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Abstract

This paper introduces a new resource virtualization framework,
Zorua, that decouples the programmer-specified resource usage of a
GPU application from the actual allocation in the on-chip hardware
resources. Zorua enables this decoupling by virtualizing each resource
transparently to the programmer. The virtualization provided by Zorua
builds on two key concepts—dynamic allocation of the on-chip resources
and their oversubscription using a swap space in memory.

Zorua provides a holistic GPU resource virtualization strategy, de-
signed to (i) adaptively control the extent of oversubscription, and
(ii) coordinate the dynamic management of multiple on-chip resources
(i.e., registers, scratchpad memory, and thread slots), to maximize the
effectiveness of virtualization. Zorua employs a hardware-software code-
sign, comprising the compiler, a runtime system and hardware-based
virtualization support. The runtime system leverages information from
the compiler regarding resource requirements of each program phase to
(i) dynamically allocate/deallocate the different resources in the physi-
cally available on-chip resources or their swap space, and (ii) manage
the tradeoff between higher thread-level parallelism due to virtualization
versus the latency and capacity overheads of swap space usage.

We demonstrate that by providing the illusion of more resources than
physically available via controlled and coordinated virtualization, Zorua
offers several important benefits:(i) Programming Ease. Zorua eases
the burden on the programmer to provide code that is tuned to efficiently
utilize the physically available on-chip resources. (ii) Portability. Zorua
alleviates the necessity of re-tuning an application’s resource usage when
porting the application across GPU generations. (iii) Performance. By
dynamically allocating resources and carefully oversubscribing them
when necessary, Zorua improves or retains the performance of applica-
tions that are already highly tuned to best utilize the hardware resources.
The holistic virtualization provided by Zorua can also enable other uses,
including fine-grained resource sharing among multiple kernels and
low-latency preemption of GPU programs.

1. Introduction
Modern Graphics Processing Units (GPUs) have evolved

into powerful programmable machines over the last decade,
offering high performance and energy efficiency for many
classes of applications by concurrently executing thousands
of threads. In order to execute, each thread requires several
major on-chip resources: (i) registers, (ii) scratchpad memory
(if used in the program), and (iii) a thread slot in the thread
scheduler that keeps all the bookkeeping information required
for execution.

Today, these resources are statically allocated to threads
in the application based on several parameters—the number
of threads per thread block, register usage per thread, and
scratchpad usage per block. We refer to these static applica-
tion parameters as the resource specification of the application.
This static allocation over a fixed set of hardware resources
creates a tight coupling between the application resource spec-
ification and the physical hardware resources. As a result
of this tight coupling, for each application, there are only a
few optimized resource specifications that maximize resource

utilization. Picking a suboptimal specification leads to under-
utilization of resources and hence, very often, performance
degradation. This leads to three key difficulties related to
obtaining good performance on modern GPUs.

Programming Ease. First, the burden falls upon the pro-
grammer to optimize the resource specification. For a naive
programmer, this is a challenging task [14, 47, 59, 60, 61, 65]
because, in addition to selecting a specification suited to an
algorithm, the programmer needs to be aware of the details of
the GPU architecture to fit the specification to the underlying
hardware resources. This tuning is easy to get wrong because
there are many highly suboptimal performance points in the
specification space, and even a minor deviation from an opti-
mized specification can lead to a drastic drop in performance
due to lost parallelism. We refer to such drops as performance
cliffs. We analyze the effect of suboptimal specifications on
real systems for 20 workloads (Section 2.1), and experimen-
tally demonstrate that changing resource specifications can
produce as much as a 5× difference in performance due to
the change in parallelism. Even a minimal change in one re-
source can result in a significant performance cliff, degrading
performance by as much as 50% (Section 2.1).

Portability. Second, different GPUs have varying quantities
of each of the resources. Hence, an optimized specification on
one GPU may be highly suboptimal on another. In order to
determine the extent of this portability problem, we run 20 ap-
plications on three generations of NVIDIA GPUs: Fermi, Kepler,
and Maxwell (Section 2.2). An example result demonstrates
that highly-tuned code for Maxwell or Kepler loses as much
as 69% of its performance on Fermi. This lack of portability
necessitates that the programmer re-tune the resource specifi-
cation of the application for every new GPU generation. This
problem is especially significant in virtualized environments,
such as clouds or clusters, where the same program may run
on a wide range of GPU architectures.

Performance. Third, for the programmer who chooses to
employ software optimization tools (e.g., auto-tuners) or man-
ually tailor the program to fit the hardware, performance is
still constrained by the fixed, static resource specification. It is
well known [19, 21, 30, 84] that the on-chip resource require-
ments of a GPU application vary throughout execution. Since
the program (even after auto-tuning) has to statically specify
its worst-case resource requirements, severe dynamic under-
utilization of several GPU resources [19, 21, 30, 37] ensues,
leading to suboptimal performance (Section 2.3).

Our Goal. To address these three challenges at the same
time, we propose to decouple an application’s resource specifi-
cation from the available hardware resources by virtualizing all
three major resources in a holistic manner. This virtualization
provides the illusion of more resources to the GPU programmer
and software than physically available, and enables the run-
time system and the hardware to dynamicallymanage multiple
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resources in a manner that is transparent to the programmer,
thereby alleviating dynamic underutilization.

Virtualization is a concept that has been applied to the man-
agement of hardware resources in many contexts (e.g., [2, 6,
13, 15, 25, 29, 54, 73]), providing various benefits. We be-
lieve that applying the general principle of virtualization to the
management of multiple on-chip resources in GPUs offers the
opportunity to alleviate several important challenges in mod-
ern GPU programming, which are described above. However,
effectively adding a new level of indirection to the manage-
ment of multiple latency-critical GPU resources introduces
several new challenges (see Section 3.1). This necessitates
the design of a new mechanism to effectively address the new
challenges and enable the benefits of virtualization. In this
work, we introduce a new framework, Zorua,1 to decouple
the programmer-specified resource specification of an applica-
tion from its physical on-chip resource allocation by effectively
virtualizing multiple on-chip resources in GPUs.

Key Concepts. The virtualization strategy used by Zorua is
built upon two key concepts. First, to mitigate performance
cliffs when we do not have enough physical resources, we
oversubscribe resources by a small amount at runtime, by lever-
aging their dynamic underutilization and maintaining a swap
space (in main memory) for the extra resources required. Sec-
ond, Zorua improves utilization by determining the runtime
resource requirements of an application. It then allocates and
deallocates resources dynamically, managing them (i) indepen-
dently of each other to maximize their utilization; and (ii) in
a coordinated manner, to enable efficient execution of each
thread with all its required resources available.

Challenges in Virtualization. Unfortunately, oversubscrip-
tion means that latency-critical resources, such as registers
and scratchpad, may be swapped to memory at the time of
access, resulting in high overheads in performance and energy.
This leads to two critical challenges in designing a framework
to enable virtualization. The first challenge is to effectively
determine the extent of virtualization, i.e., by how much each
resource appears to be larger than its physical amount, such
that we can minimize oversubscription while still reaping its
benefits. This is difficult as the resource requirements continu-
ally vary during runtime. The second challenge is to minimize
accesses to the swap space. This requires coordination in the
virtualized management of multiple resources, so that enough
of each resource is available on-chip when needed.

Zorua. In order to address these challenges, Zorua employs
a hardware-software codesign that comprises three compo-
nents: (i) the compiler annotates the program to specify the
resource needs of each phase of the application; (ii) a runtime
system, which we refer to as the coordinator, uses the compiler
annotations to dynamically manage the virtualization of the
different on-chip resources; and (iii) the hardware employs
mapping tables to locate a virtual resource in the physically
available resources or in the swap space in main memory. The
coordinator plays the key role of scheduling threads only when
the expected gain in thread-level parallelism outweighs the
cost of transferring oversubscribed resources from the swap
space in memory, and coordinates the oversubscription and
allocation of multiple on-chip resources.

1Named after a Pokémon [51] with the power of illusion, able to take dif-
ferent shapes to adapt to different circumstances (not unlike our proposed
framework).

