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Processing-in-Memory

• Move computation to memory
– Higher memory bandwidth

– Lower memory latency

– Better energy efficiency (e.g., off-chip links vs. TSVs)

• Originally studied in 1990s
– Also known as processor-in-memory

– e.g., DIVA, EXECUBE, FlexRAM, IRAM, Active Pages, …

– Not commercialized in the end

Why was PIM unsuccessful in its first attempt?
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(Partially) Solved by
3D-Stacked DRAM

Still Challenging even in Recent PIM Architectures
(e.g., AC-DIMM, NDA, NDC, TOP-PIM, Tesseract, …)



New Direction of PIM

• Objectives
– Provide an intuitive programming model for PIM

– Full support for cache coherence and virtual memory

– Reduce the implementation overhead of PIM units

• Our solution: simple PIM operations as ISA extension
– Simple: low-overhead implementation

– PIM operations as host processor instructions: intuitive

– Conventional PIM : Simple PIM ≈ GPGPU : SSE/AVX



• Example: Parallel PageRank computation

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}

for (v: graph.vertices) {

v.rank = v.next_rank; v.next_rank = alpha;

}

Potential of ISA Extension as PIM Interface



Main Memory

w.next_rankw.next_rank

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}
Host Processor

w.next_rankw.next_rank

64 bytes in
64 bytes out

Conventional Architecture

Potential of ISA Extension as PIM Interface



Potential of ISA Extension as PIM Interface

Main Memory

w.next_rankw.next_rank

Host Processor

value

8 bytes in
0 bytes out

In-Memory Addition

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pim.add r1, (r2)
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Overview

1. How should simple PIM operations be interfaced to 
conventional systems?
– Expose PIM operations as cache-coherent, virtually-

addressed host processor instructions

– No changes to the existing sequential programming model

2. What is the most efficient way of exploiting such 
simple PIM operations?
– Dynamically determine the location of PIM execution 

based on data locality without software hints



PIM-Enabled Instructions

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

w.next_rank += value;

}

}



PIM-Enabled Instructions

• Executed either in memory or in the host processor

• Cache-coherent, virtually-addressed

• Atomic between different PEIs

• Not atomic with normal instructions (use pfence)

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pim.add r1, (r2)



PIM-Enabled Instructions

• Executed either in memory or in the host processor

• Cache-coherent, virtually-addressed

• Atomic between different PEIs

• Not atomic with normal instructions (use pfence)

for (v: graph.vertices) {

value = weight * v.rank;

for (w: v.successors) {

__pim_add(&w.next_rank, value);

}

}

pfence();

pim.add r1, (r2)

pfence



PIM-Enabled Instructions

• Key to practicality: single-cache-block restriction
– Each PEI can access at most one last-level cache block

– Similar restrictions exist in atomic instructions

• Benefits
– Localization: each PEI is bounded to one memory module

– Interoperability: easier support for cache coherence and 
virtual memory

– Simplified locality monitoring: data locality of PEIs can be 
identified by LLC tag checks or similar methods



Architecture
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Memory-side PEI Execution
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Memory-side PEI Execution
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Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

La
st

-L
ev

el
 

C
ac

h
e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PIM 
Directory

Locality 
Monitor

PMU

pim.add y, &x

x

y

y

Wait until x is writable



Memory-side PEI Execution
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Memory-side PEI Execution
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Memory-side PEI Execution
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Memory-side PEI Execution
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Memory-side PEI Execution

Out-Of-Order 
Core

L1
 C

ac
h

e

L2
 C

ac
h

e

H
M

C
 C

o
n

tr
o

lle
r

C
ro

ss
b

ar
 N

et
w

o
rk

DRAM 
Controller

DRAM 
Controller

DRAM 
Controller

Host Processor HMC

…

PCU

PCU

PCU

PCU

PMU

pim.add y, &x

y x

Low locality

• Back-invalidation for 
cache coherence

• No modifications to 
existing cache 
coherence protocols

La
st

-L
ev

el
 

C
ac

h
e

PIM 
Directory

Locality 
Monitor



Memory-side PEI Execution
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Memory-side PEI Execution
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Memory-side PEI Execution
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Host-side PEI Execution
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Host-side PEI Execution
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Host-side PEI Execution
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Host-side PEI Execution
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Mechanism Summary

• Atomicity of PEIs
– PIM directory implements reader-writer locks

• Locality-aware PEI execution
– Locality monitor simulates cache replacement behavior

• Cache coherence for PEIs
– Memory-side: back-invalidation/back-writeback

– Host-side: no need for consideration

• Virtual memory for PEIs
– Host processor performs address translation before issuing a PEI



Simulation Configuration

• In-house x86-64 simulator based on Pin
– 16 out-of-order cores, 4GHz, 4-issue

– 32KB private L1 I/D-cache, 256KB private L2 cache

– 16MB shared 16-way L3 cache, 64B blocks

– 32GB main memory with 8 daisy-chained HMCs (80GB/s)

• PCU
– 1-issue computation logic, 4-entry operand buffer

– 16 host-side PCUs at 4GHz, 128 memory-side PCUs at 2GHz

• PMU
– PIM directory: 2048 entries (3.25KB)

– Locality monitor: similar to LLC tag array (512KB)



Target Applications

• Ten emerging data-intensive workloads
– Large-scale graph processing

• Average teenage followers, BFS, PageRank, single-source shortest 
path, weakly connected components

– In-memory data analytics

• Hash join, histogram, radix partitioning

– Machine learning and data mining
• Streamcluster, SVM-RFE

• Three input sets (small, medium, large) for each 
workload to show the impact of data locality
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Speedup
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Sensitivity to Input Size
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Multiprogrammed Workloads
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Energy Consumption
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Conclusion

• Challenges of PIM architecture design
– Cost-effective integration of logic and memory

– Unconventional programming models

– Lack of interoperability with caches and virtual memory

• PIM-enabled instruction: low-cost PIM abstraction & HW
– Interfaces PIM operations as ISA extension

– Simplifies cache coherence and virtual memory support for PIM

– Locality-aware execution of PIM operations

• Evaluations
– 47%/32% speedup over Host/PIM-Only in large/small inputs

– Good adaptivity across randomly generated workloads
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