
A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM

Yoongu Kim Vivek Seshadri Donghyuk Lee Jamie Liu Onur Mutlu

Carnegie Mellon University

Abstract
Modern DRAMs have multiple banks to serve multiple mem-

ory requests in parallel. However, when two requests go to the
same bank, they have to be served serially, exacerbating the
high latency of off-chip memory. Adding more banks to the
system to mitigate this problem incurs high system cost. Our
goal in this work is to achieve the benefits of increasing the
number of banks with a low cost approach. To this end, we
propose three new mechanisms that overlap the latencies of dif-
ferent requests that go to the same bank. The key observation
exploited by our mechanisms is that a modern DRAM bank is
implemented as a collection of subarrays that operate largely
independently while sharing few global peripheral structures.

Our proposed mechanisms (SALP-1, SALP-2, and MASA)
mitigate the negative impact of bank serialization by overlap-
ping different components of the bank access latencies of mul-
tiple requests that go to different subarrays within the same
bank. SALP-1 requires no changes to the existing DRAM struc-
ture and only needs reinterpretation of some DRAM timing
parameters. SALP-2 and MASA require only modest changes
(< 0.15% area overhead) to the DRAM peripheral structures,
which are much less design constrained than the DRAM core.
Evaluations show that all our schemes significantly improve
performance for both single-core systems and multi-core sys-
tems. Our schemes also interact positively with application-
aware memory request scheduling in multi-core systems.

1. Introduction
To improve overall performance, modern systems expose

multiple independent memory requests to the memory con-
troller using two orthogonal approaches. First, a single pro-
cessing core employs techniques to tolerate memory latency
which generate multiple concurrent cache misses that can po-
tentially be served in parallel (e.g., out-of-order execution [60],
non-blocking caches [27], fine-grained multithreading [52, 58],
runahead execution [5, 39] and other memory-level parallelism
mechanisms [4, 45]). Second, multiple cores concurrently run
multiple applications or threads, each of which generates in-
dependent memory requests. The effectiveness of these ap-
proaches in improving system performance critically depends
on whether the concurrent memory requests are actually served
in parallel. To be able to serve multiple requests in parallel,
modern DRAM systems employ multiple banks that can be ac-
cessed independently. Unfortunately, if two memory requests
go to the same bank, they have to be served one after another.
This is what is referred to as a bank conflict.

Bank conflicts have two negative consequences. First, they
serialize requests that can potentially be served in parallel.
This, coupled with the long latency of bank access, signifi-
cantly reduces memory bandwidth utilization and can cause
cores to stall, leading to lower system performance. Further-
more, a request scheduled after a write request to the same
bank incurs an additional delay called the write-recovery la-
tency. This aggravates the impact of bank conflicts by increas-
ing the latency of subsequent requests.

Second, a bank conflict can lead to thrashing in the bank’s
row-buffer. A row-buffer, present in each bank, effectively
acts as a single-entry direct-mapped “cache” for the rows in
the bank. Memory requests that hit in the row-buffer incur

much lower latency than those that miss in the row-buffer. In a
multi-core system, requests from different applications are in-
terleaved with each other. When such interleaved requests lead
to bank conflicts, they can “evict” the row that is present in the
row-buffer. As a result, requests of an application that could
have otherwise hit in the row-buffer will miss in the row-buffer,
significantly degrading the performance of the application (and
potentially the overall system) [37, 40, 56, 67].

A solution to the bank conflict problem is to increase the
number of DRAM banks in the system. While current memory
subsystems theoretically allow for three ways of doing so, they
all come at a significantly high cost. First, one can increase the
number of banks in the DRAM chip itself. However, for a con-
stant storage capacity, increasing the number of banks-per-chip
significantly increases the DRAM die area (and thus chip cost)
due to replicated decoding logic, routing, and drivers at each
bank [66]. Second, one can increase the number of banks in a
channel by multiplexing the channel with many memory mod-
ules, each of which is a collection of banks. Unfortunately, this
increases the electrical load on the channel, causing it to run
at a significantly reduced frequency [8, 9]. Third, one can add
more memory channels to increase the overall bank count. Un-
fortunately, this increases the pin-count in the processor pack-
age, which is an expensive resource.1 Considering both the low
growth rate of pin-count and the prohibitive cost of pins in gen-
eral, it is clear that increasing the number of channels is not a
scalable solution.

Our goal in this paper is to mitigate the detrimental effects
of bank conflicts with a low-cost approach. We make two key
observations that lead to our proposed mechanisms.

Observation 1. A modern DRAM bank is not implemented
as a monolithic component with a single row-buffer. Imple-
menting a DRAM bank as a monolithic structure requires very
long wires (called bitlines), to connect the row-buffer to all the
rows in the bank, which can significantly increase the access
latency (Section 2.3). Instead, a bank consists of multiple sub-
arrays, each with its own local row-buffer, as shown in Fig-
ure 1. Subarrays within a bank share i) a global row-address
decoder and ii) a set of global bitlines which connect their lo-
cal row-buffers to a global row-buffer.

Observation 2. The latency of bank access consists of three
major components: i) opening a row containing the required
data (referred to as activation), ii) accessing the data (read or
write), and iii) closing the row (precharging). In existing sys-
tems, all three operations must be completed for one memory
request before serving another request to a different row within
the same bank, even if the two rows reside in different subar-
rays. However, this need not be the case for two reasons. First,
the activation and precharging operations are mostly local to
each subarray, enabling the opportunity to overlap these opera-
tions to different subarrays within the same bank. Second, if we
reduce the resource sharing among subarrays, we can enable
activation operations to different subarrays to be performed in
parallel and, in addition, also exploit the existence of multiple
local row-buffers to cache more than one row in a single bank,
enabling the opportunity to improve row-buffer hit rate.

1Intel Sandy Bridge dedicates 264 pins for two channels [14]. IBM
POWER7 dedicates 640 pins for eight channels [51].

1

row

Bank

r
o
w
-d
e
c
o
d
e
r

row-buffer

3
2

k
 r

o
w

s

(a) Logical abstraction

local row-buffer

Subarray1

global row-buffer

local row-buffer

Subarray64

g
lo

b
a

l
d

e
co

d
e

r 5
1

2

r
o
w
s

5
1

2

r
o
w
s

(b) Physical implementation

Figure 1. DRAM bank organization

Based on these observations, our thesis in this paper is that
exposing the subarray-level internal organization of a DRAM
bank to the memory controller would allow the controller to
exploit the independence between subarrays within the same
bank and reduce the negative impact of bank conflicts. To
this end, we propose three different mechanisms for exploiting
subarray-level parallelism. Our proposed mechanisms allow
the memory controller to overlap or eliminate different latency
components required to complete multiple requests going to
different subarrays within the same bank.

First, SALP-1 (Subarray-Level-Parallelism-1) overlaps the
latency of closing a row of one subarray with that of opening
a row in a different subarray within the same bank by pipelin-
ing the two operations one after the other. SALP-1 requires
no changes to the existing DRAM structure. Second, SALP-2
(Subarray-Level-Parallelism-2) allows the memory controller
to start opening a row in a subarray before closing the cur-
rently open row in a different subarray. This allows SALP-2 to
overlap the latency of opening a row with the write-recovery
period of another row in a different subarray, and further im-
prove performance compared to SALP-1. SALP-2 requires the
addition of small latches to each subarray’s peripheral logic.
Third, MASA (Multitude of Activated Subarrays) exploits the
fact that each subarray has its own local row-buffer that can
potentially “cache” the most recently accessed row in that sub-
array. MASA reduces hardware resource sharing between sub-
arrays to allow the memory controller to i) activate multiple
subarrays in parallel to reduce request serialization, ii) con-
currently keep local row-buffers of multiple subarrays active
to significantly improve row-buffer hit rate. In addition to the
change needed by SALP-2, MASA requires only the addition
of a single-bit latch to each subarray’s peripheral logic as well
as a new 1-bit global control signal.

Our paper makes the following contributions.

• We exploit the existence of subarrays within each DRAM
bank to mitigate the effects of bank conflicts. We propose
three mechanisms, SALP-1, SALP-2, and MASA, that over-
lap (to varying degrees) the latency of accesses to different
subarrays. SALP-1 does not require any modifications to
existing DRAM structure, while SALP-2 and MASA intro-
duce small changes only to the subarrays’ peripheral logic.

• We exploit the existence of local subarray row-buffers
within DRAM banks to mitigate row-buffer thrashing. We
propose MASA that allows multiple such subarray row-
buffers to remain activated at any given point in time. We
show that MASA can significantly increase row-buffer hit
rate while incurring only modest implementation cost.

• We perform a thorough analysis of area and power over-
heads of our proposed mechanisms. MASA, the most ag-
gressive of our proposed mechanisms, incurs a DRAM chip
area overhead of 0.15% and a modest power cost of 0.56mW
per each additionally activated subarray.

• We identify that tWR (bank write-recovery2) exacerbates the
negative impact of bank conflicts by increasing the latency
of critical read requests. We show that SALP-2 and MASA
are effective at minimizing the negative effects of tWR.

• We evaluate our proposed mechanisms using a variety
of system configurations and show that they significantly
improve performance for single-core systems compared
to conventional DRAM: 7%/13%/17% for SALP-1/SALP-
2/MASA, respectively. Our schemes also interact positively
with application-aware memory scheduling algorithms and
further improve performance for multi-core systems.

