
..........................................................................................................................................................................................................................

PARALLELISM-AWARE
BATCH SCHEDULING: ENABLING
HIGH-PERFORMANCE AND FAIR
SHARED MEMORY CONTROLLERS

..........................................................................................................................................................................................................................

UNCONTROLLED INTERTHREAD INTERFERENCE IN MAIN MEMORY CAN DESTROY INDIVID-

UAL THREADS’ MEMORY-LEVEL PARALLELISM, EFFECTIVELY SERIALIZING THE MEMORY

REQUESTS OF A THREAD WHOSE LATENCIES WOULD OTHERWISE HAVE LARGELY OVER-

LAPPED, THEREBY REDUCING SINGLE-THREAD PERFORMANCE. THE PARALLELISM-AWARE

BATCH SCHEDULER PRESERVES EACH THREAD’S MEMORY-LEVEL PARALLELISM, ENSURES

FAIRNESS AND STARVATION FREEDOM, AND SUPPORTS SYSTEM-LEVEL THREAD PRIORITIES.

......The main memory (dynamic
RAM) system is a major limiter of computer
system performance. In modern processors,
which are overwhelmingly multicore (or
multithreaded), the concurrently executing
threads share the DRAM system, and differ-
ent threads running on different cores can
delay each other through resource conten-
tion. One thread’s memory requests can
cause DRAM bank conflicts, row-buffer con-
flicts, and data/address bus conflicts with
another’s. As the number of on-chip cores
increases, the pressure on the DRAM sys-
tem increases, as does the interference
among threads sharing the system. Unfortu-
nately, many conventional DRAM controllers
are unaware of this interthread interference.
They schedule requests simply to maximize
DRAM data throughput. For example, the
commonly used row-hit-first (FR-FCFS, or

first ready, first come, first served) scheduling
policy is thread unaware.1,2

Uncontrolled interthread interference in
DRAM scheduling results in two major
problems. First, as previous work showed,
a state-of-the-art DRAM controller can
unfairly prioritize some threads while starv-
ing more important threads for long time
periods, as they wait to access memory (see
the ‘‘Related Work on Memory Controllers’’
sidebar). For example, FR-FCFS unfairly
prioritizes threads with high row-buffer hit
rates over those witho low row-buffer
hit rates. Similarly, an oldest-first schedu-
ling policy implicitly prioritizes memory-
intensive threads over memory-nonintensive
ones. In fact, it is possible to write programs
to deny DRAM service to more important
programs running on the same chip, as
we showed in our previous work.3 Such
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unfairness in the DRAM controller results in
low system performance and utilization,
makes the system vulnerable to denial-
of-service attacks, and makes the system
uncontrollable—that is, unable to enforce
operating-system-level thread priorities.

Interthread interference in the DRAM
system can also destroy individual threads’
bank-level access parallelism, effectively serial-
izing the memory requests whose latencies
would have largely overlapped had there
been no interference. Many sophisticated
single-thread performance improvement tech-
niques aim to amortize the cost of long DRAM
latencies by generating multiple outstanding
DRAM requests (by exploiting memory-
level parallelism4). These techniques’ effec-
tiveness depends on whether different
DRAM banks actually service the thread’s
outstanding DRAM requests in parallel
(that is, whether they maintain intrathread
bank-level parallelism). In a single-threaded
system, this isn’t a problem: because the
thread has exclusive access to DRAM banks,
its requests are serviced in parallel. However,
in a multithreaded or multicore system,
multiple threads share the DRAM control-
ler. Because existing controllers make no
attempt to preserve each thread’s bank-level
parallelism, each thread’s outstanding
requests can be serviced serially (due to inter-
ference from other threads’ requests), instead
of in parallel. Thus, conventional single-
thread memory latency tolerance techniques
are less effective in systems in which multiple
threads share the DRAM memory. As a
result, each thread’s performance can
degrade significantly, which in turn degrades
overall system performance.

