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Abstract

DRAM requests intdatcheshased on their arrival time and request-

In a chip-multiprocessor (CMP) system, the DRAM system iigy threads. The requests from the oldest batch are preditand
shared among cores. In a shared DRAM system, requests frofh@refore guaranteed to be serviced before other requéstsuch,

thread can not only delay requests from other threads by ingus

bank/bus/row-buffer conflicts but they can also destrogothreads’
DRAM-bank-level parallelism. Requests whose latenciaddwvath-

erwise have been overlapped could effectively becomdigedaAs a .

result both fairness and system throughput degrade, ane $oreads
can starve for long time periods.

PAR-BS isfair and starvation-freeit prevents any thread from being
starved in the DRAM system due to interference from othetepo
tially aggressive threads. Second, within a batch of reguPAR-BS

is parallelism-aware it strives to preserve bank-level access paral-
lelism (i.e., the degree to which a thread’s DRAM requests sar-

This paper proposes a fundamentally new approach to degigniviced in parallel in different DRAM banks) of each threadte pres-

a shared DRAM controller that provides quality of servicdéheads,
while also improving system throughput. Our parallelismaae batch

scheduler (PAR-BS) design is based on two key ideas. FitRR-P
BS processes DRAM requests in batches to provide fairnefscan

avoid starvation of requests. Second, to optimize systeough-

ence of interference from other threads’ DRAM requésiisdoes so
by trying to group requests from a thread and service thencuren
rently (as long as they access different banks) using heulkiased
prioritization rules. As such, our approach reduces thialégation of

put, PAR-BS employs a parallelism-aware DRAM schedulidgypo @ thread's requests that would otherwise have been sevigedallel

that aims to process requests from a thread in parallel in BfRAM

banks, thereby reducing the memory-related stall-timeggpced by
the thread. PAR-BS seamlessly incorporates support foesytevel
thread priorities and can provide different service leyafecluding

purely opportunistic service, to threads with differenippities.

We evaluate the design trade-offs involved in PAR-BS angaem
it to four previously proposed DRAM scheduler designs o84-and
16-core systems. Our evaluations show that, averaged @ge4-ore
workloads, PAR-BS improves fairness by 1.11X and systemghput
by 8.3% compared to the best previous scheduling technigiadi-
Time Fair Memory (STFM) scheduling. Based on simple requiést
oritization rules, PAR-BS is also simpler to implement ti&amM.

1. Introduction

had the thread been running alone in the memory system.

We show that theequest batchingomponent of PAR-BS is a gen-
eral framework that provides fairness and starvation freeéh the
presence of inter-thread interference. Within a batch oADRe-
quests, any existing and future DRAM access schedulingrigthgo
(e.g., those proposed in [44, 33, 32, 28, 25]) can be impléaden
However, our results show that using our propogeullelism-aware
schedulingalgorithm provides the best fairness as well as system
throughput. We describe how PAR-BS operates within a batch a
analyze the complex trade-offs involved in batching andibelism-
aware scheduling in terms of fairness, DRAM throughput,-tmfer
locality exploitation, and individual threads’ bank-léeecess paral-
lelism. We also describe how the system software can cdp&BIBS

The DRAM memory system is a major shared resource amomenforce thread priorities and change the level of dedaidess in

multiple processing cores in a chip multiprocessor (CMP5tey.
When accessing this shared resource, different threadsgion dif-

the DRAM system.
Our experiments compare PAR-BS qualitatively and quaiviitey

ferent cores can delay each other because accesses fromread t t0 four previously proposed DRAM scheduling techniquesiuding

can cause additional DRAM bank conflicts, row-buffer comdliand
data/address bus conflicts to accesses from another thheatidi-
tion, as we show in this paper, inter-thread interferencedesstroy the
bank-level access parallelism of individual threads. Mgmequests
whose latencies would otherwise have been largely ovesthpffec-
tively become serialized, which can significantly degradéraad’s
performance. Moreover, some threads can be unfairly figed,
while other —perhaps more important— threads can be stéovéuhg
time periods.

Such negative effects of uncontrolled inter-thread irtenfice in

the recently-proposed QoS-aware Network Fair Queueingcps]

(NFQ) and Stall-Time Fair [25] (STFM) memory access schedl
as well as the commonly used first-ready first-come-firsteséFR-

FCFS) scheduler [44, 33]. None of these schedulers try teepve

individual threads’ bank-level parallelism or strictlyayantee short-
term starvation freedom in the presence of inter-threagtfiatence.
Our results on a very wide variety of workloads and CMP system

figurations show that PAR-BS provides the best fairness gatés

throughput.

Contributions: We make the following contributions in this paper:

the DRAM memory system are crucial impediments to buildiitg v e We show that inter-thread interference can destroy bave-fgar-

able, scalable, and controllable CMP systems as they cait ned)

low system performance and vulnerability to denial of ssx{R2, 41],
2) unpredictable program performance, which renders pedoce
analysis, optimization, and isolation extremely difficia8, 22, 25],
3) significant discomfort to the end user who naturally exp#dweads
with higher (equal) priorities to get higher (equal) sharEthe system
performance. As the number of cores on a chip increasesréssyre
on the DRAM system will also increase and both the perforraama
fairness provided by the DRAM system will become criticateste
minants of the performance of future CMP platforms. Thewfdo

enable viable, scalable, and predictable CMP systemsarfaithigh-
performance memory access scheduling techniques thatotamid
minimize inter-thread interference are necessary [2822R,

allelism of individual threads, leading to significant dadgtion
in system throughput. We introduce a novel parallelismrawa
DRAM scheduling policy that maintains the bank-level platedm

of individual threads while also respecting row-bufferdbty.

e We introduce the concept @équest batchingh shared DRAM
schedulers as a general framework to provide fairness/QuSs
threads and starvation freedom to DRAM requests. We shaow tha
request batching is orthogonal to and can be employed with ex
isting DRAM access scheduling algorithms, but it is mostdfen
cial when applied with parallelism-aware scheduling. Wecdibe
how the system software can control the flexible fairnesstsate
provided by request batching to enforce thread priorities &
control the unfairness in the DRAM system.

In this paper, we propose a new approach to providing fair and

high-performance DRAM scheduling. Our scheduling aldyonif
called parallelism-aware batch scheduling (PAR-B® based on
two new key ideasrequest batchingnd parallelism-aware DRAM

LIn this paper, we refer to the bank-level parallelism of a#ur agntra-
thread bank-level parallelismWe use the terms bank-level parallelism and
bank-parallelism interchangeably. A quantifiable defamitf bank-parallelism

scheduling First, PAR-BS operates by grouping a limited number 6f provided in Section 7.



e We qualitatively and quantitatively compare our schedtddour
previously proposed fairness- or throughput-orienteceduaters

2) (bottom) how a parallelism-aware scheduler can schetthelae-
quests more efficiently.

and show that PAR-BS provides both the best fairness ancetfte b With a conventional parallelism-unaware DRAM schedulsuch

system throughput. Our proposal is also simpler to impleriiem
the best previously-proposed memory access schedull+TBte

as any previously proposed scheduler [44, 33, 32, 28, 25) r¢-
quests can be serviced in their arrival order shown in Fi@(tep).

Fair Memory Scheduler [25], in that it does not require caempl First, TO’s request to Bank 0 is serviced in parallel withSdéquest

calculations, such as division.

2. Motivation
DRAM requests are very long latency operations that greatly
pact the performance of modern processors. When a load @tistn

to Bank 1. Later, T1's request to Bank 0O is serviced in palralléh

TO’s request to Bank 1. This service order serializes eardnatis
concurrent requests and therefore exposes two bank aetessiés
to each core. As shown in the execution timeline (top righgtead
of stalling once (i.e. for one bank access latency) for trereguests,

misses in the last-level on-chip cache and needs to accesdVDR both cores stall twice. Core O first stalls for Load 0, and 8hdnere-

the processor cannot commit that (and any subsequent)dtisin be-
cause instructions are committed in program order to sugecise
exceptions [35]. The processor’s instruction window beesrull a
few cycles after a last-level cache miss [13, 24] and the gssar
stalls until the miss is serviced by DRAM. Current procesdoy to
reduce the performance loss due to a DRAM access by senddiey
DRAM accesses in parallel with it. Techniques like out-ofler exe-
cution [40], non-blocking caches [15], and runahead exeny5b, 23]
strive to overlap the latency of future DRAM accesses with ¢hr-
rent access so that the processor does not need to stall {ovrigture
DRAM accesses. Instead, at an abstract level, the procstsdisronce
for all overlapped accesses rather than stalling once fdr aecess in
a serialized fashion [24]. The concept of generating andaeg mul-
tiple DRAM accesses in parallel is callddemory Level Parallelism
(MLP) [9].

The effectiveness of the aforementioned latency tolerdack-

after also for Load 1. Core 1 stalls for its Load O for two bankess
latencies.

In contrast, gparallelism-aware scheduleservices each thread’s
concurrent requests in parallel, resulting in the servitckoand ex-
ecution timeline shown in Figure 2(bottom). The scheduteserves
bank-parallelism by first scheduling both of TO's requestparallel,
and then T1's requests. This enables Core 0 to execute {abt@rn
as “Saved cycles” in the figure) as it stalls for only one baokeas
latency. Core 1’s stall time remains unchanged: althouglsétond
request (T1-Reql) is serviced later than with a conventisetzeduler,
T1-ReqO still hides T1-Req1l’s latency.