2. Background: DRAM Organization
As shown in Figure 2, DRAM-based main memory sys-

tems are logically organized as a hierarchy of channels, ranks,
and banks. In today’s systems, banks are the smallest memory
structures that can be accessed in parallel with respect to each
other. This is referred to as bank-level parallelism [24, 41].
Next, a rank is a collection of banks across multiple DRAM
chips that operate in lockstep.3 Banks in different ranks are
fully decoupled with respect to their device-level electrical op-
eration and, consequently, offer better bank-level parallelism
than banks in the same rank. Lastly, a channel is the collection
of all banks that share a common physical link (command, ad-
dress, data buses) to the processor. While banks from the same
channel experience contention at the physical link, banks from
different channels can be accessed completely independently
of each other. Although the DRAM system offers varying de-
grees of parallelism at different levels in its organization, two
memory requests that access the same bank must be served one
after another. To understand why, let us examine the logical or-
ganization of a DRAM bank as seen by the memory controller.

Bank

Rank

Bank

Rank

Channel

cmd

addr

data

Channel

Processor

MemCtrl

Figure 2. Logical hierarchy of main memory

2.1. Bank: Logical Organization & Operation
Figure 3 presents the logical organization of a DRAM bank.

A DRAM bank is a two-dimensional array of capacitor-based
DRAM cells. It is viewed as a collection of rows, each of which
consists of multiple columns. Each bank contains a row-buffer
which is an array of sense-amplifiers that act as latches. Span-
ning a bank in the column-wise direction are the bitlines, each
of which can connect a sense-amplifier to any of the cells in
the same column. A wordline (one for each row) determines
whether or not the corresponding row of cells is connected to
the bitlines.

To serve a memory request that accesses data at a particular
row and column address, the memory controller issues three
commands to a bank in the order listed below. Each command
triggers a specific sequence of events within the bank.

1. ACTIVATE: read the entire row into the row-buffer
2. READ/WRITE: access the column from the row-buffer
3. PRECHARGE: de-activate the row-buffer

2Write-recovery (explained in Section 2.2) is different from the bus-
turnaround penalty (read-to-write, write-to-read), which is addressed by sev-
eral prior works [3, 29, 55].

3A DRAM rank typically consists of eight DRAM chips, each of which
has eight banks. Since the chips operate in lockstep, the rank has only eight
independent banks, each of which is the set of the ith bank across all chips.

2

0

V
D
D
/2

?

Precharged

wordline

b
it

li
n

e

Q

V
D
D
/2

?

0

V
D
D
/2
+
δ

?

?

V
D
D
/2
‒
δ

?

?

tRCD≈15ns

❶ 0
.9

V
D
D

0
.1

V
D
D

READ/WRITE Allowed

❷

1 0

V
D
D

0

1 0

❸

0
Q 0

V
D
D
/2

V
D
D
/2

? ?

VPP VPP VPP
? ? Q 0

PRECHARGEACTIVATE

Activating (tRAS≈35ns) Precharging

tRP≈15ns

READ READ

❹ ❺

(s
ta
b
le
)

(s
ta
b
le
)

Figure 4. DRAM bank operation: Steps involved in serving a memory request [17] (VPP > VDD)

Category RowCmd↔RowCmd RowCmd↔ColCmd ColCmd↔ColCmd ColCmd�DATA

Name tRC tRAS tRP tRCD tRTP tWR∗ tCCD tRTW † tWTR∗ CL CWL
Commands A�A A�P P�A A�R/W R�P W∗�P R(W)�R(W) R�W W∗�R R�DATA W�DATA

Scope Bank Bank Bank Bank Bank Bank Channel Rank Rank Bank Bank
Value (ns) ∼50 ∼35 13-15 13-15 ∼7.5 15 5-7.5 11-15 ∼7.5 13-15 10-15

A: ACTIVATE– P: PRECHARGE– R: READ– W: WRITE ∗ Goes into effect after the last write data, not from the WRITE command
† Not explicitly specified by the JEDEC DDR3 standard [18]. Defined as a function of other timing constraints.

Table 1. Summary of DDR3-SDRAM timing constraints (derived from Micron’s 2Gb DDR3-SDRAM datasheet [33])

r
o
w
-d
e
c
o
d
e
r

b
it
li
n
e

cell

row-buffer

r
o
w
-a
d
d
r

row

wordline

sense-amplifier

Figure 3. DRAM Bank: Logical organization

ACTIVATE Row. Before a DRAM row can be activated,
the bank must be in the precharged state (State Ê, Figure 4).
In this state, all the bitlines are maintained at a voltage-level
of 1

2VDD. Upon receiving the ACTIVATE command along
with a row-address, the wordline corresponding to the row is
raised to a voltage of VPP , connecting the row’s cells to the
bitlines (State Ê�Ë). Subsequently, depending on whether a
cell is charged (Q) or uncharged (0), the bitline voltage is
slightly perturbed towards VDD or 0 (State Ë). The row-buffer
“senses” this perturbation and “amplifies” it in the same direc-
tion (State Ë�Ì). During this period when the bitline voltages
are still in transition, the cells are left in an undefined state.
Finally, once the bitline voltages stabilize, cell charges are re-
stored to their original values (State Í). The time taken for this
entire procedure is called tRAS (≈ 35ns).

READ/WRITE Column. After an ACTIVATE, the memory
controller issues a READ or a WRITE command, along with a
column address. The timing constraint between an ACTIVATE
and a subsequent column command (READ/WRITE) is called
tRCD (≈ 15ns). This reflects the time required for the data to
be latched in the row-buffer (State Ì). If the next request to
the bank also happens to access the same row, it can be served
with only a column command, since the row has already been
activated. As a result, this request is served more quickly than
a request that requires a new row to be activated.

PRECHARGE Bank. To activate a new row, the memory
controller must first take the bank back to the precharged state
(State Î). This happens in two steps. First, the wordline cor-
responding to the currently activated row is lowered to zero
voltage, disconnecting the cells from the bitlines. Second, the
bitlines are driven to a voltage of 1

2VDD. The time taken for
this operation is called tRP (≈ 15ns).

2.2. Timing Constraints
As described above, different DRAM commands have dif-

ferent latencies. Undefined behavior may arise if a command

is issued before the previous command is fully processed. To
prevent such occurrences, the memory controller must obey a
set of timing constraints while issuing commands to a bank.
These constraints define when a command becomes ready to
be scheduled, depending on all other commands issued before
it to the same channel, rank, or bank. Table 1 summarizes the
most important timing constraints between ACTIVATE (A),
PRECHARGE (P), READ (R), and WRITE (W) commands.
Among these, two timing constraints (highlighted in bold) are
the critical bottlenecks for bank conflicts: tRC and tWR.

tRC. Successive ACTIVATEs to the same bank are lim-
ited by tRC (row-cycle time), which is the sum of tRAS and
tRP [17]. In the worst case, when N requests all access differ-
ent rows within the same bank, the bank must activate a new
row and precharge it for each request. Consequently, the last
request experiences a DRAM latency of N · tRC , which can
be hundreds or thousands of nanoseconds.

tWR. After issuing a WRITE to a bank, the bank needs addi-
tional time, called tWR (write-recovery latency), while its row-
buffer drives the bitlines to their new voltages. A bank cannot
be precharged before then – otherwise, the new data may not
have been safely stored in the cells. Essentially, after a WRITE,
the bank takes longer to reach State Í (Figure 4), thereby de-
laying the next request to the same bank even longer than tRC.

2.3. Subarrays: Physical Organization of Banks
Although we have described a DRAM bank as a monolithic

array of rows equipped with a single row-buffer, implementing
a large bank (e.g., 32k rows and 8k cells-per-row) in this man-
ner requires long bitlines. Due to their large parasitic capaci-
tance, long bitlines have two disadvantages. First, they make it
difficult for a DRAM cell to cause the necessary perturbation
required for reliable sensing [21]. Second, a sense-amplifier
takes longer to drive a long bitline to a target voltage-level,
thereby increasing the latency of activation and precharging.

To avoid the disadvantages of long bitlines, as well as long
wordlines, a DRAM bank is divided into a two-dimensional
array of tiles [17, 21, 63], as shown in Figure 5(a). A tile
comprises i) a cell-array, whose typical dimensions are 512
cells×512 cells [63], ii) sense-amplifiers, and iii) wordline-
drivers that strengthen the signals on the global wordlines be-
fore relaying them to the local wordlines.

All tiles in the horizontal direction – a “row of tiles” – share
the same set of global wordlines, as shown in Figure 5(b).
Therefore, these tiles are activated and precharged in lockstep.

3

We abstract such a “row of tiles” as a single entity that we refer
to as a subarray.4 More specifically, a subarray is a collection
of cells that share a local row-buffer (all sense-amplifiers in the
horizontal direction) and a subarray row-decoder [17].

cell-array

sense-amplifiers
w

o
r
d

li
n

e

d
r
iv

e
r
s

Tile

Bank Tile

Row of Tiles

local wordline

lo
c
a
l

b
it

li
n

e

global wordline

512 cells

5
1

2
 c

e
ll
s

8k cells

3
2

k
 c

e
ll
s

(a) A DRAM bank is divided into tiles.

global wordlines

Row of Tiles = Subarraysubarray
row-decoder

local row-buffer

512512 512512

(b) Subarray: A row of tiles that operate in lockstep.

Figure 5. A DRAM bank consists of tiles and subarrays.