To solve these problems, we designed the
parallelism-aware batch scheduler (PAR-BS),
a memory controller that controls and limits
interthread interference. Our International
Symposium on Computer Architecture
(ISCA) paper provides more detail on the
work described here.5

Destruction of memory-level parallelism
in shared memory controllers

DRAM requests are long-latency opera-
tions that greatly impact the performance of
modern processors. When a load instruction

misses in the last-level on-chip cache and
needs to access DRAM, the processor can’t
commit that (and any subsequent) instruc-
tion because instructions are committed in
program order to support precise excep-
tions.6 The processor’s instruction window
becomes full a small number of cycles after
a last-level cache miss,7 and the processor
stalls until DRAM services the miss.
Current processors try to reduce perform-
ance loss due to a DRAM access by servic-
ing other DRAM accesses in parallel.
Techniques such as out-of-order execu-
tion,8 nonblocking caches,9 and run-
ahead execution10,11 strive to overlap the
latency of future DRAM accesses with
the current access so the processor doesn’t
need to stall long for future DRAM
accesses. Instead of stalling once for each
access in a serialized fashion, the processor
stalls, at an abstract level, once for all
overlapped accesses.7 The concept of gen-
erating and servicing multiple DRAM
accesses in parallel is called memory-level
parallelism (MLP).4

In a single-threaded, single-core system, a
thread has exclusive access to the DRAM
banks, so its concurrent DRAM accesses
are serviced in parallel as long as they aren’t
to the same bank. The simple, conceptual
example in Figure 1 illustrates this. Request
1’s (Req1) latency is hidden by Request 0’s
(Req0), effectively exposing only a single
bank-access latency to the thread’s processing
core. Once Req0 is serviced, the core can
commit Load 0 and thus enable the decoding
and execution of future instructions. When
Load 1 becomes the oldest instruction in
the window, its miss has already been serv-
iced, so the processor can continue computa-
tion without stalling.

Unfortunately, if multiple threads are
generating memory requests concurrently
(as in a multicore system), modern DRAM
controllers schedule the outstanding requests
in a way that completely ignores the
threads’ inherent memory-level parallelism.
Instead, they exclusively seek to maximize
the DRAM data throughput—that is, the
number of DRAM requests serviced per
second.1,2 As we show here, blindly
maximizing the DRAM data throughput
doesn’t minimize a thread’s stall time (which
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directly correlates with system throughput).
Even though we can maximize DRAM
throughput, some threads can stall overly long
if the DRAM controller destroys their bank-
level parallelism and serializes their memory
accesses instead of servicing them in parallel.

The example in Figure 2 illustrates how
parallelism unawareness can result in subop-
timal multicore system throughput and

increased stall times. We assume two cores,
each running a single thread: Thread 0
(T0) and Thread 1 (T1). Each thread has
two concurrent DRAM requests caused by
consecutive independent load misses (Load
0 and Load 1), and the requests go to two
different DRAM banks (Figure 2a). The
top part of Figure 2b shows how a current
DRAM scheduler can destroy intrathread

...............................................................................................................................................................................................

Related Work on Memory Controllers

A modern synchronous dynamic RAM (SDRAM) chip consists of multi-

ple DRAM banks to let multiple outstanding memory accesses proceed in

parallel if they require data from different banks. Each DRAM bank is a

2D array, consisting of columns and rows. Rows typically store data in

consecutive memory locations and are 1 to 2 Kbytes in size. The memory

controller can access the data in a bank only from the row buffer, which

can contain at most one row. A bank contains a single row buffer. The

amount of time it takes to service a DRAM request depends on the row

buffer’s status:

� Row-hit: The request is to the open row in the row buffer.

The DRAM controller issues only a read or write command to

the DRAM bank, resulting in a bank access latency of tCL.

� Row-closed: The row buffer does not have an open row. The

DRAM controller issues an activate command to open the

required row and then a read or write command, resulting in

a bank access latency of tRCD þ tCL.

� Row-conflict: The request is to a row different from the one cur-

rently in the row buffer. The DRAM controller closes the row by

issuing a precharge command, then opens the required row (acti-

vate), and issues a read or write command. These accesses incur

the highest bank access latency of tRP þ tRCD þ tCL.

