
Prefetch-Aware Shared-Resource Management
for Multi-Core Systems

Eiman Ebrahimi† Chang Joo Lee†‡ Onur Mutlu§ Yale N. Patt†

†HPS Research Group
The University of Texas at Austin
{ebrahimi, patt}@hps.utexas.edu

‡Intel Corporation
chang.joo.lee@intel.com

§Carnegie Mellon University
onur@cmu.edu

ABSTRACT

Chip multiprocessors (CMPs) share a large portion of the memory
subsystem among multiple cores. Recent proposals have addressed
high-performance and fair management of these shared resources;
however, none of them take into account prefetch requests. Without
prefetching, significant performance is lost, which is why existing
systems prefetch. By not taking into account prefetch requests,
recent shared-resource management proposals often significantly
degrade both performance and fairness, rather than improve them
in the presence of prefetching.

This paper is the first to propose mechanisms that both man-
age the shared resources of a multi-core chip to obtain high-
performance and fairness, and also exploit prefetching. We ap-
ply our proposed mechanisms to two resource-based management
techniques for memory scheduling and one source-throttling-based
management technique for the entire shared memory system. We
show that our mechanisms improve the performance of a 4-core
system that uses network fair queuing, parallelism-aware batch
scheduling, and fairness via source throttling by 11.0%, 10.9%, and
11.3% respectively, while also significantly improving fairness.

Categories and Subject Descriptors: C.1.0 [Processor Architec-
tures]: General; C.5.3 [Microcomputers]: Microprocessors; C.1.2
[Multiple Data Stream Architectures (Multiprocessors)]

General Terms: Design, Performance.

Keywords: Fairness, Prefetching, Shared Resources, Multi-core.

1. INTRODUCTION
Chip multiprocessors (CMPs) share a large portion of the mem-

ory subsystem among multiple cores. This shared memory system
typically consists of a last-level shared cache, on-chip interconnect,
memory controllers and off-chip memory. When different applica-
tions concurrently execute on different cores of a CMP, they gener-
ate memory requests that interfere with memory requests of other
applications in the shared memory resources. As a result, memory
requests of different applications delay each other, causing each
application to slow down compared to when it runs in isolation.
Recent studies (e.g., [29, 26, 8]) have proposed different mecha-
nisms to manage this interference in the shared resources in order
to improve system performance and/or system fairness.

In addition, memory latency tolerance mechanisms are critical
to improving system performance since DRAM speed continues to
lag processor speed. Prefetching is one common mechanism that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’11, June 4–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0472-6/11/06 ...$10.00.

predicts the memory addresses a program will require, and issues
memory requests to those addresses before the program needs the
data. Prefetching improves the standalone performance of many
applications and is currently used in almost all commercial proces-
sors [5, 17, 30, 2]. Recent studies [6, 7] have proposed intelligent
dynamic adaptation of prefetcher aggressiveness to make prefetch-
ing effective and efficient in CMP systems.

Ideally, we would like CMP systems to obtain both the perfor-
mance benefits of prefetching when possible, and also the perfor-
mance and fairness benefits of shared resource management tech-
niques. However, shared resource management techniques that oth-
erwise improve system performance and fairness significantly, can
also significantly degrade performance/fairness in the presence of
prefetching, since these techniques are designed for demand re-
quests and do not consider prefetching.

Figure 1 illustrates this problem on a system that uses a
fair/quality of service (QoS)-capable memory scheduler, network
fair queuing (NFQ) scheduler [29]. Results are averaged over 15
multiprogrammed SPEC CPU2006 workloads on a 4-core system1,
and normalized to a system that uses a common first-ready first-
come-first-serve (FR-FCFS) memory scheduler [34]. Figure 1 (a)
shows how NFQ affects average system performance and average
maximum slowdown (one metric of unfairness) in a system with no
prefetching. Figure 1 (b) shows this in the presence of aggressive
stream prefetching. This figure shows that, even though NFQ im-
proves performance and reduces maximum slowdown on a system
that does not have a prefetcher, if aggressive prefetching is enabled,
we see a very different result. On a system with prefetching, NFQ
degrades performance by 25% while significantly increasing max-
imum slowdown, because its underlying prioritization algorithm
does not differentiate between prefetch and demand requests. As a
result, prefetches can be unduly prioritized by the memory sched-
uler, causing system performance and fairness degradation.

In this paper, we demonstrate that different shared resource man-
agement techniques suffer from this problem, i.e., they can de-
grade performance significantly when employed with prefetching.
Our goal is to devise general mechanisms that intelligently take
prefetches into account within shared resource management tech-
niques to ensure their effectiveness for both performance and fair-
ness in the presence of prefetching.

We provide mechanisms for management of prefetch requests in
three recently proposed shared resource management techniques.
Two of these techniques are resource-based memory scheduling
techniques: network fair queuing (NFQ) [29] and parallelism-
aware batch scheduling (PARBS) [26]. The third technique is a

1Our system configuration, metrics, and workloads are discussed
in Section 5. In Figure 1, the stream prefetcher of Table 1 is
used. Prefetch and demand requests are treated alike with respect
to NFQ’s virtual finish time calculations.

1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Perf. Max
Slowdown

(a) No Prefetching

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

FR-FCFS

NFQ

Perf. Max
Slowdown

(b) Stream

Prefetching

Figure 1: Harmonic mean of speedups and max slowdown

when using NFQ memory scheduler (normalized to FR-FCFS)

source throttling-based technique for coordinated management of
multiple shared resources (FST) [8].

Basic Ideas: Our mechanisms build upon three fundamen-
tal ideas. First, we use accuracy feedback from the prefetch-
ers to decide how prefetch requests should be handled in each of
the resource-based techniques. The key idea is to not treat all
prefetches the same. An application’s prefetches should be treated
similar to the demand requests only when they are useful.

Second, treating useful prefetches like demands can significantly
delay demand requests of memory non-intensive applications be-
cause such requests can get stuck behind accurate prefetches (and
demands) of memory-intensive applications. This degrades system
performance and fairness. To solve this problem, we introduce the
idea of demand boosting: the key insight is to boost the priority
of the demand requests of memory non-intensive applications over
requests of other applications.

Third, with source throttling-based resource management, we
observe that uncoordinated core and prefetcher throttling can cause
performance/fairness degradation because throttling decisions for
cores can contradict those for prefetchers. To solve this problem,
we propose mechanisms that coordinate core and prefetcher throt-
tling based on interference feedback that indicates which cores are
being unfairly slowed down.

Summary of Evaluation: We evaluate our mechanisms on three
different shared resource management techniques on a 4-core CMP
system. Compared to a system with state-of-the-art prefetcher ag-
gressiveness control [6], we find that our mechanisms improve the
performance of an NFQ-based, PARBS-based, and FST-based sys-
tem on average by 11.0%, 10.9%, and 11.3% while at the same
time reducing maximum slowdown by 9.9%, 18.4%, and 14.5%.

Contributions: This paper makes the following contributions:
1. It demonstrates a new problem in multi-core shared resource

management: prefetching can significantly degrade system per-
formance and fairness of multiple state-of-the-art shared resource
management techniques. This problem still largely exists even if
state-of-the-art prefetcher throttling techniques are used to dynam-
ically adapt prefetcher aggressiveness.

2. It shows that simply prioritizing accurate prefetches and depri-
oritizing inaccurate ones within shared resource management tech-
niques does not solve the problem; prioritized prefetches can sig-
nificantly degrade the performance of memory non-intensive appli-
cations. We introduce the idea of demand boosting to prevent this.

3. It introduces new general mechanisms to handle prefetches in
shared resource management techniques to synergistically obtain
the benefits of both prefetching and shared resource management
techniques in multi-core systems. We apply our mechanisms to
three state-of-the-art shared resource management techniques and
demonstrate in detail how these techniques should be made aware
of prefetching. Comprehensive experimental evaluations show that

our proposal significantly improves fairness and performance of
these techniques in the presence of prefetching.

2. BACKGROUND
In the sections that follow, we briefly describe the three different

shared resource management techniques that we discuss in this pa-
per. We also briefly introduce a state-of-the-art prefetcher control
technique [6] that improves system performance and fairness in the
presence of prefetching in CMP systems. We first describe what
we mean by system fairness.

