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Processing-in-Memory

* Move computation to memory
— Higher memory bandwidth
— Lower memory latency
— Better energy efficiency (e.g., off-chip links vs. TSVs)

* Originally studied in 1990s
— Also known as processor-in-memory
— e.g., DIVA, EXECUBE, FlexRAM, IRAM, Active Pages, ...
— Not commercialized in the end

Why was PIM unsuccessful in its first attempt?



Challenges in Processing-in-Memory
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Challenges in Processing-in-Memory

Cost-effectiveness Programming Model Coherence & VM

(Partially) Solved by Still Challenging even in Recent PIM Architectures
3D-Stacked DRAM (e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, ...)



New Direction of PIM

* Objectives
— Provide an intuitive programming model for PIM
— Full support for cache coherence and virtual memory
— Reduce the implementation overhead of PIM units

* QOur solution: simple PIM operations as ISA extension
— Simple: low-overhead implementation

— PIM operations as host processor instructions: intuitive
— Conventional PIM : Simple PIM = GPGPU : SSE/AVX



Potential of ISA Extension as PIM Interface

 Example: Parallel PageRank computation

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
w.next_rank += value;

}
J

for (v: graph.vertices) {
v.rank = v.next_rank; v.next_rank = alpha;

)



Potential of ISA Extension as PIM Interface

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {

w.next_rank += value;

Main Memory

w.next_rank |

64 bytes in z e ’"‘.,“'ﬁf—.? =
64 bytes out é

Conventional Architecture



Potential of ISA Extension as PIM Interface

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
__pim_add(&w.next_rank, value);

8 bytesin
O bytes out

In-Memory Addition

pim.add r1, (r2)

Main Memory

w.next_rank

|



Potential of ISA Extension as PIM Interface
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Overview

1. How should simple PIM operations be interfaced to
conventional systems?

— Expose PIM operations as cache-coherent, virtually-
addressed host processor instructions

— No changes to the existing sequential programming model

2. What is the most efficient way of exploiting such
simple PIM operations?

— Dynamically determine the location of PIM execution
based on data locality without software hints



PIM-Enabled Instructions

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
w.next_rank += value;

}
}



PIM-Enabled Instructions

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
___pim_add(&w.next_rank, value);

}
}

pim.add r1, (r2)

Executed either in memory or in the host processor
Cache-coherent, virtually-addressed

Atomic between different PEls

Not atomic with normal instructions (use pfence)



PIM-Enabled Instructions

for (v: graph.vertices) {
value = weight * v.rank;
for (w: v.successors) {
___pim_add(&w.next_rank, value);

}

} pfence
pfence();

pim.add r1, (r2)

Executed either in memory or in the host processor
Cache-coherent, virtually-addressed

Atomic between different PEls

Not atomic with normal instructions (use pfence)



PIM-Enabled Instructions

e Key to practicality: single-cache-block restriction
— Each PEI can access at most one last-level cache block
— Similar restrictions exist in atomic instructions

* Benefits
— Localization: each PEl is bounded to one memory module

— Interoperability: easier support for cache coherence and
virtual memory

— Simplified locality monitoring: data locality of PEls can be
identified by LLC tag checks or similar methods
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Memory-side PEI Execution
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pim.add y, &x



Address Translation for PEls

_y_Of-Order  Done by the host processor TLB
C . . . .
- (similar to normal instructions)

_y Pcu * No modifications to existing HW/0OS
* No need for in-memory TLBs




Memory-side PEI Execution
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Reader-writer lock #0
Reader-writer lock #1
XOR-Hash Reader-writer lock #2

Address

(Inexact, but Conservative)

Reader-writer lock #N-1

PIM
Directory




Memory-side PEI Execution
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Partial Tag Array

Hit: High locality

Address
Miss: Low locality

Updated on
* Each LLC access
e Each issue of a PIM operation to memory

Locality
Monitor




Memory-side PEI Execution
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Memory-side PEI Execution

1
Host Processor ' HMC
|
1
Out-Of-Order E o e : ORAM
Core o & g % ! PCU Controller
o O & @© I 3
— o~ Ly o ! e
— — 3 — I e |
‘g : = x+y <~ | Controller
|
O @
- PMUY PIM — 3 .
Low locality : = | ! g :
Directory IS I e
I O
|
Locality ; DRAM
Monitor ! PCU Controller
1

pim.add y, &x



Completely Localized PIM
P y ol

Memory Accesses without x+y | Controller
Special Data Mapping




Memory-side PEI Execution
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Host-side PEIl Execution
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Host-side PEIl Execution
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Out-Of-Order C
Core
No Cache Coherence Issues




Host-side PEIl Execution
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Mechanism Summary

Atomicity of PEls
— PIM directory implements reader-writer locks

Locality-aware PEI execution
— Locality monitor simulates cache replacement behavior

Cache coherence for PEls
— Memory-side: back-invalidation/back-writeback
— Host-side: no need for consideration

Virtual memory for PEls
— Host processor performs address translation before issuing a PEI



Simulation Configuration

* In-house x86-64 simulator based on Pin
— 16 out-of-order cores, 4GHz, 4-issue
— 32KB private L1 |I/D-cache, 256KB private L2 cache
— 16MB shared 16-way L3 cache, 64B blocks
— 32GB main memory with 8 daisy-chained HMCs (80GB/s)

* PCU

— 1-issue computation logic, 4-entry operand buffer
— 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz

* PMU
— PIM directory: 2048 entries (3.25KB)
— Locality monitor: similar to LLC tag array (512KB)



Target Applications

 Ten emerging data-intensive workloads
— Large-scale graph processing

* Average teenage followers, BFS, PageRank, single-source shortest
path, weakly connected components

— In-memory data analytics

* Hash join, histogram, radix partitioning
— Machine learning and data mining

e Streamcluster, SVM-RFE

* Three input sets (small, medium, large) for each
workload to show the impact of data locality



Speedup
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Normalized Amount of Off-chip Transfer
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Speedup
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Normalized Amount of Off-chip Transfer
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Speedup

(Medium Inputs, Baseline: Host-Only)
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Sensitivity to Input Size
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Multiprogrammed Workloads
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Energy Consumption
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Conclusion

* Challenges of PIM architecture design
— Cost-effective integration of logic and memory
— Unconventional programming models
— Lack of interoperability with caches and virtual memory

e PIM-enabled instruction: low-cost PIM abstraction & HW

— Interfaces PIM operations as ISA extension
— Simplifies cache coherence and virtual memory support for PIM
— Locality-aware execution of PIM operations

* Evaluations
— 47%/32% speedup over Host/PIM-Only in large/small inputs
— Good adaptivity across randomly generated workloads



PIM-Enabled Instructions: A Low-Overhead,
Locality-Aware PIM Architecture

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu*, and Kiyoung Choi

Seoul National University *Carnegie Mellon University