As shown in Figure 6, all subarray row-decoders in a
bank are driven by the shared global row-address latch [17].
The latch holds a partially pre-decoded row-address (from the
global row-decoder) that is routed by the global address-bus to
all subarray row-decoders, where the remainder of the decod-
ing is performed. A partially pre-decoded row-address allows
subarray row-decoders to remain small and simple without in-
curring the large global routing overhead of a fully pre-decoded
row-address [17]. All subarrays in a bank also share a global
row-buffer [17, 22, 36] that can be connected to any one of
the local row-buffers through a set of global bitlines [17]. The
purpose of the global row-buffer is to sense the perturbations
caused by the local row-buffer on the global bitlines and to am-
plify the perturbations before relaying them to the I/O drivers.
Without a global row-buffer, the local row-buffers will take a
long time to drive their values on the global bitlines, thereby
significantly increasing the access latency.5

latch

Subarray
(id: 0)

=
0
?

global row-buffer

global bitlines

Subarray
(id: 1)

=
1
?

global
row-dec.

subarray
row-addr

subarray
id

r
o
w
-a
d
d
r

global addr-bus

global
wordlines

subarray
row-dec.

subarray
row-dec.

global
row-addr

latch

Figure 6. DRAM Bank: Physical organization

Although all subarrays within a bank share some global
structures (e.g., the global row-address latch and the global
bitlines), some DRAM operations are completely local to a

4We use the term subarray to refer to a single “row of tiles” (alternatively,
a block [28]). Others have used the term subarray to refer to i) an individual
tile [62, 63], ii) a single “row of tiles” [66], or iii) multiple “rows of tiles” [36].

5Better known as main [17] or I/O [22, 36] sense-amplifiers, the global row-
buffer lies between the local row-buffers and the I/O driver. It is narrower than
a local row-buffer; column-selection logic (not shown in Figure 6) multiplexes
the wide outputs of the local row-buffer onto the global row-buffer.

subarray or use the global structures minimally. For example,
precharging is completely local to a subarray and does not use
any of the shared structures, whereas activation uses only the
global row-address latch to drive the corresponding wordline.

Unfortunately, existing DRAMs cannot fully exploit the in-
dependence between different subarrays for two main reasons.
First, only one row can be activated (i.e., only one wordline can
be raised) within each bank at a time. This is because the global
row-address latch, which determines which wordline within the
bank is raised, is shared by all subarrays. Second, although
each subarray has its own local row-buffer, only one subarray
can be activated at a time. This is because all local row-buffers
are connected to the global row-buffer by a single set of global
bitlines. If multiple subarrays were allowed to be activated6 at
the same time when a column command is issued, all of their
row-buffers would attempt to drive the global bitlines, leading
to a short-circuit.

Our goal in this paper is to reduce the performance impact
of bank conflicts by exploiting the existence of subarrays to
enable their parallel access and to allow multiple activated local
row-buffers within a bank, using low cost mechanisms.

3. Motivation
To understand the benefits of exploiting the subarray-

organization of DRAM banks, let us consider the two examples
shown in Figure 7. The first example (top) presents the time-
line of four memory requests being served at the same bank
in a subarray-oblivious baseline.7 The first two requests are
write requests to two rows in different subarrays. The next two
requests are read requests to the same two rows, respectively.
This example highlights three key problems in the operation of
the baseline system. First, successive requests are completely
serialized. This is in spite of the fact that they are to differ-
ent subarrays and could potentially have been partially paral-
lelized. Second, requests that immediately follow a WRITE
incur the additional write-recovery latency (Section 2.2). Al-
though this constraint is completely local to a subarray, it de-
lays a subsequent request even to a different subarray. Third,
both rows are activated twice, once for each of their two re-
quests. After serving a request from a row, the memory con-
troller is forced to de-activate the row since the subsequent re-
quest is to a different row within the same bank. This signifi-
cantly increases the overall service time of the four requests.

The second example (bottom) in Figure 7 presents the time-
line of serving the four requests when the two rows belong
to different banks, instead of to different subarrays within the
same bank. In this case, the overall service time is significantly
reduced due to three reasons. First, rows in different banks can
be activated in parallel, overlapping a large portion of their ac-
cess latencies. Second, the write-recovery latency is local to
a bank and hence, does not delay a subsequent request to an-
other bank. In our example, since consecutive requests to the
same bank access the same row, they are also not delayed by
the write-recovery latency. Third, since the row-buffers of the
two banks are completely independent, requests do not evict
each other’s rows from the row-buffers. This eliminates the
need for extra ACTIVATEs for the last two requests, further
reducing the overall service time. However, as we described in
Section 1, increasing the number of banks in the system signif-
icantly increases the system cost.

6We use the phrases “subarray is activated (precharged)” and “row-buffer is
activated (precharged)” interchangeably as they denote the same phenomenon.

7This timeline (as well as other timelines we will show) is for illustration
purposes and does not incorporate all DRAM timing constraints.

4

ACT W PRERow0@ Subarray0 timetWR

timeACT W PRE

ACT R PRE

ACT R PREtWRRow1024@ Subarray1

Serialization❶

Write Recovery❷

Same-bank
Timeline
(Baseline)

ACT W PRERow0@Bank0 time

timeRow1024@Bank1

Diff-bank
Timeline
(“Ideal”) ACT W

R

R PRE

saved

Bank0

No Serialization❶

No Write Recovery❷

❸ Extra ACTs

❸ No Extra ACTs

Figure 7. Service timeline of four requests to two different rows. The rows are in the same bank (top) or in different banks (bottom).

ACT WRow0@ Subarray0 time

timeRow1024@ Subarray1

SALP-1

Timeline
saved

PREtWR

ACT W PREtWR

ACT R PRE

ACT R PRE

Bank0

ACT WRow0@ Subarray0 time

timeRow1024@ Subarray1

SALP-2

Timeline
saved

PREtWR

ACT W PREtWR

ACT R PRE

ACT R PRE

Bank0

Row0@ Subarray0 time

timeRow1024@ Subarray1

MASA

Timeline
saved

Bank0

WACT

WACT

R

R

PRE

PRE

Overlapped latency

ACT-before-PRE

Two subarrays activated

SA_SEL
Multiple subarrays activated

Figure 8. Service timeline of four requests to two different rows. The rows are in the same bank, but in different subarrays.

The core thesis of this paper is that most of the performance
benefits of having multiple banks can be achieved at a signif-
icantly lower cost by exploiting the potential parallelism of-
fered by subarrays within a bank. To this end, we propose three
mechanisms that exploit the existence of subarrays with little
or no change to the existing DRAM designs.

4. Overview of Proposed Mechanisms
We call our three proposed schemes SALP-1, SALP-2 and

MASA. As shown in Figure 8, each scheme is a successive re-
finement over the preceding scheme such that the performance
benefits of the most sophisticated scheme, MASA, subsumes
those of SALP-1 and SALP-2. We explain the key ideas of
each scheme below.

4.1. SALP-1: Subarray-Level-Parallelism-1
The key observation behind SALP-1 is that precharging and

activation are mostly local to a subarray. SALP-1 exploits this
observation to overlap the precharging of one subarray with
the activation of another subarray. In contrast, existing systems
always serialize precharging and activation to the same bank,
conservatively provisioning for when they are to the same sub-
array. SALP-1 requires no modifications to existing DRAM
structure. It only requires reinterpretation of an existing timing
constraint (tRP) and, potentially, the addition of a new timing
constraint (explained in Section 5.1). Figure 8 (top) shows the
performance benefit of SALP-1.

4.2. SALP-2: Subarray-Level-Parallelism-2
While SALP-1 pipelines the precharging and activation of

different subarrays, the relative ordering between the two com-
mands is still preserved. This is because existing DRAM banks
do not allow two subarrays to be activated at the same time.
As a result, the write-recovery latency (Section 2.2) of an acti-
vated subarray not only delays a PRECHARGE to itself, but also
delays a subsequent ACTIVATE to another subarray. Based
on the observation that the write-recovery latency is also lo-
cal to a subarray, SALP-2 (our second mechanism) issues the

ACTIVATE to another subarray before the PRECHARGE to the
currently activated subarray. As a result, SALP-2 can overlap
the write-recovery of the currently activated subarray with the
activation of another subarray, further reducing the service time
compared to SALP-1 (Figure 8, middle).

However, as highlighted in the figure, SALP-2 requires two
subarrays to remain activated at the same time. This is not
possible in existing DRAM banks as the global row-address
latch, which determines the wordline in the bank that is raised,
is shared by all the subarrays. In Section 5.2, we will show how
to enable SALP-2 by eliminating this sharing.

4.3. MASA: Multitude of Activated Subarrays
Although SALP-2 allows two subarrays within a bank to be

activated, it requires the controller to precharge one of them be-
fore issuing a column command (e.g., READ) to the bank. This
is because when a bank receives a column command, all acti-
vated subarrays in the bank will connect their local row-buffers
to the global bitlines. If more than one subarray is activated,
this will result in a short circuit. As a result, SALP-2 cannot
allow multiple subarrays to concurrently remain activated and
serve column commands.

The key idea of MASA (our third mechanism) is to allow
multiple subarrays to be activated at the same time, while al-
lowing the memory controller to designate exactly one of the
activated subarrays to drive the global bitlines during the next
column command. MASA has two advantages over SALP-
2. First, MASA overlaps the activation of different subarrays
within a bank. Just before issuing a column command to any of
the activated subarrays, the memory controller designates one
particular subarray whose row-buffer should serve the column
command. Second, MASA eliminates extra ACTIVATEs to
the same row, thereby mitigating row-buffer thrashing. This is
because the local row-buffers of multiple subarrays can remain
activated at the same time without experiencing collisions on
the global bitlines. As a result, MASA further improves per-
formance compared to SALP-2 (Figure 8, bottom).

