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Abstract— Masks are used as part of a comprehensive strat-
egy of measures to limit transmission and save lives during
the COVID-19 pandemic. Research about the impact of mask-
wearing in the COVID-19 pandemic has raised formidable
interest across multiple disciplines. In this paper, we investigate
the impact of mask-wearing in spreading processes over com-
plex networks. This is done by studying a heterogeneous bond
percolation process over a multi-type network model, where
nodes can be one of two types (mask-wearing, and not-mask-
wearing). We provide analytical results that accurately predict
the expected epidemic size and probability of emergence as
functions of the characteristics of the spreading process (e.g.,
transmission probabilities, inward and outward efficiency of the
masks, etc.), the proportion of mask-wearers in the population,
and the structure of the underlying contact network. In addition
to the theoretical analysis, we also conduct extensive simulations
on random networks. We also comment on the analogy between
the mask-model studied here and the multiple-strain viral
spreading model with mutations studied recently by Eletreby
et al.

I. INTRODUCTION

The rapid spread of COVID-19 has devastated the world
since its inception in December 2019, leading to global
economic crises and claiming hundreds of thousands of lives.
As schools and businesses reopen, it is of paramount impor-
tance to asses how various safety measures may limit the
spread of COVID-19. One such measure is mask-wearing,
which is known to reduce the transmissibility of viruses that
spread through respiratory droplets. Much of the existing
work surrounding the effectiveness of mask-wearing have
studied how it limits transmission between individuals [13],
[11]. However, several questions remain regarding the health
of the general public. How many people must wear masks to
significantly curb the spread of COVID-19? More generally,
how does mask-wearing change the spreading dynamics of
an epidemic?

In this paper, we provide quantitative answers to the ques-
tions above. To do so, we consider a natural generalization
of the commonly-used Susceptible-Infected-Recovered (SIR)
model on networks in which some individuals wear masks
while others do not. We allow for different probabilities of
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transmission between mask-wearers and non-mask-wearers,
so that an individual wearing a mask is less likely to
be infected. We refer to this model as the mask model.
For networks with a given degree distribution, we provide
analytical methods to accurately predict the total number of
infected individuals of each type (mask-wearing and non-
mask-wearing) as well as the probability that an epidemic
will emerge. Technically, this is achieved by adapting tech-
niques developed by Alexander and Day [2] as well as
Eletreby, Zhuang, Carley, Yağan and Poor [8], which were
used to study a multi-strain model with mutation. Finally, we
conduct extensive simulations to illustrate how mask-wearing
can impact the spread of an epidemic.

A. Related work

Classical models of epidemics use a system of ordinary
differential equations (ODEs) to describe the fraction of
susceptible, infected and recovered individuals within the
population (see for instance [5]). Prior models which incor-
porate the effects of mask-wearing have modified the basic
ODE model in various ways. Brienen et al [6] considered a
simple modification in which the reproductive number of the
virus, R0, is reduced by a multiplicative factor based on the
efficacy of masks. Subsequently, Tracht et al [22] as well as
Eikenberry et al [7] considered more complex generalizations
of the basic ODE model in which mask-wearers and non-
mask-wearers have different transmissibilities and mask-
wearers become non-mask-wearers at some rate, as well as
vice versa. While ODE-based models are relatively simple to
simulate and analyze, they are only mathematically justified
under the unrealistic assumption that an infected individual
can transmit the virus to any other susceptible individual in
the population, regardless of location or other factors.

Our approach, on the other hand, falls under the class of
network epidemic models. These models take an individual-
level view of viral spread, and studies how the structure of
the contact network influences the epidemic. This provides
much finer information about the epidemic, but is costly
to simulate, spurring a large body of work devoted to
deriving analytical predictions of epidemiological properties
[19], [18], [16]. In particular, our work is closely related to
literature on heterogenous bond percolation [3], [12] and a
multiple-strain model with mutations [2], [8]. We elaborate
on these connections in later sections.



Finally, we remark that our work contributes to the grow-
ing body of literature in the controls community on the topic
of modeling and control of epidemics. For instance, many
authors have studied epidemic spread on networks from a
dynamical systems viewpoint, resulting in a characterization
of the epidemic threshold (see, e.g., [15], [10]). Recent work
has also studied control measures for mitigating viral spread
on networks (see, e.g., [9], [21], [14]).

