
PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware PIM Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu+, and Kiyoung Choi

Seoul National University +Carnegie Mellon University



Processing-in-Memory

• Move computation to memory
– Higher memory bandwidth

– Lower memory latency

– Better energy efficiency (e.g., off-chip links vs. TSVs)

• Originally studied in 1990s
– Also known as processor-in-memory

– e.g., DIVA, EXECUBE, FlexRAM, IRAM, Active Pages, …

– Not commercialized in the end

Why was PIM unsuccessful in its first attempt?



DRAM die

Challenges in Processing-in-Memory

Cost-effectiveness Programming Model Coherence & VM

DRAM die

Complex Logic

Host Processor

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

In-Memory Processors

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread

Thread
Thread

Thread
Thread

Thread
Thread
Thread

Thread

Thread

Host Processor

3

3

4

5

C

C



DRAM die

Challenges in Processing-in-Memory

Cost-effectiveness Programming Model Coherence & VM

DRAM die

Complex Logic

Host Processor

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

Thread

In-Memory Processors

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread
Thread

Thread

Thread
Thread

Thread
Thread

Thread
Thread
Thread

Thread

Thread

Host Processor

3

3

4

5

C

C

(Partially) Solved by
3D-Stacked DRAM

Still Challenging even in Recent PIM Architectures
(e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, …)



New Direction of PIM

• Objectives
– Provide an intuitive programming model for PIM

– Full support for cache coherence and virtual memory

– Reduce the implementation overhead of PIM units

• Our solution: simple PIM operations as ISA extension
– Simple: low-overhead implementation

– PIM operations as host processor instructions: intuitive

– Conventional PIM : Simple PIM ≈ GPGPU : SSE/AVX



• Example: Parallel PageRank computation

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}

for (v: graph.vertices) {

v.rank = v.next_rank; v.next_rank = alpha;

}

Potential of ISA Extension as PIM Interface



Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}
Host Processor

w.next_rankw.next_rank

64 bytes in
64 bytes out

Conventional Architecture

Potential of ISA Extension as PIM Interface



Potential of ISA Extension as PIM Interface

Main Memory

w.next_rankw.next_rank

Host Processor

value

8 bytes in
0 bytes out

In-Memory Addition

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pim.add r1, (r2)



-20%

-10%

0%

10%

20%

30%

40%

50%

60%
p

2
p

-G
n

u
te

lla
3

1

so
c-

Sl
as

h
d

o
t0

8
1

1

w
eb

-
St

an
fo

rd

am
az

o
n

-
2

0
0

8

fr
w

ik
i-

2
0

1
3

w
ik

i-
Ta

lk

ci
t-

P
at

en
ts

so
c-

Li
ve

Jo
u

rn
al

1

ljo
u

rn
al

-
2

0
0

8

Sp
ee

d
u

p

More Vertices

Increase in Memory 
Bandwidth Consumption 

Lack of On-Chip Caches

Reduction in Memory 
Bandwidth Consumption

In-Memory Computation

Potential of ISA Extension as PIM Interface



Overview

1. How should simple PIM operations be interfaced to 
conventional systems?
– Expose PIM operations as cache-coherent, virtually-

addressed host processor instructions

– No changes to the existing sequential programming model

2. What is the most efficient way of exploiting such 
simple PIM operations?
– Dynamically determine the location of PIM execution 

based on data locality without software hints



PIM-Enabled Instructions

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}



PIM-Enabled Instructions

• Executed either in memory or in the host processor

• Cache-coherent, virtually-addressed

• Atomic between different PEIs

• Not atomic with normal instructions (use pfence)

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pim.add r1, (r2)



PIM-Enabled Instructions

• Executed either in memory or in the host processor

• Cache-coherent, virtually-addressed

• Atomic between different PEIs

• Not atomic with normal instructions (use pfence)

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pfence();

pim.add r1, (r2)

pfence



PIM-Enabled Instructions

• Key to practicality: single-cache-block restriction
– Each PEI can access at most one last-level cache block

– Similar restrictions exist in atomic instructions

• Benefits
– Localization: each PEI is bounded to one memory module

– Interoperability: easier support for cache coherence and 
virtual memory

– Simplified locality monitoring: data locality of PEIs can be 
identified by LLC tag checks or similar methods



Architecture

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

Proposed PEI Architecture



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

x

y

y



Memory-side PEI Execution

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

x

Address Translation for PEIs

• Done by the host processor TLB 
(similar to normal instructions)

• No modifications to existing HW/OS

• No need for in-memory TLBs

Out-Of-Order 
Core

PCU

y

y



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

x

y

y

Wait until x is writable



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

Locality 
Monitor

PMU

pim.add y, &x

xy

Wait until x is writable

Reader-writer lock #0

Reader-writer lock #1

Reader-writer lock #N-1

Reader-writer lock #2

…Address

XOR-Hash

(Inexact, but Conservative)