A DRAM controller consists of a memory request buffer that buf-

fers the memory requests (and their data) while they wait to be serv-

iced and a (possibly two-level) scheduler that selects the next request

to be serviced.1–3 When selecting the next request to be serviced, the

scheduler considers the state of the DRAM banks and the DRAM

buses as well as the request’s state. It schedules a DRAM command

for a request only if the request’s scheduling doesn’t cause any

resource (bank and address, data, or command bus) conflicts and

doesn’t violate any DRAM timing constraints. Such a DRAM com-

mand is said to be ready.

When multiple threads share the DRAM system, the row-hit-first

scheduling policy (FR-FCFS, or first ready, first come, first served)

tends to unfairly prioritize threads with high row-buffer locality (that

is, high row-buffer hit rate) over those with relatively low row-buffer

locality. It also tends to unfairly prioritize memory-intensive threads

over nonintensive ones due to the oldest-first prioritization rule. As a

result, even though FR-FCFS achieves high DRAM data throughput, it

might starve requests or threads for long time periods, causing unfair-

ness and relatively low overall system throughput.2,3

Previous research proposed new, fairer scheduling policies that pro-

vide quality of service to different threads.2,3 Nesbit and colleagues

applied network fair-queuing (NFQ) techniques to DRAM controllers to

divide the DRAM bandwidth among multiple threads sharing the

DRAM system.2 Rafique and colleagues proposed an improvement to

the NFQ scheme.4 However, although fair queuing is a good fairness

abstraction for stateless network wires without any parallelism, it

isn’t directly applicable to DRAM systems because it doesn’t account

for row-buffer state and bank parallelism, two critical determinants of

DRAM system performance.3 Our stall-time fair memory scheduler

(STFM) aims to equalize the slowdowns experienced by threads as
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Figure 1. Example showing how latencies of two DRAM requests are overlapped in a

single-core system.
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bank parallelism, thereby increasing a
thread’s stall time. The bottom part shows
how a parallelism-aware scheduler can sched-
ule the requests more efficiently.

A conventional parallelism-unaware
DRAM scheduler1,2 can service requests in
their arrival order, as Figure 2b (top) shows.
First, the controller services T0’s request
to Bank 0 in parallel with T1’s request to
Bank 1. Later, it services T1’s request
to Bank 0 in parallel with T0’s request to
Bank 1. This service order serializes each
thread’s concurrent requests and therefore
exposes two bank-access latencies to each
core. As the execution timeline in Figure 2c
(top) shows, instead of stalling once (that is,
for one bank-access latency) for the two
requests, both cores stall twice. Core 0 first
stalls for Load 0, and shortly thereafter for
Load 1. Core 1 stalls for its Load 0 for two
bank-access latencies.

In contrast, a parallelism-aware scheduler
services each thread’s concurrent requests

in parallel, resulting in the service order in
Figure 2b (bottom) and execution timeline
in Figure 2c (bottom). The scheduler pre-
serves bank parallelism by first scheduling
both of T0’s requests in parallel, and then
T1’s requests. This lets Core 0 execute faster
(shown as ‘‘saved cycles’’ in the figure) because
it stalls for only one bank-access latency. Core
1’s stall time remains unchanged. Although
the controller services the second request
(T1-Req1) later than a conventional scheduler
would, T1-Req0 still hides T1-Req1’s latency.

The crucial observation is that parallelism-
aware request scheduling improves over-
all system throughput because one core
now executes much faster. The average
core stall time is 2 bank-access latencies
with the conventional scheduler (Figure 2c,
top), but only 1.5 bank-access latencies
with the parallelism-aware scheduler
(Figure 2c, bottom). Although this example
shows only two cores for simplicity, the
destruction of intrathread bank parallelism

compared to when each is run alone.3 Several DRAM controllers

achieve hard real-time guarantees at the cost of reduced throughput

and flexibility that is unacceptable in high-performance general-

purpose systems.5 None of these previous controllers accounts for

intrathread bank parallelism, and so can significantly degrade system

performance when requests of different threads interfere in the

DRAM system.