2.1 Fairness in the Presence of Prefetching
We evaluate fairness of a multi-core system executing a multi-

programmed workload using the MaxSlowdown metric [15].
This metric shows the maximum individual slowdown that any ap-
plication in the workload experiences. Individual Slowdown (IS) of
each application is calculated as Tshared/Talone, where Tshared is
the number of cycles it takes an application to run simultaneously
with other applications, and Talone is the number of cycles it would
have taken the application to run alone on the same system. In all of
our evaluations, we use an aggressive stream prefetcher when cal-
culating each benchmark’s Talone as our stream prefetcher signifi-
cantly improves average performance (by 14% across SPEC 2006
benchmarks) and makes for a better baseline system. In addition
to the MaxSlowdown metric, we also show the commonly used
unfairness metric [14, 10, 24, 25] calculated as:

Unfairness =
MAX{IS0, IS1, ..., ISN−1}

MIN{IS0, IS1, ..., ISN−1}

2.2 Network Fair Queuing
Nesbit et al. [29] propose network fair queuing (NFQ), a mem-

ory scheduling technique based on the concepts of fair network
scheduling algorithms. NFQ’s goal is to provide quality of service
to different concurrently executing applications based on each ap-
plication’s assigned fraction of memory system bandwidth. NFQ’s
QoS objective is that “a thread i that is allocated a fraction F of
the memory system bandwidth will run no slower than the same
thread on a private memory system running at [that fraction] F of
the frequency of the shared physical memory system” [29]. NFQ
determines a virtual finish time for every request of each thread.
A memory request’s virtual finish time is the time it would finish
on the thread’s virtual private memory system (a memory system
running at the fraction F of the frequency of the shared memory
system). To achieve this objective, memory requests are scheduled
earliest virtual finish time first. NFQ provides no specification of
how prefetches should be treated.

2.3 Parallelism-Aware Batch Scheduling
Mutlu and Moscibroda [26] propose parallelism-aware batch

scheduling (PARBS), a memory scheduling technique aimed at
improving throughput by preserving intra-thread bank parallelism
while providing fairness by avoiding starvation of requests from
different threads.2 There are two major steps to the PARBS al-
gorithm: First, PARBS generates batches from a number of out-
standing memory requests, and ensures that all requests belonging
to the current batch are serviced before forming the next batch.
This batching technique avoids starvation of different threads and
is aimed at improving system fairness. Second, PARBS preserves
intra-thread bank-level-parallelism while servicing requests from

2We assume each core of a CMP runs a separate application, and
use the term thread and application interchangeably.

2

Initial State Policy (a)

Bank 1 Bank 2 Bank 1 Bank 2 Bank 1 Bank 2Bank 1 Bank 2

P1: Useless prefetches from Core 1

S
er

v
ic

e
O

rd
er

D1

D2

P1

D2

D2

P2

P1

P1

P2

A
rr

iv
al

 O
rd

er

D2

D1

D2

D2

P1

P2

P1

P2

P1

D1

P2

P1

D2

D2

P2

D2

P1

D1

D2

P2

D2

D2

P1

P1

P1

P2 P2 : Useful prefetches from Core 2
D1, D2: Demands from Cores 1 and 2 respectively

Batch

P1

Policy (c)

when any demands are present
Do not include any prefetches

Policy (b)

Include all prefetches in batch
Include prefetches in batches
based on prefetch accuracy

Figure 2: Example 1: Different policies for treatment of prefetches in PARBS batch formation

each application within a batch. It also prioritizes applications that
have shorter queue lengths. This step improves system throughput
by reducing each thread’s memory related stall time. PARBS does
not specify how to handle prefetches in either of these two steps.

2.4 Fairness via Source Throttling
Ebrahimi et. al. [8] propose fairness via source throttling (FST)

as an approach to providing fairness in the entire shared memory
system. FST dynamically estimates how much each application
i is slowed down due to inter-core interference that results from
sharing the memory system with other applications. Using these
estimated slowdowns, FST calculates an estimate for system un-
fairness. In addition, FST also determines the core experiencing
the largest slowdown in the system, referred to as App-slowest, and
the core creating the most interference for App-slowest, referred
to as App-interfering. If the estimated unfairness is greater than a
threshold specified by system software, FST throttles down App-
interfering (i.e., it reduces how aggressively that application ac-
cesses the shared memory resources), and throttles up App-slowest.
In order to throttle down the interfering thread, FST limits the num-
ber of requests that the thread can simultaneously send to the shared
resources and also the frequency at which it does so.

In order to estimate each application’s slowdown, FST tracks
inter-thread interference in the memory system. FST estimates both
how much each application i is actually being slowed down due to
inter-core interference and also how much each other core j (j 6=
i) contributes to the interference experienced by core i. Unfortu-
nately, FST assumes all requests are demand requests and does not
consider prefetching.

2.5 Hierarchical Prefetcher Aggressiveness
Control

Ebrahimi et al. [6] propose hierarchical prefetcher aggressive-
ness control (HPAC) as a prefetcher throttling solution to im-
prove prefetching performance in CMPs. HPAC’s goal is to con-
trol/reduce inter-thread interference caused by prefetchers. It does
so by gathering global feedback information about the effect of
each core’s prefetcher on concurrently executing applications. Ex-
amples of global feedback are memory bandwidth consumption of
each core, how much each core is delayed waiting for other appli-
cations to be serviced by DRAM, and cache pollution caused by
each core’s prefetcher for other applications in the shared cache.
Using this feedback, HPAC dynamically adjusts the aggressiveness
of each prefetcher in two ways: local and global. The local deci-
sion attempts to maximize the local core’s performance by taking
into account only local feedback information, similar to previous
prefetcher throttling mechanisms [36, 7]. The global mechanism
can override the local decision by taking into account effects and in-
teractions of different cores’ prefetchers when adjusting each one’s
aggressiveness. In our paper, we use HPAC in our final mechanisms
since it significantly improves the performance of prefetching in
multi-core systems [6].

3. MOTIVATION
In this section, we motivate why special treatment of prefetch

requests is required in shared resource management techniques to
both 1) achieve benefits from prefetching and, 2) maintain the cor-
responding techniques’ performance benefits and/or fairness/QoS
capabilities.

Every shared resource management technique has a prioritiza-
tion algorithm that determines the order in which requests are ser-
viced. For example, NFQ prioritizes service to requests that have
earlier virtual finish times. PARBS prioritizes requests included
in the formed batch by scheduling them all before a new batch is
formed. In resource-based management techniques, the first key
idea of our proposal is that usefulness of prefetch requests should
be considered within each technique’s prioritization policy. As
such, not all prefetches should be treated the same as demands, and
not all prefetches should be deprioritized compared to demands.
However, this is not enough; in fact, prioritizing accurate prefetches
causes starvation to demands of non-intensive applications. To
solve this problem, the second key idea of our proposal is to boost
the priority of demand requests of such non-intensive applications
so that they are not starved.

We motivate these two key ideas with two examples.
Example 1: Figure 2 shows the effect of prefetching on PARBS.

The figure shows a snapshot of the memory request buffers in the
memory controller for banks 1 and 2. The initial state of these
queues right before a new batch is formed can be seen on the left.
Based on PARBS’s batching algorithm, a maximum number of re-
quests from any given thread to any given bank are marked to form
a batch. Let us assume PARBS marks three requests per-thread per-
bank when forming a batch. Additionally, let us assume that appli-
cation 1’s prefetches are useless or inaccurate while application 2’s
prefetches are useful or accurate. Figure 2 shows two simplistic
policies, (a) and (b), and our proposed approach, policy (c), for
handling prefetches in PARBS’s batching phase. Figure 3 shows
the respective memory service timelines.
Policy (a): mark prefetches and demands from each thread alike

when creating a batch. Figure 2 shows that all the requests in the
memory request queues of the two banks are included in the batch
with this policy. Within each batch, PARBS prioritizes threads that
that are “shorter jobs” in terms of memory request queue length.
Since thread 1 has a shorter queue length (maximum 2 requests in
any bank) than thread 2 (maximum 3 requests in any bank), thread
1 is prioritized over thread 2. As a result, as Figure 3 (a) shows,
thread 1’s inaccurate prefetches to addresses Y, X and Z are prior-
itized over thread 2’s demands and useful prefetches. This leads
to unwarranted degradation of thread 2’s performance without any
benefit to thread 1 (as its prefetches are useless).
Policy (b): never mark prefetches. This policy provides a naive so-
lution to policy (a)’s problems by not marking any prefetches. This
is helpful in prioritizing the demands of thread 2 over the useless
prefetches of thread 1. However, by not marking any prefetches,
this policy also does not include the useful prefetches of thread

3

Core 1 Compute
stall

P1:Useless prefetches
P2:Useful prefetches

{P/D, Core #} − address

(b) Do not include any prefetches
 when any demands are present

(c) Include prefetches in batches
 based on prefetch accuracy

DRAM

Bank 1

Bank 2

P1 − Y

P1 − X

D1 − A

P1 − Z D2 − GD2 − F P2 − M

Hit Pref − L

Hit Pref − M

Core 2 Compute Compute

Compute

stall

Core 1 Compute
stall

Bank 1

Bank 2

P2 − L

DRAM

P1 − ZP1 − XD2 − GD2 − F

D1 − A D2 − E P1 − Y

Miss − MMiss − L

Core 2 Compute Compute

Compute
stall

Bank 1

Bank 2

DRAM

D1 − A D2 − E P2 − L P1 − Y

D2 − G P2 − M P1 − X P1 − Z

Core 1 Compute
stall

Core 1’s saved stall cycles compared to (a)