The crucial observation is thaarallelism-aware request schedul-
ing improves overall system throughput because one core exaw
cutes much fastethe average core stall time is 1.5 bank access laten-
cies with the parallelism-aware scheduler (bottom) wheitda 2 with
the conventional scheduler (topWWhile this example shows only two

niques depends on whether or not the concurrent DRAM acgesee cores for simplicity, the destruction of intra-thread baogkallelism

actually serviced in parallel by different DRAM banks (j.ethether
or not intra-thread bank-level parallelism is maintaindd)a single-

core systenpr,a thread has exclusive access to the DRAM banks,

its concurrent DRAM accesses are serviced in parallel agdsrthey
are not to the same bank. This is illustrated in the simplacep-

becomes worse as more cores share the DRAM system.

Our goal: Our goal in this paper is to design a fair, QoS-aware
swmory scheduler that provides high system throughpute®as the
observation that inter-thread interference destroys #mkievel par-
allelism of the threads running concurrently on a CMP andefoge

tual example in Figure 1 Request1’s (Reql) latency is hidden by théegrades system throughput, we incorporate parallelisareness

latency of RequestO (Req0), effectively exposing only alsirbank
access latency to the thread’s processing core. Once Regfvised,
the core can commit Load 0 and thus enable the decode/exe@iti
future instructions. When Load 1 becomes the oldest instnu the
window, its miss has already been serviced and therefongrtioessor
can continue computation without stalling.

Unfortunately, if multiple threads are generating memaegyuests

concurrently (e.g. in a CMP system), modern DRAM contralle

schedule the outstanding requests in a way that complepedyés the
inherent memory-level parallelism of threads. Insteadiesut DRAM
controllers exclusively seek to maximize the DRAM data tiyio-
put, i.e., the number of DRAM requests serviced per secoAdda,

32]. As we show in this paper, blindly maximizing the DRAM dat

throughput does not minimize a thread’s stall-time (whidteatly
correlates with system throughput). Even though DRAM tigiou
put may be maximized, some threads can be stalled overlyildhg
DRAM controller destroys their bank-level parallelism esetializes
their memory accesses instead of servicing them in parallel

The example in Figure 2 illustrates how parallelism-un&mass
can result in suboptimal CMP system throughput and incceatsd!-

into the design of our fair and high-performance memory ssce
scheduler. To this end, we develop the key notiongegfiest batch-
ing and parallelism-aware request prioritizatigrwhich we describe
in detail in Section 4.

3. Background on DRAM Memory Controllers

This section gives a brief description of how modern SDRAIMg-sy

jems and controllers operate. The DRAM system is presenteldeel

of abstraction that is sufficient to understand the ternaigpland key
concepts of this paper. For a detailed description, we tafereader
to [33, 4, 25].

A modern SDRAM chip consists of multiple DRAM banks to al-
low multiple outstanding memory accesses to proceed inllpkia
they require data from different banks. Each DRAM bank is a-tw
dimensional array, consisting of columns and rows. Row&ajly
store data in consecutive memory locations and are of 1-2K&ze.
The data in a bank can be accessed only fronralebuffer, which
can contain at most one row. A bank contains a single rowebufhe
amount of time it takes to service a DRAM request depends en th
status of the row-buffer and falls into three categories:

times. We assume two cores, each running a single threada@hr ® Row hit: The request is to the row that is qurrently open in the
0 (TO) and Thread 1 (T1). Each thread has two concurrent DRAM row-buffer. The DRAM controller needs to issue onlyemd or

requests caused by consecutive independent load missag (Land

Load 1), and the requests go to two different DRAM banks. The fi

ure shows 1) (top) how a current DRAM scheduler may destrivg-in
thread bank-parallelism, thereby increasing a threadl$-tiine, and

2We assume, for simplicity and without loss of generalitgtta core can
execute one thread, and use the tettmsadandcore interchangeably. How-
ever, the ensuing discussion and our techniques are aplglicacores that can
execute multiple threads as well.

3For simplicity, this figure and subsequent figures abstraelyamany de-
tails of the DRAM system, such as the DRAM bus and timing c@sts.
However, bank access latency often dominates the latendpRAM re-
quests [3, 4], especially with a wide DRAM data bus.

write command to the DRAM bank, resulting in a bank access
latency oftcr, (See Table 2).

e Row closed:There is no open row in the row-buffer. The DRAM
controller needs to first issue astivatecommand to open the re-
quired row, then aead/writecommand, resulting in a bank access
latency oftrcp + tor.-

“Notice that the system throughput improvement would be #émeesif the
DRAM scheduler first serviced Core 1's requests in paraien Core 0's re-
quests. In that case, Core 1 would only stall for a single kedess latency
while Core 0’s stall time would remain the same as with a cotigeal sched-
uler. Similarly, system throughput would also improve itR&g0 was to Bank
1 and T1-Reql was to Bank O.
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Figure 2. Conceptual example showing the importance of includinglfelism-awareness in DRAM scheduling decisions

e Row conflict: The request is to a row different from the one curstarve requests/threads for long time periods, causinginmess and

rently in the row-buffer. The DRAM controller needs to firébse

relatively low overall system throughput [28, 22, 25].

the row by issuing @rechargecommand, then open the required Previous research [28, 22, 25] experimentally demonstth&un-
row (activatg, and then issue eead/writecommand. These ac-fairness of FR-FCFS and proposed new scheduling policigsaie

cesses incur the highest bank access latenty®f-t rcp +tor-

A DRAM controller consists of anemory request buffethat
buffers the memory requests (and their data) while they aitng to
be serviced and a (possibly two-level) scheduler that tetbe next
request to be serviced [33, 28, 25]. When selecting the eextast to
be serviced, the scheduler considers the state of the DRAWNsend

fairer and that provide QoS to different threads. Nesbil.gP8] ap-
plied Network Fair-Queueing (NFQ) techniques to DRAM coliers

in order to divide the DRAM bandwidth among multiple threads
sharing the DRAM system. Mutlu and Moscibroda [25] propoaed
stall-time fair memory scheduler (STFM) that aims to eqelihe
slowdowns experienced by threads as compared to when eadls on

the DRAM buses as well as the state of the request. A DRAM cofl" alone. None of these previous scheduling policies tai@ac-

mand for a request can be scheduled only if its scheduling doe

count intra-thread bank-parallelism, which—as seen iniGe@—

cause any resource (bank and address/data/command biigtsonc@n Significantly degrade system performance when reqoediter-
and does not violate any DRAM timing constraints. Such a DRARNt threads interfere in the DRAM system.

command is said to beady.

Because of the large disparity in the latency incurred byve ro

hit access and a row-conflict/closed access, state-odithBRAM
controllers employ scheduling techniques that prioritiae/-hit re-
guests over other requests, including younger ones. A mademory
controller employs the FR-FCFS (first-ready first-comet-fierve)
scheduling policy [44, 33, 32], which prioritizesady DRAM com-
mands from 1) row-hit requests over others and 2) row-hitistae-
ing equal, older requests over younger ones. Such a schgddi-
icy aims to minimize the average service latency of DRAM esis
and thus maximize the data throughput obtained from the DRRM
single-threaded systems, the FR-FCFS policy was shownowider
the best average performance [33, 32], significantly bektan the
simpler FCFS policy, which simply schedules all requestating
to their arrival order, regardless of the row-buffer state.

When multiple threads share the DRAM system, the FR-FC

scheduling policy tends to unfairly prioritize threads witigh row-

buffer locality (i.e. row-buffer hit rate) over those with relatively
low row-buffer localitydue to the row-hit-first prioritization rule. It

also tends to unfairly prioritizenemory-intensiveéhreads ovenon-
intensiveones due to the oldest-first prioritization rdleAs a result,

4. Parallelism-Aware Batch Scheduling

Overview: Our proposed DRAM scheduling algorithm is designed
to provide 1) a configurable substrate for fairness and Qat2an
high CMP system throughput by incorporating parallelistageness
into scheduling decisions. To achieve these gdzdsallelism-Aware
Batch SchedulindPAR-BS) consists of two components. The first
component is aequest batching (BSpr simply batching compo-
nent that groups a number of outstanding DRAM requests ibtteh
and ensures that all requests belonging to the current lzaécker-
viced before the next batch is formed. Batching not only ezsiair-
ness but also provides a convenient granularity (i.e., ehbatithin
which possibly thread-unfair but high-performance DRAMrcoand
scheduling optimizations can be performed. The second ooer of
our proposalparallelism-aware within-batch scheduling (PA&)ns

reduce the average stall time of threads within a batctl f@mce
intrease CMP throughput) by trying to service each threadjsiests
in parallel in DRAM banks.

After describing the two components separately, we diseualss
vantages/disadvantages of our proposal compared torexiSiRAM
schedulers and present possible alternative design chaic&ec-
tions 4.3 and 4.4, respectively.

even though FR-FCFS achieves high DRAM data throughputait m

5A thread is more memory-intensive than another if it spendgeneycles
per instruction waiting for DRAM requests. See Section 7nhare.

4.1. Request Batching
The idea of batching is to consecutively group outstandaogiests
in the memory request buffer into larger units calleatches The



DRAM scheduler avoids request re-ordering across batchgwib
oritizing requests belonging to the current batch over rotbguests.
Once all requests of a batch are serviced (i.e., when thé lfin-

ished), a new batch is formed consisting of outstanding estguin
the memory request buffer that were not included in the lasth
By thus grouping requests into larger units according tdr theival

time, batching—in contrast to FR-FCFS and other existitngstes—
prevents request starvation at a very fine granularity arfdreszs
steady and fair progress across all threads. At the same ttieéor-
mation of batches allows for the flexibility to re-order regts within
a batch in order to maximally exploit row-buffer locality dubank-
parallelism without significantly disturbing thread-fa@ss.