II. EPIDEMIC MODELS

The most basic model of network epidemics was studied
by Newman [19]; we briefly review his setup in order to
provide context for the more complex models we consider
in this paper. Given a prescribed degree distribution (for
instance Poisson or Power law), a random contact network
is generated via the configuration model [17], [4], [20].
Initially, a single individual (patient zero) is infected with
the virus, and each neighbor of patient zero becomes in-
fected with probability T , where T is referred to as the
transmissibility of the virus. Patient zero then recovers and is
no longer susceptible. The process continues as each newly-
infected vertex attempts to infect their susceptible neighbors
in the same manner. The process terminates when there are
no more susceptible vertices in the population.

A. Single-strain propagation with masks

To account for the effects of mask-wearing on viral spread,
we make the following modifications to Newman’s model.
First, we specify m ∈ [0, 1] to be the expected fraction
of individuals who wear a mask. Formally, we assign each
vertex in the contact network a mask with probability m and
no mask with probability 1−m. This is done independently
for each vertex. Second, we assume that the transmissibilities
are heterogenous: the probability that individual u infects
individual v depends on whether u and v are wearing masks.
We say that a vertex is of type 1 if they wear a mask and type
2 if they do not wear a mask. We then have four parameters
describing the transmissibility of the virus: T11, T12, T21 and
T22. The parameter T11 is the transmissibility when u and v
both wear masks, T12 is the transmissibility when u wears a
mask and v does not, etc. For brevity, we refer to this model
as the Mask Model. This type of model is sometimes called
heterogenous bond percolation over multi-type networks. We
remark that while Allard et al [3] consider such a model in
full generality, an important contribution of this paper is to
study in detail the important case of mask-wearing. After the
initial submission of our paper in September 2020, Lee and
Zhu [12] studied the same Mask Model we propose here and
derived the epidemic threshold and expected epidemic size
using similar techniques as Allard et al. Here, using different
techniques we additionally characterize the probability of
emergence and provide extensive simulations to support our
results.

B. Multi-strain Model with Mutation

In [2], Alexander and Day proposed a multiple-strain
model that accounts for mutations between strains. In their

model, there are d possible strains of a virus with transmissi-
bilities given by Q1, . . . , Qd. If an individual is infected with
strain i, the virus may mutate into a different strain within
the host. Formally, the probability that strain i mutates into
strain j within a host is given by µij .

We next describe a mapping between the Mask Model
and the multi-strain model with mutation. The key insight
is that in expectation, a mask-wearing individual will have a
different effective transmissibility than a non-mask-wearing
individual. This will allow us to map the mask-wearing
model into a two-strain model with mutation.

We begin by deriving the transmissibilities of the two-
strain model. Suppose that a vertex v is infected and wears
a mask. Since each neighbor wears a mask with probability
m, the expected transmissibility of v is given by

Q1 := T11 ·m+ T12 · (1−m). (1)

Similarly, if v does not wear a mask, the transmissibility is
given by

Q2 := T21 ·m+ T22 · (1−m). (2)

Proceeding with the analogy, the mutation probability µ11 is
the fraction of mask-wearing neighbors infected by a mask-
wearer. This is given by

µ11 :=
T11 ·m

T11 ·m+ T12 · (1−m)
. (3)

Using the same reasoning, we can compute the other three
mutation probabilities as

µ12 =
T12 · (1−m)

T11 ·m+ T12 · (1−m)
(4)

µ21 =
T21 ·m

T21 ·m+ T22 · (1−m)
(5)

µ22 =
T22 · (1−m)

T21 ·m+ T22 · (1−m)
. (6)

The advantage of this formulation is that it allows us to com-
pute analytical predictions for the probability of emergence
and epidemic size in the Mask Model using the methods of
Eletreby et al [8], which hold for the multi-strain model with
mutation.

III. ANALYSIS

In this section, we derive analytical predictions for the
probability of emergence and the expected epidemic size.
One way to do so is by formulating the mask model as
a multi-strain model with mutation and then leverage the
analytical predictions of Eletreby et al [8]. We also compute
the probability of emergence and epidemic size directly for
the mask model, using methods developed by Alexander and
Day [2] as well as Eletreby et al [8].

A. Probability of emergence

Emergence refers to the event where the epidemic process
persists over time and keeps infecting susceptible individuals.
Extinction, on the other hand, is the event where the epidemic
dies out in finite time. In this section, we show how to



compute P1 (resp. P2) which is the probability of extinction
given that patient zero wears a mask (resp. does not wear a
mask). The probability of emergence can then be computed
as 1−P1 if patient zero wears a mask and 1−P2 otherwise.