Hit Pref − L

Hit Pref − M

Core 2 Compute Compute
stall

Core 2’s saved stall cycles compared to (a)

Compute

P2 − M

D2 − F

(a) Include all prefetches in batches

D2 − E P2 − L

Figure 3: Memory service timeline for requests of Figure 2

2 in the generated batch. Figure 3 (b) shows that thread 2’s use-
ful prefetches to addresses L and M are now delayed since all
prefetches are deprioritized. Hence thread 2 issues demands for
addresses L and M before the prefetches are serviced, and so the
benefit of those accurate prefetches significantly decreases. This
causes a loss of potential performance.
Our Approach: A key principle in this paper is to treat only ac-
curate prefetches as demands in shared resource management. Fig-
ure 2 (c) concisely shows how this is done for PARBS. Using feed-
back from different threads’ prefetchers, PARBS can make a more
intelligent decision about whether or not to include prefetches when
forming batches. Since thread 2’s prefetches are useful, we include
them in the batch, while thread 1’s useless prefetches are excluded.
As a result, benefits from prefetching for thread 2 is maintained,
as shown in Figure 3 (c). Excluding thread 1’s useless prefetches
from the batch improves system fairness as these requests no longer
unduly delay thread 2’s demands and useful prefetches, and thread
2’s slowdown is reduced without increasing thread 1’s slowdown.
Figure 3 (c) shows that this policy improves both applications’ per-
formance compared to policies that treat all prefetches equally, mo-
tivating the need for distinguishing between accurate and inaccu-
rate prefetches in shared resource management.

Example 2: Figure 4 shows the problem with just prioritizing
accurate prefetches, and concisely shows our solution for a system
using PARBS. When including accurate prefetches into the batches
formed by PARBS, in the presence of prefetch-friendly applica-
tions (like application 2 in Figure 4), the size of the batches can in-
crease. Since memory non-intensive applications (like application
1 in Figure 4) generate memory requests at a slow pace, every time
a batch is formed (Time t1 shown in Figure 4(a)), memory non-
intensive applications will have a small number of their requests

included. At time t2, more requests from the memory non-intensive
application arrive. Without our proposed mechanism, since the
current batch is still being serviced (Figure 4 (c)), these requests
have to wait until the current batch is finished, which could take a
long time since useful prefetch requests that were entered into the
batch made the batch size larger. In this paper, we propose demand
boosting, which prioritizes the small number of the non-intensive
application’s requests over others. In Figure 4 (d), at time t3, the
two demand requests from application 1 to addresses K and L are
boosted into the current batch and prioritized over the existing re-
quests from application 2 within the batch. This allows application
1 to go back to its compute phase quickly. Doing so does not de-
grade application 2’s performance significantly as the non-intensive
application 1 inherently has very few requests.

4. HIGH PERFORMANCE AND FAIR

SHARED RESOURCE MANAGEMENT

IN THE PRESENCE OF PREFETCHING
In this section, we describe in detail our proposal for han-

dling prefetches in the two types of resource management tech-
niques: resource-based and source-based. We also introduce de-
mand boosting, which is orthogonal to the employed resource man-
agement technique. Since demand boosting is common to both
resource-based and source-based techniques, we describe it first in
Section 4.1. Then, we describe in detail how to apply our insights
(described in Sections 1 and 3) to each resource management tech-
nique in turn (Sections 4.2 and 4.3).

4.1 Demand Boosting
Problem and Main Idea: As described in Section 3, the first

component of our proposal is to treat useful prefetches to be
as important as the demands. Memory-intensive and prefetch-
friendly applications can generate many such requests, which can
cause long delays for the demands of concurrently executing non-
intensive threads. As a result, system performance and fairness
can degrade because of large performance degradations to memory
non-intensive applications. To mitigate this problem, we propose
demand boosting for such non-intensive applications. The key idea
is to prioritize the non-intensive application’s small number of de-
mand requests over others, allowing that application to go back
to its compute phase quickly. It must be noted that this does not
significantly degrade other applications’ performance because the
non-intensive application inherently has very few requests.

Why the Problem Exists: The potential for short-term starva-
tion of a non-intensive application’s demands increases in each of
the techniques we consider for different reasons. In NFQ and FST,
potential for starvation is created by the prioritization of DRAM
row buffer hits and older requests in the memory scheduler: appli-
cations with high row buffer locality and potentially large number
of accurate prefetches that are considered as important as demands
can starve others. PARBS uses the batching concept to mitigate
this inherent issue due to prioritizing row-buffer hit requests and
older requests. However, in Section 3 we proposed including accu-
rate prefetches into PARBS’s batches. The slow rate at which non-
intensive threads generate their requests, together with the large
batches generated using requests from prefetch-friendly applica-
tions, causes potential for starvation in PARBS.

In addition, when such memory non-intensive applications are
cache friendly, as they stall waiting for their small number of mem-
ory requests to be serviced, their useful requests in the shared cache
move up the LRU stack and can get evicted more quickly by inten-

4

No Demand Boosting

Bank 2Bank 1

P2−C P2−D

P2−O D2−P

P2−M P2−N

{P/D, Core #} − address

P2 : Useful prefetches from Core 2

Batch

Bank 2

P2−C P2−D

Bank 2Bank 1

P2−O D2−P

P2−M P2−N

P2−I P2−J

D2−G P2−H

P2−E D2−F

Bank 2Bank 1

P2−O D2−P

P2−M P2−N

P2−I P2−J

P2−HD2−G

P2−E D2−F

(b) T = t2 (c) T = t3

With Demand Boosting

(d) T = t3

Boosted Demands
Bank 1

P2−I P2−J

D2−G P2−H

P2−E D2−F

(a) T = t1

D1−A D1−B

D1−K D1−L

D1−LD1−K P2−I P2−J

D2−G P2−H

P2−E D2−F

D1−K D1−LServiced First

Serviced Last

Service Order

Figure 4: Example 2: No demand boosting vs. Demand boosting

sive applications’ requests. This, in turn, causes larger performance
penalties for such memory non-intensive applications.

To summarize, elevating the priority of accurate prefetch re-
quests from memory intensive applications causes the small mem-
ory related stall times of non-intensive applications to increase.
This significantly hurts the non-intensive applications’ perfor-
mance (as also observed by prior work [18]).

Demand Boosting Mechanism: Demand boosting is a general
mechanism orthogonal to the type of resource management tech-
nique. It increases the performance of memory non-intensive appli-
cations that do not take advantage of accurate prefetches by dynam-
ically prioritizing a small number of such applications’ demands.
With demand boosting, the demands of an application that does
not have accurate prefetches and has at most a threshold number
of outstanding requests, will be boosted and prioritized over all
other requests. For example, in a system using PARBS, when an
application’s demands are boosted, they are included in the current
batch and prioritized over the existing requests within the batch. As
such, a boosted request X has higher priority than any other request
Y regardless of whether or not request Y is in the current batch.3

If requests from multiple applications are boosted, the prioritiza-
tion between the boosted requests is based on the baseline resource
management technique’s policies.

Delaying a memory-intensive application in lieu of a memory
non-intensive application with inherently small memory stall times
can improve both system performance and fairness [26, 19, 8, 15,
16]. As we show in Section 6, demand-boosting enables perfor-
mance benefits from prefetching that are not possible without it.

4.2 Prefetch-Aware Resource-Based Manage-
ment Techniques

We identify prefetcher accuracy as the critical prefetcher charac-
teristic to determine how a prefetcher’s requests should be treated
in shared resource management techniques. Prefetcher accuracy is
defined as the ratio of useful prefetches generated by a prefetcher
to the total number of prefetches it generates. We also investigated
using other prefetcher feedback such as a prefetcher’s degree of
timeliness4, but found that accuracy has more of a first order effect.

3Note that in the context of demand boosting for PARBS, demand
boosting is significantly different from the “intra-batch” ranking
proposed by the original PARBS mechanism (which we use in all
our PARBS related mechanisms). PARBS’s ranking prioritizes re-
quests chosen from requests already contained within the current
batch using its ranking algorithm. In contrast, with demand boost-
ing, demand requests from a boosted thread are prioritized over all
other requests.
4A prefetcher’s degree of timeliness is defined as the ratio of the
number of useful prefetches that fill the last level cache before the
corresponding demand request is issued, to the total number of use-
ful prefetches.

In all of the mechanisms we propose, we measure prefetch accu-
racy on an interval by interval basis, as done in Srinath et al. [36].
An interval ends when T = 8192 cache lines are evicted from the
last level cache, where T is empirically determined. Every interval,
feedback information on the number of useful prefetches and total
sent prefetches of each prefetcher is gathered. Using this feedback
information, the accuracy of the prefetcher in that interval is cal-
culated and used as an estimate of the prefetcher accuracy in the
following interval. In the following subsections, we discuss how to
redesign underlying prioritization principles of the different tech-
niques to take this information into account.