As indicated in the figure, to designate one of the multi-

5

ple activated subarrays, the controller needs a new command,
SA SEL (subarray-select). In addition to the changes required
by SALP-2, MASA requires a single-bit latch per subarray to
denote whether a subarray is designated or not (Section 5.3).

5. Implementation
Our three proposed mechanisms assume that the memory

controller is aware of the existence of subarrays (to be de-
scribed in Section 5.4) and can determine which subarray a
particular request accesses. All three mechanisms require rein-
terpretation of existing DRAM timing constraints or addition
of new ones. SALP-2 and MASA also require small, non-
intrusive modifications to the DRAM chip. In this section, we
describe the changes required by each mechanism in detail.
5.1. SALP-1: Relaxing tRP

As previously described, SALP-1 overlaps the precharging
of one subarray with the subsequent activation of another sub-
array. However, by doing so, SALP-1 violates the timing con-
straint tRP (row-precharge time) imposed between consecutive
PRECHARGE and ACTIVATE commands to the same bank.
The reason why tRP exists is to ensure that a previously ac-
tivated subarray (Subarray X in Figure 9) has fully reached
the precharged state before it can again be activated. Existing
DRAM banks provide that guarantee by conservatively delay-
ing an ACTIVATE to any subarray, even to a subarray that is
not the one being precharged. But, for a subarray that is al-
ready in the precharged state (Subarray Y in Figure 9), it is
safe to activate it while another subarray is being precharged.
So, as long as consecutive PRECHARGE and ACTIVATE com-
mands are to different subarrays, the ACTIVATE can be issued
before tRP has been satisfied.8

Subarray X timeActivated Precharging Precharged

timeActivating Activated

tRP

PRE@X (wordline lowered)

Precharged

ACT@Y (wordline raised)

Subarray Y

Figure 9. Relaxing tRP between two different subarrays.

Limitation of SALP-1. SALP-1 cannot overlap the write-
recovery of one subarray with the activation of another subar-
ray. This is because both write-recovery and activation require
their corresponding wordline to remain raised for the entire
duration of the corresponding operation. However, in exist-
ing DRAM banks, the global row-address latch determines the
unique wordline within the bank that is raised (Section 2.3).
Since this latch is shared across all subarrays, it is not possible
to have two raised wordlines within a bank, even if they are
in different subarrays. SALP-2 addresses this issue by adding
row-address latches to each subarray.
5.2. SALP-2: Per-Subarray Row-Address Latches

The goal of SALP-2 is to further improve performance com-
pared to SALP-1 by overlapping the write-recovery latency of
one subarray with the activation of another subarray. For this
purpose, we propose two changes to the DRAM chip: i) latched
subarray row-decoding and ii) selective precharging.

Latched Subarray Row-Decoding. The key idea of
latched subarray row-decoding (LSRD) is to push the global
row-address latch to individual subarrays such that each sub-
array has its own row-address latch, as shown in Figure 10.

8We assume that it is valid to issue the two commands in consecutive
DRAM cycles. Depending on vendor-specific microarchitecture, an additional
precharge-to-activate timing constraint tPA (< tRP) may be required.

When an ACTIVATE is issued to a subarray, the subarray row-
address is stored in the latch. This latch feeds the subarray
row-decoder, which in turn drives the corresponding wordline
within the subarray. Figure 11 shows the timeline of subar-
ray activation with and without LSRD. Without LSRD, the
global row-address bus is utilized by the subarray until it is
precharged. This prevents the controller from activating an-
other subarray. In contrast, with LSRD, the global address-
bus is utilized only until the row-address is stored in the corre-
sponding subarray’s latch. From that point on, the latch drives
the wordline, freeing the global address-bus to be used by an-
other subarray.

EN

subarray
row-addr

=
id
?

global
addr-bus

su
b
a
rr
a
y

ro
w
-d
e
c.

subarray
id

global
row-dec.

global
latch

=
id
?

su
b
a
rr
a
y

ro
w
-d
e
c.

EN

(a) Global row-address latch

EN

subarray
row-addr

=
id
?

global
addr-bus

subarray
id

global
row-dec.

=
id
?

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b
a
rr
a
y

la
tc
h

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b
a
rr
a
y

la
tc
h

EN

(b) Per-subarray row-address latch

Figure 10. SALP-2: Latched Subarray Row-Decoding

utilized

ACT

subarray
id

INV

subarray
row-addr

0x1 INV

PRE

INV 0x20 INV

wordline@
row 0x20 0

VDD

global
addr-bus

(a) Baseline: global row-address latch & global precharging
ACT

subarray
id

INV

subarray
row-addr

0x1 INV

PRE

wordline@
row 0x20

INV INV

0x1

INV 0x20 INV

latch@
subarray 0x1

0

VDD

utilized

(latched)0x20

(selective)
global

addr-bus

(b) SALP-2: Subarray row-address latch & selective precharging

Figure 11. Activating/precharging wordline-0x20 of subarray-0x1.

Selective Precharging. Since existing DRAMs do not
allow a bank to have more than one raised wordline, a
PRECHARGE is designed to lower all wordlines within a bank
to zero voltage. In fact, the memory controller does not even
specify a row address when it issues a PRECHARGE. A bank
lowers all wordlines by broadcasting an INV (invalid) value
on the global row-address bus.9 However, when there are
two activated subarrays (each with a raised wordline) SALP-2
needs to be able to selectively precharge only one of the subar-
rays. To achieve this, we require that PRECHARGEs be issued
with the corresponding subarray ID. When a bank receives a
PRECHARGE to a subarray, it places the subarray ID and INV
(for the subarray row-address) on the global row-address bus.
This ensures that only that specific subarray is precharged. Se-
lective precharging requires the memory controller to remem-
ber the ID of the subarray to be precharged. This requires mod-

9When each subarray receives the INV values for both subarray ID and
subarray row-address, it lowers all its wordlines and precharges all its bitlines.

6

est storage overhead at the memory controller – one subarray
ID per bank.

Timing Constraints. Although SALP-2 allows two acti-
vated subarrays, no column command can be issued during that
time. This is because a column command electrically connects
the row-buffers of all activated subarrays to the global bitlines
– leading to a short-circuit between the row-buffers. To avoid
such hazards on the global bitlines, SALP-2 must wait for a
column command to be processed before it can activate an-
other subarray in the same bank. Hence, we introduce two new
timing constraints for SALP-2: tRA (read-to-activate) and tWA
(write-to-activate).

Limitation of SALP-2. As described above, SALP-2 re-
quires a bank to have exactly one activated subarray when a
column command is received. Therefore, SALP-2 cannot ad-
dress the row-buffer thrashing problem.

5.3. MASA: Designating an Activated Subarray
The key idea behind MASA is to allow multiple activated

subarrays, but to ensure that only a single subarray’s row-buffer
is connected to the global bitlines on a column command. To
achieve this, we propose the following changes to the DRAM
microarchitecture in addition to those required by SALP-2:
i) addition of a designated-bit latch to each subarray, ii) intro-
duction of a new DRAM command, SA SEL (subarray-select),
and iii) routing of a new global wire (subarray-select).

Designated-Bit Latch. In SALP-2 (and existing DRAM),
an activated subarray’s local sense-amplifiers are connected to
the global bitlines on a column command. The connection be-
tween each sense-amplifier and the corresponding global bit-
line is established when an access transistor, Ê in Figure 12(a),
is switched on. All such access transistors (one for each sense-
amplifier) within a subarray are controlled by the same 1-bit
signal, called activated (A in figure), that is raised only when
the subarray has a raised wordline.10 As a result, it is not pos-
sible for a subarray to be activated while at the same time be
disconnected from the global bitlines on a column command.

To enable MASA, we propose to decouple the control of the
access transistor from the wordlines, as shown in Figure 12(b).
To this end, we propose a separate 1-bit signal, called desig-
nated (D in figure), to control the transistor independently of
the wordlines. This signal is driven by a designated-bit latch,
which must be set by the memory controller in order to enable
a subarray’s row-buffer to be connected to the global bitlines.
To access data from one particular activated subarray, the mem-
ory controller sets the designated-bit latch of the subarray and
clears the designated-bit latch of all other subarrays. As a re-
sult, MASA allows multiple subarrays to be activated within a
bank while ensuring that one subarray (the designated one) can
at the same time serve column commands. Note that MASA
still requires the activated signal to control the precharge tran-
sistors Ë that determine whether or not the row-buffer is in the
precharged state (i.e., connecting the local bitlines to 1

2VDD).
Subarray-Select Command. To allow the memory con-

troller to selectively set and clear the designated-bit of any
subarray, MASA requires a new DRAM command, which we
call SA SEL (subarray-select). To set the designated-bit of a
particular subarray, the controller issues a SA SEL along with
the row-address that corresponds to the raised wordline within
the subarray. Upon receiving this command, the bank sets the
designated-bit for only the subarray and clears the designated-
bits of all other subarrays. After this operation, all subsequent

10The activated signal can be abstracted as a logical OR across all wordlines
in the subarray, as shown in Figure 12(a). The exact implementation of the
signal is microarchitecture-specific.