Key Results. We evaluate Zorua with many resource speci-
fications for eight applications across three GPU architectures
(Section 6). Our experimental results show that Zorua (i) re-
duces the range in performance for different resource specifi-
cations by 50% on average (up to 69%), by alleviating perfor-
mance cliffs, and hence eases the burden on the programmer
to provide optimized resource specifications, (ii) improves
performance for code with optimized specification by 13%
on average (up to 28%), and (iii) enhances portability by
reducing the maximum porting performance loss by 55% on
average (up to 73%) for three different GPU architectures.
We conclude that decoupling the resource specification and
resource management via virtualization significantly eases
programmer burden, by alleviating the need to provide op-
timized specifications and enhancing portability, while still
improving or retaining performance for programs that already
have optimized specifications.

Other Uses. We believe that Zorua offers the opportunity
to address several other key challenges in GPUs today: (i) By
providing an new level of indirection, Zorua provides a natural
way to enable dynamic and fine-grained control over resource
partitioning among multiple GPU kernels and applications. (ii)
Zorua can be utilized for low-latency preemption of GPU ap-
plications, by leveraging the ability to swap in/out resources
from/to memory in a transparent manner (Section 7).

The main contributions of this work are:

• This is the first work that takes a holistic approach to de-
coupling a GPU application’s resource specification from
its physical on-chip resource allocation via the use of vir-
tualization. We develop a comprehensive virtualization
framework that provides controlled and coordinated virtu-
alization of multiple on-chip GPU resources to maximize
the efficacy of virtualization.

• We show how to enable efficient oversubscription of mul-
tiple GPU resources with dynamic fine-grained allocation
of resources and swapping mechanisms into/out of main
memory. We provide a hardware-software cooperative
framework that (i) controls the extent of oversubscription
to make an effective tradeoff between higher thread-level
parallelism due to virtualization versus the latency and
capacity overheads of swap space usage, and (ii) coor-
dinates the virtualization for multiple on-chip resources,
transparently to the programmer.

• We demonstrate that by providing the illusion of having
more resources than physically available, Zorua (i) reduces
programmer burden, providing competitive performance
for even suboptimal resource specifications, by reducing
performance variation across different specifications and
by alleviating performance cliffs; (ii) reduces performance
loss when the program with its resource specification tuned
for one GPU platform is ported to a different platform; and
(iii) retains or enhances performance for highly-tuned code
by improving resource utilization, via dynamic manage-
ment of resources.

2. Motivation
In this section, we study the performance implications of

different choices of resource specifications for GPU applications
to demonstrate the key issues we aim to alleviate.
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2.1. Performance Variation and Cliffs
To understand the impact of resource specifications and the

resulting utilization of physical resources on GPU performance,
we conduct an experiment on a Maxwell GPU system (GTX
745) with 20 GPGPU workloads from the CUDA SDK [52],
Rodinia [9], GPGPU-Sim benchmarks [5], Lonestar [8], Par-
boil [66], and US DoE application suites [72]. We use the
NVIDIA profiling tool (NVProf) [52] to determine the exe-
cution time of each application kernel. We sweep the three
parameters of the specification—number of threads in a thread
block, register usage per thread, and scratchpad memory us-
age per thread block—for each workload, and measure their
impact on execution time.

Figure 1 shows a summary of variation in performance
(higher is better), normalized to the slowest specification for
each application, across all evaluated specification points for
each application2 in a Tukey box plot [48]. The boxes in the
box plot represent the range between the first quartile (25%)
and the third quartile (75%). The whiskers extending from
the boxes represent the maximum and minimum points of
the distribution, or 1.5× the length of the box, whichever is
smaller. Any points that lie more than 1.5× the box length
beyond the box are considered to be outliers [48], and are
plotted as individual points. The line in the middle of the box
represents the median, while the “X” represents the average.

Figure 1: Performance variation across specifications

We can see that there is significant variation in performance
across different specification points (as much as 5.51× in SP),
proving the importance of optimized resource specifications.
In some applications (e.g., BTR, SLA), few points perform well,
and these points are significantly better than others, suggest-
ing that it would be challenging for a programmer to locate
these high performing specifications and obtain the best per-
formance. Many workloads (e.g., BH, DCT, MST) also have
higher concentrations of specifications with suboptimal perfor-
mance in comparison to the best performing point, implying
that, without effort, it is likely that the programmer will end
up with a resource specification that leads to low performance.

There are several sources for this performance variation.
One important source is the loss in thread-level parallelism
as a result of a suboptimal resource specification. Suboptimal
specifications that are not tailored to fit the available physi-
cal resources lead to the underutilization of resources. This
causes a drop in the number of threads that can be executed
concurrently, as there are insufficient resources to support
their execution. Hence, better and more balanced utilization
of resources enables higher thread-level parallelism. Often,

2Our technical report [71] contains more detail on the evaluated ranges.

this loss in parallelism from resource underutilization mani-
fests itself in what we refer to as a performance cliff, where a
small deviation from an optimized specification can lead to
significantly worse performance, i.e., there is very high vari-
ation in performance between two specification points that
are nearby. To demonstrate the existence and analyze the
behavior of performance cliffs, we examine two representative
workloads more closely.

Figure 2a shows (i) how the application execution time
changes; and (ii) how the corresponding number of regis-
ters, statically used, changes when the number of threads per
thread block increases from 32 to 1024 threads, for Minimum
Spanning Tree (MST) [8]. We make two observations.
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Figure 2: Performance cliffs in Minimum Spanning Tree (MST)

First, let us focus on the execution time between 480 and
1024 threads per block. As we go from 480 to 640 threads per
block, execution time gradually decreases. Within this window,
the GPU can support two thread blocks running concurrently
for MST. The execution time falls because the increase in the
number of threads per block improves the overall throughput
(the number of thread blocks running concurrently remains
constant at two, but each thread block does more work in
parallel by having more threads per block). However, the
corresponding total number of registers used by the blocks also
increases. At 640 threads per block, we reach the point where
the total number of available registers is not large enough to
support two blocks. As a result, the number of blocks executing
in parallel drops from two to one, resulting in a significant
increase (50%) in execution time, i.e., the performance cliff. 3

3Prior work [77] has studied performing resource allocation at the finer warp
granularity, as opposed to the coarser granularity of a thread block. As we
discuss in Section 8 and demonstrate in Section 6, this does not solve the
problem of performance cliffs.
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We see many of these cliffs earlier in the graph as well, albeit
not as drastic as the one at 640 threads per block.

Second, Figure 2a shows the existence of performance cliffs
when we vary just one system parameter—the number of
threads per block. To make things more difficult for the
programmer, other parameters (i.e., registers per thread or
scratchpad memory per thread block) also need to be decided
at the same time. Figure 2b demonstrates the same results,
but when the number of registers per thread is also varied from
32 to 48.4 As this figure shows, performance cliffs now occur
at different points for different registers/thread curves, which
makes optimizing resource specification, so as to avoid these
cliffs, much harder for the programmer.

We find that performance cliffs are pervasive in the work-
loads we study. Barnes-Hut (BH) in Figure 3 is another example
that exhibits very significant performance cliffs depending on
the number of threads per block and registers per thread.
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Figure 3: Performance cliffs in Barnes-Hut (BH)

2.2. Portability
As we show in Section 2.1, tuning GPU applications to

achieve good performance on a given GPU is already a chal-
lenging task. To make things worse, even after this tuning
is done by the programmer for one particular GPU architec-
ture, it has to be redone for every new GPU generation (due to
changes in the available physical resources across generations)
to ensure that good performance is retained. We demonstrate
this portability problem by running sweeps of the three param-
eters of the resource specification on various workloads, on
three real GPU generations: Fermi (GTX 480), Kepler (GTX
760), and Maxwell (GTX 745).

Figure 4 shows how the optimized performance points
change between different GPU generations for two representa-
tive applications (MST and DCT). For every generation, results
are normalized to the lowest execution time for that particular
generation. As we can see in Figure 4a, the best performing
points for different generations occur at different specifications
because the application behavior changes with the variation
in hardware resources. For MST, the Maxwell architecture
performs best at 64 threads per block. However, the same
specification point is not efficient for either of the other gen-
erations (Fermi and Kepler), producing 15% and 30% lower
performance, respectively, compared to the best specification
for each generation. Similarly, for DCT (shown in Figure 4b),
both Kepler andMaxwell perform best at 128 threads per block,
but using the same specification for Fermi would lead to a 69%
performance loss.

