given that key ring sizes are integer valued, the simplest
possible case would be that D(K + 1) = µ and D(K) =
1 − µ for some 0 < µ < 1 and positive integer K. This
would amount to assigning either K + 1 or K keys to each
node with probabilities µ and 1−µ, respectively. In this case,
we can easily see that var[X] = µ(1 − µ) > 0 as long as
0 < µ < 1. Therefore, for an inhomogeneous random key
graph, the condition (14) implies that E[Xn]2

n(logn)2 = w(1), or,
equivalently that

E [Xn] = w
(√
n log n

)
. (15)

Put differently, Theorem 4 enforces mean key ring size to be
much larger than

√
n log n. However, a typical wireless sensor

network will consist of a very large number of sensors, each
with very limited memory and computational capability [6],
[8]. As a result, key rings with size w(

√
n log n) are unlikely

to be implementable in most practical network deployments.
In fact, it was suggested by Di Pietro et al. [6] that key rings
with size O(log n) are acceptable for sensor networks.

In comparison, our main result Theorem 1 do not require
either of the conditions (13) or (15). To see this, note that we
only enforce the scaling condition (7), which implies that

λ1(n) =

r∑
j=1

µjp1j(n) = Θ

(
log n

n

)
.

With r fixed, µj > 0 for all j = 1, . . . , r, and p1j increasing
with j as shown in the proof of Proposition 6 below, this is
equivalent to

p1r(n) = Θ

(
log n

n

)
. (16)

In view of Lemma 10 presented in Section VIII, our condition
(16) is equivalent to

K1,nKr,n

Pn
= Θ

(
log n

n

)
. (17)

It is clear that this condition does not require (13) or (15).
More importantly, it enables parameter choices that are widely
regarded as practical in real-world sensor networks. To provide
a concrete example, one can set Pn = Θ(n log n) and Kr,n =
Θ(log n). With these choices, in addition to network being
free of isolated nodes, i) the key pool will be much larger
than the network size ensuring a good level resiliency against
node capture attacks, and ii) the maximum key ring size will
be on the order of the practical value log n.
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IV. PRELIMINARIES

In this section, we establish several preliminary results that
will be used in the proof of Theorem 1. The first result states
that mean edge probabilities are ordered in the same way with
the key ring sizes.

Proposition 6. For any scaling K1, . . . ,Kr, P : N0 → Nr+1
0 ,

we have
λ1(n) ≤ λ2(n) ≤ · · · ≤ λr(n) (18)

for each n = 2, 3, . . ..

Proof. In view of (3), the desired result (18) will follow
immediately if we show that pij(n) is increasing in both i and
j. Fix n = 2, 3, . . . and recall that Ki increases as i increases.
For any i, j such that Ki + Kj > P we see from (2) that
pij(n) = 1; otherwise if Ki + Kj ≤ P we have pij(n) < 1.
Thus, given that Ki +Kj increases with both i and j, it will
be enough to show that pij(n) increases with both i and j on
the range where Ki +Kj ≤ P . But, on that range, we have(
P−Ki
Kj

)(
P
Kj

) =
(P −Ki)!

(P −Ki −Kj)!Kj !

(P −Kj)!Kj !

P !

=
(P −Ki)!

P !

(P −Kj)!

(P −Ki −Kj)!

=
(P −Kj)(P −Kj − 1) · · · (P −Kj −Ki + 1)

P (P − 1) · · · (P −Ki + 1)

=

Ki−1∏
`=0

(
1− Kj

P − `

)
. (19)

It is now immediate that
(P−Ki
Kj

)

( PKj)
decreases with both Ki

and Kj , and hence with i and j. Hence, pij(n) is seen to
be increasing with i and j, and this establishes Proposition 6.

The following inequality will also be useful in our proof.