Rule 2 PAR-BS Scheduler: Request Prioritization

1: BS—Marked-requests-first: Marked ready requests are priori-
tized over requests that are not marked.

2: RH—Row-hit-first: Row-hit requests are prioritized over row-
conflict/closed requests.

3: RANK—Higher-rank-first: Requests from threads with higher-
rank are prioritized over requests from lower-ranked ttisea

4: FCFS—Oldest-first: Older requests are prioritized over younger
requests.

while maintaining row-buffer locality. When a new batch igrhed,

The batching component (BS) of PAR-BS works as follows. Eaghe DRAM scheduler computes a ranking among all threadshthnat

request in the memory request buffer has an associateddiating
whether the request belongs to the current batch. If theestdpelongs
to the current batch, this bit is set, and we call the reqoesked BS
forms batches using the rules shown in Rule 1.

Rule 1 PAR-BS Scheduler: Batch Formation

requests in the batch. While the batch is processed, the wechp
ranking remains the same and requests from higher-rankedd$
are prioritized over those from lower-ranked threads. Tifece of
ranking-based scheduling is that different threads awgipzed in the
same ordeacross all banksnd thus, each thread’s requests are more

1: Forming a new batch: A new batch is formed when there are ndikely to be serviced in paraliel by all banks.

marked requests left in the memory request buffer, i.e.,,mdike
requests from the previous batch have been completelycgetrvi
2: Marking:

When forming a new batch, BS marks up t

How to Rank Threads Within a Batch: Although conceptually

any ranking-based scheme enhances within-batch inteadhbank-

arallelism, the specific ranking procedure has a significapact on
MP throughput and fairness.

Mar ki ng- Cap outstanding requests per bank for each thread; o good ranking scheme must effectively differentiate bee

these requests form the new batch.

Mar ki ng- Cap is a system parameter that limits how many r

For instance, ifVar ki ng- Cap is 5 and a thread has 7 outstandin

requests for a bank, PAR-BS marks only the 5 oldest among.tlfemr{%when the thread is running alone on the same memory sygem.

quests issued by a thread for a certain bank can be part oft:lel.baéa

no Mar ki ng- Cap is set, all outstanding requests are marked whe
new batch is formed.

PAR-BS always prioritizes marked requests (i.e., requasitsng-
ing to the current batch) over non-marked requests in a gdaek.
On the other hand, PAR-BS neither wastes bandwidth nor @ssac
ily delays requests: if there are no marked requests to a diaek,
outstanding non-marked requests are scheduled to that Bange-
lect among two marked or two non-marked requests, any Bgisti
new DRAM scheduling algorithm (e.g., FR-FCFS) can be engioy
In PAR-BS, this “within-batch” scheduling component is PARich
we describe next.

4.2. Parallelism-Aware Within-batch Scheduling

Batching naturally provides a convenient granularity .(i.the
batch) within which a scheduler can optimize schedulingisieaes
to obtain high performance. There are two main objectives tifis
optimization should strive for. It should simultaneouslgximize 1)
row-buffer localityand 2) intra-threablank-parallelismwithin a batch.
The first objective is important because if a high row-hieratmain-
tained within a batch, bank accesses incur smaller laterieaver-
age, which increases the throughput of the DRAM system. &bersl
objective is similarly important because scheduling rpldtirequests
from a thread to different banks in parallel effectively ueds that
thread’s experienced stall-time. Unfortunately, it is gely difficult
to simultaneously achieve these objectives—e.g. FR-FQ@EBfises
parallelism in lieu of row-buffer localit§.

Our within-batch scheduling algorithm, PAR, uses the retpé-
oritization rules shown in Rule 2 to exploit both row-buflecality
and bank parallelism. Within a batch, row-hit requests ai@itized.
This increases row buffer locality and ensures that any thaswere
left open by the previous batch’s requests are made the besitte
use of in the next batch. Second, requests from threads vgtreh

rank are prioritized over those from threads with lower rank te in

crease bank-level parallelism, as explained in detaiMaefonally, all
else being equal, an older request is prioritized over a geuane.

Thread Ranking: PAR-BS uses eank-based thread prioritization
scheme within a batch to maximize the intra-thread bankijgdism

6In fact, several combinatorial formalizations of this opitiation problem
can be shown to be NP-complete and hence no efficient algodtsolutions
are expected to exist.

memory-intensive and non-intensive threads (and threatis high

eQank-parallelism). If a non-intensive thread with few resis is

t[anked lower than an intensive thread, its requests may &rdyode-
yed within a batch. As explained in [25], a fair DRAM schéstu
hould equalize thBRAM-related slowdowaof each thread compared

a hon-intensive thread or a thread with high bank-parahelinher-

ently has a low DRAM-related stall-time when running alodelay-

ing its requests within a batch results in a much higher stawdthan

it would for an intensive thread, whose DRAM-related statie is

already high even when running alone. To avoid this unfasr@nd

loss of system throughput as explained below), our rankthgse is
based on thshortest job firsprinciple [36]: it ranks the non-intensive
threads higher than the intensive ones.

Besides fairness, the key rationale behind shertest job first
principle is that it tends to reduce th@erage batch-completion time
of threads within a batch. A thread’s batch-completion time is the
time between the beginning of a batch and the time the trsdast
marked request from the batch is serviced. It directly apoads to
the thread’s memory-related stall-time within a batch. Bgucing
the average batch-completion timghortest job firsischeduling im-
proves overall system throughput as the threads stall @dS3RAM
requests, on average, thereby making faster progress ex#eaition
of their instruction streams.

Concretely, PAR-BS uses tiax-Total ranking schemeshown in
Rule 3, to compute each thread’s rank within a batch.

Rule 3PAR-BS Scheduler: Thread Ranking
1: Max rule: For each thread, the scheduler finds the maximum
number of marked requests to any given bank, called max-bank
load. A thread with a lower max-bank-load is ranked highanth
a thread with a higher max-bank-load.

. Tie-breaker Total rule: For each thread, the scheduler keeps
track of the total number of marked requests, called tatad If
threads are ranked the same based on the Max rule, a thréwsa wit
lower total-load is ranked higher than a thread with a higbt-
load.

The maximum number of outstanding requests to any bank cor-

relates with the “shortness of the job,” i.e., with the mialnmem-
ory latency that is required to serve all requests from aathitthey
were processed completely in parallel. A highly-rankeddlorhas few

7In the classic single-machine job-scheduling problem aadywf its gen-
eralizations, shortest-job-first scheduling is optimahiat it minimizes the av-
erage job completion time [36].
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requests to the same row are serviced consecutively, tbadeequest is a row-hit with smaller access latency. Theréirpiest to each bank is assumed to be a

row-conflict.

marked requests going to the same bank and hence can bedifdshe 4.3. Advantages, Disadvantages, Trade-offs

By prioritizing requests from such high-ranked threadsinit batch,
PAR-BS ensures that non-intensive threads or threads \gthtdank-
parallelism make fast progress and are not delayed unreedgdsng. o
Example: Figure 3 shows an example that provides insight into
why our proposed within-batch prioritization scheme preseg intra-
thread bank-parallelism and improves system throughpute fig-
ure abstracts away many details of DRAM schedflibgt provides
a framework for understanding the parallelism and locaidge-offs.
We assume a latency unit of 1 for row-conflict requests andfd.5
row-hit requests. Figure 3(a) depicts the arrival orderegfuests in
each bank, which is equivalent to their service order withF@%S
scheduler. FCFS neither exploits locality nor preservésithread
bank-parallelism and therefore results in the largestagesrcom-
pletion time of the four threads (5 latency units). FR-FCF&im
mizes row-buffer hit rates by reordering row-hit requestsrathers,
but as shown in Figure 3(b), it does not preserve intra-thismnk-
parallelism. For example, although Thread 1 has only thegeests
that are all intended for different banks, FR-FCFS servalkthree
requests sequentially. Depending on the history of memexyests,
the schedule shown in Figure 3(b) for FR-FCFS is also a pleseib
ecution scenario when using the QoS-aware NFQ [28] or STF [2
schedulers since those schedulers are unaware of ingaethrank-
parallelism. .
Figure 3(c) shows how PAR operates within a batch. Thread1 ha
at most one request per bank (resulting in the lowest mak-hzad
of 1) and is therefore ranked highest in this batch. Both atise2
and 3 have a max-bank-load of two, but since Thread 2 has tetetr
number of requests, it is ranked above Thread 3. Thread 4ieda
the lowest because it has a max-bank-load of 5. As Threadabied
highest, its three requests are scheduled perfectly inlpladaefore
other requests. Similarly, Thread 2’s requests are schdds much in
parallel as possible. As a result, PAR maximizes the baméietism
of non-intensive threads and finishes their requests aglgis pos-

Request Batchingcomponent of our proposal has the following

major advantages:

Fairness and Starvation Avoidance:Batching guarantees the ab-
sence of short-term or long-term starvation: every threadoake
progress in every batch, regardless of the memory accessnmat
of other thread$® The number of requests from a thread sched-
uled before requests of another thread is strictly boundédtine
size of a batch. Apart from FCFS, no existing scheduler piewi

a similar notion of starvation avoidance. In FR-FCFS, a mgmo
intensive thread with excellent row-buffer locality carmptae a
bank for a long time, if it can issue a large number of row-&it r
quests to the same bank in succession. Depending on theyhisto
of access patterns, short-term starvation is also possitié-Q
and STFM, especially due to tidleness and bank access balance
problemg[25] associated with NFQ and inaccurate slowdown es-
timates in STFM [25]. In PAR-BS, memory-intensive threads a
unable to delay requests from non-intensive ones for a liomg) t
Substrate for Exploiting Bank Parallelism: Batching enables
the use of highly efficient within-batch scheduling polg{such as
PAR). Without batches (or any similar notion of groups ofuests

in time), devising a parallelism-aware scheduler is diffieg it is
unclear within what context bank-parallelism should berojted.
Flexibility and Simple Implementation: While most beneficial

in combination with PAR, the idea of batching can be used m-co
bination with any existing or future DRAM command schedglin
policy. Batching thus constitutes a simple and flexible feamrk
that can be used to enhance the fairness of existing schgaai
gorithms. We explore the performance and fairness of usGig3
and FR-FCFS policies within a batch in Section 8.3.3.