Several publications have examined the effect of new memory

controller policies to optimize DRAM throughput in multiprocessor and

multithreaded systems6,7 and in single-threaded systems.1,8,9 These

techniques don’t consider fairness or intrathread bank parallelism.

Recently proposed prefetch-aware DRAM schedulers10 adaptively priori-

tize prefetch versus demand requests. We could combine the basic prin-

ciples of prefetch-awareness used in that scheduler with our proposed

DRAM controller.
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becomes worse as more cores share the
DRAM system.

Parallelism-aware batch scheduling
Our PAR-BS controller is based on

two key principles. The first principle is
parallelism-awareness. To preserve a thread’s
bank-level parallelism, a DRAM controller
must service a thread’s requests (to different
banks) back to back (that is, one right after
another, without any interfering requests
from other threads). This way, each thread’s
request service latencies overlap.

The second principle is request batching. If
performed greedily, servicing requests from a
thread back to back could cause unfairness
and even request starvation. To prevent
this, PAR-BS groups a fixed number of old-
est requests from each thread into a batch,
and services the requests from the current
batch before all other requests. The control-
ler forms a new batch when all requests
belonging to the previous batch are fully
serviced. Because out-of-order request servic-
ing doesn’t occur across batches, no thread
can indefinitely deny service to another.
Thus, batching ensures fairness and forward

progress. It also provides a convenient gran-
ularity (that is, a batch) within which the
PAR-BS scheduler can service requests
according to the first principle, in a possibly
unfair but parallelism-aware manner.

The following sections detail these two
basic principles’ operation.

PAR-BS operation
Batching involves consecutively grouping

outstanding requests in the memory request
buffer into larger units, or batches. The
DRAM scheduler avoids request reordering
across batches by prioritizing requests
belonging to the current batch over other
requests. Once all requests of a batch are
serviced (that is, when the batch is finished),
the scheduler forms a new batch consisting
of outstanding requests in the memory
request buffer that weren’t included in
the last batch. By grouping requests into
larger units according to their arrival time,
batching—in contrast to FR-FCFS and
other existing schemes—prevents request
starvation at a fine granularity and enforces
steady and fair progress across all threads.
At the same time, batch formation gives the
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Figure 2. Conceptual example showing the importance of including parallelism awareness in DRAM scheduling
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scheduler the flexibility to reorder requests
within a batch to maximally exploit row-
buffer locality and bank parallelism without
significantly disturbing thread fairness.

PAR-BS’s batching component works as
follows. Each request in the memory request
buffer has an associated bit indicating
whether the request belongs to the current
batch. If the request belongs to the cur-
rent batch, this bit is set, and we call the
request marked. PAR-BS forms batches
using the steps listed in Rule 1 (Figure 3).
Marking-Cap is a system parameter

(determined dynamically by the system or
empirically by the designer) that limits how
many requests issued by a thread for a certain
bank can be part of a batch. For instance, if
Marking-Cap is 5 and a thread has seven
outstanding requests for a bank, PAR-BS
marks only the five oldest among them. If no
Marking-Cap is set, all outstanding requests
are marked when a new batch is formed.

PAR-BS always prioritizes marked requests
over nonmarked requests in a given bank.
However, PAR-BS neither wastes bandwidth
nor unnecessarily delays requests. If there
are no marked requests to a given bank,
PAR-BS schedules outstanding nonmarked
requests to that bank.

Batching naturally provides a convenient
granularity (the batch) within which a sched-
uler can optimize scheduling decisions to
obtain high performance. Within a batch
of requests (that is, the set of marked
requests), we could use any DRAM
command scheduling policy (for example,
FR-FCFS or FCFS) to prioritize requests.
However, no existing policy preserves a
thread’s bank parallelism in the presence of
interthread interference. PAR-BS prioritizes
requests as shown in Rule 2 (Figure 4) to
achieve two objectives: first, to exploit row-
buffer locality; and second, to preserve each
thread’s bank parallelism.