4.2.1 Parallelism-Aware Batch Scheduling

PARBS uses batching to provide a minimum amount of DRAM
service to each application by limiting the maximum number of
requests considered for scheduling from any one application. In-
accurate prefetches of an application A can have negative impact
on system performance and fairness in two ways. First, they get
included in batches and get prioritized over other applications’ de-
mands and useful prefetches that were not included. As a result,
they cause large performance degradation for those other applica-
tions without improving application A’s performance. Second, they
reduce the fairness provided by PARBS to application A by occupy-
ing a number of slots of each batch that would otherwise be used to
give application A’s demands a minimum amount of useful DRAM
service.

We propose the following new batch scheduling algorithm to en-
able potential performance improvements from prefetching, while
maintaining the benefits of PARBS. The key to Algorithm 1 is that
it restricts the process of marking requests to demands and accu-
rate prefetches. As a result, a prefetch-friendly application will be
able to benefit from prefetching within its share of memory ser-
vice. On the other hand, inaccurate requests are not marked and are
hence deprioritized by PARBS: they are serviced when there are no
marked requests to the same banks.

Algorithm 1 Parallelism-Aware Batch Scheduler’s Policies (Prefetch-

Aware PARBS, P-PARBS)

Forming a new batch: A new batch is formed when there are no marked
requests left in the memory request buffer, i.e., when all requests from the
previous batch have been completely serviced.
Marking: When forming a new batch, the scheduler marks up to
Marking-Cap outstanding demand and also accurate prefetch requests
for each application; these requests form the new batch.
Prioritization: Within the batches, demands are prioritized over
prefetches. All other prioritization is the same as original PARBS al-
gorithm [26].

4.2.2 Network Fair Queuing

NFQ uses earliest virtual finish time first memory scheduling to
provide quality of service to concurrently executing applications.

5

Inaccurate prefetches of some application A can have negative im-
pact on system performance and fairness in two ways: First, if ap-
plication A’s inaccurate prefetches get prioritized over demands or
accurate prefetches of some other application B due to the former’s
earlier virtual finish time, system performance will degrade. Appli-
cation B’s service is delayed while application A does not gain any
performance. Second, since NFQ provides service to application
A’s inaccurate prefetches, the virtual finish times of application A’s
demands grows larger than when there was no prefetching. This
means that application A’s demand requests will get serviced later
compared to when there is no prefetching. Since application A’s
prefetches are not improving its performance, this ultimately re-
sults in application A’s performance loss due to unwarranted waste
of its share of main memory bandwidth.

We propose the following prioritization policy for the NFQ bank
scheduler. When this scheduler prioritizes requests based on ear-
liest virtual finish time, this prioritization is performed only for
demand accesses and accurate prefetches. Doing so prevents the
two problems described in the previous paragraph. Note that, upon
being scheduled, both demands and prefetches update the corre-
sponding application’s virtual finish times as is done with demand
requests in the original NFQ proposal. Algorithm 2 summarizes
the proposed NFQ policy.

Algorithm 2 Network Fair Queuing’s Bank Scheduler Priority Policy

(Prefetch-Aware NFQ, P-NFQ)

Prioritize row-hit requests (ready and column-access DRAM commands)
Prioritize commands for demands and also accurate prefetch requests
with earliest virtual finish-time
Prioritize commands based on arrival time

4.3 Prefetch-Aware Source-Based Manage-
ment Techniques

We propose prefetch handling mechanisms for a recent source-
based shared resource management approach, FST [8]. We briefly
described FST’s operation in Section 2.4. FST does not take into
account interference generated for prefetches and interference gen-
erated by the prefetches of each application.

We incorporate prefetch awareness into FST in two major ways
by: a) determining how prefetches and demands should be consid-
ered in estimating slowdown values, and b) coordinating core and
prefetcher throttling using FST’s monitoring mechanisms.

4.3.1 Determining Application Slowdown in the
Presence of Prefetching

FST tracks interference in the shared memory system to dynam-
ically estimate the slowdown experienced by each application. Yet,
it cannot compute accurate slowdown values if prefetching is em-
ployed because FST is unaware of prefetches. We describe a new
mechanism to compute slowdown when prefetching is employed.

When requests A and B from two applications interfere with each
other in a shared resource, one request receives service first and the
other is interfered-with. Let us assume that request A was the inter-
fering and request B was the interfered-with. The type of memory
request A classifies the interference as prefetch-caused or demand-
caused interference. The type of memory request B classifies the
interference as prefetch-delaying or demand-delaying interference.

FST defines individual slowdown, IS, as Tshared/Talone to esti-
mate system unfairness. In order to estimate Talone when running
in shared mode, FST makes an estimation of “the number of extra
cycles it takes an application to execute due to inter-core interfer-
ence in the shared memory resources.” This is known as Texcess

(Texcess = Tshared − Talone).
When estimating Texcess in the presence of prefetching, we

use the following two principles. First, both prefetch-caused and
demand-caused interference should be considered. Second, only
demand-delaying interference should be used to calculate slow-
down values at runtime. This means that when calculating core
i’s Texcess, interference caused for its demands by either demands
or prefetches of other cores j (j 6= i) should be accounted for. This
is because ultimately both prefetch and demand requests from an
interfering core can cause an interfered-with core to stall. On the
other hand, even though prefetch-delaying interference reduces the
timeliness of interfered-with prefetches, it does not significantly
slow down the corresponding core. If an accurate prefetch is de-
layed until the corresponding demand is issued, that prefetch will
be promoted to a demand. Further delaying of that request will
contribute to the slowdown estimated for the respective core be-
cause any interference with that request will be considered demand-
delaying from that point on.

Algorithm 3 summarizes how our proposal handles prefetches to
make FST prefetch-aware.5 FST uses a bit per core to keep track of
when each core was interfered with. We refer to this bit-vector as
the Interference bit-vector in the algorithm. In principle, when FST
detects inter-core interference for core i at any shared resource (for
example when core i’s memory request has to wait for service from
a DRAM bank because some other core j’s request is tying up that
bank), it sets bit i of the Interference bit-vector, indicating that the
core was delayed due to interference. Later, when the interfered-
with request of core i is scheduled/serviced the corresponding bit
i in the Interference bit-vector is reset. Also, an ExcessCycles
counter is simply used to track Texcess for each core.

Algorithm 3 Prefetch-aware FST (P-FST) estimation of core i’s Texcess

Every cycle
if inter-core interference created by any core j’s prefetch requests or de-
mand requests for core i’s demand requests then

set core i’s bit in the Interference bit-vector
end if

if core i’s bit is set in the Interference bit-vector then

Increment ExcessCycles counter for core i
end if

4.3.2 Coordinated Core and Prefetcher Throttling

FST throttles cores to improve fairness and system performance.
On the other hand, hierarchical prefetcher aggressiveness control
(HPAC, described in Section 2.5) is an independent technique that
throttles prefetchers to improve system performance by controlling
prefetcher-caused inter-core interference. Unfortunately, combin-
ing them without coordination causes contradictory decisions. For
example, the most slowed down core’s prefetcher can be throt-
tled down (by the prefetch throttling engine, i.e., HPAC’s global
control) while the core is being throttled up (by the core throt-
tling engine, i.e. FST). As a result, fairness and performance de-
grade and potential performance benefits from prefetching can be
lost. Therefore, we would like to coordinate the decisions of core
and prefetcher throttling. The key insight is to inform/coordinate
HPAC’s throttling decisions with FST’s decisions using the inter-
ference information collected by FST. We achieve this in two ways.

The first key idea is to use the slowdown information that FST
gathers for core throttling to make better prefetcher throttling de-
cisions. To do this, we only apply HPAC’s global prefetcher throt-
tle down decisions to a core if FST has detected the correspond-
ing core to be Appinterfering .6 For all applications other than

5We present our changes to the original Texcess estimation algo-
rithm [8]. For other details on Texcess estimation we refer to [8].
6If HPAC’s local throttling component for core i detects that the
core’s prefetcher is not performing well, that prefetcher is still

6

Appinterfering , HPAC’s global decision is ignored and local throt-
tling decisions are applied. This is because HPAC can be very strict
at prefetcher throttling due to its coarse classification of the sever-
ity of global prefetcher interference. As a result, it throttles some
prefetchers down conservatively even though they are not affecting
system performance/fairness adversely. We avoid this by using the
information FST gathers about which cores are creating the most
unfairness in the system.

The second key idea is to use FST’s ability in tracking inter-
core cache pollution to improve how well HPAC detects accurate
prefetchers. This is useful because HPAC can underestimate a
prefetcher’s accuracy due to its interference-unaware tracking of
useful prefetches. HPAC does not count accurate prefetches for
core i that were evicted from the last-level cache by some other
core’s requests before being used. This can cause HPAC to in-
correctly throttle down core i’s accurate prefetcher and degrade its
performance. To avoid this, we use FST’s pollution filter to detect
when an accurate prefetch for core iwas evicted due to another core
j’s request. For this purpose, we extend FST’s pollution filter en-
tries to also include a prefetch bit. Using this, we account for useful
prefetches evicted by another core’s requests in HPAC’s estimation
of each prefetcher’s accuracy.