A possible disadvantage of our scheme is that it requiresfudar

determination oMar ki ng- Cap. If Mar ki ng- Cap is large, PAR-
BS could suffer from similar unfairness problems as FR-FCHS

though not to the same extent. If a non-memory-intensivesatthiis-
ues a request that just misses the formation of a new béehet
uest has to wait until all requests from the current batdhécssame

sible, allowing the corresponding cores to make fast psmr€om-
pared to FR-FCFS or FCFS, PAR significantly speeds up Threéad

g(’)r?]r;)clje::’i (\)A;]ht'ilfngci’; ?ggjgrg'glé Tg\évllg?eﬂgyzr?;gead 4. Therage bank are serviced, which slows down the non-intensive th(@sm the
. . " ) . other hand, a smallar ki ng- Cap can slow down memory-intensive
Notice that in addition to good bank-parallelism, our pre@lo reaqds; since at mostar ki ng- Cap requests per thread and per
achieves as good a row-buffer locality as FR-FCFS within @ha pank are included in a batch, the remaining ones being postho
because within a batch PAR-BS always prioritizes markediidwe- (5 the next batch. There is a second important downside tigiav
quests over row-conflict requests. small batchesthe lower theVar ki ng- Cap, the lower the row-buffer
hit rate of threads with high inherent row-buffer localityAcross a
8Such as DRAM data/address/command bus contention and erinptr-  Datch boundary, a marked row-conflict request is prioritipger an
actions between timing constraints. unmarked row-hit request. The smaller the batches (thelentae
9However, this might not be the case across batches. PAR-Bgedace Mar Ki ng- Cap), the more frequently a stream of row-hit accesses
locality at batch boundaries because marked requestsiaréiped over row-
hit requests. This locality reduction depends on how lafgeki ng- Cap is.
Section 8.3 evaluates the trade-offs relateNtioki ng- Cap.

10starvation freedom of “batched (or grouped) scheduling waoven for-
mally within the context of disk scheduling [7].



can be broken in this way, which increases the access timegjaésts. thread (highest priority) and a larger number indicatesnaetqprior-

Section 8.3.1 analyzes in detail the fairness and perfocmtxade-offs ity. Equal-priority threads should be slowed down equélly][ but the

of variousMar ki ng- Cap settings. lower a thread’s priority, the more tolerable its slowdowle adjust
Parallelism-Aware Within Batch Scheduling simultaneously PAR-BS in two ways to incorporate thread priorities.

achieves a high degree of bank-parallelism and row-buffeallty, o priority-Based Marking: Reguests from a thread with priorit

as described in the previous section. No other DRAM scheguli — y ar(:ymarked only evgry(th gatch. For example, requespts fro)r/n

scheme we know of optimizes for intra-thread bank-panatiel Con- highest priority threads with level are marked every batch, re-

sistent with the general machine scheduling theory [36ing.she quests from threads with levlare marked every other batch, and

Max-Total ranking scheme to prioritize threads with fewer requests so forth. The batching mechanism otherwise remains thé same

reduces the average stall time of threads within a batch.lé/this i.e.. a new batch is formed whenever there are no markedsézque

“shortest-job-first” principle may appear to unfairly péima memory- in t,he buffer.

intensive threads, our experimental evaluations in Se@&ishow that

this effect is not significant. There are two reasons: 1) therlg-

ing batching scheme ensures a high degree of fairness, &Yidgl

a memory intensive thread results in a relatively smallewdbwn

since the inherent DRAM-related stall-time of an intendivead is

higher. Within a batch, a scheduler should therefore freplymize

for reduced stall-times by finishing threads with few andiparallel requests, PAR-BS prioritizes the request from the threath wi

requests as.qmckly as p0§3|ble. higher priority. Between requests of equal-priority tldgaother
4.4. Design Alternatives request prioritization rules remain the same.

_We have experimented with a variety of novel, alternativiela e effect of these two changes to PAR-BS is that higherityio
ing and within-batch scheduling schemes. We briefly desdhiese ihreads are naturally scheduled faster: they are markee finer

schemes for completeness._ Our evaluations in S_ection 8tﬁm\m§v- quently and thus take part in more batches, and they areitizéat
eraged over a large and varied set of workload mixes, themmative ) aor other requests within a batch.

designs perform worse than our PAR-BS scheme. Purel fti e P ;
: : y Opportunistic Service: In addition to the integer-based
The batching method in PAR-BS can be referred téudlsbatch- riority-levels, PAR-BS provides one particular priorigvel, L, that

ing because it requires that a batch of requests be completedl in f_ . g
beforg the next batch is started. There are alternative weaysrform Ing\;g?t?nsatrﬂgdlogvneds ttﬁéyrgyetgfseilgﬁédl?th; (Iej\f\?efsrto ?rii?i@agr;::;
batching. marked requests. Consequently, requests from threadgeht/lere

Ti?we-BasedkSgatic Beat_chil?g: In this atpi)_rotach, .o;Jtstand:jr}g "-scheduled purely opportunistically—only scheduled if themory
g;’@i;ﬁ; cr)??w:)tethé)eﬁfvigcuas %:t(s:lr?lgs i;r: I|ZtérgeTlrr]1:;é‘?;:ﬁ§is system is free—to minimize their disturbance on other tthisea
P P ' Finally, we provide the system software with the ability tt s

acterlz_ed l_)y a system parameiat ch-Durat i on that describes at Mar ki ng- Cap, which serves as a lever to determine how much un-
what time interval a new batch is formed. At the outset of a hateh, fairess exists in the system (see Section 8.3.1)
unmarked requests are marked subject toMhaeki ng- Cap, while Y s

requests that are already marked from the previous batchineso. In g, Implementation and Hardware Cost
comparison to_PAR-BS, this batching approach doe_s UQtWICt PAR-BS requires the implementation of batching (Rule 1) thed
starvation-avoidance guarantees and can lead to significfamirness request prioritization policy described in Section 4.2 IR and 3).

as we show in Section 8.3.2. ; .
: . . . Modern FR-FCFS based controllers already implement pization
Empty-Slot (Eslot) Batching: If in PAR-BS, a request arrives in olicies. Each DRAM request is assigned )e/t prti)Jrity andmthef\IDIR
tcjheelaDeRcfh/lntSir tstfgnl;es“i%mlr)l/ a;tfeerl ﬁewvga?gﬁcigjas‘?nfom:%&g:y l:sc)ommand belonging to the highest priority request is scleecamong
ye g g ' gal all readycommands. PAR-BS extends the priority of each DRAM re-
especially for a non-intensive thread. Empty-siot baigfzittempts to quest using two additional pieces of information: 1) whetirenot the

alleviate this problem by allowing requests todmdedto thecurrent r .

. g equest is marked, and 2) the rank of the thread the requiestgseto
batc?f'if 'ﬁsiﬁhﬁnya;nk'r&'g& Capf rrei(g]u;stsbfrtmﬁ t:]r?t ’;Ereravt\j/ f?c{g:[hie(using Max-Totalranking). To keep track of this additional informa-
specinc ba €re marked so 1a € batch. other worc tion, the scheduler requires the additional state showmierl. As-
the time a new batch is formed, a thread does not utilize itseen suming an 8-core CMP, 128-entry request buffer and 8 DRAMbaN
aIIotted_ s_hare of marked requests (."e' has “empty slotéhiwthe the extra hardware state, including Thread-ID’s, requioethplement
batch, it is allowed to add late-coming requests to the baiith the PAR-BS (beyond FR-FCFS) is 1412 bits
Mar ki ng- Cap threshold is met. ’

Alternative Within-Batch Scheduling Policies: Within a batch, areTizirg?nu;r:?ercsi%eggr{e ﬁﬁféj 3;12 ﬁTgagesvn?eRS%iltj Z;Thml‘é;;
many different alternative request/command priorit@atiechniques memory request buffer. When a marked reql?est is fully sedvic

can be employed. Aside froMax-Totalranking, we have also eval-
uatedTotal-Max (where the order of thélax rule and Total rule is the DRAM controller decrement§otalMarkedRequests. When
TotalMarkedRequests reaches zero, the controller starts a new

reversed) random andround-robinranking schemes. Furthermore : .
we have evaluated using FCFS and FR-FCFS within a batch ewithbatchh l?]y 1) marking the Qlde?r Ki ng- Caplreqﬁgsts ﬁ‘)err]bank from
any ranking— to isolate the effect of parallelism-awarerieur pro- ¢ ht read, 2) computing the nMag-Tota ranking of threads us-
posal. Section 8.3.3 describes the trade-offs involvet aliernative '.Pk? t eﬁequn.Ban(“llJeTThre‘?d and RegsPerThread reglstﬁrs.
within-batch scheduling techniques. us, the additional logic required by PAR-BS consists giddhat
) o 1) marks requests (marking logic), 2) determines threakimgr{rank-

