PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware PIM Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu*, and Kiyoung Choi

Seoul National University *Carnegie Mellon University

Processing-in-Memory

* Move computation to memory
— Higher memory bandwidth
— Lower memory latency
— Better energy efficiency (e.g., off-chip links vs. TSVs)

* Originally studied in 1990s
— Also known as processor-in-memory
— e.g., DIVA, EXECUBE, FlexRAM, IRAM, Active Pages, ...
— Not commercialized in the end

Why was PIM unsuccessful in its first attempt?

Challenges in Processing-in-Memory

Cost-effectiveness

Complex Logic

Programming Model

Thread

Thread

Host Processor

Thread
Thread Thread Thread
Thread Thread Thread
Thread Thread Thread
Thread Thread Thread

e
2g 8
2=
2E 8

F55
EEE

In-Memory Processors

4 pealyl || pealyl peeJ

4 peaiy) || peasyr | PesYyL &
peaiy] | peaiy) | g

5| pealyl || peaayl |-

&s

peaiyl || peaiyl

Coherence & VM

Host Processor

DRAM die

Challenges in Processing-in-Memory

Cost-effectiveness Programming Model Coherence & VM

(Partially) Solved by Still Challenging even in Recent PIM Architectures
3D-Stacked DRAM (e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, ...)

New Direction of PIM

* Objectives
— Provide an intuitive programming model for PIM
— Full support for cache coherence and virtual memory
— Reduce the implementation overhead of PIM units

* QOur solution: simple PIM operations as ISA extension
— Simple: low-overhead implementation

— PIM operations as host processor instructions: intuitive
— Conventional PIM : Simple PIM = GPGPU : SSE/AVX

Potential of ISA Extension as PIM Interface

 Example: Parallel PageRank computation

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
w.next_rank += value;

}
J

for (v: graph.vertices) {
v.rank = v.next_rank; v.next_rank = alpha;

)

Potential of ISA Extension as PIM Interface

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

w.next_rank |

64 bytes in z e ’"‘.,“'ﬁf—.? =
64 bytes out é

Conventional Architecture

Potential of ISA Extension as PIM Interface

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

8 bytesin
O bytes out

In-Memory Addition

pim.add r1, (r2)

Main Memory

w.next_rank

|

Potential of ISA Extension as PIM Interface

60%
50%
40%
30% Increase in Memory
_%' 20% Bandwidth Consumption
Q Lack of On-Chip Cach
8 10% ack of On-Chip Caches I
° =N
-10% Reduction in Memory
-20% Bandwidth Consumption
gg -‘:’:8 - _é'g goo In-Memory Computation
LS %8 9T 88 ER ST OE TE 58
32 88 T3 & > 23 2

More Vertices

—

Overview

1. How should simple PIM operations be interfaced to
conventional systems?

— Expose PIM operations as cache-coherent, virtually-
addressed host processor instructions

— No changes to the existing sequential programming model

2. What is the most efficient way of exploiting such
simple PIM operations?

— Dynamically determine the location of PIM execution
based on data locality without software hints

PIM-Enabled Instructions

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
w.next_rank += value;

}
}

PIM-Enabled Instructions

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
___pim_add(&w.next_rank, value);

}
}

pim.add r1, (r2)

Executed either in memory or in the host processor
Cache-coherent, virtually-addressed

Atomic between different PEls

Not atomic with normal instructions (use pfence)

PIM-Enabled Instructions

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
___pim_add(&w.next_rank, value);

}

} pfence
pfence();

pim.add r1, (r2)

Executed either in memory or in the host processor
Cache-coherent, virtually-addressed

Atomic between different PEls

Not atomic with normal instructions (use pfence)

PIM-Enabled Instructions

e Key to practicality: single-cache-block restriction
— Each PEI can access at most one last-level cache block
— Similar restrictions exist in atomic instructions

* Benefits
— Localization: each PEl is bounded to one memory module

— Interoperability: easier support for cache coherence and
virtual memory

— Simplified locality monitoring: data locality of PEls can be
identified by LLC tag checks or similar methods

Architecture

1
Host Processor ' HMC
|
1
Out-((:)f—Order _8 o e : ORAM
ore w
@ ® 35 : PCU Controller
o O & @© I 3
— o~ Ly o ! e
= = — = I o
PCU 5 1| 3 DRAM
‘g - o PCU Controller
P 0
PMU O PR | ®
PIM 2 1| 2 .
Directory Ty | 8
|
Locality ; DRAM
Monitor ! PCU Controller
1