Algorithms 4 and 5 summarize the above mechanisms that coor-
dinate core and prefetcher throttling.

Algorithm 4 Prefetch-Aware FST (P-FST) Core and Prefetcher Throttling

if Estimated Unfairness > Unfairness Threshold then

Throttle down Appinterfering

Throttle up Appslowest

Apply HPAC global throttling decision to Appinterfering’s

prefetcher and local throttling decisions to all other prefetchers

else
Apply HPAC local throttling decisions to all prefetchers

end if

Algorithm 5 Enhancing prefetcher accuracy information using FST’s pol-

lution filters

if Last-level cache hit on prefetched cache line then

increment useful prefetch count
end if

if Last-level cache miss due to inter-core interference as detected by FST
and evicted line was prefetch request then

increment useful prefetch count
end if
Prefetch accuracy = useful prefetch count / total prefetch count

5. METHODOLOGY
Processor Model: We use an in-house cycle-accurate x86 CMP

simulator for our evaluation. We faithfully model all port con-
tention, queuing effects, bank conflicts, and other major DDR3
DRAM system constraints in the memory system. Table 1 shows
the baseline configuration of each core and the shared resource con-
figuration for the 4-core CMP system we use.

Benchmarks: We use the SPEC CPU 2000/2006 benchmarks
for our evaluation. Each benchmark was compiled using ICC (Intel
C Compiler) or IFORT (Intel Fortran Compiler) with the -O3 op-
tion. Each benchmark runs the reference input set for 50 million
x86 instructions selected by Pinpoints [31].

We classify a benchmark as memory-intensive if its L2 Cache
Misses per 1K Instructions (MPKI) is greater than three and other-
wise we refer to it as memory non-intensive. We say a benchmark
has cache locality if the number of L2 cache hits per 1K instruc-
tions (HPKI) for the benchmark is greater than five. An applica-
tion is classified as prefetch-friendly if its IPC improvement due to

throttled down regardless of FST’s decision. This helps both core
i’s and other cores’ performance.

15 stage out of order processor, decode/retire up to 4 instructions
Execution core Issue/execute up to 8 micro instructions; 128-entry reorder buffer

Fetch up to 2 branches; 4K-entry BTB;
Front end 64K-entry Hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line ; L1 D-cache: 32KB,
4-way, 2-cycle, 64B line

On-chip caches Shared unified L2: 2MB , 16-way, 16-bank, 20-cycle, 1 port, 64B
line size

Stream prefetcher with 32 streams,
Prefetcher prefetch degree of 4, prefetch distance of 64 cache lines [38]

On-chip, Open-row;
DRAM controller PARBS [26]/NFQ [29]/FR-FCFS [34] scheduling policies

128-entry MSHR and memory request queue

667MHz bus cycle, DDR3 1333MHz [23]
8B-wide data bus, 8 DRAM banks, 16KB row buffer per bank

DRAM and bus Latency: 15-15-15ns (tRP -tRCD-CL), corresponds to
100-100-100 processor cycles
Round-trip L2 miss latency: Row-buffer hit: 36ns, conflict: 66ns

Table 1: Baseline system configuration

prefetching when run in isolation is more than 10%. If its IPC
degrades, it is classified as prefetch-unfriendly and otherwise as
prefetch-insensitive. These classifications are based on measure-
ments made when each benchmark was run alone on the 4-core
system with prefetching enabled. Table 2 shows the characteristics
of 18 of the 29 benchmarks (characteristics of all 29 benchmarks
can be found in [9]) that appear in the evaluated workloads when
run on the 4-core system.

Workload Selection We used 15 four-application workloads for
our evaluations. The workloads were chosen such that each work-
load consists of at least two memory-intensive applications (MPKI
greater than three) and an application with cache locality. All but
one workload has at least one prefetch-friendly application since
the goal of the paper is to demonstrate how to improve system per-
formance due to prefetching in systems that employ the different
shared resource management mechanisms. The one workload with
no prefetch-friendly applications consists of memory-intensive and
prefetch-unfriendly applications.

No prefetching Prefetching

Benchmark Type IPC MPKI HPKI ∆ IPC(%) MPKI HPKI Acc(%) Cov(%)

art FP00 0.23 25.7 101.68 8 13.73 105 61 55

gromacs FP06 1.17 0.22 10.85 2 0.07 11 66 70

lbm FP06 0.33 19.3 13.18 7.7 3.43 27.4 94 82

GemsFDTD FP06 0.38 12.67 4.32 75 0.07 17.6 93 99

omnetpp INT06 0.34 8.79 5.7 -1 8.72 5.3 11 19

zeusmp FP06 0.66 3.97 15.7 14.2 1.92 17.6 67 52

bzip2 INT06 1.57 0.96 7.5 4.7 0.64 7.8 95 35

perlbmk INT00 1.8 0.04 5.4 0.35 0.03 5.4 16 35

xalancbmk INT06 1.07 0.83 19 -12 0.99 18.8 11 18

sphinx3 FP06 0.26 12.82 4.8 96.7 2.71 14.5 58 79

leslie3d FP06 0.29 21.37 8 88.8 4.73 22.3 94 78

bwaves FP06 0.26 22.43 0 26.3 2.3 11.3 100 90

astar INT06 0.17 23.04 9.3 3.7 21.4 10.4 25 8

vortex INT00 0.97 1.21 7.1 -4 1.15 7 27 14

swim FP00 0.39 16.85 7.2 24.8 0.57 20 100 97

h264ref INT06 1.89 0.77 1.94 -1.7 0.43 2 56 55

crafty INT00 1.56 0.26 7.8 2.9 0.19 7.9 34 29

libquantum INT06 0.26 11.84 0 10.4 2.21 0.52 100 81

Table 2: Characteristics of 18 SPEC 2000/2006 benchmarks:

IPC without prefetching and ∆IPC with prefetching, MPKI

(L2 cache Misses Per 1K Instructions) and HPKI (L2 cache

Hits Per 1K Instructions) with and without prefetching, and

prefetcher accuracy and coverage

Parameters used in evaluation: In all our mechanisms, the
threshold to determine whether an application’s prefetcher is accu-
rate is 80%. In prefetch-aware NFQ (P-NFQ) and prefetch-aware
FST (P-FST), an application must have fewer than ten memory re-

7

quests in the memory request queue of the memory controller to
be considered for demand boosting, and fewer than 14 requests in
prefetch-aware PARBS (P-PARBS). Section 6.5 shows that the re-
ported results are not very sensitive to the value chosen for this
threshold. The parameter setup for each of the FST and HPAC
techniques is the same as those reported in [8] and [6] respectively.
For PARBS [26], we use the same Marking Cap threshold as used
in the original paper, five memory requests per thread per bank.

Metrics: To measure CMP system performance, we use Har-
monic mean of speedups (Hspeedup or HS) [22], and Weighted
speedup (Wspeedup or WS) [35]. To demonstrate fairness improve-
ments, we report MaxSlowdown [15], and also Unfairness as de-
fined in [24, 25] (see Section 2.1). Since Hspeedup provides a bal-
anced measure between fairness and system throughput [22], we
use it as our primary evaluation metric. In the definitions below: N
is the number of cores in the CMP, IPCalone is the IPC measured
when an application runs alone on one core in the CMP system
(other cores are idle), and IPCshared is the IPC measured when
an application runs on one core while other applications are running
on the other cores.

Hspeedup =
N

N−1
X

i=0

IPCalone

i

IPCshared

i

, Wspeedup =

N−1
X

i=0

IPCshared

i

IP Calone

i

6. EXPERIMENTAL EVALUATION
We evaluate the mechanisms described in the previous sections

on a 4-core CMP system employing NFQ, PARBS, and FST in the
following three subsections respectively. Note that our prefetch-
aware NFQ, PARBS, and FST techniques (P-NFQ, P-PARBS, and
P-FST) are evaluated on a system with state-of-the-art prefetcher
throttling (HPAC) [6]. In all the figures, legend entries from top to
bottom correspond to bars from left to right.

6.1 NFQ Results
Figures 5 (a)-(d) show average system performance and unfair-

ness of a system using an NFQ memory scheduler in different
configurations: with no prefetching, prefetching with and without
prefetcher control, and with our proposed prefetch-aware NFQ.7

In the policies referred to as demand-pref-equal, demands and
prefetches are treated equally in terms of prioritization based on
earliest virtual finish time. In the demand-prioritized policy, de-
mands are always prioritized over prefetches, and are scheduled
earliest virtual finish time first. P-NFQ provides the highest sys-
tem performance and least unfairness among all the examined tech-
niques. P-NFQ outperforms the best performing previous tech-
nique (NFQ + HPAC demand-prioritized) by 11%/8.6% (HS/WS)
while reducing maximum slowdown by 9.9%. Several observations
are in order:

1. Figure 5 shows that in all cases (with or without prefetcher
throttling), demand-prioritized has higher performance and lower
maximum slowdown than demand-pref-equal. We conclude that, as
we explained in Section 4.2, if all prefetch requests are treated alike
demand requests, wasted service given to useless prefetches leads
to a worse-performing and less fair system than always prioritizing
demands.