5. Incorporating System-Level Thread Priorities ing logic), and 3) computes request priorities based on ethstatus

We have so far described PAR-BS assuming that all threads hawd thread rank (prioritization logic). Both marking andking logic
equal priority and, in terms of fairness, should experieegeal are utilized only when a new batch is formed and implemensiagu
DRAM-related slowdowns when run together. The system swoftw priority encoders that take as input the relevant inforomatn each
(the operating system or virtual machine monitor), howewauld case. Prioritization logic takes as input the marked statwe-hit sta-
likely want to assign priorities to threads to convey thahedhreads tus, thread rank, and request ID of a request to form a sinipeity
are more/less important than others. PAR-BS seamlessiypocates value (see Figure 4) for each request every DRAM cycle.
the notion ofthread prioritiesto provide support for the system soft-  Notice that none of this logic is on the critical path of thegessor
ware. The priority of each thread is conveyed to PAR-BS im&of because an on-chip DRAM controller runs at a higher frequéiman
priority-levels1,2, 3, ..., where levell indicates the most important DRAM and needs to make a scheduling decision only every DRAM

e Priority-Based Within-Batch Scheduling: An additional rule
is added to the within-batch request prioritization rulleeven in
Rule 2. Between rule&. BS- - - Mar ked-r equest s-first
and 2. RH---Row hit-first, we add the new rule
PRI ORI TY---Hi gher-priority-threads-first.
That is, given the choice between two marked or two unmarked



[Register [Description and Purpose [ Size (additional bits) |

Per-request registers
Marked Whether or not the request is marked 1
Priority The priority of the request including marked status, roishatus, thread rank, and reques{1Bg, NumThreads (3) See Figure #
Thread — ID ID of the thread that generated the request log, NumThreads (3)
Per-thread per-bank registers to compute Max rule in Max-Total ranking
RegsInBankPerThread[Number of requests from this thread to this bank [ log, RequestBuf ferSize (7)
[Per-thread registers to compute Total rulein Max-Total ranking
[RegsPerThread [Number of total requests from this thread in the requesebuff [ log, RequestBuf ferSize (7) |
Individual registers
TotalMarkedRequests [Number of marked requests in the request buffer (used tordite when to mark requests)]  log, RequestBuf ferSize (7)
Marking — Cap | Stores the system-configuraifar ki ng- Cap value | 5

Table 1. Additional state required for a possible PAR-BS implem&ata

cycle. Similar prioritization policies have been implerteghin in- combinations. Space limitations prevent us from listingeahluated
struction schedulers, which are on the critical path. Ifdesk the combinations, but we try to show as many results with repitasiee
marking/ranking logic can take multiple cycles since magkianking individual combinations as possible in Section 8.

is done only when a new batch is formed. 7.1. Evaluation Metrics

PAR-BS s simpler 10 iM-  warked (1 bit - already in req buffer We measure fairness using thefairness indeyroposed in [25,

lement than the previous-best ite L . :
gcheduler STEM P which re- ‘ Thread-rank (log2NumThreads bit: g1 13 Thjg i3 the ratio between the maximum memory-related slow-
quires significant I,ogic includ- N ) down and the minimum memory-related slowdown among alkitise

; i ; \. sharing the DRAM system. The memory related slowdown of eattir

Irrg dcliwders,ztg es;tlmate thread ‘ Request=ID (already in FR-FCFS) g thegmemory stallxtime per instructiorﬁl it experiences whaming

slowdowns . In contrast to —hit? (1-bit) — in FR-FCE¢ . S L
[25] Row-hit? (1-bit) - already used in FR-FCFS tqqather with other threads divided by the memory stall tizee in-

STFM, PAR-BS is based only A . X
Figure 4. Sample priority value assigned to Struction it experiences when running alone on the samersyst

on simple prioritization rules each request. Thread-rank is the only addi- McCPprshared MemSlowd
that depend on request counts;y storagé required by PAR-BS since all MemSlowdown; = ———t——— Unfairness = e

and therefore does not requir€other fields are either required by FR-FCFS MCPIone min; MemSlowdown;
complex arithmetic operations. or stored with the request. We measure system throughput usitgighted-Speedyg7] and
7. Experimental Methodology Hmean-Speedufi 8], which balances fairness and throughput [18]:

. . IPC,fha”d NumThreads
We evaluate our proposal using a cycle-accurate x86 CMP sirfi-. Speedup = ZW H. Speedup =
ulator. The functional front-end of the simulator is based o :

Pin [17] and iDNA [1]. We model the memory system in detaity 5 pgrameters of Evaluated Schemes

faithfully capturing bandwidth limitations, contentioand enforcing —° dur baseline controller uses the FR-FCFS scheduling polidly
bank/port/channel/bus conflicts. Table 2 shows the majohMRNd o\ ated schedulers prioritize DRAM read requests oveARIR
processor parameters. We scale DRAM bandwidth with the UMb 0"y oquests because read requests can directly blokafdr
of cores. Our extended technical report also evaluatesngasystem progress in processing cores and are therefore more peoercrit-

parameters [26]. . ical. Unless otherwise stated, we use PAR-BS with a Mar

We use the SPEC CPU2006 benchmarks and two Windows ?leslggg in our experiments. When comparing PAR-BS to othekfasghed
applications (Matlab and an xml parsing application) faxleation:" jers, we use the following paramete&TFM: We seta = 1.10 and
Each benchmark was compiled using gcc 4.1.2 with -O3 Op&titBS - 1,¢cryalLength = 22* as proposed by Mutlu and Moscibroda [25].
and run for 150 million instructions chosen from a repreative: exe- NFQ: We use Nesbit et al.’s best scheme (FQ-VFTF) [28], including
cution phase [29]. its priority inversion prevention optimization withta s threshold.

memory intensiveness (low or high), row-buffer localitywior high), % Experimental Results

and bank-level parallelism (low or high). We define banlelgvaral- 8.1, Results on 4-core Systems

lelism (BLP) as the average number of requests being seficthe e first analyze the fairness and throughput of PAR-BS in amp
DRAM banks when there is at least one request being servici json to previously proposed DRAM scheduling techniquesgiiiree
DRAM banks. This definition follows the memory-level paedim case studies on 4-core systems that highlight the typidadier of

(MLP) definition of Chou et al. [2]. We characterize a threaddd on gifferent scheduling algorithms. Aggregate results o@rworkloads
the average stall time per DRAM request (AST/resgtric, which is  gre provided in Section 8.1.4.

computed by dividing the number of cycles in which the threashot . . )

commit instructions because the oldest instruction is s wi®RAM 8.1.1. Case Study I Memory-intensive Worklo_adThls

by the total number of DRAM load requests generated by threath? w_orkload includes four memory-intensive benchmarks, oitle very

Table 3 shows the category and memory system characteristthe high bank-level parallelism (mcf). Figure 5(left) shows timemory

benchmarks when they run alone in one core of the baselireet-cSlowdown of each benchmark with different memory schedulgig-

CMP. Note that benchmarks with high levels of BLP also hava-re Ureé 5(right) compares the five different schedulers in teofreg/stem

tively low AST/req. In all figures, benchmarks are ordereddshon throughput.

their category in Table 3. e FR-FCFS and FCFS: The commonly-used FR-FCFS scheduling
We evaluate combinations of multiprogrammed workloadsiinum policy is very unfair, slowing down the three less-interesdench-

on 4, 8, and 16-core CMPs. For 4-core simulations, we evadluat marks significantly more than libquantum because of libguan

100 different combinations, each of which was formed by gseu tum’s very high row-buffer hit rate (98.4%) and memory inten

randomly selecting a benchmark from each category suchdifat siveness. Such unfairness results in the lowest systerngh+o

ferent category combinations are evaluated. For 8-corelations, put as cores running the three less-intensive programs reale

we evaluated 16 different combinations; and for 16-coredifferent slow progress. FCFS improves fairness over FR-FCFS because

it prevents libquantum’s row-buffer hit requests from lgegon-
11410.bwaves, 416.gamess, and 434.zeusmp are not includedseewe tinuously prioritized over other threads’ requests. Nbgekss,

were not able to collect representative traces for them. FCFS still unfairly prioritizes memory-intensive libguam and
12AST/req is similar to the average cost of an L2 cache miss;ritesi by

Qureshi et al. [30], except AST/req is based on processibtista rather than 13Gabor et al.’s fairness metric [8] is essentially the ingeo$ Mutlu and

L2 miss latency. Moscibroda’s unfairness index [25].

