
Prefetch-Aware Memory Controllers
Chang Joo Lee, Student Member, IEEE, Onur Mutlu, Member, IEEE,

Veynu Narasiman, Student Member, IEEE, and Yale N. Patt, Fellow, IEEE

Abstract—Existing DRAM controllers employ rigid, nonadaptive scheduling and buffer management policies when servicing prefetch

requests. Some controllers treat prefetches the same as demand requests, and others always prioritize demands over prefetches.

However, none of these rigid policies result in the best performance because they do not take into account the usefulness of

prefetches. If prefetches are useless, treating prefetches and demands equally can lead to significant performance loss and extra

bandwidth consumption. In contrast, if prefetches are useful, prioritizing demands over prefetches can hurt performance by reducing

DRAM throughput and delaying the service of useful requests. This paper proposes a new low hardware cost memory controller, called

as Prefetch-Aware DRAM Controller (PADC), that aims to maximize the benefit of useful prefetches and minimize the harm caused by

useless prefetches. The key idea is to 1) adaptively prioritize between demands and prefetches, and 2) drop useless prefetches to free

up memory system resources, based on prefetch accuracy. Our evaluation shows that PADC significantly outperforms previous

memory controllers with rigid prefetch handling policies. Across a wide range of multiprogrammed SPEC CPU 2000/2006 workloads, it

improves system performance by 8.2 and 9.9 percent on four and eight-core systems while reducing DRAM bandwidth consumption by

10.7 and 9.4 percent, respectively.

Index Terms—Memory systems, prefetching, memory controllers, DRAM, multi-core systems.

Ç

1 INTRODUCTION

HIGH-PERFORMANCE memory controllers seek to maximize
throughput by exploiting row buffer locality. A modern

SDRAM bank contains a row buffer that buffers the data of the
last accessed memory row. Therefore, an access to the same
row (called row-hit) can be serviced significantly faster than
an access to a different row (called row-conflict) [18]. Due to
this nonuniform access latency, state-of-the-art memory
access scheduling policies such as [47], [31], [17] prefer
row-hits to row-conflicts to improve DRAM throughput,
thereby improving system performance. However, the
problem of DRAM access scheduling becomes more challen-
ging when we take prefetch requests into consideration.

Today’s microprocessors employ hardware prefetchers
to hide long DRAM access latencies. If prefetch requests are
accurate and fetch data early enough, prefetching can
improve performance. However, even if prefetch accuracy
is high, the full benefit of prefetching may not be achieved
based on how the DRAM controller schedules the requests.
For example, a demand request can delay a prefetch request
that could have, otherwise, been serviced very fast in
DRAM, e.g., if the prefetch request is a row-hit, while the
demand request is a row-conflict. If the prefetch is useful,
delaying it by servicing the row-conflict demand request
first may not result in the best performance.

In addition, prefetching does not always improve and
can sometimes degrade performance due to two reasons.
First, useless prefetch requests unnecessarily consume
valuable off-chip bandwidth and fetch useless data that
might displace useful data blocks in processor caches.
Second, prefetch requests contend for the same resources
(e.g., memory request buffer entries and memory bus
bandwidth) as demand (load/store) requests issued by a
processing core. As a result, a prefetch request can delay a
demand request, which could lead to performance degra-
dation especially if the prefetch is useless. If the interference
between prefetch requests and demand requests is not
controlled, system performance can degrade because either
demand requests or useful prefetch requests can be
significantly delayed.

Existing DRAM scheduling policies take two different
approaches as to how to treat prefetch requests with respect
to demand requests. Some policies [42] regard a prefetch
request to have the same priority as a demand request. As
noted above, this policy can significantly delay demand
requests and cause performance degradation especially if
prefetch requests are not accurate. Other policies [9], [14],
[7], [35], [36] always prioritize demand requests over
prefetch requests so that data known-to-be-needed by the
program instructions can be serviced earlier. One might
think that always prioritizing demand requests over
prefetch requests in the memory controller provides the
best performance by eliminating the interference of prefetch
requests with demand requests. However, such a rigid
demand-over-prefetch prioritization policy does not con-
sider the nonuniform access latency of the DRAM system
(row-hits versus row-conflicts). A row-hit prefetch request
can be serviced much more quickly than a row-conflict
demand request. Therefore, servicing the row-hit prefetch
request first provides better DRAM throughput and can
improve system performance compared to servicing the
row-conflict demand request first.

1406 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

. C.J. Lee, V. Narasiman, and Y.N. Patt are with the Department of
Electrical and Computer Engineering, The University of Texas at Austin,
1 University Station C0803, Austin, TX 78712-0240.
E-mail: {cjlee, narasima, patt}@ece.utexas.edu.

. O. Mutlu is with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213-
3890. E-mail: onur@cmu.edu.

Manuscript received 26 May 2009; revised 4 Dec. 2009; accepted 12 May
2010; published online 20 Oct. 2010.
Recommended for acceptance by R. Gupta.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2009-05-0227.
Digital Object Identifier no. 10.1109/TC.2010.214.

0018-9340/11/$26.00 � 2011 IEEE Published by the IEEE Computer Society

Fig. 1 provides supporting data to demonstrate this. This
figure shows performance impact of an aggressive stream
prefetcher [36], [39] when used with two different memory
scheduling policies for 10 SPEC 2000/2006 benchmarks on a
single processor described in Section 5. The vertical axis is
retired instructions per cycle (IPC) normalized to the IPC on a
processor with no prefetching. One policy, demand-prefetch-
equal, does not differentiate between demand and prefetch
requests. This policy is the same as the First Ready-First
Come First Serve (FR-FCFS) policy that prioritizes requests as
follows: 1) row-hit requests over all others and 2) older
requests over younger requests [31]. As a result, DRAM
throughput is maximized. The other policy, demand-first,
prioritizes demand requests over prefetch requests. Prefetch
requests to a bank are not scheduled until all the demand
requests to the same bank are serviced. Within a set of
outstanding demand or prefetch requests, the policy uses the
same prioritization rules as the FR-FCFS policy. As a result,
this policy does not maximize overall DRAM throughput
because it prefers row-conflict demand requests over row-hit
prefetch requests.1

The results show that neither of the two policies provides the
best performance for all applications. For the leftmost five
applications, prioritizing demands over prefetches results in
better performance than treating prefetches and demands
equally. In these applications, a large fraction (70 percent for
demand-prefetch-equal and 59 percent for demand-first) of
the generated stream prefetch requests are useless. Therefore,
it is important to prioritize demand requests over prefetches.
In fact, for art and milc, servicing the demand requests
with higher priority is critical to make prefetching effective.
Prefetching improves performance of these two applications
by 2 and 10 percent, respectively, with the demand-first
scheduling policy, whereas it reduces their performance by
14 and 36 percent with the demand-prefetch-equal policy.

On the other hand, for the rightmost five applications, we
observe the exact opposite behavior. Equally treating
demand and prefetch requests provides significantly higher
performance than prioritizing demands over prefetches. In
particular for libquantum, the demand-prefetch-equal policy
allows the prefetcher to provide 169 percent performance
improvement in contrast to the 60 percent performance

improvement it provides with the demand-first scheduling
policy. This is because prefetch requests in libquantum are
very accurate (almost 100 percent of them are useful).
Maximizing DRAM throughput by preferring row buffer
hits in the DRAM system regardless of whether a memory
request is a demand or a prefetch request allows for more
efficient bandwidth utilization and improves the timeliness
(and the coverage) of prefetches thereby improving system
performance.2 These results show that DRAM scheduling
policies with rigid prioritization rules among prefetch and
demand requests cannot provide the best performance and
may even cause prefetching to degrade performance.

Note that even though the DRAM scheduling policy has a
significant impact on performance provided by prefetching,
prefetching sometimes degrades performance regardless of
the DRAM scheduling policy. For example, galgel, ammp, and
xalancbmk suffer significant performance loss with prefetch-
ing because a large fraction (69, 94, and 91 percent) of the
prefetches are not needed by the program. The negative
performance impact of these useless prefetch requests cannot
be mitigated solely by a demand-first scheduling policy
because useless prefetches 1) occupy memory request buffer
entries in the memory controller until they are serviced,
2) occupy DRAM bandwidth while they are being serviced,
and 3) cause cache pollution by evicting possibly useful data
from the processor caches after they are serviced. As a result,
useless prefetches could delay the servicing of demand
requests and could result in additional demand requests. In
essence, useless prefetch requests can deny service to demand
requests because the DRAM controller is not aware of the
usefulness of prefetch requests in its memory request buffer. To
prevent this, the memory controller should intelligently
manage the memory request buffer between prefetch and
demand requests.

Our goal in this paper is to design an adaptive DRAM
controller that is aware of prefetching. We propose a memory
controller that adaptively controls the interference between
prefetch and demand requests to improve system perfor-
mance. Our controller aims to maximize the benefits of useful
prefetches and minimize the harm of useless prefetches. To
do so, it employs two techniques to manage both memory
bandwidth and memory request buffers: based on the
runtime behavior (accuracy) of the prefetcher, it 1) adaptively
decides whether or not to prioritize demand requests over
prefetch requests, and 2) decides whether or not to drop
likely-useless prefetches from the memory request buffer.

We evaluate our Prefetch-Aware DRAM Controller on a
wide variety of benchmarks and systems, and find that it
consistently outperforms previous DRAM controllers that
rigidly handle prefetches on both single-core and multicore
(two, four, and eight-core) systems. Our controller improves
single-core performance by up to 68 percent (on average,
4.3 percent) for the 55 SPEC 2000/2006 benchmarks when
compared to a controller that employs the demand-first
policy. Our mechanism also improves system performance
(i.e., weighted speedup) for 54 SPEC workloads by 8.4 percent
on a two-core system, for 32 workloads by 8.2 percent on a

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1407

1. For completeness, we also implemented another policy, prefetch-first,
that always prioritizes prefetch requests over demand requests. This policy
provides the worst performance (5.8 percent IPC degradation compared to
demand-first policy) on all the benchmarks.

Fig. 1. Normalized performance of a stream prefetcher with two different

DRAM scheduling policies.

2. Improving DRAM throughput improves prefetch coverage by
reducing the probability that a useful prefetch is not issued into the
memory system because the memory request buffer is full. We explain this
in more detail in Section 6.1. To show how our mechanism improves DRAM
throughput for useful requests compared to rigid policies, we also analyze
row-hit rates for demand and useful prefetch requests with the rigid
policies and our mechanism in detail in Section 6.1.2.

four-core system, and for 21 SPEC workloads by 9.9 percent
on an eight-core system while also reducing memory
bandwidth consumption by 10.0, 10.7, and 9.4 percent for
two, four, and eight-core systems, respectively. We show that
our controller has low implementation complexity and
storage cost, requiring only 4.25 KB of storage in a four-core
system.

Contributions. To our knowledge, this is the first paper
that comprehensively and adaptively incorporates prefetch
awareness into the memory controller’s scheduling and
request buffer management policies. We make the following
contributions:

1. We show that performance of a prefetcher signifi-
cantly depends on how prefetch requests are
handled by the memory controller with respect to
demand requests. Rigid memory scheduling policies
that treat prefetches and demands equally or that
always prioritize demands can either cause signifi-
cant losses in system performance or not achieve the
best performance for all applications.

2. We propose a low hardware cost memory controller
design that dynamically adapts its prioritization
policy between demand and prefetch requests based
on how accurate the prefetcher is in a given program
phase. This mechanism achieves high performance
by improving both DRAM throughput and prefetch
timeliness/coverage.

3. We propose a simple mechanism that reduces the
interference of useless prefetches with demand
requests by proactively removing the likely-useless
prefetches from the memory request buffer. This
mechanism efficiently reduces the buffer, band-
width, and cache space resources consumed by
useless prefetches thereby improving both perfor-
mance and bandwidth efficiency.

4. We show that the proposed adaptive scheduling
and buffer management mechanisms interact posi-
tively. Our Prefetch-Aware DRAM Controller (PADC)
that comprises both mechanisms significantly im-
proves performance and bandwidth efficiency on
both single-core and multicore systems. In addi-
tion, our proposal is very effective for a variety of
prefetching algorithms including stream, PC-based
stride, CZone/Delta Correlation (C/DC), and Mar-
kov prefetching.

5. We comprehensively evaluate performance and
DRAM bus traffic of PADC on various DRAM and
last-level cache configurations. We also compare and
incorporate PADC with other mechanisms such as
hardware prefetch filtering, feedback directed pre-
fetching, permutation-based page interleaving, and
runahead execution. Our results show that PADC not
only outperforms but also complements all of these
previous performance enhancement mechanisms.

2 BACKGROUND

2.1 DRAM Systems and Scheduling

We provide background into DRAM organization and
characteristics to motivate the problem and the solution
proposed in this section. Readers can find more information

on detailed DRAM structures and DRAM system organiza-
tion in other works [18], [3], [31].

An SDRAM system consists of multiple banks that can be
accessed independently. Each DRAM bank is a two-
dimensional array comprising rows and columns of DRAM
cells. A row contains a fixed-size block of data (usually
several Kilobytes). Each bank has a row buffer (or sense
amplifier). The row buffer can store only a single row. To
access a location in a row, the entire row needs to be
brought into the row buffer (i.e., sense-amplified). In
essence, the row buffer acts as storage that buffers the most
recently accessed row in the DRAM bank. A DRAM access
can be done only by reading (writing) data from (to) the
row buffer using a column address.

There are three possible sequential commands that need
to be issued to a DRAM bank in order to access data. A
memory controller may issue 1) a precharge command to
precharge the bank’s bitlines, 2) an activate command to open
a row into the row buffer with the row address, and then, 3) a
read/write command to access the row buffer with the column
address. After the completion of an access, the DRAM
controller can either keep the row open in the row buffer
(open-row policy) or close the row buffer with a precharge
command (closed-row policy). The latency of a memory access
to a bank varies depending on the state of the row buffer and
the address of the request as follows:

1. Row-hit: The row address of the memory access is the
same as the address of the opened row. Data can be
read from/written to the row buffer by a read/write
command; therefore, the total latency is only the
read/write command latency.

2. Row-conflict: The row address of the memory access
is different from the address of the opened row. The
memory access needs a precharge, an activate, and a
read/write command sequentially. The total latency
is the sum of all three command latencies.