Our analysis follows the method of Alexander and Day
[2], who derived expressions for the probability of emer-
gence in the multi-strain model with mutation. Suppose that
a randomly chosen vertex v is patient zero and assume
that v wears a mask. Let X (resp. Y ) be the number
of mask-wearing (resp., non-mask-wearing) neighbors of v
who are infected by v. Then, conditioned on v having k1
susceptible mask-wearing neighbors and k2 susceptible non-
mask-wearing neighbors, X and Y are independent with
X ∼ Binomial(k1, T11) and Y ∼ Binomial(k2, T12). Thus
for s, t ∈ R,

E[sXtY | k1, k2] = (1−T11+s·T11)k1(1−T12+t·T12)k2 .

Next, if k is the total number of susceptible neighbors, we
have k1 ∼ Binomial(k,m) and k2 = k − k1. Hence

E[sXtY | k] =

k∑
k1=0

(
k

k1

)
(m(1− T11 + sT11))

k1

× ((1−m)(1− T12 + tT12))
k−k1

= (1− (mT11 + (1−m)T12) + (msT11 + (1−m)tT12))
k
.

Using the analogy with the multi-strain model with mutation
(see (1)-(6)) we can equivalently write

E[sXtY | k] = (1−Q1 +Q1(sµ11 + tµ12))k. (7)

Equation (7) also holds in the multi-strain model with muta-
tion [2, Section 2.2], implying the probability of emergence
is identical in both models. For completeness, we describe
how to compute this probability.

Define γ1(s, t) to be the probability generating function
(PGF) for the number of infections of each type (mask-
wearing or not) emanating from patient zero. We have

γ1(s, t) = g(1−Q1 +Q1(sµ11 + tµ12)),

where g is the PGF of the degree distribution, i.e., g(z) =∑∞
k=0 pkz

k. Following the same arguments, we have

γ2(s, t) = g(1−Q2 +Q2(sµ21 + tµ22)).

The PGF of the number of infections of each type emanating
from a later-generation infective wearing a mask is

Γ1(s, t) = G(1−Q1 +Q1(sµ11 + tµ12)),

where G is the PGF for the excess degree distribution, i.e.,
G(z) =

∑∞
k=0

kpk

〈k〉 z
k. We also have

Γ2(s, t) = G(1−Q2 +Q2(sµ21 + tµ22)).

With the derived PGFs in hand, the probability of extinction
starting from a later-generation infective, given by q1 (resp.,
q2) if patient zero wears a mask (resp., does not wear a
mask), is the smallest non-negative solution of the fixed-point
equation (s, t) = (Γ1(s, t),Γ2(s, t)). Finally, the probability

of emergence starting from patient zero, denoted by P1

(resp., P2) if patient zero wears a mask (resp., does not wear
a mask) is given by (P1, P2) = (γ1(q1, q2), γ2(q1, q2)).

Since the probability of emergence is the same in the Mask
model and the multi-strain model with mutation, the critical
threshold at which an epidemic emerges (also known as the
reproductive number R0) is the same in both models as well.
To calculate this threshold, we first introduce two matrices:

Q :=

(
Q1 0
0 Q2

)
and µ :=

(
µ11 µ12

µ21 µ22

)
.

Then the formula for the critical threshold [8], [2] is

R0 :=

(
〈k2〉 − 〈k〉
〈k〉

)
ρ(Qµ),

where ρ(Qµ) denotes the spectral radius of Qµ and
〈k〉, 〈k2〉 are the first and second moments of the degree
distribution, respectively. If R0 < 1 the epidemic dies out
in finite time, and if R0 > 1 an epidemic persists. To write
things in terms of the parameters of the Mask model, we can
define the matrices

T :=

(
T11 T12
T21 T22

)
and m :=

(
m 0
0 1−m

)
,

and note that Qµ = Tm. Hence we equivalently have

R0 =

(
〈k2〉 − 〈k〉
〈k〉

)
ρ(Tm).

B. Expected epidemic Size

We follow the method of Eletreby et al [8]. Since the
contact network G is drawn from the configuration model
with degree distribution {pk}k, it is locally tree-like. We
can compute the probability that a given vertex is infected
by considering the tree-like neighborhood around it. Math-
ematically, we can consider an infinite rooted tree where
the bottom level is labeled level zero and the top (the root)
is labeled level infinity. We let q`,1 (respectively, q`,2) be
the probability that a mask-wearing (respectively, non-mask-
wearing) vertex is infected in level `.