1
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Processor pipeline 4 GHz processor, 128-entry instruction window (64-entspesqueue, 64-entry store queue), 12-stage pipeline
Fetch/Exec/Commit width |3 instructions per cycle in each core; only 1 can be a memaoeyatipn

L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte blozk,2-cycle latency

L2 Caches 512 K-byte per core, 8-way set associative, 64-byte blao, di2-cycle latency, 32 MSHRs

DRAM controller (on-chip) | FR-FCFS; 128-entry request buffer, 64-entry write datdevufeads prioritized over writes, XOR-based addressaiok mapping [6, 42]
DRAM chip parameters Micron DDR2-800 timing parameters (see [2H; 1, =15ns,t rc p=15ns,t r p=15ns,B L /2=10ns; 8 banks, 2K-byte row-buffer per bgnk
DIMM configuration single-rank, 8 DRAM chips put together on a DIMM (dual indimemory module) to provide a 64-bit wide channel to DRAM
Round-trip L2 miss latency | For a 64-byte cache line, uncontended: row-buffer hit: 4068 cycles), closed: 60ns (240 cycles), conflict: 80ns (3&fes)
Cores and DRAM bandwidffDRAM channels scaled with cores: 1, 2, 4 parallel lock-stepnmels for 4, 8, 16 cores (1 channel has 6.4 GB/s peak batigwid

Table 2. Baseline CMP and memory system configuration
[# [Benchmark  [[Type[MCPI]L2 MPKI]RB hit ratef BLP[AST/req] Categonf[[# [Benchmark [[Type[MCPI]L2 MPKI]RB hit rate BLP[AST/req Categony

1 |437.leslie3d FP [7.30 51.52 62.8% |[1.90{ 139 | 7(111) ||{15]|453.povray |[FP |0.00 0.03 79.9% |[1.75] 123 3
2 |450.soplex FP |[6.18 47.58 78.8% |[1.81] 125 7 16|464.h264ref |[INT [0.48 2.65 76.5% |[1.29] 161 | 2(010)
3 [470.lbm FP |[3.57 43.59 61.1% |[3.37| 77 7 17|445.gobmk |[INT [0.11 0.60 61.1% |[1.46] 162 2
4 |482.sphinx3 FP |[3.05 24.89 75.0% |[1.89] 117 7 18| 447.dealll FP 0.07 0.41 90.3% ([1.21] 133 2
5 |matlab DSK|15.4 78.36 93.7% [1.08] 192 | 6(110) [|{19]444.namd FP ]0.06 0.33 86.6% |[1.27| 160 2
6 [462.libquantum{[INT [9.10 50.00 98.4% [1.10] 181 6 20[481.wrf FP [0.05 0.28 83.6% [1.20] 164 2
7 |433.milc FP |4.65 32.48 86.4% |[1.51] 139 6 21|454.calculix ||FP [0.04 0.19 75.9% |[1.30] 157 2
8 |xml-parser DSK|[2.92 18.23 95.3% |[1.32] 158 6 22|400.perlbencl{ INT [0.02 0.13 75.4% |[1.69] 128 2
9 [429.mcf INT |6.45 98.68 41.5% |4.75| 64 5(101) ||| 23| 471.omnetpp||INT |1.96 22.15 26.7% |[3.78| 86 1(001)
10{459.GemsFDTI) FP |4.08 29.95 20.4% |[2.40[ 126 5 24|401.bzip2 INT |0.49 3.56 52.0% |[2.05] 127 1
11]483.xalancbmk||INT [2.80 23.52 59.8% |[2.27| 113 5 25|473.astar INT |1.82 9.25 50.2% |[1.45 177 | 0(000)
12|436.cactusADM|FP [2.78 11.68 6.75% |[1.60] 219 | 4(100) [|{26]456.hmmer |[[INT |1.50 5.67 33.8% [1.26] 231 0
13]|403.gcc INT [0.05 0.37 63.9% [1.87] 127 | 3(011) [|[{27]435.gromacs||[FP [0.18 0.68 58.2% [1.04] 220 0
14| 465.tonto FP 10.02 0.13 70.7% |[1.92| 108 3 28|458.sjeng INT [0.10 0.41 16.8% |1.53] 192 0

Table 3. Benchmark characteristics. MCPI: Memory Cycles Per Imsion (cycles spent waiting for memory divided by numbermstiuctions), L2 MPKI: L2 Misses per 1000
Instructions, RB Hit Rate: Row-buffer hit rate, BLP: bargw¢| parallelism, AST/req: Average stall-time per DRAM uegt,Categoriesare determined based on MCPI (1:High,
0:Low), RB hit rate (1:High, O:Low), and BLP (1:High, 0:Low)

Unfaimess5.26 1.72 1.71 1.42 1.07 %-0

s 82 —Tbquanum = +& —FR-FCF$
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540 — GemsFDTD|- § 1.2 =NFQ
? 30 | =xalancbmk [~ & 101 =STFM [
g3 ? 0] = PAR-BS
§ 13 s
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Figure 5. A memory intensive 4-core workload: memory slowdowns anfdiamess (left), system throughput (right)

mcf as their requests are more likely to be older than othreatts’ proves weighted-speedup by 4.4% and hmean-speedup by 8.4%
requests. Since the fairness and throughput charaaterisfi over STFM. TheRequest batchingomponent of PAR-BS fairly
both FR-FCFS and FCFS were analyzed in detail in previous re- distributes memory-slowdowns by effectively containiitgglan-
search [25], we concentrate our analysis primarily on thesiot tum’s impact on other threads. We found that request bagakin
scheduling algorithms. more effective and robust in providing fairness than botrQéF

o NFQ slightly improves fairness over FCFS, although it ogerl —and STFM's techniques because it is not vulnerable to lidiee
slows down mcf (by 3.15X). Mcf has very high bank-paralielis nessandbank access balangeoblems of the NFQ approach [25],
when run alone. NFQ’s scheduling policy is to balance the re- 2) incorrect estimation of thread slowdowns in the STFM ap-
quests from different threads in each bank, without anydioar proach.Parallelism-aware scheduling within a batch alloRAR-
tion among banks. As the other threads have bursty accdeszat ~ BS to better exploit mcf's bank-parallelism, keeping itsTA®q
in some banks, NFQ prioritizes their requests over mcf'siests at 146 cycles, lower than NFQ and STFM. Consequently, PAR-
in those banks during bursts (this is in part due tddteness prob- ~ BS slows down mcf (by 2.17X) less than NFQ (3.15X) and STFM
leminherent in NFQ's design, as described in [25, 31]). There- (2.77X).

fore, NFQ destroys mcf's bank-parallelism: in some bankgsncg 1 5 - case Study I1: Non-intensive workloadFigure 6 shows

requests are unhindered by requests from other threadt nhi \,airness and throughput on a workload including threeintemsive
other banks, requests from the bursty threads are prieditiicf’s benchmarks and a single intensive one. Only one appliction

requests in these banks are delayed, although they coutche@n o) has high bank-parallelism (3.78), which resultsriragerage
serviced in parallel with its other requests. We foun_d thaf'sn s&all-time per DRAM access of 86 cycles when omnetpp is rane!
BLP of 4.75 when run alone reduces to only 2.05 with NFQ and" pap _pg i the only scheduler that does not significantly fieea
its average stall-time per DRAM access (AST/req) increfses the thread with high bank-parallelism (omnetpp). NFQ and/@T
6410193 processor cycles_. .__reduce unfairness compared to FR-FCFS because they siutigess
e STFM results in better fairness and throughput than all IPr¥nitigate the problems caused by FR-FCFS'’ rigid row-hittfizslicy.
ous policies. However, it also penalizes (slows down) mgf sipygyever, neither NFQ nor STFM can recover omnetpp’s losgitkb
nificantly, by 2.77X. This is due to two reasons. First, STFMgqjelism and both slow down this thread the most. In fEQ
tries to provide faimess by estimating the memory-slowd is even more unfair than FCFS because its earliest-vidaabline-
each thread and prioritizing requests from the threads ah&t fj5t scheme prioritizes h264ref's (and to a lesser degszstahmer’s)
slowed down the most. STFM penalizes mcf because its heulgisty requests over omnetpp’s requests in the banks tmeyioently
tics to estimate mcf's inherent bank-parallelism are nebgh ac- yccess [25]. This causes omnetpp’s accesses that wouldvitbe
curate [25] and hence, it underestimates mcf's slowdoweoSe, o ceeqd in parallel to get out-of-sync and become seriinéich
like NFQ, STFM is not parallelism-aware: it does not try tod€2  jegrades omnetpp’s performance. The processor stallidopank
requests from a thread in parallel. Instead, it prioritizBRUESts 5:cess Jatency of each access rather than amortizing thisciaby
from threads that it estimates to have incurred the highestony- o\ erjapping the latencies of multiple outstanding accesshe result
slowdovyns—ln this case, libquantum and GemsI’:DTD._ Theéean AST/req of 256 cycles for omnetpp. While STFM reducés th
threads’ requests often take precedence over mcf's resjuest measyre to 182 cycles, it still overly slows down omnetpy il to
creasing mef's AST/req from 64 to 174 cycles. optimize omnetpp’s bank-parallelism and underestimétisshread’s

* PAR-BS provides both the best fairness and system througfowdown. In contrast, the parallelism-aware PAR-BS regusm-
put. It reduces unfairess from 1.42 (STFM) to 1.07, and imptpp's AST/req down to 150 cycles.
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PAR-BS outperforms all existing schemes, achieving thé faés
ness while also improving weighted-speedup and hmeardepegsy
3.1% and 5.2% over STFM, respectively.
schemes, it is the least memory-intensive thread (h264hef) is
slowed down the most by PAR-BS, but this thread’s slowdown
nonetheless smaller than with the other schedulers. Soimi6dief’s
less-frequent requests are likely to miss the formation bath, in
which case they are not serviced until the batch completesieMer,
this does not result in a large slowdown because 1) batclkeguick
to process due to the smadhr ki ng- Cap of 5; we found that the av-
erage batch is completed in 1269 cycles, 2) even if h264refjsests
are not marked, they are still serviced if there is no marlezplest
for the required bank, 3) because h264ref's requests areqinént,
they are prioritized within a batch due to oMiax-Totalthread rank-
ing scheme; thus even if a request misses a batch it will bécser
first in the next batch.