3. Row-closed: There is no valid data in the row buffer
(i.e., closed). The access needs an activate command,
and then, a read/write command. The total latency
is the sum of these two command latencies.

DRAM access time is the shortest in the case of a row-hit
[18].3 Therefore, a memory controller can try to maximize
DRAM data throughput by maximizing the hit rate in the
row buffer, i.e., by first scheduling row-hit requests among
all the requests in the memory request buffer. Previous work
[31] introduced the commonly employed FR-FCFS policy
which prioritizes requests such that it services 1) row-hit
requests first and 2) all else being equal, older requests first.
This policy was shown to provide the best average
performance in systems that do not employ hardware
prefetching [31], [17]. Unfortunately, this policy is not aware
of the interaction and interference between demand and
prefetch requests in the DRAM system, and therefore, treats
demand and prefetch requests equally.

1408 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

3. The row-hit latency is about one-third of the row-conflict latency in
contemporary SDRAM systems. For example, the row-hit and row-conflict
latencies are 12.5 and 37.5 ns, respectively, for a 2 Gbit DDR3 SDRAM chip
[18]. The row-closed latency is 25 ns. We use the open-row policy
throughout the paper since it increases the possibility to improve DRAM
throughput. We also evaluate the closed-row policy in Section 6.8 for
completeness.

2.2 Hardware Prefetchers

In most of our experiments, we use a stream prefetcher
similar to the one used in IBM’s POWER 4/5 [39]. Stream
prefetchers are commonly used in many processors [39], [6],
[12] since they do not require significant hardware cost and
work well for a large number of applications. They try to
identify sequential streams of data that the application
needs by closely monitoring and recording previous
sequential accesses. Once a stream is identified, prefetch
requests are sent out for data further down the stream so
that when the processor actually demands the data, it will
already be in the cache. As such, stream prefetchers are
likely to generate many useful row-hit prefetch requests
which PADC can take advantage of. Therefore, we achieve
significant performance improvements with PADC com-
bined with a stream prefetcher. Our implementation of a
stream prefetcher is explained in the next section.

We also evaluated our mechanism with other prefetchers.
The stride prefetcher [1] is similar to the stream prefetcher,
but instead of identifying only sequential streams, it detects
sequences of addresses that differ by a constant value
(stride) and generates prefetch requests that continue in the
stride pattern. The Markov Prefetcher [9], a correlation-
based prefetcher, records in a large table the cache miss
addresses that follow a cache miss. If the same miss occurs
again, the table is accessed, and prefetch requests to the
recorded next address(es) are generated. We also evaluated
PADC with the previously proposed C/DC prefetcher [27].
This prefetcher divides the address space statically into
fixed-size regions (CZones) and finds patterns among miss
addresses within a region. It uses delta correlations to detect
patterns more complex than simple strides and generates
prefetch requests that follow the detected pattern. Note that
all of these prefetchers can also generate a significant
number of row-hit prefetch requests especially for stream-
ing/striding address/correlation patterns. In the results
section, we show that PADC can improve performance
when combined with any of these prefetchers and is not
restricted to working with only a stream prefetcher.

2.3 Stream Prefetcher

We discuss an implementation of an aggressive stream
prefetcher (similar to the one used in the IBM POWER4/5
[39]) used to collect most of our experimental results. The
stream prefetcher we use for the evaluations is the best
performing among the large set of prefetchers we exam-
ined. It improves IPC by 20 percent, on average, compared
to no prefetching for the 55 SPEC 2000/2006 benchmarks
when employed with a demand-first scheduling policy. The
stream prefetcher prefetches cache lines into the L2 cache.

Each stream entry in the stream prefetcher monitors a
range of consecutive cache line addresses beginning at a
starting pointer (S) and ending at S plus a prefetch distance (D).
We call this range of consecutive cache line addresses a
monitoring region. We also associate with the stream
prefetcher a prefetch degree (N). When a new (not part of an
existing stream) cache miss occurs, a stream entry is allocated
and the cache line address is recorded as S. When subsequent
cache accesses (both cache hits and misses) within a small
distance from S occur, the direction of prefetching is
determined and the monitoring region is set up starting

with S and ending with S+D. If an L2 cache access happens
within the monitoring region, N consecutive prefetch
requests from cache line address S+D+1 to S+D+N are sent
to the memory system. After prefetches are sent, the
monitoring region is shifted in the direction of prefetching
by the number of the requests sent.

The timeliness and aggressiveness of the stream pre-
fetcher are functions of both D and N. Larger values for D
and N result in more prefetch requests that are far ahead of
the current access stream so that more latency can be
hidden if the prefetches are accurate. On the other hand,
overly aggressive values for D and N can prevent demand
requests from being serviced since prefetches can fill up a
larger fraction of the memory system buffer resources. We
found that a prefetch degree of 4 and a prefetch distance of
64 result in the best performance on our single-core system
described in Section 5.

Since the stream prefetcher tries to fetch consecutive
cache lines from a region, it is likely that it will generate
many row-hit prefetch requests. If the row buffer locality of
these prefetch requests is not exploited intelligently by the
DRAM scheduling policy, DRAM throughput and system
performance can degrade.

3 MOTIVATION: RIGID PREFETCH SCHEDULING IN

DRAM SYSTEMS

None of the existing DRAM scheduling policies [9], [31],
[42], [14], [35], [36] take into account both the nonuniform
nature of DRAM access latencies and the behavior of
prefetch requests, i.e., whether they are useful or useless.
We illustrate why a rigid, nonadaptive prefetch scheduling
policy degrades performance in Fig. 2. Consider the
example in Fig. 2a, which shows three outstanding memory
requests (to the same bank) in the memory request buffer.
Row A is currently open in the row buffer of the bank. Two
requests are prefetches (to addresses X and Z) that access
row A, while one request is a demand request (to address Y)
that accesses row B. This example abstracts away many
details of the DRAM system (such as DRAM bus/bank
timing constraints and queuing delays) for ease of under-
standing. We omit them from the figure to clearly illustrate
the concept of rigid prefetch scheduling in the DRAM
controller. However, our simulations faithfully model all
details of the DRAM system.

For Fig. 2b, assume that the processor needs to load
addresses Y, X, and Z in a serial fashion (i.e., the prefetches
are useful) and the computation between each load instruc-
tion takes a fixed and small number of cycles (25 in the figure)
that is significantly smaller than the DRAM access latency.
We assume that processor execution takes a small number of
cycles because previous studies [24], [11] have shown that
most of the execution time is dominated by DRAM access
latency. Fig. 2b shows the service timeline of the requests in
DRAM and the resulting execution timeline of the processor
for two different memory scheduling policies: demand-first
and demand-prefetch-equal. With the demand-first policy
(top), the row-conflict demand request is satisfied first which
causes the prefetch of address X to incur a row-conflict as
well. The subsequent prefetch request to Z is a row-hit

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1409

because the prefetch of X opens row A. As a result, the
processor first stalls for approximately two row-conflict
latencies (except for a small period of execution) to access
address Y, and then, to access address X. The processor then
stalls for an additional row-hit latency (again with the
exception of another small period of execution) since it
requires the data prefetched from address Z. The total
execution time is the sum of two row-conflict latencies and
one row-hit latency plus a small period of processor
execution (the other computation periods are hidden) which
total to 725 cycles in this example.

With the demand-prefetch-equal policy (bottom), the
row-hit prefetch requests to X and Z are satisfied first. Then,
the row-conflict demand request to Y is serviced. The
processor stalls until the demand request to Y is serviced.
However, once the demand request is serviced, the
processor does not stall any more because the memory
requests to the other addresses it needs (X and Z) have
already been serviced and placed into the cache. The
processor only needs to perform the computations between
the load instructions and finds that loads to X and Z hit in
the cache. The resulting total execution time is the sum of
two row-hit latencies, one row-conflict latency, and the
latency to execute the computation between each load
instruction for a total of only 575 cycles in this example.
Hence, treating prefetches and demands equally can
significantly improve performance when prefetch re-
quests are useful. We observe that the stream prefetcher
generates very accurate prefetch requests for many memory-
intensive applications such as libquantum, swim, and leslie3d.
For these applications, the demand-prefetch-equal memory
scheduling policy increases prefetch timeliness by increas-
ing DRAM throughput, and therefore, improves perfor-
mance significantly, as shown in Fig. 1.

However, prefetch requests might not always be useful.
In the example of Fig. 2a, assume that the processor needs
to load only address Y but still generates useless prefetches
to addresses X and Z. Fig. 2c shows the service timeline of
the requests and the resulting execution timeline of the
processor for the two different memory scheduling policies.
With the demand-first policy (top), the processor needs to
stall only for a single row-conflict latency that is required to
service the demand request to Y, and therefore, the total
execution time is 325 cycles. On the other hand, with the

demand-prefetch-equal policy, the processor needs to stall

additional cycles since X and Z are serviced (even though

they are not needed) before Y. It takes two row-hit requests

to service the useless prefetches to X and Z and one row-

conflict request to service the demand request to Y. The

resulting execution time is 525 cycles. Hence, treating

prefetches and demands equally can significantly degrade

performance when prefetch requests are useless. In fact,

our experimental data in Fig. 1 showed that treating

demands and prefetches equally in applications where

most of the prefetches are useless causes prefetching to

degrade performance by up to 36 percent (for milc).
These observations illustrate that 1) DRAM scheduling

policies that rigidly prioritize between demand and prefetch

requests without taking into account the usefulness of

prefetch requests can either degrade performance or fail to

provide the best possible performance, and 2) the effective-

ness of a particular prefetch prioritization mechanism

significantly depends on the usefulness of prefetch requests.

Based on these observations, to improve the effectiveness of

prefetching, we aim to develop an adaptive DRAM

scheduling policy that dynamically changes the prioritiza-

tion order of demands and prefetches by taking into account

the usefulness of prefetch requests.

4 MECHANISM: PREFETCH-AWARE DRAM
CONTROLLER

Our PADC consists of two components as shown in Fig. 3:

An Adaptive Prefetch Scheduling (APS) unit and an

Adaptive Prefetch Dropping (APD) unit. APS tries to

1) maximize the benefits of useful prefetches by increasing

DRAM throughput and 2) minimize the harm of useless

prefetches by delaying their DRAM service, and hence,

reducing their interference with demand and useful

prefetch requests. APD cancels useless prefetch requests

effectively while preserving the benefits of useful pre-

fetches. Both APS and APD are driven by the measurement

of each processing core’s prefetch accuracy in a multicore

system. Before explaining how each component works, we

explain how prefetch accuracy is measured for each core.

1410 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 2. Performance impact of demand-first versus demand-prefetch-equal policy. (a) DRAM and controller state. (b) Timeline when prefetches are

useful. (c) Timeline when prefetches are useless.

4.1 Prefetch Accuracy Measurement

We measure the prefetch accuracy for an application
running on a particular core over a certain time interval.
The accuracy is reset once the interval has elapsed so that
the mechanism can adapt to the phase behavior of
prefetching. To measure the prefetch accuracy of each core,
the following hardware support is required:

1. Prefetch (P) bit per L2 cache line and memory request
buffer entry: For memory request buffer entries, this
bit indicates whether or not the request was generated
by the prefetcher. It is set when a new memory request
is generated by the prefetcher, and reset when the
processor issues a demand request to the same cache
line, while the prefetch request is still in the memory
request buffer. For cache lines, this bit indicates
whether or not a cache line was brought into the cache
by a prefetch request. It is set when the line is filled
(only if the prefetch bit of the request is set) and is
reset when a cache hit to the same line occurs.

2. Prefetch Sent Counter (PSC) per core: This counter
keeps track of the total number of prefetch requests
sent by a core. It is incremented whenever a prefetch
request is sent to the memory request buffer by the
core.

3. Prefetch Used Counter (PUC) per core: This counter
keeps track of the number of prefetches that are
useful. It is incremented when a prefetched cache
line is used (cache hit) by a demand request and also
when a demand request matches a prefetch request
already in the memory request buffer.

4. Prefetch Accuracy Register (PAR) per core: This
register stores the prefetch accuracy measured every
time interval. PAR is computed by dividing PUC by
PSC.

At the end of every time interval, PAR is updated with
the prefetch accuracy calculated during that interval and
PSC and PUC are reset to 0 to calculate the accuracy for the
next interval. The PAR values for each core are fed into the
Prefetch-Aware DRAM Controller which then uses the
values to guide its scheduling and memory request buffer
management policies.

4.2 Adaptive Prefetch Scheduling

APS changes the priority of demand/prefetch requests
from a processing core based on the prefetch accuracy

estimated for that core. The basic idea is to 1) treat useful
prefetch requests the same as demand requests so that
useful prefetches can be serviced faster by maximizing
DRAM throughput, and 2) give demand and useful
prefetch requests a higher priority than useless prefetch
requests so that useless prefetch requests do not interfere
with demand and useful prefetch requests.

If the prefetch accuracy is greater than or equal to a
certain threshold, promotion threshold, all of the prefetch
requests from that core increase in priority and are treated
the same as demand requests. We call such prefetch requests
and all demand requests critical requests. If the estimated
prefetch accuracy of a core is less than promotion threshold,
then demand requests of that core are prioritized over
prefetch requests. We call such prefetch requests noncritical
requests.

The essence of our proposal is to prioritize critical
requests over noncritical ones in the memory controller
while preserving DRAM throughput. To accomplish this,
our mechanism prioritizes memory requests in the order
shown in Rule 1. Each prioritization decision in this set of
rules is described in further detail below.

Rule 1. Adaptive prefetch scheduling

1. Critical request (C): Critical requests are prioritized

over all other requests.

2. Row-hit request (RH): Row-hit requests are prioritized

over row-conflict requests.

3. Urgent request (U): Demand requests generated by
cores with low prefetch accuracy are prioritized over

other requests.

4. Oldest request (FCFS): Older requests are prioritized

over younger requests.

First, critical requests (useful prefetches and demand
requests) are prioritized over others. This delays the
scheduling of noncritical requests most of which are likely
to be useless prefetches. As a result, useless prefetches are
prevented from interfering with demands and useful
prefetches.

Second, row-hit requests are prioritized over others. This
increases the row buffer locality for demand and useful
prefetch requests and maximizes DRAM throughput as
much as possible.