2. The last two bars in each of the subfigures of Figure 5 demon-
strate a key insight: without intelligent prioritization of demand re-
quests of memory non-intensive applications, system performance
and fairness do not significantly improve simply by prioritizing ac-
curate prefetches. Adding the demand boosting optimization to

7For per-workload results on systems employing NFQ and PARBS
we refer the reader to our extended technical report [9].

P-NFQ (with no boosting) improves performance by 10%/3.8%
(HS/WS) and reduces maximum slowdown by 13.2% compared to
just prioritizing accurate prefetches within NFQ’s algorithm.

3. Figures 5 (a)-(d) show that demand boosting improves sys-
tem performance independent of the setup it is used with. Demand
boosting alone improves the performance of demand-prioritized
and prefetching with no throttling by 7.3%/6.7% (HS/WS). When
used with demand-prioritized and HPAC, it improves performance
by 3.3%/3.6% (HS/WS). However, demand boosting provides the
best system performance and fairness when used together with our
proposed P-NFQ which prioritizes requests based on virtual finish
time first using prefetch accuracy feedback. Note that using de-
mand boosting and considering prefetch accuracy information in
prioritization decisions are synergistic techniques. Together, they
perform better than either alone. We conclude that demand boost-
ing is a general mechanism but is most effective when used together
with resource management policies that take prefetcher accuracy
into account in their prioritization rules.

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
d

u
p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
d

u
p

(b) Wspeedup

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

U
n

fa
ir

n
es

s

(c) Unfairness

0

1

2

3

4

5

6

7
M

a
x

 S
lo

w
d

o
w

n
NFQ + No Pref

NFQ + Str. Pref (demand-pref-equal)

NFQ + Str. Pref (demand-prioritized)

NFQ + Str. Pref (demand-prioritized) + Boost

NFQ + HPAC (demand-pref-equal)

NFQ + HPAC (demand-prioritized)

NFQ + HPAC (demand-prioritized) + Boost

P-NFQ (No Boost)

P-NFQ

(d) Max Slowdown

Figure 5: Average system performance and unfairness on 4-

core system with NFQ

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
d

u
p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
d

u
p

(b) Wspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
n

fa
ir

n
es

s

(c) Unfairness

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

M
a
x
 S

lo
w

d
o
w

n PARBS + No Pref

PARBS + Str. Pref (demand-pref-batching)

PARBS + Str. Pref (demand-only-batching)

PARBS + Str. Pref (demand-only-batching) + Boost

PARBS + HPAC (demand-pref-batching)

PARBS + HPAC (demand-only-batching)

PARBS + HPAC (demand-only-batching) + Boost

P-PARBS (No Boost)

P-PARBS

(d) Max Slowdown

Figure 6: Average system performance and unfairness on 4-

core system with PARBS

8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
p

ee
d

u
p

 o
v

er
 A

lo
n

e
R

u
n

swim

perlbmk

sphinx3

vortex

No Pref. Str. Pref.
Dem-Pr-Eq

Str Pref.
Dem-First

HPAC
Dem-Pr-Eq

HPAC
Dem-First

P-PARBS
(No Boost)

P-PARBS

(a) PARBS case study: individual application behavior

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
n

ta
g
e

swim perlbmk sphinx3 vortex

Demand-pref-batching

Demand-only-batching

Demand-boosted

Batched normally

(b) Left bars: dem-pref-batching vs dem-only-batching time, right

bars: requests boosted vs batched normally

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
sp

ee
d

u
p

(c) Hspeedup

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

W
sp

ee
d

u
p

(d) Wspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

U
n

fa
ir

n
es

s

(e) Unfairness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

M
a

x
 S

lo
w

d
o

w
n

PARBS + No Pref

PARBS + Str. Pref (demand-pref-batching)

PARBS + Str. Pref (demand-only-batching)

PARBS + HPAC (demand-pref-batching)

PARBS + HPAC (demand-only-batching)

P-PARBS (No Boost)

P-PARBS

(f) Max Slowdown

Figure 7: PARBS case study

6.2 PARBS Results
Figures 6 (a)-(d) show average system performance and unfair-

ness of different prefetch-demand batching policies with and with-
out prefetcher control. In demand-pref-batching, demands and
prefetches are treated equally in PARBS’s batch-forming (within
the batches, demands are prioritized over prefetches because we
find this to be better performing on average). In demand-only-
batching, only demands are included in the batches. P-PARBS pro-
vides the highest system performance and the smallest unfairness
among all of the techniques, improving system performance on
average by 10.9%/4.4% (HS/WS) while reducing maximum slow-
down by 18.4% compared to the combination of PARBS and HPAC
with demand-only-batching.

6.2.1 Case Study

The goal of this case study is to provide insight into how the
mechanisms we propose improve performance. It also shows in de-
tail why simply prioritizing accurate prefetches in shared resource
management techniques does not necessarily improve system per-
formance and fairness. We examine a scenario where two mem-
ory intensive and prefetch-friendly applications (swim and sphinx3)
concurrently execute with two memory non-intensive applications
(perlbmk and vortex). Figures 7 (a) and (c)-(f) show individual
application performance and overall system behavior of this work-
load. Figure 7 (b) shows the dynamics of the mechanisms pro-
posed for prefetch-aware PARBS. In Figure 7 (b), each applica-
tion is represented with two bars. The left bar in each pair shows
the percentage of time that both demands and prefetches from the
corresponding application were included in P-PARBS’s batches vs.
the percentage of time that only demands were included. The right
bar shows the percentage of all batched requests that were boosted
into the batches by the demand-boosting mechanism vs. all other
batched requests.

P-PARBS both performs significantly better and is much more
fair than all the other evaluated techniques. This is due to the fol-
lowing two reasons:

1. Including useful prefetches of swim and sphinx3 alongside
demand requests in P-PARBS’s batches allows these applications

to make good use of their accurate prefetches and significantly
improves their performance. Figure 7 (b) shows that swim’s and
sphinx3’s prefetches are included in the batches for 100% and
60% of their execution times respectively. During these periods,
swim and sphinx3 also achieve better row buffer locality: their row
buffer hits are increased by 90% and 27% respectively compared
to the technique with the best system performance among the other
techniques (HPAC demand-only-batching). In addition, swim and
sphinx3’s prefetches become 8% and 11% more timely (not shown
in the figure).

2. Boosting the demands of the prefetch insensitive and mem-
ory non-intensive application, vortex, allows it to get quick mem-
ory service and prevents it from being delayed by the many re-
quests batched for swim and sphinx3. Because vortex’s requests
are serviced quickly, its performance increases. Also, since vor-
tex is memory non-intensive, this boosting does not degrade other
applications’ performance significantly.

The last two sets of bars in Figure 7 (a) show the importance
of the demand boosting optimization. When swim’s and sphinx3’s
prefetches are included in the batches, vortex’s performance de-
grades if demand boosting is not used. This happens because of
inter-core cache pollution caused by swim and sphinx3. Hence,
even though swim’s and sphinx3’s performance improves signifi-
cantly without boosting, overall system performance does not im-
prove over the HPAC demand-only-batching scheme (Figures 7
(c)-(d)). In contrast, with demand boosting, vortex’s performance
also improves, which enables P-PARBS to perform 13.3%/7.6%
(HS/WS) better than the best previous approach while also reduc-
ing maximum slowdown by 17.8%.