Proposed PEI Architecture

Memory-side PEI Execution

1
Host Processor ' HMC
|
1
y ((:)f—Order 0 o = : —
ore Q
@ ® 35 : PCU Controller
© © + (@O I 3
— o~ Ly a I e
= = — = I o
‘g : = PCU Controller
! S
PMU O | o
PIM SO 2
Directory Ty | 8
|
Locality ; DRAM
Monitor ! PCU Controller
1

pim.add y, &x

Address Translation for PEls

_y_Of-Order Done by the host processor TLB
C
- (similar to normal instructions)

_y Pcu * No modifications to existing HW/0OS
* No need for in-memory TLBs

Memory-side PEI Execution

|
Host Processor ' HMC
|
|
y ((:)f—Order 0 o = | : —
ore
@ ® 35 : PCU Controller
o O & @© I 3
— N = O a | w
= - Sy — | (o)
‘g : é’ PCU Controller
I —
PMU O | o
PIM 2 1| 2 .
Directory Ty | 8
. . . . I
Wait until x is writable e i DRAM
Monitor : PCU Controller
|

pim.add y, &x

Reader-writer lock #0
Reader-writer lock #1
XOR-Hash Reader-writer lock #2

Address

(Inexact, but Conservative)

Reader-writer lock #N-1

PIM
Directory

Memory-side PEI Execution

|
Host Processor ' HMC
|
|
Out-Of-Order o o e | .
Core S S 3 = : PCU Controller
o O L ® V] o
— o~ Ly a I e
- | 3 — 1 o
y= : v PCU Controller
S | 3
|
PMU oIV A | 8]
: = | ! 8 :
Directory I= | &
. . . . I
Wait until x is writable e ! DRAM
Check the data locality of x Monitor ! PCU Controller
|

pim.add y, &x

Partial Tag Array

Hit: High locality

Address
Miss: Low locality

Updated on
* Each LLC access
e Each issue of a PIM operation to memory

Locality
Monitor

Memory-side PEI Execution

|
Host Processor ' HMC
|
|
Out-Of-Order o o e | .
Core S S 3 = : PCU Controller
o O L ® V] o
— ~ Ly a I s
2 - & = I o)
y PCU o 1 3 X M
*g : é’ PCU Controller
|
O 3
PMU oIV A | 8 :
Low locality : = | ! g :
Directory = | &
. . . . I
Wait until x is writable e ! DRAM
Check the data locality of x Monitor ! PCU Controller
|

pim.add y, &x

o
>
(<]
|
+
(%]
©
|

PIM

Directory

Locality
Monitor

Back-invalidation for
cache coherence

No modifications to
existing cache
coherence protocols

Memory-side PEI Execution

1
Host Processor ' HMC
|
1
Out-Of-Order E o e : ORAM
Core o & g % ! PCU Controller
o O & @© I 3
— o~ Ly o ! e
— — 3 — I e |
‘g : = x+y <~ | Controller
|
O @
- PMUY PIM — 3 .
Low locality : = | ! g :
Directory IS I e
I O
|
Locality ; DRAM
Monitor ! PCU Controller
1

pim.add y, &x

Completely Localized PIM
P y ol

Memory Accesses without x+y | Controller
Special Data Mapping

Memory-side PEI Execution

|
Host Processor ' HMC
|
|
Out-Of-Order E o T>’ : ORAM
Core o & g % ! PCU Controller
© © + (@O I 3
— ~ Ly a I -
- — — — I @)
y PCU o E ‘ Xty M
‘g : = X+y Controller
I —
PMU O | o
PIM S J| 2 .
o O []
Directory = : 5
. . 0 . I
Completion Notification e i DRAM
Monitor : PCU Controller
|

pim.add y, &x

Host-side PEIl Execution

1
Host Processor ' HMC
|
1
y ((:)f—Order 0 @ X‘; | : e
ore
@ ® 35 : PCU Controller
o @) S @© I 3
— o~ Ly o ! e
- | 3 — 1 o
y PCU o 3 DRAM
*g : é’ PCU Controller
! S
PMU e I ©
PIM 2 1| 2 .
. O []
Directory = | &
. . . . I
Wait until x is writable e ! DRAM
Check the data locality of x Monitor ! PCU Controller
1

pim.add y, &x

Host-side PEIl Execution

Host Processor

Out-Of-Order Xty - RS
Core 5 =
(4°) (¢°)
Q Q
i N
— —
y F x+y
PMU
High locality

Wait until x is writable
Check the data locality of x

Last-Leve
Cache

o

I

b

G

o)

O

PIM “2)

Directory I
Locality
Monitor

pim.add y, &x

HMC
DRAM
PCU Controller
=
o
E DRAM
]
35 PCU Controller
@
Q []
Q .
e []
d
DRAM
PCU Controller