To achieve the first objective, the control-
ler prioritizes row-hit requests within a batch.
This increases row-buffer locality and ensures
that the controller makes the best possible
use of any rows left open by the previous
batch’s requests in the next batch. To achieve
the second objective, when a new batch
is formed, the DRAM scheduler computes
a ranking among all threads with

requests in the batch. While the controller
processes the batch, it prioritizes requests
from higher-ranked threads over those from
lower-ranked threads (and the computed
ranking remains the same). This ensures
that each thread’s requests are serviced
back to back within the batch. The effect
of thread-rank-based scheduling is that dif-
ferent threads are prioritized in the same
order across all banks, and thus each thread’s
requests are more likely to be serviced in par-
allel by all banks.

The thread-ranking scheme affects system
throughput and fairness. A good ranking
scheme should satisfy two objectives:

� maximize system throughput and
� minimize stall-time unfairness (that is,

equalize thread slowdown compared
to when each is run alone to allow pro-
portional progress of each thread,
a property assumed by existing operat-
ing system schedulers).

As our previous publication explains,5 these
two objectives call for the same ranking
scheme. We can maximize system throughput
within a batch by minimizing the average stall

Forming a new batch:  A new batch is formed when no marked requests 

are left in the memory request buffer—that is, when all requests from the 

previous batch have been completely serviced.

Marking:  When forming a new batch, PAR-BS marks up to Marking-Cap 

oldest outstanding requests per bank for each thread; all marked requests 

constitute the batch.

Rule 1. Batch formation

1.

2.

Figure 3. Rule 1 describes how the PAR-BS scheduler forms batches of

requests.

BS—Marked-requests-first: Marked requests are prioritized over un- 

marked requests (batch requests to ensure fairness and avoid starvation). 

RH—Row-hit-first:  Row-hit requests are prioritized over row-conflict and 

closed requests (exploit row-buffer locality).

Rank—Higher-rank-first:  Requests from threads with higher rank are 

prioritized over requests from lower-ranked threads (preserve memory level 

parallelism).

FCFS—Oldest-first:  Older requests are prioritized over younger ones.

Rule 2. PAR-BS scheduler: Request prioritization

1.

2.

3.

4.

Figure 4. Rule 2 describes how the PAR-BS scheduler prioritizes requests.
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time of threads within the batch (that is, min-
imizing the average completion time of threads
as consistent with generalized machine sched-
uling theory12). By minimizing the average
stall time, we maximize the amount of
time threads spend on useful computation
instead of stalling for DRAM access. We
achieve this by servicing threads with inher-
ently low memory stall time (memory-
nonintensive threads) early within the batch
by assigning them high ranks. Doing so also
minimizes stall-time unfairness. The insight
is that if a thread has low stall time to begin
with (that is, it is nonintensive), delaying it
results in a higher slowdown and increased
unfairness as opposed to delaying a memory-
intensive thread. To achieve both objectives,

PAR-BS uses the shortest-job-first principle
to rank threads12 when it forms a new batch.
The controller estimates each thread’s stall
time within the batch. It then gives a higher
rank to threads with shorter estimated stall-
time. Rule 3 (Figure 5) shows how this is done.

The maximum number of outstan-
ding requests to any bank correlates
with the ‘‘shortness of the job’’—that
is, with the minimal memory latency
required to serve all requests from a thread
if they’re processed completely in parallel.
A highly ranked thread has few marked
requests going to the same bank and
hence can be finished fast. By prioritizing
requests from such high-ranked threads
within a batch, PAR-BS ensures that nonin-
tensive threads or threads with high bank
parallelism make fast progress and aren’t
delayed unnecessarily long.

Within-batch scheduling example
The example in Figure 6 indicates why

our proposed within-batch prioritization
scheme preserves intrathread bank paral-
lelism and improves system throughput.
The figure abstracts away many details of
DRAM scheduling, such as DRAM data,
address, and command bus contention,
and complex interactions between timing
constraints, but provides a framework for
understanding the parallelism and locality

Max rule:  A thread with lower max-bank-load is ranked higher than a 

thread with higher max-bank-load (shortest-job-first).

Total rule:  In case of a tie, a thread with lower total-load is ranked higher 

than a thread with higher total-load. Any remaining ties are broken 

randomly.