4We note that the register usage reported by the compiler may vary from
the actual runtime register usage [52], hence slightly altering the points at
which cliffs occur.
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Figure 4: Performance variation across different GPU genera-
tions (Fermi, Kepler, and Maxwell) for MST and DCT

2.3. Dynamic Resource Underutilization
Even when a GPU application is perfectly tuned for a par-

ticular GPU architecture, the on-chip resources are typically
not fully utilized [19, 21, 22, 30, 40, 55, 70, 84]. For exam-
ple, it is well known that while the compiler conservatively
allocates registers to hold the maximum number of live val-
ues throughout the execution, the number of live values at
any given time is well below the maximum for large portions
of application execution time. To determine the magnitude
of this dynamic underutilization,5 we conduct an experiment
where we measure the dynamic usage (per epoch) of both
scratchpad memory and registers for different applications
with optimized specifications in our workload pool. We vary
the length of epochs from 500 to 5000 cycles (not graphed).
We find that even for a reasonably large epoch of 500 cycles,
the average utilization of resources is very low (only 12% of
allocated scratchpad memory and 37% of registers are uti-
lized). Moreover, even with the largest epoch size we analyze
(5000 cycles), the average utilization of allocated scratchpad
memory is only 45% and of allocated registers is 68%. This
observation clearly suggests that there is an opportunity for
better dynamic allocation of these resources that could allow
higher effective parallelism.

2.4. Our Goal
As we see above, the tight coupling between the resource

specification and hardware resource allocation, and the re-

5 Underutilization of registers occurs in two major forms—static, where
registers are unallocated throughout execution [20, 22, 40, 70, 77], and
dynamic, where utilization of the registers drops during runtime as a result
of early completion of warps [77], short register lifetimes [19, 21, 30] and
long latency operations [19, 21]. We do not tackle underutilization from
long latency operations (such as memory accesses) in this paper, and leave
the exploration of alleviating this type of underutilization to future work.
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sulting heavy dependence of performance on the resource
specification, creates a number of challenges. In this work, our
goal is to alleviate these challenges by providing a mechanism
that can (i) ease the burden on the programmer by ensuring
reasonable performance, regardless of the resource specification,
by successfully avoiding performance cliffs, while retaining
performance for code with optimized specification; (ii) en-
hance portability by minimizing the variation in performance
for optimized specifications across different GPU generations;
and (iii)maximize dynamic resource utilization even in highly
optimized code to further improve performance. We make two
key observations from our studies above to help us achieve
this goal:

Observation 1: Bottleneck Resources. We find that perfor-
mance cliffs occur when the amount of any resource required
by an application exceeds the physically available amount of
that resource. This resource becomes a bottleneck, and lim-
its the amount of parallelism that the GPU can support. If
it were possible to provide the application with a small addi-
tional amount of the bottleneck resource, the application can
see a significant increase in parallelism and thus avoid the
performance cliff.

Observation 2: Underutilized Resources. As discussed in
Section 2.3, there is significant underutilization of resources
at runtime. These underutilized resources could be employed
to support more parallelism at runtime, and thereby alleviate
the aforementioned challenges.

We use these two observations to drive our resource virtu-
alization solution, which we describe next.

3. Zorua: Our Approach
In this work, we design Zorua, a framework that provides

the illusion of more GPU resources than physically available by
decoupling the resource specification from its allocation in the
hardware resources. We introduce a new level of indirection
by virtualizing the on-chip resources to allow the hardware to
manage resources transparently to the programmer.

The virtualization provided by Zorua builds upon two key
concepts to leverage the aforementioned observations. First,
when there are insufficient physical resources, we aim to pro-
vide the illusion of the required amount by oversubscribing
the required resource. We perform this oversubscription by
leveraging the dynamic underutilization as much as possible,
or by spilling to a swap space in memory. This oversubscrip-
tion essentially enables the illusion of more resources than
what is available (physically and statically), and supports the
concurrent execution of more threads. Performance cliffs are
mitigated by providing enough additional resources to avoid
drastic drops in parallelism. Second, to enable efficient over-
subscription by leveraging underutilization, we dynamically
allocate and deallocate physical resources depending on the
requirements of the application during execution. We man-
age the virtualization of each resource independently of other
resources to maximize its runtime utilization.

Figure 5 depicts the high-level overview of the virtualization
provided by Zorua. The virtual space refers to the illusion of the
quantity of available resources. The physical space refers to the
actual hardware resources (specific to the GPU architecture),
and the swap space refers to the resources that do not fit in the
physical space and hence are spilled to other physical locations.
For the register file and scratchpad memory, the swap space is

mapped to global memory space in the memory hierarchy. For
threads, only those that are mapped to the physical space are
available for scheduling and execution at any given time. If a
thread is mapped to the swap space, its state (i.e., the PC and
the SIMT stack) is saved in memory. Resources in the virtual
space can be freely re-mapped between the physical and swap
spaces to maintain the illusion of the virtual space resources.

Threads Registers Scratchpad

Virtual Space

Swap Space Physical Space

ThreadsThreads
Scheduler

Compute 
Units

Registers

Scratchpad

Registers

Scratchpad

Figure 5: High-level overview of Zorua

In the baseline architecture, the thread-level parallelism
that can be supported, and hence the throughput obtained
from the GPU, depends on the quantity of physical resources.
With the virtualization enabled by Zorua, the parallelism that
can be supported now depends on the quantity of virtual re-
sources (and how their mapping into the physical and swap
spaces is managed). Hence, the size of the virtual space for
each resource plays the key role of determining the parallelism
that can be exploited. Increasing the virtual space size enables
higher parallelism, but leads to higher swap space usage. It is
critical to minimize accesses to the swap space to avoid the la-
tency overhead and capacity/bandwidth contention associated
with accessing the memory hierarchy.

In light of this, there are two key challenges that need to be
addressed to effectively virtualize on-chip resources in GPUs.
We now discuss these challenges and provide an overview of
how we address them.

3.1. Challenges in Virtualization
Challenge 1: Controlling the Extent of Oversubscription. A

key challenge is to determine the extent of oversubscription,
or the size of the virtual space for each resource. As discussed
above, increasing the size of the virtual space enables more
parallelism. Unfortunately, it could also result in more spilling
of resources to the swap space. Finding the tradeoff between
more parallelism and less overhead is challenging, because
the dynamic resource requirements of each thread tend to
significantly fluctuate throughout execution. As a result, the
size of the virtual space for each resource needs to be continu-
ously tuned to allow the virtualization to adapt to the runtime
requirements of the program.

Challenge 2: Control and Coordination of Multiple Resources.
Another critical challenge is to efficiently map the continuously
varying virtual resource space to the physical and swap spaces.
This is important for two reasons. First, it is critical to min-
imize accesses to the swap space. Accessing the swap space
for the register file or scratchpad involves expensive accesses
to global memory, due to the added latency and contention.
Also, only those threads that are mapped to the physical space
are available to the warp scheduler for selection. Second, each
thread requires multiple resources for execution. It is critical

5



to coordinate the allocation and mapping of these different
resources to ensure that an executing thread has all the re-
quired resources allocated to it, while minimizing accesses to
the swap space. Thus, an effective virtualization framework
must coordinate the allocation of multiple on-chip resources.

3.2. Key Ideas of Our Design
To solve these challenges, Zorua employs two key ideas.

First, we leverage the software (the compiler) to provide anno-
tations with information regarding the resource requirements
of each phase of the application. This information enables the
framework to make intelligent dynamic decisions, with respect
to both the size of the virtual space and the allocation/deallo-
cation of resources (Section 3.2.1).

Second, we use an adaptive runtime system to control the
allocation of resources in the virtual space and their mapping
to the physical/swap spaces. This allows us to (i) dynamically
alter the size of the virtual space to change the extent of over-
subscription; and (ii) continuously coordinate the allocation
of multiple on-chip resources and the mapping between their
virtual and physical/swap spaces, depending on the varying
runtime requirements of each thread (Section 3.2.2).