Third, demand requests from cores whose prefetch
accuracy is less than promotion threshold are prioritized.
We call such requests urgent requests. Intuitively, this rule
tries to give a boost to the demand requests of a core with
low prefetch accuracy over the demand and useful prefetch
requests of cores with high prefetch accuracy. We do this
for two reasons. First, if a core has high prefetch accuracy,
its prefetch requests will be treated the same as the demand
requests of another core with low prefetch accuracy (due to
the critical request first prioritization rule). Doing so risks
starving the demand requests of the core with low prefetch
accuracy resulting in performance degradation since many
critical requests from the core with high prefetch accuracy
(demand + prefetch requests) will contend with the critical
requests from the core with low prefetch accuracy (demand
requests only). To avoid such starvation and performance
degradation, we boost the demand requests of the core with
low prefetch accuracy. Second, performance of a core with
low prefetch accuracy is already affected negatively by the

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1411

Fig. 3. Prefetch-aware DRAM controller.

useless prefetches. By prioritizing the demand requests of
such cores over the requests of other cores, we aim to help
performance of cores that are already losing performance
due to poor prefetcher behavior. We further discuss the
effect of prioritizing urgent requests in Section 6.3.4.

Finally, if all else is equal, older requests have priority
over younger requests.

4.3 Adaptive Prefetch Dropping

APS naturally delays (just like the demand-first policy) the
DRAM service of prefetch requests from applications with
low prefetch accuracy by making the prefetch requests
noncritical as described in Section 4.2. Even though this
reduces the interference of useless requests with useful
requests, it cannot get rid of all of the negative effects of
useless prefetch requests (bandwidth consumption and
cache pollution) because such requests will eventually be
serviced. As such, APS by itself cannot eliminate all of the
negative aspects of useless prefetches. Our second scheme,
APD, aims to overcome this limitation by proactively
removing old prefetch requests from the request buffer if
they have been outstanding for a long period of time. The
key insight is that if a prefetch request is old (i.e., has been
outstanding for a long time), it is likely to be useless and
dropping it from the memory request buffer eliminates the
negative effects, the useless request might cause in the
future. We first describe why old prefetch requests are
likely to be useless based on empirical measurements.

Why are old prefetch requests likely to be useless?
Fig. 4a shows the memory service time (from entry into the
memory request buffer to entry into the L2 fill buffer) of both
useful and useless prefetches for milc using the demand-first
scheduling policy. Note that we show detailed data for only
milc but found similar behavior in all applications. The
graph is a histogram with nine latency intervals measured in
processor cycles. Each bar indicates the number of useful/
useless prefetch requests whose memory service time was
within that interval. Fifty-six percent of all prefetches have
a service time greater than 1,600 processor cycles, and
86 percent of these prefetches are useless. Useful prefetches
tend to have a shorter service time than useless prefetches
(1,486 cycles compared to 2,238 cycles, on average, for milc).
This is because a prefetch request that is waiting in the
request buffer becomes a demand request4 if the processor
sends a demand request for the same address, while the
prefetch request is still in the buffer. Such useful prefetches

that are hit by demand requests will be serviced earlier by
the demand-first prioritization policy. Therefore, useful
prefetches, on average, experience a shorter service time
than useless prefetches. This is also true when we apply APS
since it prioritizes critical requests over noncritical requests.

Mechanism. The observation that old prefetch requests
are likely to be useless motivates us to remove a prefetch
request from the request buffer if the prefetch is old enough.
Our proposal, APD, monitors prefetch requests for each
core and invalidates any prefetch request that has been
outstanding in the memory request buffer for longer than
drop threshold cycles. We adjust drop threshold based on
the prefetch accuracy for each core measured in the
previous time interval. If the prefetch accuracy in the
interval is low, our mechanism uses a relatively low value
for drop threshold so that it can quickly remove useless
prefetches from the request buffer. If the prefetch accuracy
is high in the interval, our mechanism uses a relatively high
value for drop threshold so that it does not prematurely
remove useful prefetches from the request buffer. By
removing useless prefetches, APD saves resources such as
request buffer entries, DRAM bandwidth, and cache space,
which can instead be used for critical requests (i.e., demand
and useful prefetch requests) rather than being wasted on
useless prefetch requests. Note that APD interacts posi-
tively with APS since APS naturally delays the service of
useless (noncritical) requests so that the APD unit can
completely remove them from the memory system thereby
freeing up request buffer entries and avoiding unnecessary
bandwidth consumption.

Determining drop threshold. Fig. 4b shows the runtime
behavior of the stream prefetcher accuracy for milc, an
application that suffers from many useless prefetches.
Prefetch accuracy was measured as described in Section 4.1,
using an interval of 100K cycles. The figure clearly shows that
prefetch accuracy can have very strong phase behavior. From
150 million to 275 million cycles, the prefetch accuracy is very
low (close to 0 percent), implying that many useless prefetch
requests were generated during this time. Since almost all
prefetches are useless during this period, we would like to be
able to quickly drop them. Our mechanism accomplishes this
using a low value for drop threshold. On the other hand, we
would want drop threshold to be much higher during periods
of high prefetch accuracy. Our evaluation shows that a simple
four-level drop threshold adjusted dynamically can effec-
tively eliminate useless prefetch requests from the memory
system while keeping useful prefetch requests in the memory
request buffer.

1412 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

4. A prefetch request that is hit by a demand request in the memory
request buffer becomes a real demand request. However, we count it as a
useful prefetch throughout the paper since it was first requested by the
prefetcher rather than the processing core.

Fig. 4. Example of behavior of prefetches for milc. (a) Prefetch service time with demand-first policy. (b) Prefetch accuracy every 100K cycles.

4.4 Support for Multithreaded Applications on
CMP Systems

Throughout the paper, we assume that each core of a CMP

system runs one single-threaded application. However,

PADC can also work when multiple multithreaded applica-

tions run on a CMP system. This requires a very simple

modification in accounting for prefetch requests: instead of

associating a prefetch request with the core that generates it,

we associate it with the application that generates it. Hence,

prefetch requests belonging to different threads in an

application (possibly running on different cores) will all

contribute to the same prefetch accuracy measurement for

the entire multithreaded application. Based on this pre-

fetcher accuracy computed for the entire application, PADC

can dynamically prioritize the demand and prefetch

requests coming from threads of that application regardless

of which core the requests are coming from. Likewise,

PADC can also delay and drop likely-useless prefetch

requests coming from the threads of an application whose

prefetcher accuracy for the entire application is low.

4.5 Implementation and Hardware Cost of a
Prefetch-Aware DRAM Controller

An implementation of PADC requires storing additional

information in each memory request buffer entry to support

the priority and aging information needed by APS and

APD. The required additional information (in terms of the

fields added to each request buffer entry) is shown in Fig. 5.

The C (as prefetch bit), RH, and FCFS fields are already

used in the baseline demand-first FR-FCFS policy to

indicate prefetch status (i.e., demand or prefetch), row-hit

status, and arrival time of the request. Therefore, the only

additional fields are U, P, ID, and AGE, which indicate the

urgency, prefetch status, core ID, and age of the request. In

each DRAM cycle, the priority encoder logic chooses the

highest priority request using the priority fields (C, RH, U,

and FCFS) in the order as shown in Fig. 5.

The APD unit removes a prefetch request from the

memory request buffer if the request is older than the

drop threshold of the core that generated the request. It does

not remove a prefetch request (which is not scheduled for

DRAM service) until it ensures that the prefetch cannot be

matched by a demand request. This is accomplished by

invalidating the MSHR entry of the prefetch request before

actually dropping it. The APD unit knows if a request is a

prefetch and also which core it belongs to from the P and

ID fields. The AGE field of each request entry keeps track of

the age of the request. APD compares the AGE of the

request to the corresponding core’s drop threshold and

removes the request accordingly. Note that the estimation

of the age of a request does not need to be highly accurate.

For example, the AGE field is incremented every 100

processor cycles for our evaluation.

The hardware storage cost required for our implementa-

tion of the PADC is shown in Table 1. Note that the storage

cost for PADC linearly increases with the number of cores,

request buffer entries, and cache lines. The storage cost for

our four-core CMP system described in Section 5 is shown

in Table 2. The total storage cost is only 34,720 bits

(�4:25 KB) which is equivalent to only 0.2 percent of the

L2 cache data storage in our baseline processor. Note that

the Prefetch bit (P) per cache line accounts for over 4 KB of

storage by itself (�95 percent of the total required storage).

Many previous proposals [5], [32], [45], [46], [36] already

use a prefetch bit for each cache line. If a processor already

employs prefetch bits in its cache, the total storage cost of

our prefetch-aware DRAM controller is only 1,824 bits

(�228 B). Note that the overhead of prefetch bits can be

reduced by using set sampling [29], i.e., associating prefetch

bits with only a selected number of sets.

5 METHODOLOGY

5.1 Metrics

We define the metrics used for experimental evaluation in

this section. Bus traffic is the number of cache lines

transferred over the bus during the execution of a work-

load. It comprises the cache lines brought in from demand,

useful prefetch, and useless prefetch requests. We define

Prefetch accuracy (ACC) and coverage (COV) as follows:

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1413

Fig. 5. Memory request field for PADC.

TABLE 1
Hardware Cost of Prefetch-Aware DRAM Controller (Ncache:
Number of Cache Lines Per Core, Ncore: Number of Cores,

and Nreq: Number of Memory Request Buffer Entries)

TABLE 2
Hardware Cost of PADC on Four-Core System

ACC ¼ Number of useful prefetches
Number of prefetches sent

;

COV ¼ fNumber of useful prefetchesg=
fNumber of demand requests
þNumber of useful prefetches:g

To evaluate the effect of DRAM throughput improvement
on the processing core, we define instruction window Stall
cycles Per Load instruction (SPL) which indicates, on average,
how much time the processor spends idly waiting for
DRAM service:

SPL ¼ Total number of window stall cycles

Total number of load instructions
:

To measure CMP system performance, we use Individual
Speedup (IS), Weighted Speedup (WS) [34], and Harmonic mean
of Speedups (HS) [15]. As shown by Eyerman and Eeckhout
[4], WS corresponds to system throughput and HS
corresponds to the inverse of job turnaround time. In the
equations that follow, N is the number of cores in the CMP
system. IPCalone is the IPC measured when an application
runs alone on one core in the CMP system (other cores are
idle) and IPCtogether is the IPC measured when an
application runs on one core, while other applications are
running on the other cores of the CMP. Unless otherwise
mentioned, we use the demand-first policy to measure
IPCalone for all of our experiments to show the effectiveness
of our mechanism on CMP systems:

ISi ¼
IPCtogether

i

IPCalone
i

;WS ¼
XN

i

IPCtogether
i

IPCalone
i

; HS ¼ N
PN

i
IPCalone

i

IPCtogether
i

:

5.2 Processor Model and Workloads

We use an in-house cycle accurate x86 CMP simulator for
our evaluation. Our processor faithfully models port
contention, queuing effects, bank conflicts, and other
DDR3 DRAM system constraints. The baseline configura-
tion of each processing core is shown in Table 3. The shared
resource configuration for single, two, four, and eight-core
CMPs is shown in Table 4. Note that we evaluate our
mechanism on CMP systems with private on-chip last-level

(L2) caches (512 KB for each core) rather than a shared cache
to easily show and analyze the effect of PADC in the shared
DRAM system by isolating the effect of contention in the
DRAM system from the effect of interference in shared
caches. However, we evaluate our mechanism for a shared
cache in Section 6.9 as well.

We use the SPEC 2000/2006 benchmarks for experimen-
tal evaluation. Each single-threaded benchmark was com-
piled using Intel C Compiler (ICC) or Intel Fortran Compiler
(IFORT) with the -O3 option. We ran each benchmark with
the reference input set for 200 million �86 instructions
selected by Pinpoints [28] as a representative portion of each
benchmark.

We classify the benchmarks into three categories: pre-
fetch-insensitive, prefetch-friendly, and prefetch-unfriendly
(class 0, 1, and 2, respectively) based on performance impact
a prefetcher has on the application.5 The characteristics for a
subset of benchmarks with and without a stream prefetcher
are shown in Table 5. Only a subset of benchmarks was
chosen due to limited space; however, we do evaluate the
entire set of 55 benchmarks for single-core experiments for
our results. To evaluate our mechanism on CMP systems, we
formed combinations of multiprogrammed workloads from
the 55 SPEC 2000/2006 benchmarks. We ran 54, 32, and 21
randomly chosen workload combinations (from the 55 SPEC
benchmarks) for our two, four, and eight-core CMP config-
urations, respectively.

For the evaluation of our PADC, we use a prefetch
accuracy value of 85 percent for promotion threshold (for
APS) and a dynamic threshold shown in Table 6 for
drop threshold (for APD). The accuracy is calculated every
100K cycles.

1414 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

5. If L2 Misses Per 1K Instructions (MPKIs) increase when the prefetcher
is enabled, the benchmark is classified as two. If MPKI without prefetching
is greater than 10 and bus traffic increases by more than 75 percent when
prefetching is enabled, the benchmark is also classified as two. Otherwise, if
IPC increases by five percent, the benchmark is classified as one. Otherwise,
it is classified as 0. Note that memory-intensive applications that experience
increased IPC and reduced MPKI (such as milc) may still be classified as
prefetch-unfriendly if bus traffic increases significantly. The reason for this
is that although an increase in bus traffic may not have much of a
performance impact on single-core systems, in CMP systems with shared
resources, the additional bus traffic can degrade performance substantially.

TABLE 3
Baseline Configuration Per Core

TABLE 4
Baseline Shared Resource Configuration

6 EXPERIMENTAL EVALUATION

We first evaluate PADC on single, two, four, and eight-core
systems. Section 6.5 analyzes PADC’s fairness and proposes
new techniques to improve CMP system fairness. Sec-
tions 6.6-6.14 analyze the effect of PADC on systems with
different configurations and characteristics such as multiple
memory controllers, different row buffer policies, different
types of prefetchers, prefetch filtering, and runahead
execution. This analysis shows that PADC is a general
mechanism that is effective for a variety of systems and it is
orthogonal to previously proposed prefetching and prefetch
filtering techniques.