8.1.3. Case Study IIl: Memory-intensive benchmark with
high bank-parallelism running with copies of itself Our last
case study is intended to explicitly demonstrate the paisth be-
havior of the PAR-BS scheduler. For this, we minimize thdarzse
among threads and run four identical copies of Ibm togetimeao
CMP. As expected, all schedulers are perfectly fair in tlaisec(Fig-
ure 7(left)), but they differ significantly in their memosfewdown
and hence system throughput. FCFS drastically slows doamazpy
of Ibm compared to FR-FCFS because it does not explicithoiixp
row-buffer locality. NFQ's performance is even worse bessait not
only limits the row-buffer locality that can be exploited the memory
controller (using the priority-inversion optimization j&8]) but also
frequently interleaves requests from different copiesaf to a bank
to keep the virtual deadline of each Ibm copy in balance. @ag&roys
the row-buffer hit rate of each Ibm copy, reducing it from 6id/enly
31%, and therefore reduces system throughput by 29.7%. Sir6M
vides the same throughput as FR-FCFS because it never swiicka
fairness-oriented scheduling policy as it correctly eatis the unfair-
ness in the systemto be 1.

F eighte
Figure 9. A mixed 8-core workload: memory slowdowns and unfairnesi)(Isystem throughput (right)

= hmmer
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PAR-BS achieves the best system throughput by servicing eac
Ibm’s concurrent requests in parallel, reducing the awestgll-time a

In contrast to theslpthDRAM access inflicts upon a thread (from 222 (FR-FCFS and STFM

and 322 (NFQ) to 199 cycles). Therefore, PAR-BS improve$ bot
veeighted- and hmean-speedup by 8.6%. Hence, making the DRAM
scheduler parallelism-aware improves system throughpen én a
uniform application mix where unfairness is not a problem.

8.1.4. 4-Core Experiments: Average ResultEigure 8(left)
compares the unfairness of the five schedulers across 10diteese
workloads as well as averaged over all the 100 examined woadkl
Figure 8(right) shows the average system throughput adé@&s/ork-
loads. PAR-BS provides both the best fairness and the besigh-
put. Unfairness is reduced from 1.36 (STFM) to 1.22. At thesa
time, system throughput is improved by 4.4% (weighted-dppgand
by 8.3% (hmean-speedup) compared to the best previouspeped
scheduling scheme (STFM).

8.2. PAR-BS on 8-Core and 16-Core Systems

The DRAM system will become a bigger QoS and performance
bottleneck as the number of cores sharing it increases. &fybex-
amine the effectiveness of PAR-BS on 8-core and 16-coreesyst
Figure 9 shows an 8-core workload consisting of 3 memorgrisive
and 5 non-intensive applications. Mcf is the only prograrthwiery
high inherent bank-parallelism. All previous schedulevasistently
slow down mcf (by at least 3.5X) because they fail to continel $e-
rialization of mcf’s concurrent DRAM accesses due to irgeehice
from the other seven applicatioffsOn the other hand, PAR-BS pre-
serves mcf’s bank-parallelism, reducing its slowdown 8X2and its
AST/req from 330 (NFQ) and 221 (STFM) to only 173 cycles). As a
result, PAR-BS provides both the best fairness and systeaghput.

Figure 10 provides unfairness and throughput results orLée
core system for five sample workloads as well as averagedadive?
workloads. PAR-BS reduces unfairness from 1.81 (STFM) &3,1.

14The likelihood that mcf’s concurrent requests are segalincreases when
7 other threads are running together with it instead of 3.
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4-core system 8-core system 16-core system
Unf. [Weighted Hmean-spAST/reqf WC Iat.|| Unf. [Weighted-spHmean-spAST/req]WC lat.|| Unf. [Weighted-spHmean-spAST/req] WC Iat.
FR-FCFS 3.12 1.70 0.43 374 18481 (| 4.10 1.99 0.29 605 | 34655 4.99 3.62 2.93 968 35117
FCFS 1.64 1.53 0.45 364 13728 || 2.23 1.77 0.28 633 | 20114 || 3.06 3.23 2.69 964 | 36549
NFQ 1.56 1.73 0.47 346 19801|( 2.45 2.04 0.31 525 | 59117|| 3.74 3.75 2.93 774 | 88732
STFM 1.36 1.79 0.52 301 | 20305|| 1.41 2.11 0.34 484 | 57764 1.81 3.85 3.33 712 86577
PAR-BS 1.22 1.87 0.57 281 13866 || 1.31 2.20 0.37 457 | 25614 || 1.63 3.97 3.50 676 | 41115
Avs. STEM|||1.11X| 4.4% 8.3% 7.1% | 1.46X||1.08X 4.3% 6.1% 5.9% | 2.26X |[1.11X 3.2% 5.1% 5.3% | 2.11X

Table 4. STFM vs. others: unfairness (Unf.), throughput (weightetéan-speedup), AST/req, and worst-case request lat&fCyldt.) averaged over all workloads
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Figure 11. Effect of Marking-Cap on unfairness and throughput (leftpwdowns for Case Study | (middle) and Case Study Il (right)

while improving weighted-speedup by 3.2% and hmean-sgebégiu requests first and B’s 5 requests next with all accesses efaethe
5.1% compared to STFM. first from each thread being row-hits. A small cap also resalpoor
Summary: Table 4 summarizes our evaluation by comparing tHairness because it penalizes threads with high row-bldéality (e.g.
geometric-mean of unfairness and system-throughput of-BSRo libquantum and matlab in Figure 11(middle) and (left)).
the previous schemes. PAR-BS provides the lowest averafj¢iste As Mar ki ng- Cap increases, unfairness decreases and system
per request, which indicates that it effectively reducesa¥erage cost throughput increases, until a certain point beyond whicfaiumess
of a DRAM request on performance. Also, PAR-BS providesi§ignincreases due to two reasons. First, a large cap allows nyemor
icantly lower worst-case request latency than other Qo&auech- intensive threads to insert more requests into a batch aml db-
nigues. We found that both NFQ and STFM can delay requests frtays non-intensive threads whose requests more frequenithg” the
particular threads for a very long time in order to enfordéenfess'® In  formation of a batch. As such, a large cap penalizes less memo
contrast, the batching component of PAR-BS achieves fsgrmdiile  intensive threads as shown in memory slowdowns for GemsFaniD
bounding the amount of time a thread’s requests can be del®pdR- xalancbmk in Figure 11(middle) and for omnetpp and hmmerign F
BS consistently provides better fairness and throughmr the best ure 11(right). Second, because PAR-BS prioritizes thredttshigh
previous technique (STFM) for all examined systeritge conclude row buffer locality within a batch, a large cap exacerbahesdelay of
that PAR-BS is very effective in providing the best fairrasd the threads with low row-buffer locality within a batch.
highest system performance in 4-, 8-, and 16-core systems. According to Figure 11(left), &ar ki ng- Cap of 5 provides the
8.3. Analvsi best average system throughput (both weighted-speedupraadn-
-9. ANAlysIs . . . speedup) while providing very good fairness. Therefore,use a
8.3.1. Effect of Marking-Cap Mar ki ng- Cap determines the ngr ki ng- Cap of 5 in our experiments. Note that it is possible to
duration of a batch _by changing tht_e num_ber of requests thaharked improve our mechanism by making thver ki ng- Cap adaptive.
when a new batch is formed. Varying this parameter affecR-BS'’s . . .
faimess and throughput properties because it changes Bnount 8-3.2. Effect of Batching ChoiceFigure 12(left) compares the
of row-buffer locality exploited, 2) the amount of delay uarked re- unfairness an_d throug_hput sfatic batchingwith various ch0|ces_ for
quests experience, and 3) the degree of bank-level pasailé¢hat can Bat chDur at i on (varied from 400 to 25600 cyclesslot batching
be exploited. a_mdfull-ba_tchlng as u_sed in PAR-_BS, which were described in Sec-
Figure 11(left) shows the effect of varyindar ki ng- Cap from tion 4.4. Figure 12(m|d'dle) and (right) show the effect af thatching
1 to 20 and not usindyar ki ng- Cap at all (no-c) on unfairness angdchoice on the thre_ads me_mory-slowdowr)s in two case studizs
throughput averaged over the 100 workloads on the 4-corerasys average, full batching provides the best fairess and gimput.
WhenMar ki ng- Cap is smallest, system throughput is at its lowest  Static batchingis unfair if Bat chDur ati on is too small (e.g.
because the resulting batches are too small. For exampleawdap 400 or 800 cycles). Because most requests in the request e
of 1, a thread can have at most 1 request per bank in a batch. asugome marked with a smallat chDur at i on, the scheme prioritizes
small batch size significantly reduces our schedulerstaitd 1) ex- Memory-intensive threads with high row-buffer hit ratebeflefore, a
ploit row-buffer locality and 2) find concurrent accessestfithreads SmallBat chDur at i on effectively eliminates request batching and
with high bank-parallelism. If, in a bank, Thread A has 5 tansling Qegene_rates_ toa row-hit-first, rank-flrgt, oldest-_flrsoptllzatlon pql-
requests to one row, and Thread B has 5 requests to anothea rof§y: Which (similar to FR-FCFS) penalizes less-intenstweads with
cap of 1 results in the interleaving of Thread A and B's retmibg- 10w row-buffer locality, as shown in Figure 12(middle) anight).
cause only 1 request to the bank can finish from each threabdtca. Conversely, ifBat chDur at i on is too large, most requests in the
This interieaving results in a row-conflict for each access there- buffer are unmarked. This also effectively eliminates eesjibatching
fore significantly increases the latency experienced bj éaead. In and behaves similarly to FR-FCFS. The sweet-spot in statichb
contrast, with avar ki ng- Cap of 5, PAR-BS would service As 5 ing is with a Bat chDur ati on of 3200 cycles but thl§ doejs_not
provide as good performance or fairness as full batchingesihis
15F0r example, STFM delays requests from threads that areatstil to be rigid/unadaptive and prone to starvation.
slowed down much less than others. Similarly, NFQ delaysests of a thread Eslot batchingeduces the probability of penalizing non-intensive
to a bank, if the thread had used that bank very intensivelg fong time and threads. Unfortunately, as shown in Figure 12(middle) amghf),
accumulated a large virtual deadline. it penalizes memory-intensive threads too much by allowewests
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from less intensive ones into a current batch, which redtleesow- that the parallelism-awareness component of our propssatiepen-
buffer hit rate of intensive threads. While this can resnlsystem dent of the fairness component and it can be used to imprded/so
throughput improvement in some cases (e.g. for Case StudyFig- system throughput even when fairness is not a problem.