Out-Of-Order C
Core
No Cache Coherence Issues

Host-side PEIl Execution

|
Host Processor ' HMC
|
\ I
-Of- +
Out-Of-Order _ch }:’X’ X‘; : ORAM
Core o & g % ! PCU Controller
© © + (@O I 3
— ~ Ly a I -
- — — — I @)
y_F xty 5 1| 3 DRAM
= I é’ PCU Controller
S |z
PMU | ©
PIM 2 1| 2 .
o O []
Directory = : 5
. . 0 . I
Completion Notification e i DRAM
Monitor : PCU Controller
|

pim.add y, &x

Mechanism Summary

Atomicity of PEls
— PIM directory implements reader-writer locks

Locality-aware PEI execution
— Locality monitor simulates cache replacement behavior

Cache coherence for PEls
— Memory-side: back-invalidation/back-writeback
— Host-side: no need for consideration

Virtual memory for PEls
— Host processor performs address translation before issuing a PEI

Simulation Configuration

* In-house x86-64 simulator based on Pin
— 16 out-of-order cores, 4GHz, 4-issue
— 32KB private L1 |I/D-cache, 256KB private L2 cache
— 16MB shared 16-way L3 cache, 64B blocks
— 32GB main memory with 8 daisy-chained HMCs (80GB/s)

* PCU

— 1-issue computation logic, 4-entry operand buffer
— 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz

* PMU
— PIM directory: 2048 entries (3.25KB)
— Locality monitor: similar to LLC tag array (512KB)

Target Applications

 Ten emerging data-intensive workloads
— Large-scale graph processing

* Average teenage followers, BFS, PageRank, single-source shortest
path, weakly connected components

— In-memory data analytics

* Hash join, histogram, radix partitioning
— Machine learning and data mining

e Streamcluster, SVM-RFE

* Three input sets (small, medium, large) for each
workload to show the impact of data locality

Speedup

70%

60%

50%

40%

30%

20%

10%

0%

(Large Inputs, Baseline: Host-Only)

WCC

M PIM-Only @ Locality-Aware

SVM GM

Normalized Amount of Off-chip Transfer

ATF BFS PR SP WCC HJ HG RP SC
M Host-Only E PIM-Only [Locality-Aware

Speedup

(Small Inputs, Baseline: Host-Only)
60%

40%

20%

0% [[—_— [
| I I . . . r I

-20%

-40%

-60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM
M PIM-Only [Locality-Aware

Normalized Amount of Off-chip Transfer

16.1 f | 502} | 408

8
7
6
5
4
3
2
1
0

phlddl.]

M Host-Only E PIM-Only [Locality-Aware

SC

Speedup

(Medium Inputs, Baseline: Host-Only)
70%

60%

50%

40%

30%

20%

ﬂ m ﬂ Wh 1

0% — -ﬁ
WCC RP SC SVM GM

-10%
M PIM-Only [Locality-Aware

Sensitivity to Input Size

Speedup

60%
50%
40%
30%
20%
10%
0%
-10%
-20%
-30%

)
cC
<
Q
oN
o

—i
(99
1)
o
+—

soc-Slash

— © / L L
c C =z M =

x 298 38 33 §C

ggc ® O T N

o I gEAN

O vy (@©

BN PIM-Only EdLocality-Aware

[%p] GJ\—|
his} —_—
|C.2(U
2 o — C
O + L,
5 g3

o 8
-=PIM %

ljournal-

2008

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

PIM %

Multiprogrammed Workloads

1.8
1.6
1.4
1.2

0.8
0.6

0.2

PIM-Only

G 0O N O N
O O 1 &N M
o v 1

Locality-Aware

q-

q.
i

o
LN
i

162
171

Host-Only

180
189

198

Energy Consumption

1.5

0.5

Host-Only
PIM-Only
Locality-Aware

Small Medium Large

B Cache B HMC Link @ DRAM
[0 Host-side PCU [0 Memory-side PCU [1PMU

Conclusion

* Challenges of PIM architecture design
— Cost-effective integration of logic and memory
— Unconventional programming models
— Lack of interoperability with caches and virtual memory

e PIM-enabled instruction: low-cost PIM abstraction & HW

— Interfaces PIM operations as ISA extension
— Simplifies cache coherence and virtual memory support for PIM
— Locality-aware execution of PIM operations

* Evaluations
— 47%/32% speedup over Host/PIM-Only in large/small inputs
— Good adaptivity across randomly generated workloads

PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware PIM Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu*, and Kiyoung Choi

Seoul National University *Carnegie Mellon University