6.1 Single-Core Results

Fig. 6 shows performance of PADC on a single-core system.
IPC is normalized to the baseline which employs the
demand-first scheduling policy. We show performance of
only 15 individual benchmarks due to limited space. The
rightmost bars show the average performance of all 55
SPEC CPU 2000/2006 benchmarks (gmean55). As discussed
earlier, neither of the rigid scheduling policies (demand-
first, demand-prefetch-equal) provides the best perfor-
mance across all applications. Demand-first performs better
for most prefetch-unfriendly benchmarks (class 2) such as
galgel, art, and ammp, while demand-prefetch-equal does
better for most prefetch-friendly ones (class 1) such as swim,
libquantum, and lbm. Averaged over all 55 SPEC bench-
marks, the demand-prefetch-equal policy outperforms
demand-first by 0.5 percent since there are more bench-
marks (29 out of 55) that belong to class 1.

APS, shown in the fourth bar from the left, effectively
adapts to the behavior of the prefetcher. In most benchmarks,
APS provides at least as good performance as the best rigid
prefetch scheduling policy. As a result, APS improves
performance by 3.6 percent over all 55 benchmarks compared
to the baseline. APS (and demand-prefetch-equal) improves

performance over demand-first for many prefetch-friendly

applications such as libquantum, bwaves, and leslie3d. This is

due to two reasons. First, APS increases DRAM throughput in

these applications because it treats demands and prefetches

equally most of the time. Doing so improves the timeliness of

the prefetcher because prefetch requests do not get delayed

behind demand requests. Second, improved DRAM through-

put reduces the probability of the memory request buffer

being full. As a result, more prefetches are able to enter the

request buffer. This improves the coverage of the prefetcher

as more useful prefetch requests get a chance to be issued. For

example, APS improves the prefetch coverage from 80, 98,

and 89 percent to 100, 100, and 92 percent for libquantum,

bwaves, and leslie3d, respectively, as shown in Fig. 8.
On the other hand, even though APS is able to provide

performance of the best rigid prefetch scheduling policy for

each application, it is unable to overcome performance loss

due to prefetching in some prefetch-unfriendly applications

such as galgel, ammp, and xalancbmk. The prefetcher generates

many useless prefetches in these benchmarks that a simple

DRAM scheduling policy cannot eliminate.
When APD is employed with demand-first (APD-only),

it improves performance for prefetch-unfriendly applica-

tions by eliminating many useless prefetches. This is also

true when APD is employed with APS (i.e., PADC). Using

APD recovers part of performance loss due to prefetching in

galgel, ammp, and xalancbmk because it eliminates 54, 76, and

54 percent of the useless prefetch requests, respectively, as

shown in Fig. 8. As a result, using both of our proposed

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1415

TABLE 5
Characteristics for 28 SPEC 2000/2006 Benchmarks with/without Stream Prefetcher: IPC, L2 Misses
Per 1K Instructions (MPKIs), RBH, Prefetch Accuracy (ACC), Prefetch Coverage (COV), and Class

TABLE 6
Dynamic drop threshold Values for Adaptive

Prefetch Dropping Based on Prefetch Accuracy

Fig. 6. Performance for 55 SPEC benchmarks on single-core system:

Normalized IPC for 15 benchmarks and average for all 55 (gmean55).

mechanisms (APD in conjunction with APS) provides

4.3 percent performance improvement over the baseline.
Fig. 7 provides insight into performance improvement of

the proposed mechanisms by showing the effect of each
mechanism on the stall time experienced per load instruction
(SPL). Our PADC reduces SPL by 5.0 percent compared to
the baseline. By providing better DRAM scheduling and
eliminating useless prefetches, PADC reduces the amount of
time the processor stalls for each load instruction and allows
the processor to make faster progress. As a result, PADC
significantly improves performance.

Fig. 8 breaks down the bus traffic into three categories:
useful prefetches, useless prefetches, and demand requests.
PADC reduces bus traffic by 10.4 percent across all bench-
marks (amean55) as shown. Reduction in bus traffic is
mainly due to APD which significantly reduces the number
of useless prefetches. For many benchmarks, APS by itself
provides the same bandwidth consumption provided by the
best rigid policy for each benchmark. We conclude that our
prefetch-aware DRAM controller is very effective at im-
proving both performance and bandwidth efficiency in
single-core systems.

Note that simply turning off prefetching for prefetch-
unfriendly applications may lose opportunity to improve
performance. This is true for prefetch-unfriendly applica-
tions that have 1) significant phase changes and 2) some
accurate prefetches interleaved with inaccurate prefetches.
For such benchmarks, prefetching hurts performance in
some phases but increases performance significantly in
others. If the prefetcher is turned off, performance benefits
of useful prefetch phases and useful prefetch requests will be
lost. In fact, due to this phase behavior, art and milc do not
benefit much from prefetching unless adaptive prefetch
management is used. Fig. 6 shows that PADC improves
performance significantly for art and milc since it is able to
adapt to different phases and eliminate useless prefetches
while keeping useful prefetches.

6.1.1 Adaptive Behavior of PADC

We analyze the adaptive runtime behavior of PADC in this
section. APS prioritizes demands over prefetches (i.e.,
demand-first) when the estimated prefetch accuracy is less
than promotion threshold. It treats demands and prefetches
equally (i.e., demand-prefetch-equal) when prefetch accu-
racy is greater than or equal to promotion threshold. PADC
continuously changes the DRAM scheduling mode (between
demand-first and demand-prefetch-equal) for the applica-
tion based on the prefetch accuracy estimated every interval.

Fig. 9 shows the fraction of time APS and PADC spend in
each of the two scheduling modes for the single-core system.
APS and PADC spend a majority of their execution time in
demand-prefetch-equal mode for prefetch-friendly applica-
tions but spend most of their execution time in demand-first
mode for prefetch-unfriendly applications. Therefore, APS
and PADC provide at least as good performance as the best
rigid prefetch scheduling policy in most applications, as
shown in Fig. 6.

6.1.2 Effect of PADC on Row Buffer Hit Rate

Recall that the demand-prefetch-equal policy prioritizes
row-hit requests regardless of whether a request is a
prefetch or demand. If we consider all demand and prefetch
requests (regardless of whether or not a prefetch is useful)
for the entire run of an application, the demand-prefetch-
equal policy will result in the highest row buffer hit rate
(RBH), and therefore, the lowest average DRAM access
latency among all considered policies. However, this does
not mean that this policy performs best since prefetches are
NOT always useful as discussed in Section 6.1. When
prefetching is enabled, we need a better metric to show how
a mechanism reduces effective memory latency. Hereby, we
define row buffer hit rate for useful (demand and useful
prefetch) requests (RBHU) as follows:

RBHU ¼ fNumber of row-hit demand requests

þNumber of useful row-hit prefetch requestsg=
fNumber of demand requestsþNumber of
useful prefetch requestsg:

The demand-prefetch-equal policy will still show the
highest RBHU since RBHU is also maximized by prioritiz-
ing row-hit requests. However, a good DRAM scheduling
mechanism should keep its RBHU close to demand-
prefetch-equal’s RBHU because it should aim to maximize

1416 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 7. Stall time per load (SPL) on the single-core system.

Fig. 8. Bus traffic on the single-core system.

Fig. 9. Fraction of execution time spent in different demand/prefetch

scheduling modes on the single-core system.

DRAM bandwidth for useful requests. Table 7 shows RBHU
values for 13 benchmarks on the single-core processor with

no prefetching, demand-first, demand-prefetch-equal, APS,
and PADC. The RBHU of APS is very close to that of
demand-prefetch-equal and significantly better than the

RBHU of demand-first since APS successfully exploits row
buffer locality for useful requests.

Employing APD with APS (i.e., PADC) slightly reduces
RBHU for some applications such as galgel, ammp, mcf,
omnetpp, xalancbmk, and soplex. This is because adaptive
prefetch dropping cancels some useful prefetches as shown
in Fig. 8, thereby reducing the fraction of useful row buffer
hits. Nonetheless, APD improves overall performance for
these applications since it reduces the contention between
demands and prefetches by eliminating a significant number
of useless prefetches, as discussed in Section 6.1.

6.2 Two-Core Results

We briefly discuss only the average performance and bus
traffic for the 54 workloads on the two-core system due to
space limitations (our main analysis focuses on four-core
systems). Fig. 10 shows that PADC improves both perfor-
mance metrics (WS and HS) by 8.4 and 6.4 percent,
respectively, compared to the demand-first policy and also
reduces memory bus traffic by 10.0 percent. Thus, the
proposed mechanism is effective for dual-core systems. We
do not discuss these results further since dual-core proces-
sors are no longer the state of the art in multicore systems.

6.3 Four-Core Results

We ran 32 different workloads to evaluate the effectiveness
of PADC on the four-core system. In the following sections,
we discuss three cases in detail to provide insights into the

behavior of the Prefetch-Aware DRAM Controller.

6.3.1 Case Study I: All Prefetch-Friendly Applications

Our first case study examines the behavior of our proposed
mechanisms when four prefetch-friendly applications
(swim, bwaves, leslie3d, and soplex) run together on the
four-core system. Fig. 11a shows the speedup of each
application and Fig. 11b shows the system performance.

In addition, Fig. 12 provides insight into performance
changes by showing how each mechanism affects stall time
per load as well as memory bus traffic. Several observations
are in order:

First, since all four applications show very high prefetch
coverage (i.e., prefetch-friendly), as shown in Fig. 12b,
prefetching provides significant performance improvement
in all applications regardless of the DRAM scheduling
policy. In addition, the demand-prefetch-equal policy sig-
nificantly outperforms the demand-first policy (by 28 percent
in terms of weighted speedup) because prefetches are very
accurate in all four applications. The demand-prefetch-equal
policy reduces stall time per load, as shown in Fig. 12a,
because it improves DRAM throughput.

Second, our PADC outperforms both of the rigid prefetch
scheduling policies improving weighted speedup by
31.3 percent over the baseline demand-first policy. This is
because it 1) successfully prioritizes critical (useful) requests
over others thereby reducing SPL and 2) drops useless
prefetches in leslie3d and soplex thereby reducing their
negative effects on all applications. Consequently, our PADC
also improves prefetch coverage from 56 to 73 percent, as
shown in Fig. 12c. This is because it improves DRAM
throughput and reduces contention for memory system
resources by dropping useless prefetches from leslie3d and
soplex, allowing more useful prefetches to enter the memory
system.

Finally, the bandwidth savings provided by PADC is
relatively small (0.9 percent) because these applications do
not generate a large number of useless prefetch requests.
However, there is still a non-negligible reduction in bus
traffic due to the effective dropping of some useless

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1417

TABLE 7
Row Buffer Hit Rate for Useful (Demand and Useful Prefetch) Requests

Fig. 10. Overall performance for 54 workloads on the two-core system.

(a) Average system performance. (b) Average traffic.

Fig. 11. A prefetch-friendly four-core workload. (a) Individual application

speedup. (b) System performance.

prefetches in leslie3d and soplex. We conclude that the
Prefetch-Aware DRAM Controller can provide performance
and bandwidth efficiency improvements even when all
applications benefit significantly from prefetching.

6.3.2 Case Study II: All Prefetch-Unfriendly Applications

Our second-case study examines the behavior of our
proposed mechanisms when four prefetch-unfriendly ap-
plications (art, galgel, ammp, and milc) run together on the
four-core system. Since the prefetcher is very inaccurate for
all applications, prefetching degrades performance regard-
less of the scheduling policy. However, as shown in Fig. 13,
the demand-first policy and APS provide better perfor-
mance than the demand-prefetch-equal policy by prioritiz-
ing demand requests over prefetch requests which are more
likely to be useless. Employing adaptive prefetch dropping
drastically reduces the useless prefetches in all four
applications, as shown in Fig. 14b, and therefore, frees up
memory system resources to be used by demands and
useful prefetch requests. The effect of this can be seen by the
reduced SPL as shown in Fig. 14a for all applications. As a
result, our PADC performs better than either rigid prefetch
scheduling policy for all applications.

PADC improves system performance by 17.7 percent
(weighted speedup) and 21.5 percent (harmonic mean of
speedups), while reducing bandwidth consumption by
9.1 percent over the baseline demand-first scheduler, as
shown in Fig. 14c. By largely reducing the negative effects of
useless prefetches both in scheduling and memory system
buffers/resources, PADC almost eliminates the system
performance loss observed in this prefetch-unfriendly mix
of applications. Weighted speedup is within two percent and
harmonic mean of speedups is within one percent of those
obtained with no prefetching. We conclude that the Prefetch-
Aware DRAM Controller can effectively eliminate the
negative performance impact caused by inaccurate prefetch-
ing by intelligently managing the scheduling and buffer

management of prefetch requests even in workload mixes
where prefetching performs inefficiently for all applications.

6.3.3 Case Study III: Mix of Prefetch-Friendly and

Prefetch-Unfriendly Applications

Figs. 15 and 16 show performance and bus traffic when two
prefetch-friendly (libquantum and GemsFDTD) and two
prefetch-unfriendly (omnetpp and galgel) applications run
together. The prefetches for libquantum and GemsFDTD are
very beneficial. Therefore, demand-prefetch-equal signifi-
cantly improves weighted speedup. However, the prefetcher
generates many useless prefetches for omnetpp and galgel, as
shown in Fig. 16b. These useless prefetches temporarily deny
service to critical requests from the two other cores. Because
APD eliminates a large portion (67 and 57 percent) of all
useless prefetches in omnetpp and galgel, it frees up both
request buffer entries and bandwidth in the memory system.
These freed up resources are utilized efficiently by the critical
requests of libquantum and GemsFDTD, thereby significantly
improving their individual performance while slightly
reducing omnetpp and galgel’s individual performance. Since
it eliminates a large number of useless prefetches, PADC
reduces total bandwidth consumption by 14.5 percent over
the baseline demand-first policy. We conclude that PADC
can effectively prevent the denial of service caused by the
useless prefetches of prefetch-unfriendly applications on the
useful requests of other applications.