3.2.1. Leveraging Software Annotations of Phase Charac-
teristics. We observe that the runtime variation in resource
requirements (Section 2.3) typically occurs at the granularity
of phases of a few tens of instructions. This variation occurs
because different parts of kernels perform different operations
that require different resources. For example, loops that pri-
marily load/store data from/to scratchpad memory tend to
be less register heavy. Sections of code that perform specific
computations (e.g., matrix transformation, graph manipula-
tion), can either be register heavy or primarily operate out of
scratchpad. Often, scratchpad memory is used for only short
intervals [84], e.g., when data exchange between threads is
required, such as for a reduction operation.

Figure 6 depicts a few example phases from the NQU (N-
Queen Solver) [11] kernel. NQU is a scratchpad-heavy applica-
tion, but it does not use the scratchpad at all during the initial
computation phase. During its second phase, it performs its
primary computation out of the scratchpad, using as much
as 4224B. During its last phase, the scratchpad is used only
for reducing results, which requires only 384B. There is also
significant variation in the maximum number of live registers
in the different phases.
__global__ void solve_nqueen_cuda_kernel(…){

.phasechange 16,0;----------------------------------------------------

// initialization phase

const int tid = threadIdx.x;

const int bid = blockIdx.x;

... 

.phasechange 24,4224;-------------------------------------------------

if(idx < total_conditions) {

mask[tid][i] = total_masks[idx];

... 

}

__syncthreads();

.phasechange 12,384;--------------------------------------------------

// reduction phase

if(tid < 64 && tid + 64 < BLOCK_SIZE) 

{ sum[tid] += sum[tid + 64]; } 

...

}

Phase #1: 16 Regs, 0B Scratchpad

Phase #2: 24 Regs, 4224B Scratchpad

Phase #3: 12 Regs, 
384B Scratchpad

Figure 6: Example phases from NQU

In order to capture both the resource requirements as well
as their variation over time, we partition the program into
a number of phases. A phase is a sequence of instructions
with sufficiently different resource requirements than adja-

cent phases. Barrier or fence operations also indicate a change
in requirements for a different reason—threads that are wait-
ing at a barrier do not immediately require the thread slot
that they are holding. We interpret barriers and fences as
phase boundaries since they potentially alter the utilization
of their thread slots. The compiler inserts special instructions
called phase specifiers to mark the start of a new phase. Each
phase specifier contains information regarding the resource
requirements of the next phase. Section 4.6 provides more
detail on the semantics of phases and phase specifiers.

A phase forms the basic unit for resource allocation and de-
allocation, as well as for making oversubscription decisions. It
offers a finer granularity than an entire thread to make such de-
cisions. The phase specifiers provide information on the future
resource usage of the thread at a phase boundary. This enables
(i) preemptively controlling the extent of oversubscription at
runtime, and (ii) dynamically allocating and deallocating re-
sources at phase boundaries to maximize utilization of the
physical resources.

3.2.2. Control with an Adaptive Runtime System. Phase
specifiers provide information to make oversubscription and
allocation/deallocation decisions. However, we still need a
way to make decisions on the extent of oversubscription and
appropriately allocate resources at runtime. To this end, we
use an adaptive runtime system, which we refer to as the
coordinator. Figure 7 presents an overview of the coordinator.

Pending 
Threads

Active Threads

Physical/Swap Space To Warp Scheduler 
& Compute Units

COORDINATOR

Application Threads

Schedulable 
Threads

Virtual Space

Figure 7: Overview of the coordinator

The virtual space enables the illusion of a larger amount of
each of the resources than what is physically available, to adapt
to different application requirements. This illusion enables
higher thread-level parallelism than what can be achieved with
solely the fixed, physically available resources, by allowing
more threads to execute concurrently. The size of the virtual
space at a given time determines this parallelism, and those
threads that are effectively executed in parallel are referred to
as active threads. All active threads have thread slots allocated
to them in the virtual space (and hence can be executed), but
some of them may not be mapped to the physical space at a
given time. As discussed previously, the resource requirements
of each application continuously change during execution. To
adapt to these runtime changes, the coordinator leverages
information from the phase specifiers to make decisions on
oversubscription. The coordinator makes these decisions at
every phase boundary and thereby controls the size of the
virtual space for each resource (see Section 4.2).

To enforce the determined extent of oversubscription, the
coordinator allocates all the required resources (in the virtual
space) for only a subset of threads from the active threads. Only
these dynamically selected threads, referred to as schedulable
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threads, are available to the warp scheduler and compute units
for execution. The coordinator, hence, dynamically partitions
the active threads into schedulable threads and the pending
threads. Each thread is swapped between schedulable and
pending states, depending on the availability of resources in
the virtual space. Selecting only a subset of threads to execute
at any time ensures that the determined size of the virtual
space is not exceeded for any resource, and helps coordinate
the allocation and mapping of multiple on-chip resources to
minimize expensive data transfers between the physical and
swap spaces (discussed in Section 4).

3.3. Overview of Zorua
In summary, to effectively address the challenges in virtual-

ization by leveraging the above ideas in design, Zorua employs
a software-hardware codesign that comprises three compo-
nents: (i) The compiler annotates the program by adding
special instructions (phase specifiers) to partition it into phases
and to specify the resource needs of each phase of the ap-
plication. (ii) The coordinator, a hardware-based adaptive
runtime system, uses the compiler annotations to dynamically
allocate/deallocate resources for each thread at phase bound-
aries. The coordinator plays the key role of continuously con-
trolling the extent of the oversubscription (and hence the size
of the virtual space) at each phase boundary. (iii) Hardware
virtualization support includes a mapping table for each re-
source to locate each virtual resource in either the physical
space or the swap space in main memory, and the machinery
to swap resources between the physical and swap spaces.

4. Zorua: Detailed Mechanism
We now detail the operation and implementation of the

various components of the Zorua framework.

4.1. Key Components in Hardware
Zorua has two key hardware components: (i) the coordi-

nator that contains queues to buffer the pending threads and
control logic to make oversubscription and resource manage-
ment decisions, and (ii) resource mapping tables to map each of
the resources to their corresponding physical or swap spaces.

Figure 8 presents an overview of the hardware components
that are added to each SM. The coordinator interfaces with
the thread block scheduler (¶) to schedule new blocks onto an
SM. It also interfaces with the warp schedulers by providing a
list of schedulable warps (¼).6 The resource mapping tables
are accessible by the coordinator and the compute units. We
present a detailed walkthrough of the operation of Zorua and
then discuss its individual components in more detail.

4.2. Detailed Walkthrough
The coordinator is called into action by three events: (i) a

new thread block is scheduled at the SM for execution, (ii) a
warp undergoes a phase change, or (iii) a warp or a thread
block reaches the end of execution. Between these events,
the coordinator performs no action and execution proceeds
as usual. We now walk through the sequence of actions per-
formed by the coordinator for each type of event.

Thread Block: Execution Start. When a thread block is
scheduled onto an SM for execution (¶), the coordinator

6We use an additional bit in each warp slots to indicate to the scheduler
whether the warp is schedulable.
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Figure 8: Overview of Zorua in hardware

first buffers it. The primary decision that the coordinator
makes is to determine whether or not to make each thread
available to the scheduler for execution. The granularity at
which the coordinator makes decisions is that of a warp, as
threads are scheduled for execution at the granularity of a
warp (hence we use thread slot and warp slot interchangeably).
Each warp requires three resources: a thread slot, registers,
and potentially scratchpad. The amount of resources required
is determined by the phase specifier (Section 4.6) at the start
of execution, which is placed by the compiler into the code.
The coordinator must supply each warp with all its required
resources in either the physical or swap space before presenting
it to the warp scheduler for execution.