EN

su
b

a
rr

a
y

 r
o

w
-a

d
d

r

=
id

?
la

tc
h

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b

a
rr

a
y

 i
d

co
l-

se
l local

sense-amp

VDD/2

local bitline

global bitline

A

A

❶
❷

(a) SALP-2: Activated subarray is connected to global bitlines.

EN

su
b

a
rr

a
y

 r
o

w
-a

d
d

r

=
id

?
la

tc
h

su
b
a
rr
a
y

ro
w
-d
e
c.

su
b

a
rr

a
y

 i
d

co
l-

se
l local

sense-amp

local bitline

D

su
b
a
rr
a
y
-s
e
l

EN
global bitline

A

D

❶
❷

VDD/2

(b) MASA: Designated subarray is connected to global bitlines.

Figure 12. MASA: Designated-bit latch and subarray-select signal

column commands are served by the designated subarray.
To update the designated-bit latch of each subarray, MASA

requires a new global control signal that acts as a strobe for
the latch. We call this signal subarray-select. When a bank
receives the SA SEL command, it places the corresponding
subarray ID and subarray row-address on the global address-
bus and briefly raises the subarray-select signal. At this point,
the subarray whose ID matches the ID on the global address-
bus will set its designated-bit, while all other subarrays will
clear their designated-bit. Note that ACTIVATE also sets the
designated-bit for the subarray it activates, as it expects the sub-
array to serve all subsequent column commands. In fact, from
the memory controller’s perspective, SA SEL is the same as
ACTIVATE, except that for SA SEL, the supplied row-address
corresponds to a wordline that is already raised.

Timing Constraints. Since designated-bits determine
which activated subarray will serve a column command, they
should not be updated (by ACTIVATE/SA SEL) while a col-
umn command is in progress. For this purpose, we introduce
two timing constraints called tRA (read-to-activate/select) and
tWA (write-to-activate/select). These are the same timing con-
straints introduced by SALP-2.

Additional Storage at the Controller. To support MASA,
the memory controller must track the status of all subarrays
within each bank. A subarray’s status represents i) whether
the subarray is activated, ii) if so, which wordline within the
subarray is raised, and iii) whether the subarray is designated
to serve column commands. For the system configurations we
evaluate (Section 8), maintaining this information incurs a stor-
age overhead of less than 256 bytes at the memory controller.

While MASA overlaps multiple ACTIVATEs to the same
bank, it must still obey timing constraints such as tFAW and
tRRD that limit the rate at which ACTIVATEs are issued to the
entire DRAM chip. We evaluate the power and area overhead
of our three proposed mechanisms in Section 6.

5.4. Exposing Subarrays to the Memory Controller
For the memory controller to employ our proposed schemes,

it requires the following three pieces of information: i) the
number of subarrays per bank, ii) whether the DRAM supports
SALP-1, SALP-2 and/or MASA, and iii) the values for the tim-
ing constraints tRA and tWA. Since these parameters are heav-
ily dependent on vendor-specific microarchitecture and process
technology, they may be difficult to standardize. Therefore, we
describe an alternate way of exposing these parameters to the

7

memory controller.
Serial Presence Detect. Multiple DRAM chips are assem-

bled together on a circuit board to form a DRAM module.
On every DRAM module lies a separate 256-byte EEPROM,
called the serial presence detect (SPD), which contains infor-
mation about both the chips and the module, such as timing,
capacity, organization, etc. [19]. At system boot time, the SPD
is read by the BIOS, so that the memory controller can correctly
issue commands to the DRAM module. In the SPD, more than
a hundred extra bytes are set aside for use by the manufacturer
and the end-user [19]. This storage is more than sufficient to
store subarray-related parameters required by the controller.

Number of Subarrays per Bank. The number of subar-
rays within a bank is expected to increase for larger capacity
DRAM chips that have more rows. However, certain manu-
facturing constraints may prevent all subarrays from being ac-
cessed in parallel. To increase DRAM yield, every subarray
is provisioned with a few spare rows that can replace faulty
rows [17, 21]. If a faulty row in one subarray is mapped to a
spare row in another subarray, then the two subarrays can no
longer be accessed in parallel. To strike a trade-off between
high yield and the number of subarrays that can be accessed
in parallel, spare rows in each subarray can be restricted to re-
place faulty rows only within a subset of the other subarrays.
With this guarantee, the memory controller can still apply our
mechanisms to different subarray groups. In our evaluations
(Section 9.2), we show that just having 8 subarray groups can
provide significant performance improvements. From now on,
we refer to an independently accessible subarray group as a
“subarray.”

6. Power & Area Overhead
Of our three proposed schemes, SALP-1 does not incur

any additional area or power overhead since it does not make
any modifications to the DRAM structure. On the other hand,
SALP-2 and MASA require subarray row-address latches that
minimally increase area and power. MASA also consumes ad-
ditional static power due to multiple activated subarrays and
additional dynamic power due to extra SA SEL commands. We
analyze these overheads in this section.

6.1. Additional Latches
SALP-2 and MASA add a subarray row-address latch to

each subarray. While MASA also requires an additional single-
bit latch for the designated-bit, its area and power overheads
are insignificant compared to the subarray row-address latches.
In most of our evaluations, we assume 8 subarrays-per-bank
and 8 banks-per-chip. As a result, a chip requires a total
of 64 row-address latches, where each latch stores the 40-bit
partially pre-decoded row-address.11 Scaling the area from a
previously proposed latch design [26] to 55nm process tech-
nology, each row-address latch occupies an area of 42.9µm2.
Overall, this amounts to a 0.15% area overhead compared to
a 2Gb DRAM chip fabricated using 55nm technology (die
area = 73mm2 [46]). Similarly, normalizing the latch power
consumption to 55nm technology and 1.5V operating volt-
age, a 40-bit latch consumes 72.2µW additional power for
each ACTIVATE. This is negligible compared to the activation
power, 51.2mW (calculated using DRAM models [31, 46, 63]).

6.2. Multiple Activated Subarrays
To estimate the additional static power consumption of mul-

tiple activated subarrays, we compute the difference in the

11A 2Gb DRAM chip with 32k rows has a 15-bit row-address. We assume
3:8 pre-decoding, which yields a 40-bit partially pre-decoded row-address.

maximum current between the cases when all banks are acti-
vated (IDD3N , 35mA) and when no bank is activated (IDD2N ,
32mA) [33]. For a DDR3 chip which has 8 banks and op-
erates at 1.5V, each activated local row-buffer consumes at
most 0.56mW additional static power in the steady state. This
is small compared to the baseline static power of 48mW per
DRAM chip.
6.3. Additional SA SEL Commands

To switch between multiple activated subarrays, MASA is-
sues additional SA SEL commands. Although SA SEL is the
same as ACTIVATE from the memory controller’s perspective
(Section 5.3), internally, SA SEL does not involve the subar-
ray core, i.e., a subarray’s cells. Therefore, we estimate the
dynamic power of SA SEL by subtracting the subarray core’s
power from the dynamic power of ACTIVATE, where the sub-
array core’s power is the sum of the wordline and row-buffer
power during activation [46]. Based on our analysis using
DRAM modeling tools [31, 46, 63], we estimate the power
consumption of SA SEL to be 49.6% of ACTIVATE. MASA
also requires a global subarray-select wire in the DRAM chip.
However, compared to the large amount of global routing
that is already present within a bank (40 bits of partially pre-
decoded row-address and 1024 bits of fully decoded column-
address), the overhead of one additional wire is negligible.
6.4. Comparison to Expensive Alternatives

As a comparison, we present the overhead incurred by two
alternative approaches that can mitigate bank conflicts: i) in-
creasing the number of DRAM banks and ii) adding an SRAM
cache inside the DRAM chip.

More Banks. To add more banks, per-bank circuit compo-
nents such as the global decoders and I/O-sense amplifiers must
be replicated [17]. This leads to significant increase in DRAM
chip area. Using the DRAM area model from Rambus [46, 63],
we estimate that increasing the number of banks from 8 to 16,
32, and 64, increases the chip area by 5.2%, 15.5%, and 36.3%,
respectively. Larger chips also consume more static power.

Additional SRAM Cache. Adding a separate SRAM cache
within the DRAM chip (such “Cached DRAM” proposals are
discussed in Section 7), can achieve similar benefits as utilizing
multiple row-buffers across subarrays. However, this increases
the DRAM chip area and, consequently, its static power con-
sumption. We calculate the chip area penalty for adding SRAM
caches using CACTI-D [59]. An SRAM cache that has a size
of 8 Kbits (same as a row-buffer), 64 Kbits, and 512 Kbits
increases DRAM chip area by 0.6%, 5.0%, and 38.8%, re-
spectively. These figures do not include the additional routing
logic that is required between the I/O sense-amplifiers and the
SRAM cache.

7. Related Work
In this work, we propose three schemes that exploit the ex-

istence of subarrays within DRAM banks to mitigate the nega-
tive effects of bank conflicts. Prior works proposed increasing
the performance and energy-efficiency of DRAM through ap-
proaches such as DRAM module reorganization, changes to
DRAM chip design, and memory controller optimizations.