6.3.4 Effect of Prioritizing Urgent Requests

In this section, we discuss the effectiveness of prioritizing
urgent requests using the application mix in case study III.
We say that a multicore system is fair if each application
experiences the same individual speedup when multiple
applications run together on the system. To indicate the
degree of unfairness, we define Unfairness (UF) [4] as follows:

UF ¼MAXðIS0; IS1; . . . ; ISn�1Þ
MINðIS0; IS1; . . . ; ISn�1Þ

; N : Number of Cores:

Table 8 shows individual speedup, unfairness, weighted
speedup, and harmonic mean of speedups for the workload
from case study III for five policies: demand-first, versions of
APS and PADC that do not use the concept of “urgent
requests,” and regular APS and PADC (with “urgent
requests”). If the concept of “urgent requests” is not used,
demand requests from the prefetch-unfriendly applications
(omnetpp and galgel) unfairly starve because a large number
of critical requests from the prefetch-friendly applications
(libquantum and GemsFDTD) are given the same priority as
those demand requests. This starvation, combined with the

1418 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 12. A prefetch-friendly four-core workload. (a) SPL. (b) Bus traffic per application. (c) Total bus traffic.

Fig. 13. A prefetch-unfriendly four-core workload. (a) Individual applica-

tion speedup. (b) System performance.

negative effects of useless prefetches, leads to unacceptably
low individual speedups for these applications resulting in
high unfairness. When urgency is used to prioritize requests,
this unfairness is significantly mitigated, as shown in Table 8.
In addition, harmonic mean of speedups (i.e., average job
turnaround time) significantly improves at the cost of very
little weighted speedup (i.e., system throughput) degrada-
tion. However, we found that for most workloads (30 out of
the 32), prioritizing urgent requests improves weighted
speedup as well. This trend holds true for most workload
mixes that consist of prefetch-friendly and prefetch-un-
friendly applications. On average (not shown in the table),
prioritizing urgent requests improves UF, HS, and WS by
13.7, 8.8, and 3.8 percent, respectively, compared to PADC
with no concept of urgency for the 32 four-core workloads.
We conclude that incorporating the concept of urgency into
PADC significantly improves system fairness while keeping
system performance high.

6.3.5 Effect on Identical Application Workloads

It is common that commercial servers frequently run
multiple instances of identical applications. In this section,
we evaluate the effectiveness of PADC when the four-core
system runs four identical applications together. Since APS
prioritizes memory requests and APD drops useless
prefetches (both based on the estimated prefetch accuracy),
PADC should evenly improve individual speedup of each
instance of the identical applications running together. In
other words, all instances of the application are likely to
show the same behavior and the same adaptive decision
should be made for every interval.

Table 9 shows the system performance of PADC when
four instances of libquantum run together on the four-core
system. Because libquantum is very prefetch-friendly and
most prefetches are row-hits, the demand-prefetch-equal
policy performs very well by achieving almost the same
speedup for all four instances. APS and PADC perform
similarly to demand-prefetch-equal (improving weighted

speedup by 18.2 percent compared to demand-first) since
they successfully treat demands and prefetches equally for
all four instances.

Table 10 shows the system performance of PADC when
four instances of a prefetch-unfriendly application, milc, run
together on the four-core system. Because the prefetches
generated for each instance are useless for most of the
execution time of milc, demand-first and APS outperform
demand-prefetch-equal for each instance. Incorporating
APD into APS (i.e., PADC) further improves individual
speedup of all instances equally by reducing useless
prefetches from each instance. As a result, PADC signifi-
cantly improves all system performance metrics. In fact,
using PADC allows the system to gain significant perfor-
mance improvement from prefetching, whereas using a
rigid prefetch scheduling policy results in a large perfor-
mance loss due to prefetching. To conclude, PADC is also
very effective when multiple identical applications run
together on a CMP system.

6.3.6 Overall Performance

Fig. 17 shows the average system performance and bus traffic
for the 32 workloads run on the four-core system. PADC
provides the best performance and lowest bandwidth
consumption compared to all previous prefetch handling
policies. It improves weighted speedup and harmonic mean
of speedups by 8.2 and 4.1 percent, respectively, compared to
the demand-first policy, and reduces bus traffic by 10.1 per-
cent over demand-first (the best performing rigid policy).

We found that PADC outperforms both the demand-first
and demand-prefetch-equal policies for all but one work-
load we examined. The worst performing workload is the
combination of vpr, gamess, dealII, and calculix. PADC’s WS
degradation is only 1.2 percent compared to the demand-
first policy. These applications are either insensitive to
prefetching (class 0) or not memory-intensive (vpr).

6.4 Eight-Core Results

Fig. 18 shows the average performance and bus traffic over
the 21 workloads we simulated on the eight-core system.
Note that the rigid prefetch scheduling policies actually cause
stream prefetching to degrade performance in the eight-core
system. The demand-first policy reduces performance by
1.2 percent and the demand-prefetch-equal policy by
3.0 percent compared to no prefetching. DRAM bandwidth
becomes a lot more valuable with the increased number of
cores because the cores put more pressure on the memory
system. At any given time, there are a much larger number of
demand and useful/useless prefetch requests in the memory
request buffer. As a result, it becomes more likely that 1) a
useless prefetch delays a demand or useful prefetch (if

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1419

Fig. 14. A prefetch-unfriendly four-core workload. (a) SPL. (b) Bus traffic per application. (c) Total bus traffic.

Fig. 15. A mixed four-core workload. (a) Individual application speedup.

(b) System performance.

demand-prefetch-equal policy is used) and 2) DRAM
throughput degrades if a demand request causes significant
reduction in the row buffer locality of prefetch requests (if
demand-first policy is used). Hence, performance degrades
with a rigid scheduling policy.

For the very same reasons, PADC becomes more
effective when the number of cores increases. As resource
contention becomes higher, performance benefit of intelli-
gent prioritization and dropping of useless prefetch
requests increase. Our PADC improves overall system
performance (WS) by 9.9 percent and also reduces memory
bandwidth consumption by 9.4 percent on the eight-core
system. We conclude that the benefits of PADC will
continue to increase as off-chip memory bandwidth
becomes a bigger performance bottleneck in future systems
with many cores.

6.5 Optimizing PADC for Fairness Improvement in
CMP Systems: Incorporating Request Ranking

PADC can be better tuned and optimized for the require-
ments of CMP systems. One major issue in designing
memory controllers for CMP systems is the need to ensure
fair access to memory by different cores [26], [22], [23]. So far,
we have considered PADC only as a way to improve overall
system performance. However, to be more effective in CMP
systems, PADC can be augmented with a mechanism that
provides fairness to different cores’ requests. To achieve this
purpose, this section describes a new scheduling algorithm
that incorporates a request ranking scheme similar to the one
used in Parallelism-Aware Batch Scheduling (PAR-BS) [23]
into our APS mechanism.

Recall that APS prioritizes urgent requests (demand
requests from cores whose prefetch accuracy is low) over
others to mitigate performance degradation and unfairness
for prefetch-unfriendly applications. However, APS follows

1420 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 16. A mixed four-core workload. (a) SPL. (b) Bus traffic per application. (c) Total bus traffic.

TABLE 8
Effect of Prioritizing Urgent Requests

TABLE 9
Effect on Four Identical Prefetch-Friendly (libquantum)

Applications on Four-Core System

TABLE 10
Effect on Four Identical Prefetch-Unfriendly (milc)

Applications on Four-Core System

Fig. 17. Overall performance for 32 workloads on four-core system.
(a) Average system performance. (b) Average traffic.

Fig. 18. Overall performance for 21 workloads on eight-core system.
(a) Average system performance. (b) Average traffic.

the FCFS policy if all other priorities (i.e., criticality, row-hit,
and urgency) are the same. This FCFS rule can degrade
fairness and system performance by prioritizing requests of
memory-intensive applications over those of memory
nonintensive applications, as was shown in previous work
[26], [22], [23]. This happens because delaying the requests
of memory nonintensive applications results in a lower
individual speedup (or a higher slowdown) for those
applications than it would for memory-intensive applica-
tions which already suffer from long DRAM service time.
Therefore, PADC (APS) itself cannot completely solve the
unfairness problem. This is especially true in cases where all
of the applications behave the same in terms of prefetch
friendliness (either all are prefetch-friendly or all are
prefetch-unfriendly). In such cases, PADC will likely
degenerate into the FCFS policy (since the criticality, row-
hit, and urgency priorities would be equal) resulting in high
unfairness and performance degradation. For example, in
case study II discussed in Section 6.3.2, all the applications
are prefetch-unfriendly. Therefore, PADC prioritizes de-
mands over prefetches most of the time. PADC mitigates
performance degradation by prioritizing demand requests
and dropping useless prefetches. However, art is very
memory-intensive and continuously generates many de-
mand requests. These demand requests significantly inter-
fere with other applications’ demand requests resulting in
high slowdowns for the other applications. However, art
experiences very little slowdown thereby creating unfair-
ness in the system.

To take into account fairness in PADC, we incorporate
the concept of ranking, as employed by Mutlu and
Moscibroda [23]. Our ranking scheme is based on the
shortest job first principle [33] which can better mitigate the
unfairness problem and performance degradation caused
by the FCFS rule, as explained in detail by Mutlu and
Moscibroda [23]. For each application, the DRAM controller
keeps track of the total number of critical (demand and
useful prefetch) requests in the memory request buffer.
Applications with fewer outstanding critical requests are
given a higher rank. The insight is that if an application that
has fewer critical requests is delayed, the impact of that
delay on that application’s slowdown is much higher than
the impact of delaying an application with a large number
of critical requests. In other words, it is more unfair to delay
an application that has a small number of useful requests
(i.e., a “shorter” application/job) than delaying an applica-
tion that has a large number of useful requests (i.e., a
“longer” application/job). To achieve this while still being
prefetch aware, the DRAM controller schedules memory
requests based on the modified rule shown in Rule 2. A
highly ranked request is scheduled by the DRAM controller
when all requests in the memory request buffer have the
same priority for criticality, row-hit, and urgency.

Rule 2. Adaptive prefetch scheduling with ranking

1. Critical request (C): Critical requests are prioritized
over all other requests.

2. Row-hit request (RH): Row-hit requests are prioritized

over row-conflict requests.

3. Urgent request (U): Demand requests generated by

cores with low prefetch accuracy are prioritized over

other requests.

4. Highest rank request (RANK): Critical requests from a

higher ranked core are prioritized over critical requests

from a lower ranked core. Critical requests from cores
that have fewer outstanding critical requests are ranked

higher.

5. Oldest request (FCFS): Older requests are prioritized

over younger requests.

To implement ranking, the priority field for each
memory request is augmented, as shown in Fig. 19. A
counter per core is required to keep track of the total
number of critical requests in the memory request buffer.
When the estimated prefetch accuracy of a core is greater
than promotion threshold, the total number of outstanding
demand and prefetch requests (critical requests) for that
core is counted. When the accuracy is less than the
threshold, the counter stores only the number of out-
standing demand requests. Cores are ranked according to
the total number of critical requests they have in the
memory request buffer: a core that has a higher number of
critical requests is ranked lower. The RANK field of a
request is the same as the rank value of the core determined
in this manner. As such, the critical requests of a core with a
lower value in its counter are prioritized. This process is
done every DRAM bus cycle in our implementation.
Alternatively, determination of the ranking can be done
periodically since it does not need to be highly accurate and
is not on the critical path.

Note that in this study, we do not rank noncritical
requests (i.e., prefetch requests from cores whose prefetch
accuracy is low). The RANK field of these requests is
automatically set to 0 (the lowest rank value). We evaluated
a mechanism that also ranks noncritical requests based on
estimated prefetch accuracy, and found that this mechan-
ism does not perform better than the mechanism that ranks
only critical requests.

Fig. 20 shows the average system performance, bus
traffic, and unfairness when we incorporate the ranking
mechanism into PADC for the 32 four-core workloads. On

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1421

Fig. 19. Memory request fields for PADC with ranking.

Fig. 20. Optimized PADC using ranking mechanism on four-core

system. (a) Performance. (b) Average traffic. (c) Unfairness.

average, the ranking mechanism slightly degrades weighted
speedup (by 0.4 percent) and slightly improves harmonic
mean of speedups (by 0.9 percent) and keeps bandwidth
consumption about the same compared to the original
PADC. Unfairness is improved from 1.63 to 1.53. The
performance improvement is not significant because the
contention in the memory system is not very high in the
four-core system. Nonetheless, the ranking scheme im-
proves all the system performance and unfairness metrics
for most workloads with memory-intensive benchmarks.
For the workload in case study II, the ranking scheme
improves WS, HS, and UF by 7.5, 10.3, and 15.1 percent
compared to PADC without ranking.

We also evaluate the optimized PADC scheme with
ranking on the eight-core system which places significantly
more pressure on the DRAM system. As shown in Fig. 21, the
ranking mechanism improves WS and HS by 2.0 and
5.4 percent, respectively, and reduces unfairness by 10.4 per-
cent compared to PADC without ranking. The effectiveness
of the ranking scheme is much higher in the eight-core
system than the four-core system since it is more critical to
schedule memory requests fairly in many-core bandwidth-
limited systems. Improving fairness reduces starvation of
some cores resulting in improved utilization of the cores in
the system which, in turn, results in improved system
performance. Since starvation is more likely when the
memory system is shared between eight cores rather than
four, performance improvement obtained with the ranking
scheme is higher in the eight-core system.

We conclude that augmenting PADC with an intelligent
fairness mechanism improves both unfairness and system
performance.

6.6 Effect on Multiple DRAM Controllers

We also evaluate performance impact of PADC when two
DRAM controllers are employed in the four and eight-core
systems. Each memory controller works independently
through a dedicated channel (address and data buses)
doubling the peak memory bandwidth. Because there is
more bandwidth available in the system, contention
between prefetch and demand requests is significantly
reduced. Therefore, the baseline system performance is
significantly improved compared to the single controller.
Adding one more DRAM controller improves weighted
speedup by 16.9 and 30.9 percent compared to the single
controller for four and eight-core systems, respectively.

Figs. 22 and 23 show the average performance and
bus traffic for four and eight-core systems with two
memory controllers. Note that for the eight-core system,
unlike the single memory controller configuration shown

in Fig. 18a where adding a prefetcher actually degrades
performance, performance increases when adding a
prefetcher even for the rigid scheduling policies because
of the increased memory bandwidth.

PADC is still very effective with two memory controllers
and improves weighted speedup by 5.9 and 5.5 percent and
alsoreducesbandwidthconsumption by12.9and13.2percent
compared to the demand-first policy for four and eight-core
systems, respectively. Therefore, we conclude that PADC still
performs effectively on a multicore processor with very high
DRAM bandwidth.