6.3 FST Results
Figure 8 shows system performance of each of the 15 evalu-

ated workloads for FST in the following configurations: without
prefetching, with aggressive stream prefetching, with HPAC, and
our proposed coordinated core and prefetcher throttling, i.e., P-FST
(with and without demand boosting). Figures 9 (a)-(d) show aver-
age system performance and unfairness for the five configurations
of FST that we evaluated. P-FST provides the highest performance

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
sp

ee
d

u
p

FST + No Pref

FST + Str. Pref (demand-prioritized)

FST + HPAC (uncoordinated)

P-FST (No Boost)

P-FST

swim
perlbmk
sphinx3
vortex
(WL1)

bwaves
crafty
bzip2
swim

(WL2)

swim
perlbmk

applu
wrf

(WL3)

libq
swim
Gems
bzip2
(WL4)

lbm
omnet
apsi

vortex
(WL5)

applu
gobmk
leslie
lbm

(WL6)

lbm
parser
crafty
leslie

(WL7)

lbm
twolf

equake
mesa

(WL8)

lbm
Gems
astar
mesa

(WL9)

leslie
sphinx3
zeusmp
crafty

(WL10)

art
astar
leslie
crafty

(WL11)

gromacs
art

astar
h264

(WL12)

art
gamess
Gems
h264

(WL13)

art
leslie

gamess
gromacs
(WL14)

lucas
ammp
xalanc

gromacs
(WL15)

Figure 8: System performance (Hspeedup) for each of the 15 workloads

0.0

0.1

0.2

0.3

0.4

0.5

H
sp

ee
d

u
p

(a) Hspeedup

1.0

1.2

1.4

1.6

1.8

2.0

2.2

W
sp

ee
d

u
p

(b) Wspeedup

0.0

0.5

1.0

1.5

2.0

2.5

3.0

U
n

fa
ir

n
es

s

(c) Unfairness

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
a
x
 S

lo
w

d
o
w

n

FST + No Pref

FST + Str. Pref

FST + HPAC (uncoordinated)

P-FST (No Boost)

P-FST

(d) Max Slowdown

Figure 9: Average system performance and unfairness on 4-

core system with FST

and best fairness among the five techniques. Several observations
are in order:

1. When prefetching with no throttling is used, in five of the
workloads prefetcher-caused interference is noticeable and is left
uncontrolled by FST. This results in large degradations in sys-
tem performance of 5% or more (WL5, WL11, WL12, WL14,
and WL15). In these workloads, FST does not detect the appli-
cations causing prefetcher interference to be App-interfering. Be-
cause of these workloads, prefetching with no throttling does not
improve average system performance significantly compared to no
prefetching as shown in Figure 9. This shows the need for explicit
prefetcher throttling when prefetching is used with FST.

2. When HPAC [6] and FST [8] are naively combined with no
coordination, four of the 15 workloads lose significant prefetch-
ing performance (workloads WL1, WL3, WL4, and WL8). In
such cases, HPAC throttles down some useful prefetchers unnec-
essarily. This happens due to: a) excessive throttling caused by
HPAC’s coarse classification of interference, and b) underestima-
tion of prefetcher accuracy due to interference-unaware tracking
of useful prefetches (described in Section 4.3.2). Unnecessary
throttling makes the system more unfair compared to no prefetcher
throttling. This happens when a prefetch-friendly application with
the largest slowdown in the absence of prefetching is unnecessarily
throttled. With no prefetcher throttling, such an application gains
significant performance, which in turn reduces system unfairness.
When HPAC throttles down the prefetchers of such applications

too much, this fairness improvement is lost. We conclude that even
though a naive combination of HPAC and FST improves average
system throughput, this comes at the cost of increasing system un-
fairness significantly compared to no throttling.

3. Our P-FST technique (with demand-boosting) addresses the
problems described above by coordinating prefetcher and core
throttling, and improves performance by 11.3%/5.6% (HS/WS)
while reducing maximum slowdown by 14.5% compared to the
best performing of the other techniques (i.e., the uncoordinated
FST and HPAC combination). Compared to the configuration with
the least max slowdown, i.e., the combination of prefetching with
no throttling and FST, P-FST with boosting performs 11.2%/10.3%
(HS/WS) better while reducing maximum slowdown by 10.3%.

6.4 Effect on Homogeneous Workloads
Multi-core systems are sometimes used to run multiple copies of

the same application in server environments. Table 3 shows sys-
tem performance and fairness deltas of P-NFQ compared to NFQ
+ HPAC (demand-prioritized) for a prefetch friendly (four copies
of sphinx3) and a prefetch unfriendly (four copies of astar) work-
load. Our proposal improves system performance and reduces max
slowdown for the prefetch friendly workload, while it does not
significantly affect the prefetch unfriendly one. In the prefetch
friendly workload, prioritizing accurate prefetches improves each
benchmark’s performance by making timely use of those accurate
prefetches. This is not possible if all prefetches are treated alike.
Four copies of sphinx3 (prefetch friendly) Four copies of astar (prefetch unfriendly)

∆ HS ∆ WS ∆ Max Slwdn ∆ HS ∆ WS ∆ Max Slwdn

7.9% 7.9% -8.1% -1% -1% 0.5%

Table 3: Effect of our proposal on homogeneous workloads in

system using NFQ memory scheduling

6.5 Sensitivity to System and Algorithm Pa-
rameters

Table 4 shows how P-NFQ performs compared to NFQ + HPAC
(demand prioritized) on systems with two/four memory channels,
8MB/16MB shared last-level caches and on systems with other
types of prefetchers. Even though using multiple memory chan-
nels reduces contention to DRAM, and using larger caches reduces
cache contention, P-NFQ still performs significantly better while
reducing maximum slowdown. We conclude that our mechanism
provides performance benefits even on more costly systems with
higher memory bandwidth or larger shared caches, and also on sys-
tems employing different types of prefetchers.

Figure 10 shows how sensitive the performance benefits of the
techniques we propose (compared to the best previous technique
in each case) are to the boosting threshold. For all shown thresh-

10

Single Channel Dual Channel Four Channel

∆ HS∆ WS∆ Max Slwdn ∆ HS∆ WS∆ Max Slwdn ∆ HS∆ WS∆ Max Slwdn

11% 8.6% -9.9% 5% 6.3% -2.4% 3.6% 6.1% 0.7%

2MB Shared Cache 8MB Shared Cache 16MB Shared Cache

∆ HS∆ WS∆ Max Slwdn ∆ HS∆ WS∆ Max Slwdn ∆ HS∆ WS∆ Max Slwdn

11% 8.6% -9.9% 6.3% 5.3% -9.1% 4.9% 3.9% -6.6%

CZone/Delta Correlation Prefetcher [28] PC-based stride Prefetcher [1]

∆ HS∆ WS ∆ Max Slwdn ∆ HS∆ WS ∆ Max Slwdn

9.9% 7.5% -8.3% 6% 3.6% -7.6%

Table 4: Effect of our proposal on system using NFQ memory

scheduling with different microarchitectural parameters

olds, P-NFQ and P-FST show performance within 1% of that of
the chosen threshold. For P-PARBS, this is the case for all val-
ues between 14 and 26. In P-PARBS, with thresholds less than
14, not enough requests from prefetch-unfriendly benchmarks get
boosted. We conclude that the benefits of our mechanisms are not
highly sensitive to the chosen threshold value.

4

5

6

7

8

9

10

11

12

13

A
v
g
 %

 (
H

S
)

Im
p

ro
v
em

en
t

P-NFQ

P-PARBS

P-FST

4 6 8 10 12 14 16 18 20 22 24 26

Figure 10: Sensitivity to boosting threshold

6.6 Hardware Cost
Table 5 shows the required storage of our mechanisms on top of

each of the shared resource management techniques. Our mecha-
nisms do not require any structures that are on the critical path of
execution. Additionally, none of the structures we add/modify re-
quire much energy to access and none are accessed very often. As
such, significant overhead is not introduced in terms of power.

Closed form N=4
P-NFQ for N cores (bits) (bits)

Boosting bits in memory request queue entries 32 x N 128

Counters for # of requests per core in memory request queue 8 x N 32

Total storage required for P-NFQ 40 x N 160

P-PARBS

Counters for # of requests per core in memory request queue 8 x N 32

Total storage required for P-PARBS 8 x N 32

P-FST

Boosting bits in memory request queue entries 32 x N 128

Counters for # of requests per core in memory request queue 8 x N 32

Prefetch bits in pollution filter used for Pol. Filter Entries
coordinated core and prefetcher throttling (2048) x N 8192

Total storage required for P-FST 2088 x N 8352

Table 5: Hardware cost of our proposed enhancements

7. RELATED WORK
To our knowledge, this paper is the first to provide mechanisms

that aim to improve both performance and fairness of fair shared re-
source management techniques in the presence of prefetching. The
major contributions of this work are general mechanisms for how
prefetches should be considered in the prioritization decisions of
resource-based and source-based shared resource management. We
have already provided extensive quantitative and qualitative com-
parison to the three techniques that we apply our mechanisms to
(NFQ [29], PARBS [26], and FST [8]) in previous sections. Here,
we briefly discuss other related work in prefetch-aware DRAM
controllers, shared resource management, and prefetch filtering.

7.1 Prefetch-Aware DRAM Controllers
Lee et. al. [18] propose using prefetch accuracy information to

determine whether to prioritize demands over prefetches or to treat
them equally in terms of memory scheduling. To our knowledge,
this is the only prior work that deals with how prefetches should
be dealt with in a shared resource. However, this work targets han-
dling prefetches in a DRAM-throughput-oriented FR-FCFS sched-
uler that is not designed to provide fairness/QoS. Our paper makes
two major contributions beyond this work. First, it is the first to
address how prefetches should be considered in fair/QoS-capable
memory scheduling techniques that are shown to provide signifi-
cantly higher performance than throughput-oriented DRAM sched-
ulers. Second, it provides generalized prefetch handling techniques
not only for memory scheduling but also for a more general source
throttling-based management technique that aims to manage multi-
ple shared resources.