DRAM Module Reorganization. Threaded Memory Mod-
ule [64], Multicore DIMM [1], and Mini-Rank [70] are all
techniques that partition a DRAM rank (and the DRAM data-
bus) into multiple rank-subsets [2], each of which can be oper-
ated independently. Although partitioning a DRAM rank into
smaller rank-subsets increases parallelism, it narrows the data-
bus of each rank-subset, incurring longer latencies to trans-
fer a 64 byte cache-line. Fore example, having 8 mini-ranks

8

Processor 1-16 cores, 5.3GHz, 3-wide issue, 8 MSHRs, 128-entry instruction window

Last-level cache 64B cache-line, 16-way associative, 512kB private cache-slice per core

Memory controller 64/64-entry read/write request queues per controller, FR-FCFS scheduler [47, 71], writes are scheduled in batches [3, 29, 55]

Memory Timing: DDR3-1066 (8-8-8) [33], tRA: 4tCK, tWA: 14tCK
Organization (default in bold): 1-8 channels, 1-8 ranks-per-channel, 8-64 banks-per-rank, 1-8-128 subarrays-per-bank

Table 2. Configuration of simulated system

increases the data-transfer latency by 8 times (to 60 ns, as-
suming DDR3-1066) for all memory accesses. In contrast,
our schemes increase parallelism without increasing latency.
Furthermore, having many rank-subsets requires a correspond-
ingly large number of DRAM chips to compose a DRAM rank,
an assumption that does not hold in mobile DRAM systems
where a rank may consist of as few as two chips [32]. However,
since the parallelism exposed by rank-subsetting is orthogo-
nal to our schemes, rank-subsetting can be combined with our
schemes to further improve performance.

Changes to DRAM Design. Cached DRAM organizations,
which have been widely proposed [7, 10, 11, 13, 20, 42, 49, 65,
69] augment DRAM chips with an additional SRAM cache that
can store recently accessed data. Although such organizations
reduce memory access latency in a manner similar to MASA,
they come at increased chip area and design complexity (as
Section 6.4 showed). Furthermore, cached DRAM only pro-
vides parallelism when accesses hit in the SRAM cache, while
serializing cache misses that access the same DRAM bank. In
contrast, our schemes parallelize DRAM bank accesses while
incurring significantly lower area and logic complexity.

Since a large portion of the DRAM latency is spent driv-
ing the local bitlines [35], Fujitsu’s FCRAM and Micron’s
RLDRAM proposed to implement shorter local bitlines (i.e.,
fewer cells per bitline) that are quickly drivable due to their
lower capacitances. However, this significantly increases the
DRAM die size (30-40% for FCRAM [50], 40-80% for RL-
DRAM [21]) because the large area of sense-amplifiers is
amortized over a smaller number of cells.

A patent by Qimonda [44] proposed the high-level notion of
separately addressable sub-banks, but it lacks concrete mecha-
nisms for exploiting the independence between sub-banks. In
the context of embedded DRAM, Yamauchi et al. proposed the
Hierarchical Multi-Bank (HMB) [66] that parallelizes accesses
to different subarrays in a fine-grained manner. However, their
scheme adds complex logic to all subarrays. For example, each
subarray requires a timer that automatically precharges a sub-
array after an access. As a result, HMB cannot take advantage
of multiple row-buffers.

Although only a small fraction of the row is needed to serve
a memory request, a DRAM bank wastes power by always acti-
vating an entire row. To mitigate this “overfetch” problem and
save power, Udipi et al. [62] proposed two techniques (SBA
and SSA).12 In SBA, global wordlines are segmented and con-
trolled separately so that tiles in the horizontal direction are not
activated in lockstep, but selectively. However, this increases
DRAM chip area by 12-100% [62]. SSA combines SBA with
chip-granularity rank-subsetting to achieve even higher energy
savings. But, both SBA and SSA increase DRAM latency,
more significantly so for SSA (due to rank-subsetting).

A DRAM chip experiences bubbles in the data-bus, called
the bus-turnaround penalty (tWTR and tRTW in Table 1), when
transitioning from serving a write request to a read request,
and vice versa [3, 29, 55]. During the bus-turnaround penalty,
Chatterjee et al. [3] proposed to internally “prefetch” data for

12Udipi et al. use the term subarray to refer to an individual tile.

subsequent read requests into extra registers that are added to
the DRAM chip.

An IBM patent [25] proposed latched row-decoding to ac-
tivate multiple wordlines in a DRAM bank simultaneously, in
order to expedite the testing of DRAM chips by checking for
defects in multiple rows at the same time.

Memory Controller Optimizations. To reduce bank con-
flicts and increase row-buffer locality, Zhang et al. proposed to
randomize the bank address of memory requests by XOR hash-
ing [68]. Sudan et al. proposed to improve row-buffer local-
ity by placing frequently referenced data together in the same
row [56]. Both proposals can be combined with our schemes
to further improve parallelism and row-buffer locality.

Prior works have also proposed memory scheduling algo-
rithms (e.g., [6, 16, 23, 24, 38, 40, 41, 43]) that prioritize certain
favorable requests in the memory controller to improve sys-
tem performance and/or fairness. Subarrays expose more par-
allelism to the memory controller, increasing the controller’s
flexibility to schedule requests.

8. Evaluation Methodology
We developed a cycle-accurate DDR3-SDRAM simula-

tor that we validated against Micron’s Verilog behavioral
model [34] and DRAMSim2 [48]. We use this memory simu-
lator as part of a cycle-level in-house x86 multi-core simulator,
whose front-end is based on Pin [30]. We calculate DRAM dy-
namic energy consumption by associating an energy cost with
each DRAM command, derived using the tools [31, 46, 63] and
the methodology as explained in Section 6.13

Unless otherwise specified, our default system configuration
comprises a single-core processor with a memory subsystem
that has 1 channel, 1 rank-per-channel (RPC), 8 banks-per-rank
(BPR), and 8 subarrays-per-bank (SPB). We also perform de-
tailed sensitivity studies where we vary the numbers of cores,
channels, ranks, banks, and subarrays. More detail on the sim-
ulated system configuration is provided in Table 2.

We use line-interleaving to map the physical address space
onto the DRAM hierarchy (channels, ranks, banks, etc.).
In line-interleaving, small chunks of the physical address
space (often the size of a cache-line) are striped across dif-
ferent banks, ranks, and channels. Line-interleaving is uti-
lized to maximize the amount of memory-level parallelism
and is employed in systems such as Intel Nehalem [15],
Sandy Bridge [14], Sun OpenSPARC T1 [57], and IBM
POWER7 [51]. We use the closed-row policy in which the
memory controller precharges a bank when there are no more
outstanding requests to the activated row of that bank. The
closed-row policy is often used in conjunction with line-
interleaving since row-buffer locality is expected to be low.
Additionally, we also show results for row-interleaving and the
open-row policy in Section 9.3.

We use 32 benchmarks from SPEC CPU2006, TPC [61],
and STREAM [54], in addition to a random-access mi-

13We consider dynamic energy dissipated by only the DRAM chip itself and
do not include dynamic energy dissipated at the channel (which differs on a
motherboard-by-motherboard basis).

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

IP
C

 I
m

p
ro

v
e

m
e

n
t SALP-1 SALP-2 MASA "Ideal"Benchmark key:

c (SPEC CPU2006)

t (TPC)

s (STREAM)

random (random-access)

Figure 13. IPC improvement over the conventional subarray-oblivious baseline

crobenchmark similar in behavior to HPCC RandomAc-
cess [12]. We form multi-core workloads by randomly choos-
ing from only the benchmarks that access memory at least once
every 1000 instructions. We simulate all benchmarks for 100
million instructions. For multi-core evaluations, we ensure
that even the slowest core executes 100 million instructions,
while other cores still exert pressure on the memory subsys-
tem. To measure performance, we use instruction throughput
for single-core systems and weighted speedup [53] for multi-
core systems. We report results that are averaged across all 32
benchmarks for single-core evaluations and averaged across 16
different workloads for each multi-core system configuration.

9. Results
9.1. Individual Benchmarks (Single-Core)

Figure 13 shows the performance improvement of SALP-1,
SALP-2, and MASA on a system with 8 subarrays-per-bank
over a subarray-oblivious baseline. The figure also shows the
performance improvement of an “Ideal” scheme which is the
subarray-oblivious baseline with 8 times as many banks (this
represents a system where all subarrays are fully independent).
We draw two conclusions. First, SALP-1, SALP-2 and MASA
consistently perform better than baseline for all benchmarks.
On average, they improve performance by 6.6%, 13.4%, and
16.7%, respectively. Second, MASA captures most of the ben-
efit of the “Ideal,” which improves performance by 19.6% com-
pared to baseline.

The difference in performance improvement across bench-
marks can be explained by a combination of factors related
to their individual memory access behavior. First, subarray-
level parallelism in general is most beneficial for memory-
intensive benchmarks that frequently access memory (bench-
marks located towards the right of Figure 13). By increas-
ing the memory throughput for such applications, subarray-
level parallelism significantly alleviates their memory bottle-
neck. The average memory-intensity of the rightmost applica-
tions (i.e., those that gain >5% performance with SALP-1) is
18.4 MPKI (last-level cache misses per kilo-instruction), com-
pared to 1.14 MPKI of the leftmost applications.

Second, the advantage of SALP-2 is large for applications
that are write-intensive. For such applications, SALP-2 can
overlap the long write-recovery latency with the activation
of a subsequent access. In Figure 13, the three applications
(that improve more than 38% with SALP-2) are among both
the most memory-intensive (>25 MPKI) and the most write-
intensive (>15 WMPKI).