6.7 Effect with Different DRAM Row Buffer Sizes

As motivated in Section 3, PADC takes advantage of and
relies on the row buffer locality of demand and prefetch
requests generated at runtime. To determine the sensitivity
of PADC to row buffer size, we varied the size of the row
buffer from 2 to 128 KB for the 32 workloads run on the
four-core system. Fig. 24 shows the WS improvements of
PADC and APS compared to no prefetching, demand-first,
and demand-prefetch-equal.

PADC consistently outperforms no prefetching, de-
mand-first, and demand-prefetch-equal with various row
buffer sizes. Note that the demand-first policy starts
degrading performance compared to no prefetching as the
row buffer becomes very large (64 and 128 KB). This is
because preserving row buffer locality for useful requests is
more critical when the row buffer size is large (especially
when the stream prefetcher is enabled). No prefetching
with larger row buffer sizes exploits row buffer locality

1422 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 21. Optimized PADC using ranking mechanism on eight-core

system. (a) Performance. (b) Average traffic. (c) Unfairness.

Fig. 22. Performance of PADC on four-core system with dual-memory

controllers. (a) Average system performance. (b) Average traffic.

Fig. 23. Performance of PADC on eight-core system with dual-memory

controllers. (a) Average system performance. (b) Average traffic.

more (higher row-hit rate) than smaller row buffer sizes.
However, with demand-first, the negative performance
impact of frequent reactivations of DRAM rows for demand
and prefetch requests becomes significantly worse at larger
row buffer sizes. Therefore, the demand-first policy experi-
ences a higher memory service time, on average, than no
prefetching with large row buffer sizes.

Similarly, the demand-prefetch-equal policy does not
improve performance compared to no prefetching for 64
and 128 KB row buffer sizes since it does not take into
account the usefulness of prefetches. With a large row
buffer, useless prefetches have higher row buffer locality
because many of them hit in the row buffer due to the
streaming nature of the prefetcher. As a result, demand-
prefetch-equal significantly delays the service of demand
requests at large row buffer sizes by servicing more useless
row-hit prefetches first.

In contrast to these two rigid scheduling policies, PADC
tries to service only useful row-hit memory requests first,
thereby significantly improving performance even for large
row buffer sizes (8.8 and 7.3 percent compared to no
prefetching for 64 and 128 KB row buffers). Therefore,
PADC can make a prefetcher viable and effective even when
a large row buffer size is used because it takes advantage of
the increased row buffer locality opportunity provided by a
larger row buffer only for useful requests instead of wasting
the increased amount of bandwidth enabled by a larger row
buffer on useless prefetch requests.

6.8 Effect with a Closed-Row DRAM Row Buffer
Policy

So far, we have assumed that the DRAM controller employs
the open-row policy (i.e., it keeps the accessed row open in
the row buffer after the access even if there are no more
outstanding requests requiring the row). In this section, we
evaluate the effectiveness of PADC with a closed-row
policy. The closed-row policy closes (by issuing a precharge
command) the currently-opened row when all row-hit
requests in the memory request buffer have been serviced
by the DRAM controller. This policy can hide effective
precharge time by 1) overlapping the precharge latency
with the row-access latency [18] and 2) issuing the
precharge command (closing a row buffer) earlier than
the open-row policy (thereby converting a row-conflict
access into a row-closed access if the next access is to a
different row). Therefore, if no more requests to the same
row arrive at the memory request buffer after a row buffer

is closed by a precharge command, the closed-row policy
can outperform the open-row policy. This is because with
the closed-row policy, the later requests do not need a
precharge before activating the different row. However, if a
request to the same row arrives at the memory request
buffer soon after the row is closed, this policy has to pay a
penalty (the sum of the nonoverlapped precharge latency
and the activation latency) which would not have been
required for the open-row policy. Consequently, for
applications that have high row buffer locality (i.e.,
applications that generate bursty row-hit requests) such as
streaming/striding applications, the open-row policy out-
performs the closed-row policy by reducing reactivations of
the same rows that will be needed again in the near future.

Since the closed-row policy still services row-hit requests
first until no more requests to the same row remain in the
memory request buffer, it can increase DRAM throughput
within the scope of the requests that are outstanding in the
memory request buffer. When a prefetcher is enabled with
the closed-row policy, the same problem exists as for the
open-row policy: none of the rigid prefetch scheduling
policies can achieve the best performance for all applica-
tions since they are not aware of prefetch usefulness.
Therefore, PADC can still work effectively with the closed-
row policy as we show empirically below.

Fig. 25 shows performance and bus traffic when PADC is
used with the closed-row policy for the 32 four-core work-
loads. The closed-row policy with demand-first scheduling
slightly degrades performance by 0.5 percent compared to the
open-row policy with demand-first scheduling. This is
because there are a large number of streaming/striding
(and prefetch-friendly) applications in the SPEC 2000/2006
benchmarks whose performance can be significantly im-
proved with the open-row policy. The performance improve-
ment of the open-row policy is not very significant because
there is also a large number of applications that work well
with the closed-row policy as they do not have high row
buffer locality.

The results show that PADC is still effective with the
closed-row policy since it still effectively exploits row buffer
locality (within the scope of the requests outstanding in the
memory request buffer) and reduces the negative effects of
useless prefetch requests. PADC improves weighted speed-
up by 7.6 percent and reduces bandwidth consumption by
10.9 percent compared to demand-first scheduling with the
closed-row policy. Note that PADC with the open-row
policy slightly outperforms PADC with the closed row by

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1423

Fig. 24. Effect of PADC with various DRAM row buffer sizes on four-core

system. Fig. 25. Effect on closed-row policy. (a) Average system Performance.

(b) Average traffic.

1.1 percent for weighted speedup. Overall, we conclude that
PADC is suitable for different row buffer management
policies, but it is more effective with the open-row policy
due to the existence of a larger number of benchmarks with
high row buffer locality.

6.9 Effect with a Shared Last-Level Cache

Throughout the paper, we evaluate our mechanism on CMP
systems with private on-chip last-level (L2) caches rather
than a shared cache where all cores share a large on-chip
last-level cache. This allowed us to easily show and analyze
the effect of PADC in the shared DRAM system by isolating
the effect of contention in the DRAM system from the effect
of interference in shared caches. However, many commer-
cial processors already employ shared last-level caches in
their CMP designs [39], [40]. In this section, we evaluate
performance of PADC in on-chip shared L2 caches on the
four and eight-core systems to show the effectiveness of
PADC in systems with a shared last-level cache.

For this experiment, we use a shared L2 cache whose size
is equivalent to the sum of all the private L2 cache sizes in
our baseline system. We scaled the associativity of the
shared cache with the number of cores on the chip since as
the number of cores increases, the contention for a cache set
increases. Therefore, the four-core system employs a 2-MB,
16-way set-associative cache and the eight-core system has a
4-MB, 32-way set-associative cache. We selected 32-way set-
associativity for the eight-core system in order to show how
the mechanism works with a very aggressive last-level
cache. If the associativity is less, our mechanism performs
even better. We also assume that each core employs its own
independent stream prefetcher that monitors the core’s
demand accesses and sends prefetched data into the shared
L2 cache. However, our mechanism can also work for a
single prefetcher which monitors all cores’ accesses and
generates prefetches for all cores [39], [40] by simply
associating core ID bits with each prefetch request, signify-
ing which core generated the prefetch request. This way,
PADC can update the appropriate per-core counters to
estimate prefetch accuracy of each core.

Figs. 26 and 27 show weighted speedup and average bus
traffic on the four and eight-core systems with shared
L2 caches. PADC outperforms demand-first by 8.0 and
7.6 percent on the four and eight-core systems, respectively.
We conclude that PADC works efficiently for shared last-
level caches as well.

Note that the demand-prefetch-equal policy does not
work well on either of the shared cache systems (degrading
WS by 2.4 and 10.4 percent compared to demand-first for four
and eight-core systems). This is because the contention in the
shared cache among the requests from different cores
significantly increases compared to that of a private cache
system. With private caches, useless prefetches from one core
can only replace useful lines of that same core. However, with
a shared cache, useless prefetches from one core can also
replace the useful lines of all the other cores. These replaced
lines must be brought back into the cache again from DRAM
when they are needed. Therefore, the total bandwidth
consumption significantly increases. This cache contention
among cores becomes especially worse with demand-
prefetch-equal for prefetch-unfriendly applications. This is
because the demand-prefetch-equal policy results in high
cache pollution since it blindly prefers to increase DRAM
throughput without considering the usefulness of prefetches.
The demand-prefetch-equal policy increases bus traffic by
22.3 and 46.3 percent compared to demand-first for the four
and eight-core systems, as shown in Figs. 26b and 27b. In
contrast, PADC delays the service of useless prefetches and
also drops them thereby mitigating contention in both the
shared cache and the shared DRAM system.

6.10 Effect with Different Last-Level Cache Sizes

PADC aims to maximize DRAM throughput for useful
memory (demand and useful prefetch) requests and to delay
and drop useless memory requests. One might think that a
prefetch/demand management technique such as PADC
would not be needed for larger L2 (last-level) caches since a
larger cache can reduce cache misses (i.e., memory requests).
However, a prefetcher can still generate a significant number
of useful prefetch requests for some applications or program
phases by correctly predicting demand access patterns
which cannot be stored even in large caches due to the large
working set size or streaming nature of the program. In
addition, the prefetcher can issue a significant number of
useless prefetches for other applications or program phases.
For these reasons, the interference between demands and
prefetches still exists in systems with large caches. Therefore,
we hypothesize that PADC is likely to be effective in systems
with large last-level caches.

To test this hypothesis, we evaluate the effectiveness of
PADC for various L2 cache sizes. We vary the private
L2 cache size from 512 KB to 8 MB per core and the shared

1424 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 26. Effect on shared L2 cache on four-core system. (a) Performance.

(b) Average traffic.

Fig. 27. Effect on shared L2 cache on eight-core system.

(a) Performance. (b) Average traffic.

cache size from 2 to 32 MB (other cache parameters are as
described in Section 6.9) on our four-core CMP system.
Fig. 28 shows the system performance (weighted speedup)
for the 32 four-core workloads.

As expected, with larger cache sizes, baseline system
performance improves. However, the stream prefetcher still
effectively improves performance compared to no prefetch-
ing with either the demand-first or the demand-prefetch-
equal policy. In addition, PADC consistently and signifi-
cantly improves performance compared to both demand-
first and demand-prefetch-equal policies for both private
and shared caches, regardless of cache size. This is mainly
because even with large caches, there are still a significant
number of both useful and useless prefetches generated.
Therefore, the interference between prefetch and demand
requests still needs to be intelligently controlled.

There are two other notable observations in Fig. 28: 1) the
demand-prefetch-equal policy starts outperforming the
demand-first policy for private caches greater than 1 MB
(8 MB for the shared cache), and 2) performance of APS
(without APD) becomes closer to that of PADC (APS and
APD together) as the cache size becomes larger. Note that
these trends hold for both private and shared L2 caches.

Both observations can be explained by two reasons. First,
a larger cache reduces irregular (or hard-to-prefetch) conflict
cache misses due to the increased cache capacity. This
makes the prefetcher more accurate because it reduces the
allocations of stream entries for hard-to-prefetch access
patterns (note that only a demand cache miss allocates a
stream prefetch entry, as discussed in Section 2.3). Second, a
larger cache can tolerate some degree of cache pollution.
Due to the increased cache capacity, the probability of
replacing a demand or useful prefetch line with a useless
prefetch in the cache is reduced.

For these reasons, the effect of deprioritizing or dropping
likely-useless prefetches becomes less significant with a
larger cache. As a result, as cache size increases, techniques
that prioritize demands (e.g., demand-first) and drop pre-
fetches (APD) start becoming less effective. However, the
interference between prefetch and demand requests is not
completely eliminated since some applications still suffer
from useless prefetches. PADC (and APS) is effective in
reducing this interference in systems with large caches, and
therefore, still performs significantly better than the rigid
scheduling policies.

Note that PADC is cost-effective for both private and
shared L2 caches. For instance, PADC with a 512 KB private
L2 cache per core performs almost the same as demand-first

with a 2 MB private L2 cache per core, as shown in Fig. 28a.
Thus, PADC (which requires only 4.25 KB storage) achieves
the equivalent performance improvement that an additional
6 MB (1.5 MB �4 cores) of cache storage would provide in
the four-core system.

6.11 Effect on Other Prefetching Mechanisms

To show that the benefits of PADC are orthogonal to the
prefetching algorithm employed, we briefly evaluate the
effect of our PADC on different types of prefetchers: PC-
based stride [1], C/DC [27], and the Markov prefetcher [9].
Fig. 29 shows performance and bus traffic results averaged
over all 32 workloads run on the four-core system with the
three different prefetchers. PADC consistently improves
performance and reduces bandwidth consumption com-
pared to the demand-first or demand-prefetch-equal policies
with all three prefetchers.

The PC-based stride and C/DC prefetchers successfully
capture a significant number of memory access patterns as
the stream prefetcher does thereby increasing the potential
for exploiting row buffer locality. In addition, these pre-
fetchers also generate many useless prefetches for certain
applications. Therefore, PADC significantly improves per-
formance and bandwidth efficiency with these prefetchers
by increasing DRAM throughput for useful requests and
reducing the negative impact of useless prefetches.

The performance improvement of PADC on the Markov
prefetcher is the least. This is because the Markov prefetcher,
which exploits temporal as opposed to spatial correlation,
does not work as well as the other prefetchers for the SPEC
benchmarks. It generates many useless prefetches which
lead to significant waste/interference in DRAM bandwidth,
cache space, and memory queue resources. Furthermore, it
does not generate many useful prefetches for the SPEC
benchmarks, and therefore, its maximum potential for
performance improvement is low. As such, the Markov
prefetcher significantly increases bandwidth consumption
and results in little performance improvement compared to
no prefetching, as shown in Fig. 29b. PADC improves
performance of the Markov prefetcher (mainly due to APD)
by removing a large number of useless prefetches while
keeping the small number of useful prefetches. PADC
improves WS by 2.2 percent and reduces bandwidth
consumption by 10.3 percent (mainly due to APD) compared
to the demand-first policy. We conclude that PADC is
effective with a wide variety of prefetching mechanisms.

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1425

Fig. 28. Effect of PADC on various cache sizes per core on four-core system. (a) Private L2 caches per core. (b) Shared L2 cache.