The pair (q`+1,1, q`+1,2) can be recursively computed from
(q`,1, q`,2) as follows. Consider a vertex in level ` + 1 that
wears a mask. It has degree k with probability kpk

〈k〉 due
to properties of the configuration model. Due to the tree
structure, k − 1 of these edges are sent to ` and one is
sent to the parent in level ` + 2. Out of the k − 1 level-`
neighbors, some number X wear a mask while the rest do
not, where X ∼ Binomial(k − 1,m). Out of the X mask-
wearing neighbors, some number U are infected, where U ∼
Binomial(X, q`,1). Similarly, there are V infected non-mask-
wearing neighbors, where V ∼ Binomial(k − 1 −X, q`,2).
Finally, if there are U infected mask-wearing neighbors and
V infected non-mask-wearing neighbors, the probability that
the mask-wearing parent in level ` + 1 becomes infected is



1− (1− T11)U (1− T21)V . If we define

f1(z, q1, q2) :=

z∑
x=0

(
z

x

)
mx(1−m)z−x

×
x∑

u=0

(
x

u

)
qu1 (1− q1)x−u

×
z−x∑
v=0

(
z − x
v

)
qv2(1− q2)z−x−v

× (1− (1− T11)u(1− T21)v), (8)

then we have

q`+1,1 =

∞∑
k=0

kpk
〈k〉

f1(k − 1, q`,1, q`,2).

If we define f2 to be the same as (8) except the term (1−(T−
T11)u(1−T21)v) is replaced by (1− (1−T12)u(1−T22)v),
then we also have

q`+1,2 =

∞∑
k=0

kpk
〈k〉

f2(k − 1, q`,1, q`,2).

Following the analysis in [8], the sequence {q`,1, q`,2}`≥1
converges to a limit (q∞,1, q∞,2) which satisfies the fixed
point equation

q∞,i =

∞∑
k=0

kpk
〈k〉

fi(k − 1, q∞,1, q∞,2), i ∈ {1, 2}.

Finally, to compute the probability of infection at the root,
we note that the root has k neighbors with probability pk,
and all neighbors are in a lower level. Thus, if S1 (S2) is
the probability of infection of a mask-wearing (non-mask-
wearing) root vertex, then we have

Si =

∞∑
k=0

pkfi(k, q∞,1, q∞,2), i ∈ {1, 2}.

As our analysis was for an arbitrarily chosen root node,
Si is the expected fraction of mask-wearing vertices that
eventually get infected by the epidemic, conditioned on the
epidemic occurring. The total fraction of infections is then
given by S = S1 ·m+ S2 · (1−m).

IV. NUMERICAL RESULTS

A. Epidemic as a function of the mean degree

We conducted extensive numerical simulations to validate
our theoretical analysis. In Figure 1, we study the probability
of emergence. The contact network was generated via the
configuration model with Poisson degree distribution and
500,000 vertices. We studied several values for the mean
degree ranging between 0 and 10. To generate the simulation
plots, we took an average over 10,000 independent trials
where, in each trial, a new contact network was generated.
The parameters of the mask model were chosen to be m =
0.45, T11 = 0.126, T12 = 0.18, T21 = 0.42, T22 = 0.6.
The choice of m was based on the fraction of mask-wearers
in the US as of September 2020 [1]. The transmissibilities

Fig. 1. Plot of the probability of emergence from simulations and
theoretical predictions. The degree distribution is Poisson with varying
mean.

were chosen as a reasonable baseline to illustrate the model
and our theoretical results about the model. For larger mean
degrees, we see that we have a near-perfect match between
the simulations and theoretical predictions. For smaller mean
degrees, the match is close, but not perfect, since the emer-
gence event becomes quite rare close to the phase transition
point. We expect that if much larger networks are used, the
simulations will enjoy better alignment with the theoretical
predictions, even close to the phase transition point.

Fig. 2. Plot of the expected epidemic size conditioned on emergence from
simulations and theoretical predictions, with Poisson degree distribution.
The empirical and theoretical curves match very well, even close to the
phase transition point.

In Figure 2, we study the expected size of the epidemic,
conditioned on emergence. In our simulations, we used the
same number of nodes and degree distribution, averaged over
10,000 independent trials. The same parameters for the mask
model were used as well. We see very good alignment be-
tween the simulations and theoretical predictions, confirming
the validity of our theoretical results.

In Figure 3, we illustrate the interesting finding that while
the multi-strain model with mutations can be used to compute
the probability of emergence in the Mask model, it yields
an incorrect prediction of the expected epidemic size. There
seems to be a good alignment between the two curves close
to the critical threshold, but the two predictions diverge



Fig. 3. Comparison of the theoretical prediction for the expected epidemic
size conditioned on emergence in the mask model (circles) and the multi-
strain model with mutation (dashed lines). There is good alignment close to
the critical threshold, but the predictions diverge for larger mean degrees.
We use the same parameters as in Figure 2.

for larger mean degrees. We give a possible reason for
this mismatch. In the mask model, there is a single strain
in the population and a susceptible vertex is infected as
long as as there is a successful infection by at least one
neighbor. In the multi-strain model with mutation, if there
are multiple successful infections to a susceptible vertex,
the resulting transmitted strain depends on the number of
successful infections of each type. When the mean degree
is small, it is unlikely that there will be more than one
successful infection, as the number of neighbors of a vertex is
small. However as the mean degree increases, the difference
becomes more pronounced. We plan to further investigate
the fundamental differences between the mask model and
multi-strain model with mutations in future work.