Third, MASA is beneficial for applications that experience
frequent bank conflicts. For such applications, MASA paral-
lelizes accesses to different subarrays by concurrently activat-
ing multiple subarrays (ACTIVATE) and allowing the appli-
cation to switch between the activated subarrays at low cost
(SA SEL). Therefore, the subarray-level parallelism offered
by MASA can be gauged by the SA SEL-to-ACTIVATE ra-
tio. For the nine applications that benefit more than 30% from

MASA, on average, one SA SEL was issued for every two
ACTIVATEs, compared to one-in-seventeen for all the other
applications. For a few benchmarks, MASA performs slightly
worse than SALP-2. The baseline scheduling algorithm used
with MASA tries to overlap as many ACTIVATEs as possi-
ble and, in the process, inadvertently delays the column com-
mand of the most critical request which slightly degrades per-
formance for these benchmarks.14

9.2. Sensitivity to Number of Subarrays
With more subarrays, there is greater opportunity to exploit

subarray-level parallelism and, correspondingly, the improve-
ments provided by our schemes also increase. As the number
of subarrays-per-bank is swept from 1 to 128, Figure 14 plots
the IPC improvement, average read latency,15 and memory-
level parallelism16 of our three schemes (averaged across 32
benchmarks) compared to the subarray-oblivious baseline.

0%

5%

10%

15%

20%

25%

30%

1 2 4 8 16 32 64 128

Subarrays-per-bank

IP
C

 I
n

c
r
e

a
s
e Baseline SALP-1 SALP-2 MASA "Ideal"

(a) IPC improvement

0

20

40

60

80

100

1 2 4 8 16 32 64 128

Subarrays-per-bank

R
D

 L
a

te
n

cy
 (

n
s) Baseline SALP-1 SALP-2 MASA "Ideal"

(b) Average read latency

1

2

3

4

1 2 4 8 16 32 64 128

Subarrays-per-bank

M
e
m
o
ry

P
a
ra
ll
e
li
sm

Baseline SALP-1 SALP-2 MASA "Ideal"

(c) Memory-level parallelism

Figure 14. Sensitivity to number of subarrays-per-bank

Figure 14(a) shows that SALP-1, SALP-2, and MASA con-
sistently improve IPC as the number of subarrays-per-bank
increases. But, the gains are diminishing because most of
the bank conflicts are parallelized for even a modest number
of subarrays. Just 8 subarrays-per-bank captures more than

14For one benchmark, MASA performs slightly better than the “Ideal” due
to interactions with the scheduler.

15Average memory latency for read requests, which includes: i) queuing
delay at the controller, ii) bank access latency, and iii) data-transfer latency.

16The average number of requests that are being served, given that there is
at least one such request. A request is defined as being served from when the
first command is issued on its behalf until its data-transfer has completed.

10

80% of the IPC improvement provided by the same mecha-
nism with 128 subarrays-per-bank. The performance improve-
ments of SALP-1, SALP-2, and MASA are a direct result of
reduced memory access latency and increased memory-level
parallelism, as shown in Figures 14(b) and 14(c), respectively.
These improvements are two-sides of the same coin: by in-
creasing the parallelism across subarrays, our mechanisms are
able to overlap the latencies of multiple memory requests to
reduce the average memory access latency.

9.3. Sensitivity to System Configuration
Mapping and Row Policy. In row-interleaving, as opposed

to line-interleaving, a contiguous chunk of the physical address
space is mapped to each DRAM row. Row-interleaving is com-
monly used in conjunction with the open-row policy so that a
row is never eagerly closed – a row is left open in the row-
buffer until another row needs to be accessed. Figure 15 shows
the results (averaged over 32 benchmarks) of employing our
three schemes on a row-interleaved, open-row system.

As shown in Figure 15(a), the IPC improvements of SALP-
1, SALP-2, and MASA are 7.5%, 10.6%, and 12.3%, where
MASA performs nearly as well as the “Ideal” (14.7%). How-
ever, the gains are lower than compared to a line-interleaved,
closed-row system. This is because the subarray-oblivious
baseline performs better on a row-interleaved, open-row sys-
tem (due to row-buffer locality), thereby leaving less headroom
for our schemes to improve performance. MASA also im-
proves DRAM energy-efficiency in a row-interleaved system.
Figure 15(b) shows that MASA decreases DRAM dynamic en-
ergy consumption by 18.6%. Since MASA allows multiple
row-buffers to remain activated, it increases the row-buffer hit
rate by 12.8%, as shown in Figure 15(c). This is clear from Fig-
ure 15(d), which shows that 50.1% of the ACTIVATEs issued
in the baseline are converted to SA SELs in MASA.

0%

5%

10%

15%

IP
C

 I
n

c
r
e

a
s
e

Baseline

SALP-1

SALP-2

MASA

"Ideal"

(a) IPC improvement
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o

rm
a

li
ze

d

D
y

n
.

E
n

e
rg

y
 Baseline

SALP-1

SALP-2

MASA

(b) Dynamic DRAM energy

0.0

0.2

0.4

0.6

0.8

1.0

R
o

w
-B

u
ff

e
r

H
it

 R
a

te

Baseline

SALP-1

SALP-2

MASA

(c) Row-buffer hit rate
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
r
m
a
li
z
e
d

A
C
T
IV
A
T
E
s

Baseline

SALP-1

SALP-2

MASA

(d) Number of issued ACTIVATEs

Figure 15. Row-interleaving and open-row policy.

Number of Channels, Ranks, Banks. Even for highly pro-
visioned systems with unrealistically large numbers of chan-
nels, ranks, and banks, exploiting subarray-level parallelism
improves performance significantly, as shown in Figure 16.
This is because even such systems cannot completely remove
all bank conflicts due to the well-known birthday paradox:
even if there were 365 banks (very difficult to implement),
with just 23 concurrent memory requests, the probability of a
bank conflict between any two requests is more than 50% (for
64 banks, only 10 requests are required). Therefore, exploit-
ing subarray-level parallelism still provides performance bene-
fits. For example, while an 8-channel baseline system provides
more than enough memory bandwidth (<4% data-bus utiliza-
tion), MASA reduces access latency by parallelizing bank con-
flicts, and improves performance by 8.6% over the baseline.

As more ranks/banks are added to the same channel, in-
creased contention on the data-bus is likely to be the perfor-

mance limiter. That is why adding more ranks/banks does
not provide as large benefits as adding more channels (Fig-
ure 16).17 Ideally, for the highest performance, one would in-
crease the numbers of all three: channels/ranks/banks. How-
ever, as explained in Section 1, adding more channels is very
expensive, whereas the number of ranks-/banks-per-channel is
limited to a low number in modern high-frequency DRAM
systems. Therefore, exploiting subarray-level parallelism is
a cost-effective way of achieving the performance of many
ranks/banks and, as a result, extracting the most performance
from a given number of channels.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

1 2 4 8 1 2 4 8 8 16 32 64

channels ranks-per-chan banks-per-rank

N
o

r
m

a
li

z
e

d
 I

P
C Baseline SALP-1 SALP-2 MASA

Figure 16. Memory configuration sweep (line-interleaved, closed-
row). IPC normalized to: 1-channel, 1-RPC, 8-BPR, 8-SPB.

Number of Cores. As shown in Figure 17, our schemes im-
prove performance of 8-core and 16-core systems with the FR-
FCFS memory scheduler [47, 71]. However, previous studies
have shown that destructive memory interference among ap-
plications due to FR-FCFS scheduling can severely degrade
system performance [37, 40]. Therefore, to exploit the full
potential of subarray-level parallelism, the scheduler should
resolve bank conflicts in an application-aware manner. To
study this effect, we evaluate our schemes with TCM [24], a
state-of-the-art scheduler that mitigates inter-application inter-
ference. As shown in Figure 17, TCM outperforms FR-FCFS
by 3.7%/12.3% on 8-core/16-core systems. When employed
with the TCM scheduler, SALP-1/SALP-2/MASA further im-
prove performance by 3.9%/5.9%/7.4% on the 8-core system
and by 2.5%/3.9%/8.0% on the 16-core system. We also ob-
serve similar trends for systems using row-interleaving and the
open-row policy (not shown due to space constraints). We be-
lieve that further performance improvements are possible by
designing memory request scheduling algorithms that are both
application-aware and subarray-aware.

0%

5%

10%

15%

20%

25%

FRFCFS TCM FRFCFS TCM

8-core system 16-core system

W
S

 I
n

c
r
e

a
s
e Baseline SALP-1 SALP-2 MASA

Figure 17. Multi-core weighted speedup improvement. Configura-
tion: 2-channel, 2-RPC, line-interleaved, closed-row policy.

10. Conclusion
We introduced new techniques that exploit the existence of

subarrays within a DRAM bank to mitigate the performance
impact of bank conflicts. Our mechanisms are built on the
key observation that subarrays within a DRAM bank operate
largely independently and have their own row-buffers. Hence,
the latencies of accesses to different subarrays within the same
bank can potentially be overlapped to a large degree. We in-
troduce three schemes that take advantage of this fact and pro-

17Having more ranks (as opposed to having just more banks) aggravates
data-bus contention by introducing bubbles in the data-bus due to tRTRS (rank-
to-rank switch penalty).