Lee et. al. [18] also observe the need for prioritizing demand
requests of applications which do not have accurate prefetchers.
They prioritize the demands of such applications over memory re-
quests of prefetch friendly applications which are not row buffer
hits. They place no condition on the memory intensity of the appli-
cations that are prioritized this way. Our demand boosting mech-
anism employs a more aggressive prioritization for a more limited
class of requests. We prioritize demand requests of applications
which are both not prefetch-friendly and memory non-intensive
over all other memory requests. We find this to be more effec-
tive than their prioritization mechanism because it does not cause
starvation or slowdown as it never boosts intensive applications’
requests. In fact, in Figure 5, the P-NFQ (No boost) experiment
includes the prioritization proposed by this prior work, on top of
which, our P-NFQ improves performance by 10%. Note that the
critical element that allows this aggressive boosting is that it is only
performed for non-intensive phases of an application where it has
a limited number of requests requiring service.

7.2 Other Shared Resource Management
Techniques

Many previous papers deal with management of other shared re-
sources such as caches [14, 32, 33, 12, 13, 27] or on-chip intercon-
nect [20, 3, 11, 4] to improve system performance and/or fairness.
However, none deal with how prefetches should be intelligently
dealt with in the mechanisms they propose. As such, this paper is
orthogonal to prior work in shared resource management, and we
believe the ideas we present in this paper can be used to enhance
other shared resource management techniques in the presence of
prefetching.

7.3 Prefetch Filtering
Prior papers on prefetch filtering propose techniques to detect

and eliminate prefetches that are found to be useless in the past [37,
39, 21]. However, conservative prefetch filtering techniques can-
not filter out all useless prefetches, yet aggressive ones can remove
many useful prefetches [18]. We find that our proposals are com-
plementary to prefetch filtering. For example, P-NFQ increases
system performance by 11.1%/8.2% (HS/WS) while reducing max
slowdown by 10.9% on a baseline where a state-of-the-art hardware
filtering mechanism [39] is used with NFQ + HPAC.

8. CONCLUSION
This paper demonstrates a new problem in CMP designs: state-

of-the-art fair shared resource management techniques, which sig-
nificantly enhance performance/fairness in the absence of prefetch-
ing, can largely degrade performance/fairness in the presence of

11

prefetching. To solve this problem, we introduce general mecha-
nisms to effectively handle prefetches in multiple types of resource
management techniques.

We develop three major new ideas to enable prefetch-aware
shared resource management. We introduce the idea of demand
boosting, a mechanism that eliminates starvation of applications
that are not prefetch-friendly yet memory non-intensive, thereby
boosting performance and fairness of any type of shared resource
management. We describe how to intelligently prioritize de-
mands and prefetches within the underlying fair management tech-
niques. We develop new mechanisms to coordinate prefetcher
and core throttling mechanisms to make synergistic decisions. To
our knowledge, this is the first paper that deals with prefetches
in multi-core fair shared-resource management, and enables such
techniques to be effective and synergistic with prefetching.

We apply these new ideas to three state-of-the-art multi-core
shared resource management techniques. Our extensive evaluations
show that our proposal significantly improves system performance
and fairness of two fair memory scheduling techniques and one
source-throttling-based shared memory system management tech-
nique (by more than 10% in 4-core systems), and makes these tech-
niques effective with prefetching. We conclude that our proposal
can be a low-cost and effective solution that enables the employ-
ment of both prefetching and shared resource management together
in future multi-core systems, thereby ensuring future systems can
reap the performance and fairness benefits of both ideas.

Acknowledgments

Many thanks to José A. Joao, Khubaib, Milad Hashemi, the HPS re-
search group, and the anonymous reviewers for their comments and
suggestions. We gratefully acknowledge the support of the Cock-
rell Foundation, Intel, AMD, Gigascale Systems Research Center,
and CyLab. This research was partially supported by NSF CA-
REER Award CCF-0953246. We also acknowledge the Texas Ad-
vanced Computing Center (TACC) at The University of Texas at
Austin for providing HPC resources.

REFERENCES
[1] J. Baer and T. Chen. An effective on-chip preloading scheme

to reduce data access penalty. In Proceedings of
Supercomputing ’91, 1991.

[2] J. Casazza. First the Tick, Now the Tock: Intel
Microarchitecture (Nehalem) – White Paper. Intel, 2009.

[3] R. Das et al. Application-aware prioritization mechanisms
for on-chip networks. In MICRO-42, 2009.

[4] R. Das et al. Aergia: Exploiting packet latency slack in
on-chip networks. In ISCA-37, 2010.

[5] J. Doweck. Inside Intel Core Microarchitecture and Smart
Memory Access – White Paper. Intel.

[6] E. Ebrahimi et al. Coordinated control of multiple
prefetchers in multi-core systems. In MICRO-42, 2009.

[7] E. Ebrahimi et al. Techniques for bandwidth-efficient
prefetching of linked data structures in hybrid prefetching
systems. In HPCA-15, 2009.

[8] E. Ebrahimi et al. Fairness via source throttling: A
configrable and high-performance fairness substrate for
multi-core memory systems. In ASPLOS-XV, 2010.

[9] E. Ebrahimi et al. Prefetch-aware shared-resource
management for multi-core systems. Technical Report
TR-HPS-2010-005, The University of Texas at Austin, 2010.

[10] R. Gabor et al. Fairness and throughput in switch on even
multithreading. In MICRO-39, 2006.

[11] B. Grot et al. Preemptive virtual clock: A flexible, efficient,
and cost-effective QoS scheme for networks-on-a-chip. In
MICRO-42, 2009.

[12] L. R. Hsu et al. Communist, utilitarian, and capitalist cache
policies on CMPs: caches as a shared resource. In PACT-15,
2006.

[13] R. Iyer et al. QoS policies and architecture for cache/memory
in CMP platforms. In SIGMETRICS’07.

[14] S. Kim et al. Fair cache sharing and partitioning in a chip
multiprocessor architecture. In PACT-13, 2004.

[15] Y. Kim et al. ATLAS: A scalable and high-performance
scheduling algorithm for multiple memory controllers. In
HPCA-16, 2010.

[16] Y. Kim et al. Thread cluster memory scheduling: Exploiting
differences in memory access behavior. In MICRO-43, 2010.

[17] H. Q. Le et al. IBM POWER6 microarchitecture. IBM
Journal of Research and Development, 51:639–662, 2007.

[18] C. J. Lee et al. Prefetch-aware DRAM controllers. In
MICRO-41, 2008.

[19] C. J. Lee et al. Improving memory bank-level parallelism in
the presence of prefetching. In MICRO-42, 2009.

[20] J. W. Lee et al. Globally-synchronized frames for guaranteed
quality-of-service in on-chip networks. In ISCA-35, 2008.

[21] W.-F. Lin et al. Filtering superfluous prefetches using density
vectors. In ICCD, 2001.

[22] K. Luo et al. Balancing throughput and fairness in SMT
processors. In ISPASS, 2001.

[23] Micron. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 - 64
Meg x 4 x 8 banks,
http://download.micron.com/pdf/datasheets/dram/ddr3.

[24] T. Moscibroda and O. Mutlu. Memory performance attacks:
Denial of memory service in multi-core systems. In USENIX
Security, 2007.

[25] O. Mutlu and T. Moscibroda. Stall-time fair memory access
scheduling for chip multiprocessors. In MICRO-40, 2007.

[26] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared DRAM systems. In ISCA-35, 2008.

[27] K. J. Nesbit et al. Virtual private caches. In ISCA-34.
[28] K. J. Nesbit et al. AC/DC: An adaptive data cache prefetcher.

In PACT-13, 2004.
[29] K. J. Nesbit et al. Fair queuing memory systems. In

MICRO-39, 2006.
[30] J. Owen and M. Steinman. Northbridge architecture of

AMD’s Griffin microprocessor family. IEEE Micro, 28(2),
2008.

[31] H. Patil et al. Pinpointing representative portions of large
Intel Itanium programs with dynamic instrumentation. In
MICRO-37, 2004.

[32] M. K. Qureshi and Y. N. Patt. Utility-based cache
partitioning: A low-overhead, high-performance, runtime
mechanism to partition shared caches. In MICRO-39, 2006.

[33] N. Rafique et al. Architectural support for operating
system-driven CMP cache management. In PACT-15, 2006.

[34] S. Rixner et al. Memory access scheduling. In ISCA-27,
2000.

[35] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for
a simultaneous multithreading processor. In ASPLOS-IX,
2000.

[36] S. Srinath et al. Feedback directed prefetching: Improving
the performance and bandwidth-efficiency of hardware
prefetchers. In HPCA-13, 2007.

[37] V. Srinivasan et al. A static filter for reducing prefetch traffic.
Technical Report CSE-TR-400-99, University of Michigan,
1999.

[38] J. Tendler et al. POWER4 system microarchitecture. IBM
Technical White Paper, 2001.

[39] X. Zhuang and H.-H. S. Lee. A hardware-based cache
pollution filtering mechanism for aggressive prefetches. In
ICPP-32, 2003.

12