Proposition 7. For any set of positive integers K1, . . . ,Kr, P ,
and any scalar a ≥ 1, we have(

P−daKie
Kj

)(
P
Kj

) ≤

((P−Ki
Kj

)(
P
Kj

) )a , i, j = 1, . . . , r. (20)

Proof. Fix i, j = 1, 2, . . . , r. Observe that
(
P−Ki
Kj

)
/
(
P
Kj

)
≥ 0

so that (20) holds trivially if Kj + daKie > P . Assume here
onwards that Kj + daKie ≤ P . Recalling (19), we find(

P−daKie
Kj

)(
P
Kj

) =

Kj−1∏
`=0

(
1− daKie

P − `

)

≤
Kj−1∏
`=0

(
1− aKi

P − `

)
, (21)

and (
P−Ki
Kj

)(
P
Kj

) =

Kj−1∏
`=0

(
1− Ki

P − `

)
. (22)

In view of (21) and (22), the desired inequality (20) will
follow if we show that

1− aKi

P − `
≤
(

1− Ki

P − `

)a
, ` = 0, 1, . . . ,Kj − 1. (23)

For each ` = 0, 1, . . . ,Kj − 1, (23) follows as we note that

1−
(

1− Ki

P − `

)a
=

∫ 1

1− Ki
P−`

ata−1dt ≤ aKi

P − `

and (20) is now established.

In the course of proving Theorem 1 we also make use of
the decomposition

log(1− x) = −x−Ψ(x), 0 ≤ x < 1 (24)

with Ψ(x) :=
∫ x
0

t
1−tdt. We will repeatedly use the fact that

lim
x↓0

Ψ(x)

x2
=

1

2
. (25)

V. A PROOF OF THEOREM 1

The proof of Theorem 1 passes through applying the
method of first and second moments [11, p. 55] to the number
of isolated nodes in G(n;µ,K, P ). To simplify the notation,
we let θ = (K, P ). Let In(µ,θ) denote the total number of
isolated nodes in G(n;µ,θ); i.e.,

In(µ,θ) =

n∑
`=1

1 [v` is isolated in G(n;µ,θ)] . (26)

A. Establishing the one-law

Consider now a scaling θ : N0 → Nr+1
0 such that (5)

holds with c > 1. The random graph G(n;µ,θn) has no
isolated nodes if and only if In(µ,θn) = 0. The method of
first moment [11, Eqn (3.10), p. 55] gives

1− E [In(µ,θn)] ≤ P [In(µ,θn) = 0] , (27)

whence the one-law limn→∞ P [In(µ,θn) = 0] = 1 will
follow if we show that

lim
n→∞

E [In(µ,θn)] = 0. (28)

By exchangeability of the indicator functions appearing at
(26), we find

E [In(µ,θn)] = nP [v1 is isolated in G(n;µ,θn)] . (29)

Conditioning on the class of v1, we further get

nP [v1 is isolated in G(n;µ,θn)]

= n

r∑
i=1

µiP [v1 is isolated | v1 is class i]

= n

r∑
i=1

µiP
[
∩nj=2[v1 6∼ vj ] | v1 is class i

]
= n

r∑
i=1

µi (P [v1 6∼ v2 | v1 is class i])
n−1 (30)
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where (30) follows from the fact that rvs {v1 6∼ vj}nj=2 are
conditionally independent given the key ring Σ1 of node v1.
Conditioning further on the class of v2, we find

P [v1 6∼ v2 | v1 is class i]

=

r∑
j=1

µjP [v1 6∼ v2 | v1 is class i, v2 is class j]

=

r∑
j=1

µj(1− pij(n))

= 1− λi(n). (31)

Using (31) in (30), and recalling (18) we get

nP [v1 is isolated in G(n;µ,θn)]

= n

r∑
i=1

µi(1− λi(n))n−1

≤ n(1− λ1(n))n−1

≤ elogn−cn lognn−1
n (32)

as we recall (7). Letting n go to infinity in this last expression
we immediately get

lim
n→∞

nP [v1 is isolated in G(n;µ,θn)] = 0

since limn→∞ 1 − cn
n−1
n = 1 − c < 0 under the enforced

assumptions. Invoking (29) we now get (28) and the one-law
is established.