11

gressively increase the independence of operation of subarrays
by making small modifications to the DRAM chip. Our most
sophisticated scheme, MASA, enables i) multiple subarrays to
be accessed in parallel, and ii) multiple row-buffers to remain
activated at the same time in different subarrays, thereby im-
proving both memory-level parallelism and row-buffer local-
ity. We show that our schemes significantly improve system
performance on both single-core and multi-core systems on
a variety of workloads while incurring little (<0.15%) or no
area overhead in the DRAM chip. Our techniques can also im-
prove memory energy efficiency. We conclude that exploiting
subarray-level parallelism in a DRAM bank can be a promising
and cost-effective method for overcoming the negative effects
of DRAM bank conflicts, without paying the large cost of in-
creasing the number of banks in the DRAM system.
Acknowledgments

Many thanks to Uksong Kang, Hak-soo Yu, Churoo Park,
Jung-Bae Lee, and Joo Sun Choi from Samsung for their help-
ful comments. We thank the anonymous reviewers for their
feedback. We gratefully acknowledge members of the SAFARI
group for feedback and for the stimulating intellectual environ-
ment they provide. We acknowledge the generous support of
AMD, Intel, Oracle, and Samsung. This research was also par-
tially supported by grants from NSF (CAREER Award CCF-
0953246), GSRC, and Intel ARO Memory Hierarchy Program.
Yoongu Kim is partially supported by a Ph.D. fellowship from
the Korea Foundation for Advanced Studies.

References
[1] J. H. Ahn et al. Multicore DIMM: An energy efficient memory module

with independently controlled DRAMs. IEEE CAL, Jan. 2009.
[2] J. H. Ahn et al. Improving system energy efficiency with memory rank

subsetting. ACM TACO, Mar. 2012.
[3] N. Chatterjee et al. Staged reads: Mitigating the impact of DRAM writes

on DRAM reads. In HPCA, 2012.
[4] Y. Chou et al. Microarchitecture optimizations for exploiting memory-

level parallelism. In ISCA, 2004.
[5] J. Dundas and T. Mudge. Improving data cache performance by pre-

executing instructions under a cache miss. In ICS, 1997.
[6] E. Ebrahimi et al. Parallel application memory scheduling. In MICRO,

2011.
[7] Enhanced Memory Systems. Enhanced SDRAM SM2604, 2002.
[8] H. Fredriksson and C. Svensson. Improvement potential and equalization

example for multidrop DRAM memory buses. IEEE Transactions on
Advanced Packaging, 2009.

[9] B. Ganesh et al. Fully-buffered DIMM memory architectures: Under-
standing mechanisms, overheads and scaling. In HPCA, 2007.

[10] C. A. Hart. CDRAM in a unified memory architecture. In Compcon,
1994.

[11] H. Hidaka et al. The cache DRAM architecture: A DRAM with an on-
chip cache memory. IEEE Micro, Mar. 1990.

[12] HPCC. RandomAccess. http://icl.cs.utk.edu/hpcc/.
[13] W.-C. Hsu and J. E. Smith. Performance of cached DRAM organizations

in vector supercomputers. In ISCA, 1993.
[14] Intel. 2nd Gen. Intel Core Processor Family Desktop Datasheet, 2011.
[15] Intel. Intel Core Desktop Processor Series Datasheet, 2011.
[16] E. Ipek et al. Self optimizing memory controllers: A reinforcement learn-

ing approach. In ISCA, 2008.
[17] K. Itoh. VLSI Memory Chip Design. Springer, 2001.
[18] JEDEC. Standard No. 79-3E. DDR3 SDRAM Specification, 2010.
[19] JEDEC. Standard No. 21-C. Annex K: Serial Presence Detect (SPD) for

DDR3 SDRAM Modules, 2011.
[20] G. Kedem and R. P. Koganti. WCDRAM: A fully associative integrated

cached-DRAM with wide cache lines. CS-1997-03, Duke, 1997.
[21] B. Keeth et al. DRAM Circuit Design. Fundamental and High-Speed

Topics. Wiley-IEEE Press, 2007.
[22] R. Kho et al. 75nm 7Gb/s/pin 1Gb GDDR5 graphics memory device

with bandwidth-improvement techniques. In ISSCC, 2009.
[23] Y. Kim et al. ATLAS: A scalable and high-performance scheduling al-

gorithm for multiple memory controllers. In HPCA, 2010.
[24] Y. Kim et al. Thread cluster memory scheduling: Exploiting differences

in memory access behavior. In MICRO, 2010.
[25] T. Kirihata. Latched row decoder for a random access memory. U.S.

patent number 5615164, 1997.
[26] B.-S. Kong et al. Conditional-capture flip-flop for statistical power re-

duction. IEEE JSSC, 2001.

[27] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. In
ISCA, 1981.

[28] B. C. Lee et al. Architecting phase change memory as a scalable DRAM
alternative. In ISCA, 2009.

[29] C. J. Lee et al. DRAM-aware last-level cache writeback: Reducing write-
caused interference in memory systems. TR-HPS-2010-002, UT Austin,
2010.

[30] C.-K. Luk et al. Pin: Building customized program analysis tools with
dynamic instrumentation. In PLDI, 2005.

[31] Micron. DDR3 SDRAM System-Power Calculator, 2010.
[32] Micron. 2Gb: x16, x32 Mobile LPDDR2 SDRAM, 2012.
[33] Micron. 2Gb: x4, x8, x16, DDR3 SDRAM, 2012.
[34] Micron. DDR3 SDRAM Verilog Model, 2012.
[35] M. J. Miller. Bandwidth engine serial memory chip breaks 2 billion ac-

cesses/sec. In HotChips, 2011.
[36] Y. Moon et al. 1.2V 1.6Gb/s 56nm 6F2 4Gb DDR3 SDRAM with hybrid-

I/O sense amplifier and segmented sub-array architecture. In ISSCC,
2009.

[37] T. Moscibroda and O. Mutlu. Memory performance attacks: Denial of
memory service in multi-core systems. In USENIX SS, 2007.

[38] S. P. Muralidhara et al. Reducing memory interference in multicore sys-
tems via application-aware memory channel partitioning. In MICRO,
2011.

[39] O. Mutlu et al. Runahead execution: An alternative to very large instruc-
tion windows for out-of-order processors. In HPCA, 2003.

[40] O. Mutlu and T. Moscibroda. Stall-time fair memory access scheduling
for chip multiprocessors. In MICRO, 2007.

[41] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: En-
hancing both performance and fairness of shared DRAM systems. In
ISCA, 2008.

[42] NEC. Virtual Channel SDRAM uPD4565421, 1999.
[43] K. J. Nesbit et al. Fair queuing memory systems. In MICRO, 2006.
[44] J.-h. Oh. Semiconductor memory having a bank with sub-banks. U.S.

patent number 7782703, 2010.
[45] M. K. Qureshi et al. A case for MLP-aware cache replacement. In ISCA,

2006.
[46] Rambus. DRAM Power Model, 2010.
[47] S. Rixner et al. Memory access scheduling. In ISCA, 2000.
[48] P. Rosenfeld et al. DRAMSim2: A cycle accurate memory system simu-

lator. IEEE CAL, Jan. 2011.
[49] R. H. Sartore et al. Enhanced DRAM with embedded registers. U.S.

patent number 5887272, 1999.
[50] Y. Sato et al. Fast Cycle RAM (FCRAM); a 20-ns random row access,

pipe-lined operating DRAM. In Symposium on VLSI Circuits, 1998.
[51] B. Sinharoy et al. IBM POWER7 multicore server processor. IBM Jour-

nal Res. Dev., May. 2011.
[52] B. J. Smith. A pipelined shared resource MIMD computer. In ICPP,

1978.
[53] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultane-

ous multithreaded processor. In ASPLOS, 2000.
[54] STREAM Benchmark. http://www.streambench.org/.
[55] J. Stuecheli et al. The virtual write queue: Coordinating DRAM and

last-level cache policies. In ISCA, 2010.
[56] K. Sudan et al. Micro-pages: Increasing DRAM efficiency with locality-

aware data placement. In ASPLOS, 2010.
[57] Sun Microsystems. OpenSPARC T1 microarch. specification, 2006.
[58] J. E. Thornton. Parallel operation in the control data 6600. In AFIPS,

1965.
[59] S. Thoziyoor et al. A comprehensive memory modeling tool and its ap-

plication to the design and analysis of future memory hierarchies. In
ISCA, 2008.

[60] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal Res. Dev., Jan. 1967.

[61] TPC. http://www.tpc.org/.
[62] A. N. Udipi et al. Rethinking DRAM design and organization for energy-

constrained multi-cores. In ISCA, 2010.
[63] T. Vogelsang. Understanding the energy consumption of dynamic ran-

dom access memories. In MICRO, 2010.
[64] F. Ware and C. Hampel. Improving power and data efficiency with

threaded memory modules. In ICCD, 2006.
[65] W. A. Wong and J.-L. Baer. DRAM caching. CSE-97-03-04, UW, 1997.
[66] T. Yamauchi et al. The hierarchical multi-bank DRAM: A high-

performance architecture for memory integrated with processors. In Ad-
vanced Research in VLSI, 1997.

[67] G. L. Yuan et al. Complexity effective memory access scheduling for
many-core accelerator architectures. In MICRO, 2009.

[68] Z. Zhang et al. A permutation-based page interleaving scheme to reduce
row-buffer conflicts and exploit data locality. In MICRO, 2000.

[69] Z. Zhang et al. Cached DRAM for ILP processor memory access latency
reduction. IEEE Micro, Jul. 2001.

[70] H. Zheng et al. Mini-rank: Adaptive DRAM architecture for improving
memory power efficiency. In MICRO, 2008.

[71] W. K. Zuravleff and T. Robinson. Controller for a synchronous DRAM
that maximizes throughput by allowing memory requests and commands
to be issued out of order. U.S. patent number 5630096, 1997.

12