B. Epidemic as a function of the fraction of mask-wearers

Fig. 4. Plot of the expected epidemic size conditioned on emergence, as
a function of m. While masks decrease the fraction of infections in total
(red) and for the non-mask-wearing population (blue), the mask-wearing
infections (green) curiously peaks at m = 0.6.

Figure 4 illustrates the effect of the probability of mask-
wearing, m, on the expected epidemic size. In our sim-
ulations, we generated the contact network with 500,000

vertices and a Poisson(5) degree distribution. We studied
various values of m between 0 and 1. As the fraction
of mask-wearing individuals increases, the total number
of infections (shown in red) is monotonically decreasing,
demonstrating the effectiveness of masks in curbing the
spread of COVID-19. Interestingly, we see that the frac-
tion of infected non-mask-wearers (shown in blue) is also
monotonically decreasing in m. The intuition for this obser-
vation is clear; if many individuals wear a mask, on a high
level it reduces the effective transmissibility of the virus,
thus reducing the number of infected non-mask-wearers as
well. Curiously, the fraction of infected mask-wearers is not
monotonically decreasing in m; the infection curve peaks
at m = 0.6. We provide a possible explanation. There are
two opposing effects which influence the number of infected
mask-wearers. As m increases, the total number of infected
mask-wearers will naturally increase, since there are more
susceptible mask-wearers in the population. On the other
hand, increasing m will also decrease the transmissibility of
the virus, leading to a lower rate of infection. When m < 0.6,
the first effect dominates: the increase in susceptible mask-
wearers is greater than the decrease in transmissibility. The
point m = 0.6 is where the two effect balance each other;
for m > 0.6, the decrease in transmissibility dominates the
increase in susceptible mask-wearers.

Fig. 5. Simulated and theoretical critical degree for an epidemic to
persist. In our simulations, we generated a contact network with Poisson
degree distribution on 5,000 vertices. We averaged over 1,000 independent
simulations to generate the simulation data points for the plot.

In Figure 5, we study how the critical threshold depends
on m. As one may expect, as the fraction of mask-wearers
increase, a larger mean degree is required for an epidemic
to emerge.

C. Epidemic as a function of the baseline transmissibility

In Figure 6, we conside the effect of the baseline trans-
missibility (i.e., the transmissibility between two non-mask-
wearers) on the probability of emergence and expected
epidemic size. Instead of setting specific values for the trans-
missibilities in the mask model, we assume that masks have
an inward efficiency of Tmask,1 and an outward efficiency
of Tmask,2. Hence we can write T11 = Tmask,1Tmask,2T ,
T12 = Tmask,2T and T22 = T . Here, we fix Tmask,1 =



(a)

(b)

Fig. 6. Empirical and theoretical plots for the probability of emergence (a)
and expected epidemic size (b) as a function of T . The green (blue) curves
assume that patient zero is wearing (not wearing) a mask. The red curve
assumes that patient zero is randomly selected.

0.3 and Tmask,2 = 0.7 1and we study how the epidemic
characteristics change with T . In our simulations, we set
m = 0.45 and assumed a Poisson(5) degree distribution and
generated networks with 500,000 vertices, averaging over
10,000 independent simulations. In both the probability of
emergence and the expected epidemic size, the curves are
increasing with T , and an epidemic emerges when T = 0.3.

V. CONCLUSION

In this paper, we studied the effects of mask-wearing on
viral spread, specifically the probability of emergence and
the expected epidemic size conditioned on emergence. We
offered two different perspectives on modeling viral spread
with masks: through a heterogeneous bond percolation ap-
proach on multi-type networks and through an analogy with
a multiple-strain model with mutation. Theoretically, we find
that while the probability of emergence is the same in both
models, the expected epidemic size can be different. We
also show that the expected epidemic size is decreasing
as a function of the fraction of mask-wearing individuals,

1The relation Tmask,1 < Tmask,2 reflects the observation that masks
have higher outward efficiency than inward.

confirming that mask-wearing can be an effective strategy in
curbing the spread of COVID-19.
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