B. Establishing the zero-law

This section is devoted to establishing the zero-law in
Theorem 1, namely the fact that inhomogeneous random key
graph contains at least one isolated node when the scaling
condition (5) is satisfied with c < 1. We will establish this by
applying the method of second moment [11, Remark 3.1, p.
55] to a variable that counts nodes that are class-1 and isolated.
Clearly, if we show that whp there exists at least one class-1
node that is isolated, then the desired zero-law will follow.

Let Yn(µ,θ) denote the number of isolated nodes in
G(n;µ,θn) that are class-1. Namely, with χn,i(µ,θ) denoting
the indicator function that node vi is isolated and belongs to
class-1, we have Yn(µ,θ) =

∑n
`=1 χn,`(µ,θ). The second

moment method states the inequality

P [Yn(µ,θ) = 0] ≤ 1− E [Yn(µ,θ)]
2

E [Yn(µ,θ)2]
. (33)

Also, by exchangeability and the binary nature of the rvs
χn,1(µ,θ), . . . , χn,n(µ,θ), we have

E
[
Yn(µ,θ)2

]
(34)

= nE [χn,1(µ,θ)] + n(n− 1)E [χn,1(µ,θ)χn,2(µ,θ)]

It then follows that
E
[
Yn(µ,θ)2

]
E [Yn(µ,θ)]

2 =
1

nE [χn,1(µ,θ)]

+
n− 1

n
· E [χn,1(µ,θ)χn,2(µ,θ)]

(E [χn,1(µ,θ)])
2 . (35)

From (33) and (34) we see that

lim
n→∞

P [Yn(µ,θn) = 0] = 0 (36)

holds if
lim
n→∞

nE [χn,1(µ,θn)] =∞ (37)

and

lim sup
n→∞

(
E [χn,1(µ,θn)χn,2(µ,θn)]

(E [χn,1(µ,θn)])
2

)
≤ 1. (38)

However, since In(µ,θn) ≥ Yn(µ,θn), (36) immediately im-
plies the desired the zero-law limn→∞ P [In(µ,θn) = 0] = 0.

The next two technical propositions establish the needed
results (37) and (38) under the appropriate conditions on the
scaling θ : N0 → Nr+1

0 .

Proposition 8. Consider a scaling K1, . . . ,Kr, P : N0 →
Nr+1

0 such that (7) holds with limn→∞ cn = c > 0. Then, we
have

nE [χn,1(µ,θn)] = (1 + o(1))µ1n
1−cn (39)

so that

lim
n→∞

nE [χn,1(µ,θn)] =∞ if c < 1. (40)

Proposition 9. Consider a scaling K1, . . . ,Kr, P : N0 →
Nr+1

0 such that (7) holds with limn→∞ cn = c > 0. Then, we
have (38).

A proof of Proposition 8 is given in Section VI, while
Proposition 9 is established in Section VII.

VI. A PROOF OF PROPOSITION 8

Fix n = 2, 3, . . ., and pick u and θ. We have

nE [χn,1(µ,θ)]

= nP [v1 is isolated and class-1]

= nµ1P [v1 is isolated | v1 is class-1]

= nµ1P
[
∩nj=2[v1 6∼ vj ] | v1 is class-1

]
= nµ1 (P [v1 6∼ v2 | v1 is class-1])

n−1 (41)

by virtue of the fact that the events {v1 6∼ vj}nj=2 are
independent conditionally on Σ1. Invoking (31), we then get

nE [χn,1(µ,θ)] = nµ1 (1− λ1)
n−1

. (42)

Now, consider a scaling K1, . . . ,Kr, P : N0 → Nr+1
0 such

that (7) holds with limn→∞ cn = c > 0. Using this scaling in
(42) and recalling (24) we get

nE [χn,1(µ,θn)]