To ensure that each warp is furnished with its resources and
to coordinate potential oversubscription for each resource, the
coordinator has three queues—thread/barrier, scratchpad, and
register queues. The three queues together essentially house
the pending threads. Each warp must traverse each queue
(· ¸ ¹), as described next, before becoming eligible to be
scheduled for execution. The coordinator allows a warp to
traverse a queue when (a) it has enough of the correspond-
ing resource available in the physical space, or (b) it has an
insufficient resources in the physical space, but has decided
to oversubscribe and allocate the resource in the swap space.
The total size of the resource allocated in the physical and
swap spaces cannot exceed the determined virtual space size.
The coordinator determines the availability of resources in
the physical space using the mapping tables (see Section 4.5).
If there is an insufficient amount of a resource in the phys-
ical space, the coordinator needs to decide whether or not
to increase the virtual space size for that particular resource
by oversubscribing and using swap space. We describe the
decision algorithm in Section 4.4. If the warp cannot traverse
all queues, it is left waiting in the first (thread/barrier) queue
until the next coordinator event. Once a warp has traversed all
the queues, the coordinator acquires all the resources required
for the warp’s execution (º). The corresponding mapping ta-
bles for each resource is updated (») to assign resources to
the warp, as described in Section 4.5.

Warp: Phase Change. At each phase change (½), the warp
is removed from the list of schedulable warps and is returned
to the coordinator to acquire/release its resources. Based on
the information in its phase specifier, the coordinator releases
the resources that are no longer live and hence are no longer
required (¾). The coordinator updates the mapping tables
to free these resources (¿). The warp is then placed into a
specific queue, depending on which live resources it retained
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from the previous phase and which new resources it requires.
The warp then attempts to traverse the remaining queues
(· ¸ ¹), as described above. A warp that undergoes a phase
change as a result of a barrier instruction is queued in the
thread/barrier queue (·) until all warps in the same thread
block reach the barrier.

Thread Block/Warp: Execution End. When a warp com-
pletes execution, it is returned to the coordinator to release
any resources it is holding. Scratchpad is released only when
the entire thread block completes execution. When the coor-
dinator has free warp slots for a new thread block, it requests
the thread block scheduler (¶) for a new block.

Every Coordinator Event. At any event, the coordinator
attempts to find resources for warps waiting at the queues,
to enable them to execute. Each warp in each queue (start-
ing from the register queue) is checked for the availability of
the required resources. If the coordinator is able to allocate
resources in the physical or swap space without exceeding
the determined size of virtual space, the warp is allowed to
traverse the queue.

4.3. Benefits of Our Design
Decoupling the Warp Scheduler and Mapping Tables

from the Coordinator. Decoupling the warp scheduler from
the coordinator enables Zorua to use any scheduling algorithm
over the schedulable warps to enhance performance. One case
when this is useful is when increasing parallelism degrades
performance by increasing cache miss rate or causing memory
contention [35, 36, 58]. Our decoupled design allows this
challenge to be addressed independently from the coordinator
using more intelligent scheduling algorithms [36, 50, 58] and
cache management schemes [3, 44, 45, 78]. Furthermore,
decoupling the mapping tables from the coordinator allows
easy integration of any implementation of the mapping tables
that may improve efficiency for each resource.

Coordinating Oversubscription for Multiple Resources.
The queues help ensure that a warp is allocated all resources in
the virtual space before execution. They (i) ensure an ordering
in resource allocation to avoid deadlocks, and (ii) enforce
priorities between resources. In our evaluated approach, we
use the following order of priorities: threads, scratchpad, and
registers. We prioritize scratchpad over registers, as scratchpad
is shared by all warps in a block and hence has a higher value
by enabling more warps to execute. We prioritize threads
over scratchpad, as it is wasteful to allow warps stalled at
a barrier to acquire other resources—other warps that are
still progressing towards the barrier may be starved of the
resource they need. Furthermore, managing each resource
independently allows different oversubscription policies for
each resource and enables fine-grained control over the size
of the virtual space for that resource.7

Flexible Oversubscription. Zorua’s design can flexibly en-
able/disable swap space usage, as the dynamic fine-grained
management of resources is independent of the swap space.
Hence, in cases where the application is well-tuned to utilize
the available resources, swap space usage can be disabled or
minimized, and Zorua can still improve performance by re-
ducing dynamic underutilization of resources. Furthermore,
different oversubscription algorithms can be flexibly employed

7Our technical report [71] has a more detailed discussion of these benefits.

to manage the size of the virtual space for each resource (inde-
pendently or cooperatively). These algorithms can be designed
for different purposes, e.g., minimizing swap space usage, im-
proving fairness in a multikernel setting, reducing energy, etc.
In Section 4.4, we describe an example algorithm to improve
performance by making a good tradeoff between improving
parallelism and reducing swap space usage.

4.4. Oversubscription Decisions
Leveraging Phase Specifiers. Zorua leverages the infor-

mation provided by phase specifiers (Section 4.6) to make
oversubscription decisions for each phase. For each resource,
the coordinator checks whether allocating the requested quan-
tity according to the phase specifier would cause the total swap
space to exceed an oversubscription threshold, or o_thresh. This
threshold essentially dynamically sets the size of the virtual
space for each resource. The coordinator allows oversubscrip-
tion for each resource only within its threshold. o_thresh is
dynamically determined to adapt to the characteristics of the
workload, and tp ensure good performance by achieving a
good tradeoff between the overhead of oversubscription and
the benefits gained from parallelism.

Determining the Oversubscription Threshold. In order
to make the above tradeoff, we use two architectural statistics:
(i) idle time at the cores, c_idle, as an indicator for potential
performance benefits from parallelism; and (ii) memory idle
time (the idle cycles when all threads are stalled waiting for
data from memory or the memory pipeline), c_mem, as an
indicator of a saturated memory subsystem that is unlikely
to benefit from more parallelism.8 We use Algorithm 1 to
determine o_thresh at runtime. Every epoch, the change in
c_mem is compared with the change in c_idle. If the increase
in c_mem is greater, this indicates an increase in pressure on
the memory subsystem, suggesting both lesser benefit from
parallelism and higher overhead from oversubscription. In
this case, we reduce o_thresh. On the other hand, if the in-
crease in c_idle is higher, this is indicative of more idleness in
the pipelines, and higher potential performance from paral-
lelism and oversubscription. We increase o_thresh in this case,
to allow more oversubscription and enable more parallelism.
Table 1 describes the variables used in Algorithm 1.9

Algorithm 1 Determining the oversubscription threshold
1: o_thresh = o_default
2: for each epoch do
3: c_idle_delta = (c_idle - c_idle_prev)
4: c_mem_delta = (c_mem - c_mem_prev)
5: if (c_idle_delta - c_mem_delta) > c_delta_thresh then
6: o_thresh += o_thresh_step
7: end if
8: if (c_mem_delta - c_idle_delta) > c_delta_thresh then
9: o_thresh -= o_thresh_step
10: end if
11: end for

4.5. Virtualizing On-chip Resources
A resource can be in either the physical space, in which

case it is mapped to the physical on-chip resource, or the swap
space, in which case it can be found in the memory hierarchy.
Thus, a resource is effectively virtualized, and we need to
track the mapping between the virtual and physical/swap

8This is similar to the approach taken by prior work [35] to estimate the
performance benefits of increasing parallelism.

9We include more detail on these variables in our technical report [71].
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Variable Description

o_thresh oversubscription threshold (dynamically determined)

o_default initial value for o_thresh

c_idle core cycles when no threads are issued to the core
(but the pipeline is not stalled) [35]

c_mem core cycles when all warps are waiting for data
from memory or stalled at the memory pipeline

*_prev the above statistics for the previous epoch

c_delta_thresh threshold to produce change in o_thresh

o_thresh_step increment/decrement to o_thresh

epoch interval in core cycles to change o_thresh

Table 1: Variables for oversubscription

spaces. We use a mapping table for each resource to determine
(i) whether the resource is in the physical or swap space, and
(ii) the location of the resource within the physical on-chip
hardware. The compute units access these mapping tables
before accessing the real resources. An access to a resource
that is mapped to the swap space is converted to a global
memory access that is addressed by the logical resource ID
and warp/block ID (and a base register for the swap space
of the resource). In addition to the mapping tables, we use
two registers per resource to track the amount of the resource
that is (i) free to be used in physical space, and (ii) mapped
in swap space. These two counters enable the coordinator to
make oversubscription decisions (Section 4.4). We now go
into more detail on virtualized resources in Zorua.10

4.5.1. Virtualizing Registers and Scratchpad Memory. In
order to minimize the overhead of large mapping tables,
we map registers and scratchpad at the granularity of a set.
The size of a set is configurable by the architect—we use
4*warp_size11 for the register mapping table, and 1KB for
scratchpad. The register mapping table is indexed by the warp
ID and the logical register set number (logical_register_number
/ register_set_size). The scratchpad mapping table is indexed
by the block ID and the logical scratchpad set number (log-
ical_scratchpad_address / scratchpad_set_size). Each entry
in the mapping table contains the physical address of the
register/scratchpad content in the physical register file or
scratchpad. The valid bit indicates whether the logical entry
is mapped to the physical space or the swap space. With 64
logical warps and 16 logical thread blocks (see Section 5.1),
the register mapping table takes 1.125 KB (64×16×9 bits, or
0.87% of the register file) and the scratchpad mapping table
takes 672 B (16 × 48 × 7 bits, or 1.3% of the scratchpad).