6.12 Comparison with Dynamic Data Prefetch
Filtering and Feedback Directed Prefetching

Dynamic Data Prefetch Filtering (DDPF) [46] tries to
eliminate useless prefetches based on whether or not the
prefetch was useful in the past. It records either the past
usefulness of the prefetched address (or the PC of the
instruction which triggered the prefetch) in a table similar
to how a two-level branch predictor stores history informa-
tion. When a prefetch request is created, the history table is
consulted and the previous usefulness information is used
to determine whether or not to send out the prefetch
request. Feedback Directed Prefetching (FDP) [36] adap-
tively adjusts the aggressiveness of the prefetcher in order
to reduce its negative effects.

Recall that PADC has two components: APS and APD.
Both DDPF and FDP are orthogonal to APS because they do
not deal with the scheduling of prefetches with respect to
demands. As such, they can be employed together with APS
to maximize the benefits of prefetching. On the other hand,
the benefits of DDPF, FDP, and APD overlap. DDPF filters
out useless prefetches before they are sent to the memory
system. FDP eliminates useless prefetches by reducing the
aggressiveness of the prefetcher thereby reducing the
likelihood that useless prefetch requests are generated. In
contrast, APD eliminates useless prefetches by dropping
them after they are generated. As a result, we find (based on
our experimental analyses) that APD has the following
advantages over DDPF and FDP:

1. Both DDPF and FDP eliminate not only useless
prefetches but also a significant fraction of useful
prefetches. DDPF removes many useful prefetches
by falsely predicting many useful prefetches to be
useless. This is due to the aliasing problem caused
by sharing the limited size of the history table
among many addresses. FDP can eliminate useful
prefetches when it reduces the aggressiveness of the
prefetcher. In addition, we found that FDP can be
very slow in increasing the aggressiveness of the
prefetcher when a new phase starts execution. In
such cases, FDP cannot issue useful prefetches,
whereas APD would have issued them because it
always keeps the prefetcher aggressive.

2. The hardware cost of DDPF for an L2 cache is
expensive since each L2 cache line and MSHR must
carry several bits for indexing the prefetch history
table (PHT) to update the table appropriately. For

example, for a PC-based gshare DDPF with a 4K-entry
PHT, 24 bits (12-bit branch history and 12-bit load
PC bits) per cache line are needed in addition to the
prefetch bit per cache line. For the four-core system
we use, this index information alone accounts for
96 KB of storage. In contrast, APD does not require
significant hardware cost, as shown in Section 4.5.

3. FDP requires the tuning of multiple threshold values
[36] to throttle the aggressiveness of the prefetcher
which is a nontrivial optimization problem. APD
allows the baseline prefetcher to always be very
aggressive because it can eliminate useless prefetches
after they are generated. As such, there is no need to
tune multiple different threshold values in APD
because the aggressiveness of the prefetcher never
changes.

To evaluate performance of these mechanisms, we
implemented DDPF (PC-based gshare DDPF for L2 cache
prefetch filtering [46]) and FDP in our CMP system. All the
relevant parameters (FDP: prefetch accuracy of 90 and
40 percent, lateness threshold of one percent, and pollution
threshold of 0.5 percent, and pollution filter size of 4 Kbits;
DDPF: filtering threshold of three and table size of 4K entry
2-bit counters) for DDPF and FDP were tuned for the best
performance with the stream prefetcher in our CMP system.
Fig. 30 shows performance and bus traffic of different
combinations of DDPF, FDP, and PADC averaged across
the 32 workloads run on the four-core system. From left to
right, the seven bars show:

1. baseline stream prefetching with the rigid demand-
first policy,

2. DDPF with demand-first policy,
3. FDP with demand-first policy,
4. APD with demand-first policy,
5. DDPF combined with APS,
6. FDP combined with APS, and
7. APD combined with APS (i.e., PADC).

When used with the demand-first policy, DDPF and FDP
improve performance by 1.5 and 1.7 percent, respectively,
while reducing bus traffic by 22.8 and 12.6 percent. In
contrast, APD improves performance by 2.6 percent, while
reducing bus traffic by 10.4 percent. DDPF and FDP
eliminate more useless prefetches than APD resulting in
less bus traffic. However, for the very same reason, DDPF
and FDP eliminate many useful prefetches as well. There-
fore, their performance improvement is not as high as APD.

1426 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 29. PADC on stride, C/DC, and Markov prefetchers. (a) Performance. (b) Traffic.

Our adaptive scheduling policy and DDPF/FDP are
complementary and improve performance significantly
when combined together. When used together with Adap-
tive Prefetch Scheduling, DDPF and FDP improve perfor-
mance by 6.3 and 7.4 percent, respectively. Finally, the
results show that PADC outperforms the combination of
DDPF/FDP and APS which illustrates that Adaptive
Prefetch Dropping is better suited to eliminate the negative
performance effects of prefetching than DDPF and FDP. We
conclude that 1) our adaptive scheduling technique comple-
ments DDPF and FDP, whereas our APD technique outper-
forms DDPF and FDP, and 2) DDPF and FDP reduce
bandwidth consumption more than APD, but they do so at
the expense of performance.

If a prefetch filtering mechanism is able to eliminate all
useless prefetches while keeping all useful prefetches, the
demand-prefetch-equal policy would be best performing.
That is to say we do not need an adaptive memory scheduling
policy since all prefetches sent to the memory system would
be useful. However, it is not trivial to design such a perfect
prefetch filtering mechanism. As discussed above, DDPF and
FDP filter out not only useless prefetches but also a lot of
useful prefetches. Therefore, combining those schemes with
demand-prefetch-equal does not necessarily significantly
improve performance since the benefits of useful prefetches
are reduced.

Fig. 31 shows performance and average traffic when
DDPF and FDP are combined with demand-prefetch-equal.
Since DDPF and FDP remove a significant number of useful
prefetches, performance improvement is not very signifi-
cant (only by 2.3 and 2.7 percent compared to demand-
first). On the other hand, PADC significantly improves

performance (by 8.2 percent) by keeping the benefits of
useful prefetches as much as possible.

6.13 Interaction with Permutation-Based Page
Interleaving

Permutation-based page interleaving [43] aims to reduce
row-conflicts by randomly mapping the DRAM bank
indexes of addresses so that they are more spread out
across the multiple banks in the memory system. This
technique significantly improves DRAM throughput by
increasing utilization of multiple DRAM banks. The
increased utilization of the banks has the potential to
reduce the interference between memory requests. How-
ever, this technique cannot completely eliminate the
interference between demand and prefetch requests in the
presence of prefetching. Any rigid prefetch scheduling
policy in conjunction with this technique will still have the
same problem we describe in Section 3: none of the rigid
prefetch scheduling policies can achieve the best perfor-
mance for all applications since they are not aware of
prefetch usefulness. Therefore, PADC is complementary to
permutation-based page interleaving.

Fig. 32 shows performance impact of PADC for the 32 four-
core workloads when a permutation-based interleaving
scheme is applied. The permutation-based scheme improves
the system performance by 3.8 percent over our baseline with
the demand-first policy. This is because the permutation
scheme reduces row-conflicts by spreading out requests
across multiple banks. APS and PADC consistently work
effectively combined with the permutation-based interleav-
ing scheme by efficiently managing the interference between
demands and prefetches based on usefulness of prefetches.
APS and PADC improve system performance by 2.9 and
5.4 percent, respectively, compared to the demand-first
policy with the permutation-based interleaving scheme.
Also, PADC reduces bandwidth consumption by 11.3 percent
due to adaptive prefetch dropping.

6.14 Effect on a Runahead Execution Processor

Runahead execution [24] is a promising technique that
prefetches useful data by executing future instructions that
are independent of a long latency (runahead-causing) load
instruction during the stall time of the load instruction.
Because it is based on the execution of actual instructions,
runahead execution can prefetch irregular data access
patterns as well as regular ones. Usually, runahead execu-
tion complements hardware prefetching and results in high

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1427

Fig. 30. Comparison with DDPF and FDP with demand-first scheduling.

(a) Performance. (b) Average traffic.

Fig. 31. Comparison to DDPF and FDP with demand-prefetch-equal

scheduling. (a) Performance. (b) Average traffic.

Fig. 32. Effect on permutation-based page interleaving. (a) Performance.

(b) Average traffic.

performance. In this section, we analyze the effect of PADC
on a runahead processor. We implemented runahead
capability in our baseline system by augmenting invalid
bits in the register files for each core. Since memory requests
during runahead modes are very accurate most of the time
[24], we treat runahead requests the same as demand
requests in DRAM scheduling.

Fig. 33 shows the effect of PADC on a runahead processor
for the 32 workloads on the four-core CMP system. Each
runahead processor has exactly the same parameters as our
baseline processor, but it also uses a 512-byte runahead
cache to support store load forwarding during runahead
execution. Adding runahead execution on top of the
baseline demand-first policy improves system performance
by 3.7 percent and also reduces bandwidth consumption by
5.0 percent. This is because we use a prefetcher update
policy that trains existing stream prefetch entries but does
not allocate a new stream prefetch entry on a cache miss
during runahead execution (only-train). Previous research
[21] shows that this policy is best performing and most
efficient. Runahead execution with the only-train policy can
make prefetching more accurate and efficient by capturing
irregular cache misses during runahead execution. These
irregular misses train existing stream prefetch entries, but
new and more speculative stream prefetch entries will not
be created during runahead mode. This not only prevents
the prefetcher from generating useless prefetches due to
falsely created streams but also improves the accuracy and
timeliness of the stream prefetcher since existing streams
continue to be trained during runahead mode.

Fig. 33 shows that PADC still effectively improves
performance by 6.7 percent and reduces bandwidth con-
sumption by 10.2 percent compared to a runahead CMP
processor with the stream prefetcher and the demand-first
policy. We conclude that PADC is effective at improving
performance and bandwidth efficiency for an aggressive
runahead CMP by successfully reducing the interference
between demand/runahead and prefetch requests in the
DRAM controller.

7 RELATED WORK

The main contribution of our work beyond previous
research is an adaptive way of handling prefetch requests
in the memory controller’s scheduling and buffer manage-
ment policies. To our knowledge, none of the previously
proposed DRAM controllers adaptively prioritize between

prefetch and demand requests nor do they adaptively drop
useless prefetch requests based on prefetch usefulness
information obtained from the prefetcher. We discuss
closely related work in DRAM scheduling, prefetch filter-
ing, and adaptive prefetching.

7.1 Prefetch Handling in DRAM Controllers

Many previous DRAM scheduling policies were proposed to
improve DRAM throughput in single-threaded [47], [31], [7],
multithreaded [30], [25], [44], and stream-based [17], [42]
systems. In addition, several recent works [26], [22], [23]
proposed techniques for fair DRAM scheduling across
different applications sharing the DRAM system. Some of
these previous proposals [47], [31], [25], [44], [26], [22], [23] do
not discuss how prefetch requests are handled with respect to
demand requests. Therefore, our mechanism is orthogonal to
these scheduling policies. These policies can be extended to
adaptively prioritize between demand and prefetch requests
and to adaptively drop useless prefetch requests.

The remaining DRAM controller proposals take two
different approaches to handling prefetch requests. First,
some proposals [14], [7], [8] always prioritize demand
requests over prefetch requests. Other proposals [42], [30],
including some memory controllers in existing processors
[10], [38], treat prefetch requests the same as demand
requests. As such, these previous DRAM controller propo-
sals handle prefetch requests rigidly. As we have shown in
Sections 1 and 3, rigid handling of prefetches can cause
significant performance loss compared to adaptive prefetch
handling. Our work improves upon these proposals by
incorporating the effectiveness of prefetching into DRAM
scheduling decisions.

7.2 Prefetch Filtering

Our APD scheme shares the same goal of eliminating useless
prefetches with several other previous proposals. However,
our mechanism provides either higher bandwidth efficiency
or better adaptivity compared to these works.

Charney and Puzak [2] and Mutlu et al. [20] proposed
prefetch filtering mechanisms using on-chip caches (using
the tag store). Both of these proposals unnecessarily consume
memory bandwidth since useless prefetches are filtered out
only after they are serviced by the DRAM system. In contrast,
APD eliminates useless prefetches before they consume
valuable DRAM bandwidth.

Mowry et al. [19] proposed a prefetch dropping mechan-
ism that cancels software prefetches when the prefetch issue
queue is full to avoid processor stall. On the other hand, our
scheme drops hardware prefetch requests only if their age
is greater than a dynamically adjusted threshold (based on
prefetch accuracy). Srinivasan et al. [37] use a profiling
technique to mark load instructions that are likely to
generate useful prefetches. This mechanism needs ISA
support to mark the selected load instructions and cannot
adapt to phase behavior in prefetcher accuracy. In contrast,
APD does not require ISA changes and can adapt to
changes in prefetcher accuracy.

Zhuang and Lee [45], [46] propose a mechanism that
eliminates the prefetch request for an address if the prefetch
request for the same address was useless in the past. PADC
outperforms and also complements their mechanism as
discussed in Section 6.12.

1428 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

Fig. 33. Effect on runahead execution. (a) Performance. (b) Average

traffic.

7.3 Adaptive Prefetching

Several previous works proposed changing the aggressive-
ness of the hardware prefetcher based on dynamic informa-
tion. Our work is either complementary to or higher
performing than these proposals, as described below.

Hur and Lin [8] designed a probabilistic prefetching
technique which adjusts prefetcher aggressiveness. They
also schedule prefetch requests to DRAM adaptively based
on the frequency of demand request DRAM bank conflicts
caused by prefetch requests. However, their scheme always
prioritizes demand requests over prefetches. In contrast,
our mechanism adapts the prioritization policy between
demands and prefetches based on prefetcher accuracy. As a
result, Hur and Lin’s proposal can be combined with our
adaptive prefetch scheduling policy to provide even higher
performance.

Srinath et al. [36] show how adjusting the aggressiveness
of the prefetcher based on accuracy, lateness, and cache
pollution information can reduce bus traffic without
compromising the benefit of prefetching. As shown in
Section 6.12, PADC outperforms and also complements
their mechanism.