ure 12(right) — not shown in the figure), full batching praesdbetter

average fairness and system throughput. We conclude thatfeh- 8 4. Evaluation of Support for Thread Priorities

ing is the most effective batching policy for PAR-BS. We evaluated PAR-BS’s support for thread priorities in aetsr
8.3.3. Effect of Parallelism Awareness and Different of scenarios and present two representative case studhéghight
Within-Batch Scheduling SchemesFigure 13(left) explores the its effectiveness. Figure 14(left) shows the memory slawdoof 4
effect of changing the within-batch ranking scheme or reimpit al-  Ibm programs with different weights (for NFQ and STFM) andree
together and simply using FR-FCFS or FCFS to prioritize agrom-  sponding priorities (for PAR-BS). Two programs have a pityoof 1
mands within a batch. In addition, we study three altereatithin- (corresponding to a weight of 8 in NFQ/STFM) and two have prio
batch ranking schemes, two of which do not adhere to the estert ties of 2 and 8. While all three schedulers respect the velgtiiori-
job-first principle: therandomranking scheme assigns random rankises of threads, PAR-BS is much more efficient: it resulthimlbwest
to threads when a batch is formed; tloeind-robinscheme alternates slowdown for the highest-priority programs because it @ness their
the rank of each thread in a round-robin fashion in conseebgtches. bank-parallelism. Lbm with priority 1 experiences a slowdaf 2.09
Figure 13(left) shows these alternative non-shortesfijsh and 2.15 with NFQ and STFM, but only 1.88 with PAR-BS. In addi-
within-batch scheduling techniques significantly degraolth fairness tion, we found that PAR-BS provides higher system througlepan
and system throughput because they increase the averagdetiom for low-priority programs (e.g. the lowest-priority Iom i@ much
time of threads. Specifically, changing the ranking scheim®Max- smaller slowdown with PAR-BS than with other schemes).
Total or Total-Max (which perform similarly) to a random or round-  Figure 14(right) presents a scenario in which omnetpp isrthst
robin ranking scheme reduces weighted-speedup/hmeathspdy important thread to the user whereas the other three calstete
respectively 5.7% and 9.8%. Using no ranking (i.e., FR-F@FS threads are not important. Therefore, the system softwesigdates
FCFS) within a batch completely eliminatesurallelism-awareness the other threads as “opportunistic,” i.e. they should lreised only
from our proposal while keeping thequest batchingomponent in- \hen there is available bandwidth. As explained in Sectid?AR-BS
tact. The resultis a decrease in both fairness and throtighiging the  easjly accommodates this notion of “opportunistic sefvinenever
FR-FCFS policy within a batch results in a weighted-spe#fttapan- including these threads’ requests in a batch. For NFQ andVSTF
speedup loss of 4.7% and 10.7% compared to PAR-BS. As exhecifiere is no notion of “opportunistic service,” so we appnoated it
FCFS provides better fairness than FR-FCFS but signifigamtkse py assigning a very large weight (8192) to the high-prioditgnetpp
throughput. ) _ and very small weights (1) to low-priority threatfsPAR-BS provides
We conclude that parallelism-awareness is a key comporfentnq,ch higher throughput to the high-priority thread. Omptislow-
our proposal. However, even without parallelism-awarenése gown is only 1.04 with PAR-BS whereas it is 1.14 with STFM and
concept of request-batching itself results in designs #natalmost 1 19 with NFQ. Hence, from both examples, we conclude th®-PA
competitive with the best previously-proposed sched8&EM. As B treats higher-priority applications better than akerapproaches

Figure 13(left) shows, round-robin ranking within a batahiaves o enforcing thread priorities/weights in the DRAM corite.
slightly worse fairness and only 2.1%/1.5% smaller weidhte

speedup/hmean-speedup than STFM.

Figure 13(mid. and right) shows that the throughput impnoeat  6Note that such a large range of weights might be difficult tplement
due to parallelism-aware prioritization is significant witibreads have in NFQ or STFM hardware, whereas PAR-BS's ability to hangipartunistic
high inherent bank-level parallelism (4 copies of lom), bagligible threads is very easy to implement: it simply consists of natkimg the requests
when threads have low parallelism (4 copies of matlab). Welcmle of opportunistic threads.
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recently proposed DRAM controllers that aim to provide QW8sbit
et al.’s network-fair-queueing (NFQ) based scheduler g8 Mutlu
and Moscibroda’s stall-time fair memory (STFM) schedul2b][
Rafique et al. [31] proposed an improvement to the NFQ schenf@d
by employing start-time fair queueing, which provides éeftiair-  [3]
ness than virtual finish-time fair queueing. As explained28],
while fair queueing is a good fairness abstractiorstatelessietwork
wires without anyparallelism (i.e., banks)it is not directly applica-
ble to DRAM systems because it does not take into accounbufier
state and bank-parallelism, two critical determinants BAM perfor-
mance. In comparison, our design provides not only fairr@es, and
starvation freedom but also significantly improves systeraughput
via better intra-thread overlapping of DRAM accesses.

lyer etal. [11] sketch a design that allows requests frorg bigher
priority threads to bypass other requests in the memoryralet
However, their solution does not provide fairness to equidrity
threads. Several DRAM controllers [19, 16] achieve hard-tieze
guarantees at the cost of a reduction in throughput and fliéxithat
is unacceptable in high-performance general-purposersyst 4
Batching: The general concept of “batching” has been used in diEk
scheduling [7, 39, 12] to prevent starvation of I/O requedts apply a [15]
similar conceptrequest batchingin our PAR-BS design and evaluate[161
the trade-offs associated with batching in DRAM contralleHow-
ever, the locality, bandwidth, parallelism trade-offs iRAM mem- [17]
ory are very different from those in sequential-access diiskes since |[1g)
disk drives do not have 1) a banked structure or 2) row-bsiffer
Parallelism Awareness: The concept of memory-level parallelism
awareness was exploited in processor caches to improvathe ce-
placement policy [30]. The authors observed that cacheasitgsat
are likely to be serviced in parallel with other misses ass leostly
on processor performance than misses that occur in isolafibey
proposed a replacement policy that tries to keep costlyikslat the
cache. Our proposal is orthogonal: it proactively triestipiiove the
probability that cache misses from a given thread will beised in
parallel and can 1) be used together with and 2) improve fieetafe-
ness of MLP-aware cache replacement.
DRAM Throughput Optimizations: Zuravleff and Robinson [44]
proposed an FR-FCFS-like scheduler that aims to maximizANDR
throughput. A number of papers examined the effect of difiemem- [27]
ory controller policies and DRAM throughput optimizationsmulti- (28]
processor/multithreaded [27, 43] and single-threadetésys[33, 20,
32, 10, 34]. These techniques do not consider fairnessm@r-intead [29]
bank-parallelism. [30]
Fairness in On-Chip Resources:Proposed techniques for fair shar-
ing of CMP caches (e.g., [38, 14]) and multithreaded pramess (31]
sources (e.g., [37, 18, 8]) are complementary to our workcamdbe [32]
used in conjunction with PAR-BS. (33]

(1

[9]
[10]
(11]

(12]
(23]

[19]
[20]
(21]
[22]
(23]
(24]
(25]
[26]

10. Conclusion >4
We introduced a novel, comprehensive solution to both higﬁ-sl
performance and QoS-aware DRAM scheduler design. Compays
to existing DRAM schedulers, our parallelism-aware batfesuler [37]
(PAR-BS) significantly improves both fairness and systenoubh-
put in systems where DRAM is a shared resource among multijge]
threads. Our technique combines two orthogonal ideas:ptpitides [39]
thread-fairness and better prevents short-term and lemy-starva-
tion through the use ofequest batchingand 2) within a batch, it [40]
explicitly reduces average thread stall times vipagallelism-aware 41)
DRAM scheduling policyhat improves intra-thread bank-level paral-
lelism, using theshortest job firsscheduling principle. While effec- [42]
tive at improving both fairness and system performance, -B&Rs 43
also configurable and simple to implement. Our future work foi
cus on formally analyzing the parallelism, locality, anitriass prop- [#4]
erties of PAR-BS to further refine the employed request {ization
heuristics.
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