4.5.2. Virtualizing Thread Slots. Each SM is provisioned
with a fixed number of warp slots, which determine the num-
ber of warps that are considered for execution every cycle by
the warp scheduler. In order to oversubscribe warp slots, we
need to save the state of each warp in memory before remap-
ping the physical slot to another warp. This state includes the
bookkeeping required for execution, i.e., the warp’s PC (pro-
gram counter) and the SIMT stack, which holds divergence
information for each executing warp. The thread slot mapping
table records whether each warp is mapped to a physical slot
or swap space. The table is indexed by the logical warp ID,

10Our implementation of a virtualized resource aims to minimize complexity.
This implementation is largely orthogonal to the framework itself, and
one can envision other implementations (e.g., [30, 84, 85]) for different
resources.

11We track registers at the granularity of a warp.

and stores the address of the physical warp slot that contains
the warp. In our baseline design with 64 logical warps, this
mapping table takes 56 B (64 × 7 bits).

4.6. Supporting Phases and Phase Specifiers
Identifying phases. The compiler partitions each applica-

tion into phases based on the liveness of registers and scratch-
pad memory. To avoid changing phases too often, the compiler
uses thresholds to determine phase boundaries. In our evalua-
tion, we define a new phase boundary when there is (i) a 25%
change in the number of live registers or live scratchpad con-
tent, and (ii) a minimum of 10 instructions since the last phase
boundary. To simplify hardware design, the compiler draws
phase boundaries only where there is no control divergence.12

Once the compiler partitions the application into phases, it
inserts instructions—phase specifiers—to specify the beginning
of each new phase and convey information to the framework on
the number of registers and scratchpad memory required for
each phase. As described in Section 3.2.1, a barrier or a fence
instruction also implies a phase change, but the compiler does
not insert a phase specifier for it as the resource requirement
does not change.

Phase Specifiers. The phase specifier instruction contains
fields to specify (i) the number of live registers and (ii) the
amount of scratchpadmemory in bytes, both for the next phase.
The instruction decoder sends this information to the coor-
dinator along with the phase change event. The coordinator
keeps this information in the corresponding warp slot.

4.7. Role of the Compiler and Programmer
The compiler plays an important role, annotating the code

with phase specifiers to convey information to the coordinator
regarding the resource requirements of each phase. The com-
piler, however, does not alter the size of each thread block or
the scratchpad memory usage of the program. The resource
specification provided by the programmer (either manually or
via auto-tuners) is retained to guarantee correctness. For reg-
isters, the compiler follows the default policy or uses directives
as specified by the user. One could envision more powerful,
efficient resource allocation with a programming model that
does not require any resource specification and/or compiler
policies/auto-tuners that are cognizant of the virtualized re-
sources. We leave this exploration for future work.

5. Methodology
5.1. System Modeling and Configuration

We model the Zorua framework with GPGPU-Sim 3.2.2 [5].
Table 2 summarizes the major parameters. Except for the
portability results, all results are obtained using the Fermi
configuration. We use GPUWattch [42] to model the GPU
power consumption. We faithfully model the overheads of the
Zorua framework, including an additional 2-cycle penalty for
accessing each mapping table, and the overhead of memory
accesses for swap space accesses (modeled as a part of the
memory system). We model the energy overhead of mapping
table accesses as SRAM accesses in GPUWattch.
12The phase boundaries for the applications in our pool easily fit this restric-
tion, but the framework can be extended to support control divergence if
needed.
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System Overview 15 SMs, 32 threads/warp, 6 memory channels

Shader Core Config 1.4 GHz, GTO scheduler [58], 2 schedulers per SM

Warps/SM Fermi: 48; Kepler/Maxwell: 64

Registers Fermi: 32768; Kepler/Maxwell: 65536

Scratchpad Fermi/Kepler: 48KB; Maxwell: 64KB

On-chip Cache L1: 32KB, 4 ways; L2: 768KB, 16 ways

Interconnect 1 crossbar/direction (15 SMs, 6 MCs), 1.4 GHz

Memory Model 177.4 GB/s BW, 6 memory controllers (MCs),
FR-FCFS scheduling, 16 banks/MC

Table 2: Major parameters of the simulated systems

5.2. Evaluated Applications and Metrics
We evaluate a number of applications from the Lonestar

suite [8], GPGPU-Sim benchmarks [5], and CUDA SDK [52],
whose resource specifications (the number of registers, the
amount of scratchpad memory, and/or the number of threads
per thread block) are parameterizable. Table 3 shows the
applications and the evaluated parameter ranges. For each
application, we make sure the amount of work done is the
same for all specifications. The performance metric we use
is the execution time of the GPU kernels in the evaluated
applications.

Name (Abbreviation) (R: Register, S: Scratchpad,
T: Thread block) Range

Barnes-Hut (BH) [8] R:28-44 × T:128-1024

Discrete Cosine Transform (DCT) [52] R:20-40 × T: 64-512

Minimum Spanning Tree (MST) [8] R:28-44 × T: 256-1024

Reduction (RD) [52] R:16-24 × T:64-1024

N-Queens Solver (NQU) [11] [5] S:10496-47232 (T:64-288)

Scan Large Array (SLA) [52] R:24-36 × T:128-1024

Scalar Product (SP) [52] S:2048-8192 × T:128-512

Single-Source Shortest Path (SSSP) [8] R:16-36 × T:256-1024

Table 3: Summary of applications

6. Evaluation
We evaluate the effectiveness of Zorua by studying three

different mechanisms: (i) Baseline, the baseline GPU that
schedules kernels and manages resources at the thread block
level; (ii) WLM (Warp Level Management), a state-of-the-art
mechanism for GPUs to schedule kernels and manage registers
at the warp level [77]; and (iii) Zorua. For our evaluations,
we run each application on 8–65 (36 on average) different
resource specifications13 (the ranges are in Table 3).

6.1. Effect on Performance Variation and Cliffs
We first examine how Zorua alleviates the high variation

in performance by reducing the impact of resource specifica-
tions on resource utilization. Figure 9 presents a Tukey box
plot [48] (see Section 2 for a description of the presented
box plot), illustrating the performance distribution (higher is
better) for each application (for all different application re-
source specifications we evaluated), normalized to the slowest
Baseline operating point for that application. We make two
major observations.

First, we find that Zorua significantly reduces the perfor-
mance range across all evaluated resource specifications. Aver-
aged across all of our applications, the worst resource speci-
fication for Baseline achieves 96.6% lower performance than
the best performing resource specification. For WLM [77],

13Our technical report [71] provides the specifications.

Figure 9: Normalized performance distribution

this performance range reduces only slightly, to 88.3%. With
Zorua, the performance range drops significantly, to 48.2%.
We see drops in the performance range for all applications
except SSSP. With SSSP, the range is already small to begin
with (23.8% in Baseline), and Zorua exploits the dynamic
underutilization, which improves performance but also adds a
small amount of variation.

Second, while Zorua reduces the performance range, it also
preserves or improves performance of the best performing
points. As we examine in more detail in Section 6.2, the
reduction in performance range occurs as a result of improved
performance mainly at the lower end of the distribution.