= nµ1

(
1− cn

log n

n

)n−1
= nµ1e

−cn lognn−1
n −(n−1)ψ(cn logn

n )

= µ1n
1−cnecn

logn
n e
−(n−1)c2n

(logn)2

n2

(
ψ(cn logn

n )
(cn logn

n )
2

)
. (43)
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The desired result (39) is now immediate as we recall (25) and
note that

lim
n→∞

cn
log n

n
= 0, lim

n→∞

ψ
(
cn

logn
n

)
(
cn

logn
n

)2
 =

1

2
,

and
lim
n→∞

(n− 1)c2n
(log n)2

n2
= 0

since limn→∞ cn = c > 0.

From (39), we readily get (40) upon noting that µ1 > 0.

VII. A PROOF OF PROPOSITION 9

We start by obtaining an expression for the probability that
nodes v1 and v2 are isolated in G(n;µ,θ). We get

E [χn,1(µ,θ)χn,2(µ,θ)]

= µ2
1P [v1 and v2 are isolated | v1 and v2 are class-1]

= µ2
1P
[
Σ1 ∩ Σ2 = ∅

∣∣ |Σ1| = |Σ2| = K1

]
× P

[
∩nj=3[Σj ∩ (Σ1 ∪ Σ2) = ∅]

∣∣∣∣ Σ1 ∩ Σ2 = ∅,
|Σ1| = |Σ2| = K1

]
= µ2

1

(
P−K1

K1

)(
P
K1

)
× P

[
Σ3 ∩ (Σ1 ∪ Σ2) = ∅

∣∣∣∣ Σ1 ∩ Σ2 = ∅,
|Σ1| = |Σ2| = K1

]n−2

= µ2
1

(
P−K1

K1

)(
P
K1

)
 r∑
j=1

µj

(
P−2K1

Kj

)(
P
Kj

)
n−2

(44)

upon conditioning on the class of v3. Similarly, it is easy to
see that

E [χn,1(µ,θ)] = µ1

 r∑
j=1

µj

(
P−K1

Kj

)(
P
Kj

)
n−1

. (45)

Combining (44) and (45), we find

E [χn,1(µ,θ)χn,2(µ,θ)]

(E [χn,1(µ,θ)])
2

=

(
P−K1

K1

)(
P
K1

)


∑r
j=1 µj

(P−2K1
Kj

)

( PKj)(∑r
j=1 µj

(P−K1
Kj

)

( PKj)

)2


n−2 r∑

j=1

µj

(
P−K1

Kj

)(
P
Kj

)
−2

(46)

Consider a scaling θ : N0 → Nr+1
0 such that (5) holds with

c < 1. Reporting this scaling into the last expression, we see
that r∑
j=1

µj

(
Pn−K1,n

Kj,n

)(
Pn
Kj,n

)
−2= (1− λ1(n))

−2
=

(
1− cn

log n

n

)−2
= 1 + o(1). (47)

With pij(n) increasing with i and j as shown in Proposition
6, it is also clear that

1 ≥

(
Pn−K1,n

K1,n

)(
Pn
K1,n

) = 1− p11(n) ≥ 1− λ1(n) = 1− cn
log n

n
,

leading to (
Pn−K1,n

K1,n

)(
Pn
K1,n

) = 1− o(1). (48)

Finally, we note from Proposition 7 that(
Pn−2K1,n

Kj,n

)(
Pn
Kj,n

) ≤

((Pn−K1,n

Kj,n

)(
Pn
Kj,n

) )2

, j = 1, . . . , r. (49)

Let Zn(µ,θn) denote a rv such that

Zn(µ,θn) =

(
Pn−K1,n

Kj,n

)(
Pn
Kj,n

) with probability µj , j = 1, . . . , r.