8 CONCLUSION

This paper shows that existing DRAM controllers that
employ rigid, nonadaptive prefetch scheduling and buffer
management policies cannot achieve the best performance
since they do not take into account the usefulness of
prefetch requests. To overcome this limitation, we propose a
low hardware cost Prefetch-Aware DRAM Controller,
which aims to 1) maximize the benefit of useful prefetches
by adaptively prioritizing them and 2) minimize the harm
caused by useless prefetches by adaptively deprioritizing
and dropping them from the memory request buffers. To
this end, PADC dynamically adapts its memory scheduling
and buffer management policies based on prefetcher
accuracy. Our evaluation shows that PADC significantly
improves system performance and bandwidth efficiency on
both single-core and multicore systems. We conclude that
incorporating awareness of prefetch usefulness into mem-
ory controllers is critical to efficiently utilizing valuable
memory system resources in current and future systems.

ACKNOWLEDGMENTS

Many thanks to Minsik Cho, Viji Srinivasan, José A. Joao,
Eiman Ebrahimi and other HPS members. We also thank
the anonymous reviewers for their comments. Chang Joo
Lee and Veynu Narasiman were supported by IBM and
NVIDIA PhD fellowships respectively during this work. We
gratefully acknowledge the support of the Cockrell Foun-
dation, Intel, AMD, and Gigascale Systems Research Center.
This research was partially supported by NSF CAREER
Award CCF-0953246.

REFERENCES

[1] J. Baer and T. Chen, “An Effective On-Chip Preloading Scheme to
Reduce Data Access Penalty,” Proc. ACM/IEEE Conf. Supercomput-
ing (Supercomputing ’91), pp. 178-186, 1991.

[2] M. Charney and T. Puzak, “Prefetching and Memory System
Behavior of the SPEC95 Benchmark Suite,” IBM J. Research and
Development, vol. 31, no. 3, pp. 265-286, 1997.

[3] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A Performance
Comparison of Contemporary DRAM Architectures,” Proc. 26th
Ann. Int’l Symp. Computer Architecture (ISCA-26), pp. 222-233, 1999.

[4] S. Eyerman and L. Eeckhout, “System-Level Performance
Metrics for Multiprogram Workloads,” IEEE Micro, vol. 28,
no. 3, pp. 42-53, May 2008.

[5] J.D. Gindele, “Buffer Block Prefetching Method,” IBM Technical
Disclosure Bull., vol. 20, no. 2, pp. 696-697, July 1977.

[6] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker,
and P. Roussel, “The Microarchitecture of the Pentium 4
Processor,” Intel Technology J., vol. 1, p. 2001, Feb. 2001.

[7] I. Hur and C. Lin, “Adaptive History-Based Memory Schedu-
ler,” Proc. 37th Ann. IEEE/ACM Int’l Symp. Microarchitecture
(MICRO-37), 2004.

[8] I. Hur and C. Lin, “Memory Prefetching Using Adaptive Stream
Detection,” Proc. 39th Ann. IEEE/ACM Int’l Symp. Microarchitecture
(MICRO-39), 2006.

[9] D. Joseph and D. Grunwald, “Prefetching Using Markov
Predictors,” Proc. 24th Ann. Int’l Symp. Computer Architecture
(ISCA-24), pp. 252-263, 1997.

[10] R. Kalla, B. Sinharoy, and J.M. Tendler, “IBM Power5 Chip: A
Dual-Core Multithreaded Processor,” IEEE Micro, vol. 24, no. 2,
pp. 40-47, Mar./Apr. 2004.

[11] T. Karkhanis and J.E. Smith, “A Day in the Life of a Data Cache
Miss,” Proc. Second Workshop Memory Performance Issues, 2002.

[12] H.Q. Le, W.J. Starke, J.S. Fields, F.P. O’Connell, D.Q. Nguyen, B.J.
Ronchetti, W.M. Sauer, E.M. Schwarz, and M.T. Vaden, “IBM
Power6 Microarchitecture,” IBM J. Research and Development,
vol. 51, pp. 639-662, 2007.

[13] C.J. Lee, O. Mutlu, V. Narasiman, and Y.N. Patt, “Prefetch-Aware
DRAM Controllers,” Proc. 41st Ann. IEEE/ACM Int’l Symp.
Microarchitecture (MICRO-41), 2008.

[14] W.-F. Lin, S.K. Reinhardt, and D. Burger, “Reducing DRAM
Latencies with an Integrated Memory Hierarchy Design,” Proc.
Seventh Int’l Symp. High-Performance Computer Architecture
(HPCA-7), pp. 301-312, 2001.

[15] K. Luo, J. Gummaraju, and M. Franklin, “Balancing Throughput
and Fairness in SMT Processors,” Proc. IEEE Int’l Symp.
Performance Analysis of Systems and Software (ISPASS), pp. 164-
171, 2001.

[16] S. McFarling, “Combining Branch Predictors,” Technical Report
TN-36, Digital Western Research Laboratory, June 1993.

[17] S.A. McKee, W.A. Wulf, J.H. Aylor, R.H. Klenke, M.H. Salinas,
S.I. Hong, and D.A. Weikle, “Dynamic Access Ordering for
Streamed Computations,” IEEE Trans. Computers, vol. 49, no. 11,
pp. 1255-1271, Nov. 2000.

[18] Micron, 2Gb DDR3 SDRAM, MT41J512M4-64 Meg x 4 x 8 Banks,
http://download.micron.com/pdf/datasheets/dram/ddr3/,
2009.

[19] T.C. Mowry, M.S. Lam, and A. Gupta, “Design and Evaluation of
a Compiler Algorithm for Prefetching,” Proc. Fifth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems, pp. 62-73, 1992.

[20] O. Mutlu, H. Kim, D.N. Armstrong, and Y.N. Patt, “Using the
First-Level Caches as Filters to Reduce the Pollution Caused by
Speculative Memory References,” Int’l J. Parallel Programming,
vol. 33, no. 5, pp. 529-559, Oct. 2005.

[21] O. Mutlu, H. Kim, and Y.N. Patt, “Techniques for Efficient
Processing in Runahead Execution Engines,” Proc. Ann. 32nd Int’l
Symp. Computer Architecture (ISCA-32), 2005.

[22] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” Proc. 40th Ann. IEEE/ACM
Int’l Symp. Microarchitecture (MICRO-40), 2007.

[23] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch Sche-
duling: Enhancing Both Performance and Fairness of Shared
DRAM Systems,” Proc. 35th Ann. Int’l Symp. Computer Architec-
ture (ISCA-35), 2008.

[24] O. Mutlu, J. Stark, C. Wilkerson, and Y.N. Patt, “Runahead
Execution: An Alternative to Very Large Instruction Windows for
Out-of-Order Processors,” Proc. Ninth Int’l Symp. High-Performance
Computer Architecture (HPCA-9), 2003.

[25] C. Natarajan, B. Christenson, and F. Briggs, “A Study of
Performance Impact of Memory Controller Features in Multi-
Processor Server Environment,” Proc. Workshop Memory perfor-
mance Issues (WMPI), pp. 80-87, 2004.

LEE ET AL.: PREFETCH-AWARE MEMORY CONTROLLERS 1429

[26] K.J. Nesbit, N. Aggarwal, J. Laudon, and J.E. Smith, “Fair Queuing
Memory Systems,” Proc. 39th Ann. IEEE/ACM Int’l Symp. Micro-
architecture (MICRO-39), 2006.

[27] K.J. Nesbit, A.S. Dhodapkar, J. Laudon, and J.E. Smith, “AC/DC:
An Adaptive Data Cache Prefetcher,” Proc. 13th Int’l Conf. Parallel
Architecture and Compilation Techniques (PACT-13), 2004.

[28] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A.
Karunanidhi, “Pinpointing Representative Portions of Large Intel
Itanium Programs with Dynamic Instrumentation,” Proc. 37th
Ann. IEEE/ACM Int’l Symp. Microarchitecture (MICRO-37), 2004.

[29] M.K. Qureshi, D.N. Lynch, O. Mutlu, and Y.N. Patt, “A Case for
MLP-Aware Cache Replacement,” Proc. 33rd Ann. Int’l Symp.
Computer Architecture (ISCA-33), 2006.

[30] S. Rixner, “Memory Controller Optimizations for Web Ser-
vers,” Proc. 37th Ann. IEEE/ACM Int’l Symp. Microarchitecture
(MICRO-37), 2004.

[31] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, and J.D. Owens,
“Memory Access Scheduling,” Proc. 27th Ann. Int’l Symp. Computer
Architecture (ISCA-27), 2000.

[32] A.J. Smith, “Cache Memories,” Computing Surveys, vol. 14, no. 4,
pp. 473-530, 1982.

[33] W.E. Smith, “Various Optimizers for Single Stage Production,”
Naval Research Logistics Quarterly, vol. 3, pp. 59-66, 1956.

[34] A. Snavely and D.M. Tullsen, “Symbiotic Job Scheduling for a
Simultaneous Multithreading Processor,” Proc. Ninth Int’l Conf.
Architectural Support for Programming Languages and Operating
Systems (ASPLOS-9), pp. 164-171, 2000.

[35] L. Spracklen and S.G. Abraham, “Chip Multithreading: Opportu-
nities and Challenges,” Proc. 11th Int’l Symp. High-Performance
Computer Architecture (HPCA-11), pp. 248-252, 2005.

[36] S. Srinath, O. Mutlu, H. Kim, and Y.N. Patt, “Feedback Directed
Prefetching: Improving the Performance and Bandwidth-Effi-
ciency of Hardware Prefetchers,” Proc. 13th Int’l Symp. High-
Performance Computer Architecture (HPCA-13), 2007.

[37] V. Srinivasan, G.S. Tyson, and E.S. Davidson, “A Static Filter for
Reducing Prefetch Traffic,” Technical Report CSE-TR-400-99,
Univ. of Michigan, 1999.

[38] Sun Microsystems, Inc., OpenSPARC T1 Microarchitecture
Specification.

[39] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy, “POWER4
System Microarchitecture,” IBM Technical White Paper, Oct. 2001.

[40] O. Wechsler, “Inside Intel Core Microarchitecture,” Intel Technical
White Paper, 2006.

[41] T.-Y. Yeh and Y.N. Patt, “Alternative Implementations of Two-
Level Adaptive Branch Prediction,” Proc. 19th Ann. Int’l Symp.
Computer Architecture (ISCA-19), 1992.

[42] C. Zhang and S.A. McKee, “Hardware-Only Stream Prefetching
and Dynamic Access Ordering,” Proc. 14th Int’l Conf. Super-
computing (ICS-14), 2000.

[43] Z. Zhang, Z. Zhu, and X. Zhang, “A Permutation-Based Page
Interleaving Scheme to Reduce Row-Buffer Conflicts and Exploit
Data Locality,” Proc. 27th Ann. Int’l Symp. Computer Architecture
(ISCA-27), 2000.

[44] Z. Zhu and Z. Zhang, “A Performance Comparison of DRAM
Memory System Optimizations for SMT Processors,” Proc. 11th
Int’l Symp. High-Performance Computer Architecture (HPCA-11),
2005.

[45] X. Zhuang and H.-H.S. Lee, “A Hardware-Based Cache Pollution
Filtering Mechanism for Aggressive Prefetches,” Proc. 32nd Int’l
Conf. Parallel Processing, pp. 286-293, 2003.

[46] X. Zhuang and H.-H.S. Lee, “Reducing Cache Pollution via
Dynamic Data Prefetch Filtering,” IEEE Trans. Computers, vol. 56,
no. 1, pp. 18-31, Jan. 2007.

[47] W. Zuravleff and T. Robinbson, “Controller for a Synchronous
DRAM That Maximizes Throughput by Allowing Memory
Requests and Commands to be Issued Out of Order,” US Patent
Number 5,630,096, 1997.

Chang Joo Lee received the BS degree in
electrical engineering from Seoul National Uni-
versity in 2001, and the MS degree in computer
engineering in 2004 from the University of Texas
at Austin, where he is currently working toward
the PhD degree in computer engineering. He is
interested in computer architecture research
mainly focused on high-performance memory
systems and energy-efficient microarchitec-
tures. He was a recipient of the scholarship

from the Ministry of Information and Communication in Korea during
2002-2006, the IBM PhD fellowship in 2007, and the IBM scholarship in
2008. He is a student member of the IEEE.

Onur Mutlu received the BS degrees in
computer engineering and psychology from the
University of Michigan, Ann Arbor, and the MS
and PhD degrees in electrical and computer
engineering from the University of Texas at
Austin. He is an assistant professor of electrical
and computer engineering at Carnegie Mellon
University. He is interested in computer archi-
tecture and systems research. Prior to Carnegie
Mellon, he worked at Microsoft Research, Intel

Corporation, and Advanced Micro Devices. He received the University of
Texas George H. Mitchell Award for Excellence in Graduate Research in
2005, Microsoft Gold Star Award in 2008, US National Science
Foundation (NSF) CAREER Award in 2010, and several computer
architecture top pick paper awards from the IEEE Micro. He is a member
of the IEEE.

Veynu Narasiman received the BS degree in
electrical/computer engineering, the BA degree
in plan II in 2004, and the MS degree in
computer engineering in 2006 from the Univer-
sity of Texas at Austin, where he is currently
working toward the PhD degree. His research
interests in computer architecture focus on
general-purpose graphics processing units
(GPGPUs) and high-performance memory sys-
tems. As a student, he has received a number of

awards including a National Merit Scholarship, the Microelectronics and
Computer Development Fellowship, and the NVIDIA PhD Fellowship.
He is a student member of the IEEE.

Yale N. Patt received the BS degree in electrical
engineering from Northeastern, and the MS and
PhD degrees in electrical engineering from
Stanford. He is the Ernest Cockrell, Jr., cen-
tennial chair in engineering and a professor of
electrical and computer engineering at Texas.
He continues to thrive on teaching the large (400
students) freshman introductory course in com-
puting and advanced graduate courses in
microarchitecture, directing the research of eight

PhD students, and consulting in the microprocessor industry. He is the
coauthor of Introduction to Computing Systems: from bits and gates to C
and beyond, McGraw-Hill (second edition, 2004), his preferred approach
to introducing freshmen to computing. He has received a number of
awards for his research and teaching, including the IEEE/ACM Eckert-
Mauchly Award for his research in microarchitecture and the ACM Karl
V. Karlstrom Award for his contributions to education. He is a fellow of
the IEEE. More detail about his research can be found at http://
www.ece.utexas.edu/~patt.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1430 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 10, OCTOBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