PIM 
Directory



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

x

Wait until x is writable

Check the data locality of x

y



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

PMU

pim.add y, &x

x

Wait until x is writable

Check the data locality of x

y

Hit: High locality

Miss: Low locality

Tag Tag Tag Tag…

Tag Tag Tag Tag…

Tag Tag Tag Tag…

…Address

Partial Tag Array

Updated on
• Each LLC access
• Each issue of a PIM operation to memory

Locality 
Monitor



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

y x

Low locality

Wait until x is writable

Check the data locality of x



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PMU

pim.add y, &x

y x

Low locality

• Back-invalidation for 
cache coherence

• No modifications to 
existing cache 
coherence protocols

La
st

-L
ev

el
 

C
ac

h
e

PIM 
Directory

Locality 
Monitor



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

y xx+y
yx+y

Low locality



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

y
Completely Localized PIM 
Memory Accesses without 

Special Data Mapping

DRAM 
ControllerPCU
x+y

x+y



Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

y x
x+y

x+y

Completion Notification



Host-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

xy

y

Wait until x is writable

Check the data locality of x



Host-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

x

y

Wait until x is writable

Check the data locality of x

x

High locality

x

x+y

xx+y



Host-side PEI Execution

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

xx

No Cache Coherence Issues

Out-Of-Order 
Core

L1
 C

ac
h

e

PCUy x+y

xx+y



Host-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

x

y x+y

xxx+y

Completion Notification



Mechanism Summary

• Atomicity of PEIs
– PIM directory implements reader-writer locks

• Locality-aware PEI execution
– Locality monitor simulates cache replacement behavior

• Cache coherence for PEIs
– Memory-side: back-invalidation/back-writeback

– Host-side: no need for consideration

• Virtual memory for PEIs
– Host processor performs address translation before issuing a PEI



Simulation Configuration

• In-house x86-64 simulator based on Pin
– 16 out-of-order cores, 4GHz, 4-issue

– 32KB private L1 I/D-cache, 256KB private L2 cache

– 16MB shared 16-way L3 cache, 64B blocks

– 32GB main memory with 8 daisy-chained HMCs (80GB/s)

• PCU
– 1-issue computation logic, 4-entry operand buffer

– 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz

• PMU
– PIM directory: 2048 entries (3.25KB)

– Locality monitor: similar to LLC tag array (512KB)



Target Applications

• Ten emerging data-intensive workloads
– Large-scale graph processing

• Average teenage followers, BFS, PageRank, single-source shortest 
path, weakly connected components

– In-memory data analytics

• Hash join, histogram, radix partitioning

– Machine learning and data mining
• Streamcluster, SVM-RFE

• Three input sets (small, medium, large) for each 
workload to show the impact of data locality



Speedup

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)



Speedup

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Large Inputs, Baseline: Host-Only)

0

0.2

0.4

0.6

0.8

1

1.2

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware



Speedup

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)



Speedup

-60%

-40%

-20%

0%

20%

40%

60%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Small Inputs, Baseline: Host-Only)

0

1

2

3

4

5

6

7

8

ATF BFS PR SP WCC HJ HG RP SC SVM

Normalized Amount of Off-chip Transfer

Host-Only PIM-Only Locality-Aware

16.1 502 408



Speedup

-10%

0%

10%

20%

30%

40%

50%

60%

70%

ATF BFS PR SP WCC HJ HG RP SC SVM GM

PIM-Only Locality-Aware

(Medium Inputs, Baseline: Host-Only)



Sensitivity to Input Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

-30%

-20%

-10%

0%

10%

20%

30%

40%

50%

60%
p

2
p

-G
n

u
te

lla
3

1

so
c-

Sl
as

h
d

o
t0

8
1

1

w
eb

-
St

an
fo

rd

am
az

o
n

-
2

0
0

8

fr
w

ik
i-

2
0

1
3

w
ik

i-
Ta

lk

ci
t-

P
at

en
ts

so
c-

Li
ve

Jo
u

rn
al

1

ljo
u

rn
al

-
2

0
0

8

P
IM

 %

Sp
e

ed
u

p

PIM-Only Locality-Aware PIM %



Multiprogrammed Workloads

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0

8

1
1

7

1
2

6

1
3

5

1
4

4

1
5

3

1
6

2

1
7

1

1
8

0

1
8

9

1
9

8

PIM-Only Locality-Aware

Host-Only



Energy Consumption

0

0.5

1

1.5

Small Medium Large

Cache HMC Link DRAM

Host-side PCU Memory-side PCU PMU

Host-Only

PIM-Only

Locality-Aware



Conclusion

• Challenges of PIM architecture design
– Cost-effective integration of logic and memory

– Unconventional programming models

– Lack of interoperability with caches and virtual memory

• PIM-enabled instruction: low-cost PIM abstraction & HW
– Interfaces PIM operations as ISA extension

– Simplifies cache coherence and virtual memory support for PIM

– Locality-aware execution of PIM operations

• Evaluations
– 47%/32% speedup over Host/PIM-Only in large/small inputs

– Good adaptivity across randomly generated workloads



PIM-Enabled Instructions: A Low-Overhead, 
Locality-Aware PIM Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu+, and Kiyoung Choi

Seoul National University +Carnegie Mellon University