Applying (47), (48), and (49) in (46) we see that the desired
result (38) will follow upon showing

lim sup
n→∞

(
E
[
Zn(µ,θn)2

]
E [Zn(µ,θn)]

2

)n−2
≤ 1. (50)

We note that(
E
[
Zn(µ,θn)2

]
E [Zn(µ,θn)]

2

)n−2
=

(
1 +

var[Zn(µ,θn)]

E [Zn(µ,θn)]
2

)n−2

≤ e
var[Zn(µ,θn)]

E[Zn(µ,θn)]2
(n−2) (51)

and that

E [Zn(µ,θn)] = 1− λ1(n) = 1− o(1).

Hence, we will obtain (50) if we show that

lim
n→∞

n · var[Zn(µ,θn)] = 0. (52)

In order to bound the variance of Zn(µ,θn), we use
Popoviciu’s inequality. Namely, for any bounded rv X with
maximum value of M and minimum value of m, we have

var[X] ≤ 1

4
(M −m)2.

It is clear from the discussion given in the proof of Proposition
6 that (

Pn−K1,n

Kr,n

)(
Pn
Kr,n

) ≤ Zn(µ,θn) ≤

(
Pn−K1,n

K1,n

)(
Pn
K1,n

)
always holds. Applying Popoviciu’s inequality, we then get

var[Zn(µ,θn)] ≤ 1

4

((Pn−K1,n

K1,n

)(
Pn
K1,n

) −

(
Pn−K1,n

Kr,n

)(
Pn
Kr,n

) )2

≤ 1

4

(
1−

(
Pn−K1,n

Kr,n

)(
Pn
Kr,n

) )2

=
1

4
(p1r(n))

2
. (53)
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Under the enforced assumptions, we have
r∑
j=1

µjp1j(n) = λ1(n) = cn
log n

n

so that
p1r(n) ≤ cn

µr

log n

n
.

Reporting this into (53) we now find

n · var[Zn(µ,θn)] ≤ n

4

(
cn
µr

log n

n

)2

. (54)

Letting n go to infinity in this last expression, we immediately
get (52) as we note that µr > 0 and limn→∞ cn = c > 0.
This establishes (50) and the desired result (38) now follows.

VIII. A PROOF OF COROLLARY 3

In this section, we will show that under the enforced
assumptions Theorem 1 and Corollary 3 are equivalent results.
Consider a probability distribution µ = (µ1, . . . , µr) with
µi > 0 for all i = 1, . . . , r and a scaling K1, . . . ,Kr, P :
N0 → Nr+1

0 . The equivalence of these results will follow upon
showing the equivalence of the conditions (5) and (8), namely
that for any c > 0 we have

λ1(n) ∼ c log n

n
if and only if

K1,nE [Xn]

Pn
∼ c log n

n
.

In order to establish this, we will show that either of the
conditions (5) or (8) imply λ1(n) ∼ K1,nE[Xn]

Pn
, or equivalently

r∑
j=1

p1j(n)µj ∼
r∑
j=1

K1,nKj,n

Pn
µj .

Noting that µi > 0 for all i = 1, . . . , r, this will follow upon
showing that

p1j(n) ∼ K1,nKj,n

Pn
, j = 1, . . . , r, (55)

under either (5) or (8). We readily get (55) from Lemma
10 below upon noting that for all j = 1, . . . , r, (5) implies
p1j(n) = o(1) while (8) implies K1,nKj,n

Pn
= o(1).

Lemma 10. Consider any scaling K1, . . . ,Kr, P : N0 →
Nr+1

0 . For any i, j = 1, . . . , r, it holds that

lim
n→∞

pij(n) = 0 if and only if lim
n→∞

Ki,nKj,n

Pn
= 0,

and under either condition we have the asymptotic equivalence

pij(n) ∼ Ki,nKj,n

Pn
.

Lemma 10 can easily be established by following the same
arguments used in [20, Lemma 7.3] or [17, Lemma 7.4.4],
namely by applying crude bounds to the expression (19). The
details are committed here for brevity. The equivalence of
Theorem 1 and Corollary 3 is now established.
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