To gain insight into how Zorua reduces the performance
range and improves performance for the worst performing
points, we analyze how it reduces performance cliffs. With
Zorua, we ideally want to eliminate the cliffs we observed in
Section 2.1. We study the tradeoff between resource specifica-
tion and execution time for three representative applications:
DCT (Figure 10a), MST (Figure 10b), and NQU (Figure 10c).
For all three figures, we normalize execution time to the best
execution time under Baseline. Two observations are in order.
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Figure 10: Effect on performance cliffs

First, Zorua successfully mitigates the performance cliffs
that occur in Baseline. For example, DCT and MST are both
sensitive to the thread block size, as shown in Figures 10a
and 10b, respectively. We have circled the locations at which
cliffs exist in Baseline. Unlike Baseline, Zorua maintains more
steady execution times across the number of threads per block,
employing oversubscription to overcome the loss in parallelism
due to insufficient on-chip resources. We see similar results
across all of our applications.

Second, we observe that while WLM [77] can reduce some
of the cliffs by mitigating the impact of large block sizes, many
cliffs still exist under WLM (e.g., NQU in Figure 10c). This cliff
in NQU occurs as a result of insufficient scratchpad memory,
which cannot be handled by warp-level management. Simi-
larly, the cliffs for MST (Figure 10b) also persist with WLM
becauseMST has a lot of barrier operations, and the additional
warps scheduled by WLM ultimately stall, waiting for other
warps within the same block to acquire resources. We find
that, with oversubscription, Zorua is able to smooth out those
cliffs that WLM is unable to eliminate.
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Overall, we conclude that Zorua (i) reduces the perfor-
mance variation across resource specification points, so that
performance depends less on the specification provided by
the programmer; and (ii) can alleviate the performance cliffs
experienced by GPU applications.

6.2. Effect on Performance
As Figure 9 shows, Zorua either retains or improves the

best performing point for each application, compared to the
Baseline. Zorua improves the best performing point for each
application by 12.8% on average, and by as much as 27.8%
(for DCT). This improvement comes from the improved paral-
lelism obtained by exploiting the dynamic underutilization of
resources, which exists even for optimized specifications. Appli-
cations such as SP and SLA have little dynamic underutilization,
and hence do not show any performance improvement. NQU
does have significant dynamic underutilization, but Zorua does
not improve the best performing point as the overhead of over-
subscription outweighs the benefit, and Zorua dynamically
chooses not to oversubscribe. We conclude that even for many
specifications that are optimized to fit the hardware resources,
Zorua is able to further improve performance.

We also note that, in addition to reducing performance
variation and improving performance for optimized points,
Zorua improves performance by 25.2% on average for all
resource specifications across all evaluated applications.

6.3. Effect on Portability
As we describe in Section 2.2, performance cliffs often be-

have differently across different GPU architectures, and can
significantly shift the best performing resource specification
point. We study how Zorua can ease the burden of perfor-
mance tuning if an application has been already tuned for one
GPU model, and is later ported to another GPU. To understand
this, we define a new metric, porting performance loss, that
quantifies the performance impact of porting an application
without re-tuning it. To calculate this, we first normalize the
execution time of each specification point to the execution
time of the best performing specification point. We then pick
a source GPU architecture (i.e., the architecture that the GPU
was tuned for) and a target GPU architecture (i.e., the archi-
tecture that the code will run on), and find the point-to-point
drop in performance for all points whose performance on the
source GPU comes within 5% of the performance at the best
performing specification point.14

Figure 11 shows the maximum porting performance loss
for each application, across any two pairings of our three
simulated GPU architectures (Fermi, Kepler, and Maxwell).
We find that Zorua greatly reduces the maximum porting
performance loss that occurs under both Baseline and WLM
for all but one of our applications. On average, the maximum
porting performance loss is 52.7% for Baseline, 51.0% for
WLM, and only 23.9% for Zorua.

Notably, Zorua delivers significant improvements in porta-
bility for applications that previously suffered greatly when
ported to another GPU, such as DCT and MST. For both of
these applications, the performance variation differs so much

14We include any point within 5% of the best performance as there are often
multiple points close to the best point, and the programmer may choose
any of them.
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Figure 11: Maximum porting performance loss

between GPU architectures that, despite tuning the applica-
tion on the source GPU to be within 5% of the best achievable
performance, their performance on the target GPU is often
more than twice as slow as the best achievable performance
on the target platform. Zorua significantly lowers this porting
performance loss down to 28.1% for DCT and 36.1% for MST.
We also observe that for BH, Zorua actually increases the port-
ing performance loss slightly with respect to the Baseline. This
is because for Baseline, there are only two points that perform
within the 5% margin for our metric, whereas with Zorua,
we have five points that fall in that range. Despite this, the
increase in porting performance loss for BH is low, deviating
only 7.0% from the best performance.

We conclude that Zorua enhances portability of applications
by reducing the impact of a change in the hardware resources
for a given resource specification. For applications that have
already been tuned on one platform, Zorua significantly lowers
the penalty of not re-tuning for another platform, allowing
programmers to save development time.

6.4. A Deeper Look: Benefits & Overheads
To take a deeper look into how Zorua is able to provide the

above benefits, in Figure 12, we show the number of schedu-
lable warps (i.e., warps that are available to be scheduled by
the warp scheduler at any given time excluding warps waiting
at a barrier), averaged across all of specification points. On
average, Zorua increases the number of schedulable warps
by 32.8%, significantly more than WLM (8.1%), which is
constrained by the fixed amount of available resources. We
conclude that by oversubscribing and dynamically managing
resources, Zorua is able to improve thread-level parallelism,
and hence performance.
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Figure 12: Effect on schedulable warps

We also find that the overheads due to resource swapping
and contention do not significantly impact the performance
of Zorua. The oversubscription mechanism (directed by the
coordinator) is able to keep resource hit rates very high, with
an average hit rate of 98.9% for the register file and 99.6%
for scratchpad memory (not shown).

Figure 13 shows the average reduction in total system energy
consumption of WLM and Zorua over Baseline for each applica-
tion (averaged across the individual energy consumption over
Baseline for each evaluated specification point). We observe
that Zorua reduces the total energy consumption across all of
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our applications, except for NQU (which has a small increase
of 3%). Overall, Zorua provides a mean energy reduction of
7.6%, up to 20.5% for DCT.15 We conclude that Zorua is an
energy-efficient virtualization framework for GPUs.
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Figure 13: Effect on energy consumption

We estimate the die area overhead of Zorua with CACTI
6.5 [76], using the same 40nm process node as the GTX 480 ,
which our system closely models. We include all the overheads
from the coordinator and the resource mapping tables (Section
4). The total area overhead is 0.735mm2 for all 15 SMs, which
is only 0.134% of the die area of the GTX 480.

7. Other Applications
By providing the illusion of more resources than physically

available, Zorua provides the opportunity to help address other
important challenges in GPU computing today. We discuss
several such opportunities in this section.

7.1. Multi-Programmed Environments
Executing multiple kernels or applications within the same

SM can improve resource utilization and efficiency [24, 33,
55, 75, 87]. Hence, providing support to enable fine-grained
sharing and partitioning of resources is critical for future GPU
systems. Zorua provides several key benefits for enabling bet-
ter performance and efficiency in multi-kernel/multi-program
environments. First, selecting the optimal resource specifica-
tion for an application is challenging in virtualized environ-
ments (e.g., clouds), as it is unclear which other applications
may be running alongside it. Zorua can improve efficiency in
resource utilization irrespective of the application specifications
and of other kernels that may be executing on the same SM.
Second, Zorua manages the different resources independently
and at a fine granularity, using a dynamic runtime system (the
coordinator). This enables the maximization of resource uti-
lization, while providing the ability to control the partitioning
of resources at runtime to provide QoS, fairness, etc., by lever-
aging the coordinator. Third, Zorua enables oversubscription
of the different resources. This obviates the need to alter the
application specifications [55, 87] in order to ensure there are
sufficient resources to co-schedule kernels on the same SM,
and hence enables concurrent kernel execution transparently
to the programmer.

7.2. Preemptive Multitasking
A key challenge in enabling true multiprogramming in GPUs

is enabling rapid preemption of kernels [56, 67, 75]. Context
switching on GPUs incurs a very high latency and overhead,
as a result of the large amount of register file and scratch-
pad state that needs to be saved before a new kernel can

15We note that the energy consumption can be reduced further by appropri-
ately optimizing the oversubscription algorithm. We leave this exploration
to future work.

be executed. Saving state at a very coarse granularity (e.g.,
the entire SM state) leads to very high preemption latencies.
Prior work proposes context minimization [49, 56] or context
switching at the granularity of a thread block [75] to improve
response time during preemption. Zorua enables fine-grained
management and oversubscription of on-chip resources. It
can be naturally extended to enable quick preemption of a
task via intelligent management of the swap space and the
mapping tables (complementary to approaches taken by prior
work [49, 56]).

7.3. Other Uses
The ability to allocate/deallocate resources on demand

during runtime makes Zorua a useful substrate to facilitate
support for (i) system-level tasks, e.g., interrupts and ex-
ceptions (such as page faults); (ii) efficient dynamic par-
allelism [53, 74], which enables nested launching of ker-
nels/thread blocks; and (iii) supplying resources for helper
threads/background tasks [70]. The indirection offered by
Zorua, along with the dynamic management of resources,
could also enable better reliability (via simpler remapping of
resources) and smaller, less area-intensive, and hence more
scalable amounts of on-chip resources [1, 20, 30]. We discuss
these use cases in more detail in our technical report [71].

8. Related Work
To our knowledge, this is the first work to propose a holistic

framework to decouple a GPU application’s resource specifi-
cation from its physical on-chip resource allocation by virtu-
alizing multiple on-chip resources. This enables the illusion
of more resources than what physically exists to the program-
mer, while the hardware resources are managed at runtime
by employing a swap space (in main memory), transparently
to the programmer. We design a new hardware/software co-
operative framework to effectively virtualize multiple on-chip
GPU resources in a controlled and coordinated manner, thus
enabling many benefits of virtualization in GPUs.

We briefly discuss prior work related to different aspects of
our proposal: (i) virtualization of resources, (ii) improving
programming ease and portability, and (iii) more efficient
management of on-chip resources.

Virtualization of Resources. Virtualization [13, 15, 25,
29] is a concept designed to provide the illusion, to the soft-
ware and programmer, of more resources than what truly
exists in physical hardware. It has been applied to the man-
agement of hardware resources in many different contexts
[2, 6, 13, 15, 25, 29, 54, 73], with virtual memory [15, 29]
being one of the oldest forms of virtualization that is com-
monly used in high-performance processors today. Abstraction
of hardware resources and use of a level of indirection in their
management leads to many benefits, including improved uti-
lization, programmability, portability, isolation, protection,
sharing, and oversubscription.

In this work, we apply the general principle of virtualization
to the management of multiple on-chip resources in modern
GPUs. Virtualization of on-chip resources offers the opportu-
nity to alleviate many different challenges in modern GPUs.
However, in this context, effectively adding a level of indirec-
tion introduces new challenges, necessitating the design of
a new virtualization strategy. There are two key challenges.
First, we need to dynamically determine the extent of the vir-
tualization to reach an effective tradeoff between improved
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parallelism due to oversubscription and the latency/capacity
overheads of swap space usage. Second, we need to coordinate
the virtualization of multiple latency-critical on-chip resources.
To our knowledge, this is the first work to propose a holistic
software-hardware cooperative approach to virtualizing multi-
ple on-chip resources in a controlled and coordinated manner
that addresses these challenges, enabling the different benefits
provided by virtualization in modern GPUs.

Prior works propose to virtualize a specific on-chip resource
for specific benefits, mostly in the CPU context. For example,
in CPUs, the concept of virtualized registers was first used in
the IBM 360 [2] and DEC PDP-10 [6] architectures to allow
logical registers to be mapped to either fast yet expensive
physical registers, or slow and cheap memory. More recent
works [54, 80, 81], propose to virtualize registers to increase
the effective register file size to much larger register counts.
This increases the number of thread contexts that can be sup-
ported in a multi-threaded processor [54], or reduces register
spills and fills [80, 81]. Other works propose to virtualize
on-chip resources in CPUs (e.g., [7, 12, 18, 23, 86]). In GPUs,
Jeon et al. [30] propose to virtualize the register file by dynam-
ically allocating and deallocating physical registers to enable
more parallelism with smaller, more power-efficient physical
register files. Concurrent to this work, Yoon et al. [85] propose
an approach to virtualize thread slots to increase thread-level
parallelism. These works propose specific virtualization mech-
anisms for a single resource for specific benefits. None of these
works provide a cohesive virtualization mechanism for mul-
tiple on-chip GPU resources in a controlled and coordinated
manner, which forms a key contribution of this work.

Enhancing Programming Ease and Portability. There is
a large body of work that aims to improve programmability
and portability of modern GPU applications using software
tools, such as auto-tuners [14, 17, 38, 62, 63, 64], optimiz-
ing compilers [10, 28, 34, 46, 82, 83], and high-level pro-
gramming languages and runtimes [16, 26, 57, 69]. These
tools tackle a multitude of optimization challenges, and have
been demonstrated to be very effective in generating high-
performance portable code. They can also be used to tune
the resource specification. However, there are several short-
comings in these approaches. First, these tools often require
profiling runs [10, 14, 63, 64, 82, 83] on the GPU to determine
the best performing resource specifications. These runs have
to be repeated for each new input set and GPU generation.
Second, software-based approaches still require significant
programmer effort to write code in a manner that can be ex-
ploited by software to optimize the resource specifications.
Third, selecting the best performing resource specifications
statically using software tools is a challenging task in virtual-
ized environments (e.g., clouds), where it is unclear which
kernels may be run together on the same SM or where it is not
known, apriori, which GPU generation the application may
execute on. Finally, software tools assume a fixed amount of
available resources. This leads to runtime underutilization due
to static allocation of resources, which cannot be addressed
by these tools.

In contrast, the programmability and portability benefits
provided by Zorua require no programmer effort in optimizing
resource specifications. Furthermore, these tools can be used
in conjunction with Zorua to further improve performance.

Efficient Resource Management. Prior works aim to im-
prove parallelism by increasing resource utilization using
hardware-based [3, 4, 22, 30, 31, 32, 41, 50, 68, 77, 84]
and software-based [24, 27, 39, 43, 55, 79, 84] approaches.
Among these works, the closest to ours are [30, 85] (discussed
earlier), [84] and [77]. These approaches propose efficient
techniques to dynamically manage a single resource, and can
be used alongwith Zorua to improve resource efficiency further.
Yang et al. [84] aim to maximize utilization of the scratchpad
with software techniques, and by dynamically allocating/deal-
locating scratchpad. Xiang et al. [77] propose to improve
resource utilization by scheduling threads at the finer gran-
ularity of a warp rather than a thread block. This approach
can help alleviate performance cliffs, but not in the presence
of synchronization or scratchpad memory, nor does it address
the dynamic underutilization within a thread during runtime.
We quantitatively compare to this approach in Section 6 and
demonstrate Zorua’s benefits over it.

Other works leverage resource underutilization to improve
energy efficiency [1, 19, 20, 21, 30] or perform other useful
work [40, 70]. These works are complementary to Zorua.

9. Conclusion
We propose Zorua, a new framework that decouples the

application resource specification from the allocation in the
physical hardware resources (i.e., registers, scratchpad mem-
ory, and thread slots) in GPUs. Zorua encompasses a holistic
virtualization strategy to effectively virtualize multiple latency-
critical on-chip resources in a controlled and coordinated
manner. We demonstrate that by providing the illusion of
more resources than physically available, via dynamic man-
agement of resources and the judicious use of a swap space
in main memory, Zorua enhances (i) programming ease (by
reducing the performance penalty of suboptimal resource spec-
ification), (ii) portability (by reducing the impact of different
hardware configurations), and (iii) performance for code with
an optimized resource specification (by leveraging dynamic
underutilization of resources). We conclude that Zorua is an
effective, holistic virtualization framework for GPUs. We be-
lieve that the indirection provided by Zorua’s virtualization
mechanism makes it a generic framework that can address
other challenges in modern GPUs. For example, Zorua can
enable fine-grained resource sharing and partitioning among
multiple kernels/applications, as well as low-latency preemp-
tion of GPU programs. We hope that future work explores
these promising directions, building on the insights and the
framework developed in this paper.
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