For each thread, the scheduler finds 1) the maximum number of marked 

requests to any given bank (max-bank-load) and 2) the total number of marked 

requests (total-load).

Rule 3. Thread ranking: Shortest stall-time first within batch

1.

2.

Figure 5. Rule 3 describes how the PAR-BS controller ranks threads using

their estimated stall times.
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trade-offs. We assume a latency unit of 1 for
row-conflict requests and 0.5 for row-hit
requests. Figure 6a depicts the arrival order
of requests in each bank, which is equivalent
to their service order with an FCFS schedu-
ler. FCFS neither exploits row-buffer locality
nor preserves intrathread bank parallelism, so
it results in the largest average completion
time of the four threads (5 latency units, as
Table 1 shows). FR-FCFS maximizes row-
buffer hit rates by reordering row-hit requests
over others, but as Figure 6b shows, it
doesn’t preserve intrathread bank parallelism.
For example, although Thread 1 has only
three requests that are all intended for differ-
ent banks, FR-FCFS services all three requests
sequentially.

Depending on the history of memory
requests, the schedule shown in Figure 6b
for FR-FCFS is also a possible execution
scenario when using the quality-of-service-
aware network fair-queuing (NFQ) or stall-
time fair memory (STFM) schedulers, because
those schedulers are unaware of intrathread
bank parallelism.

Figure 6c shows how PAR-BS operates
within a batch. Thread 1 has at most one
request per bank (resulting in the lowest
max-bank-load, 1) so is ranked highest in
this batch. Threads 2 and 3 have a max-
bank-load of 2, but because thread 2 has
fewer total requests, it’s ranked above
thread 3. Thread 4 is ranked the lowest
because it has a max-bank-load of 5. As
Thread 1 is ranked highest, its three requests
are scheduled perfectly in parallel, before
other requests. Similarly, Thread 2’s requests
are scheduled as much in parallel as possible.
As a result, PAR-BS maximizes the bank par-
allelism of nonintensive threads and finishes
their requests as quickly as possible, letting
the corresponding cores make fast progress.
Compared to FR-FCFS or FCFS, PAR-BS
significantly speeds up Threads 1, 2, and 3
while not substantially slowing down
Thread 4. The average completion time is
reduced to 3.125 latency units.

In addition to good bank parallelism,
our proposal achieves row-buffer locality
as well as FR-FCFS within a batch, because
within a batch, PAR-BS always prioritizes
marked row-hit requests over row-conflict
requests.

Support for system software
So far, we’ve described PAR-BS assum-

ing that all threads have equal priority and,
in terms of fairness, should experience
equal DRAM-related slowdowns when
run together.

The system software (the operating system
or virtual machine monitor), however, would
likely want to assign thread priorities to
convey that some threads are more or less
important than others. PAR-BS seamlessly
incorporates the notion of thread priorities
to support the system software. The system
software conveys each thread’s priority to
PAR-BS in terms of priority-levels 1, 2, 3,
and so on, where level 1 indicates the most
important thread (highest priority) and larger
numbers indicate lower priority. Equal-priority
threads should be slowed down equally, but
the lower a thread’s priority, the more tolerable
its slowdown. We adjust PAR-BS in two ways
to incorporate thread priorities.

First, we apply priority-based marking.
PAR-BS marks requests from a thread with
priority X only every Xth batch. For example,
it marks requests from highest-priority
threads with level 1 every batch, requests
from threads with level 2 every other batch,
and so forth.

We also use priority-based within-batch
scheduling. We add another rule to the
within-batch request prioritization rules
shown in Rule 2 (Figure 4). Between
BS—Marked-requests-first and RH—Row-
hit-first, we add Priority—Higher-priority-
threads-first. That is, given the choice between
two marked or two unmarked requests, PAR-
BS prioritizes the request from the thread with
higher priority. Between requests of equal-
priority threads, other request prioritization
rules remain the same.

The effect of these two changes to PAR-
BS is that higher-priority threads are
naturally scheduled faster. They’re marked
more frequently and thus take part in more

Table 1. Stall times for three DRAM schedulers. 

Thread 1

4
5.5

1

Thread 2

4
3

2

Thread 3

5
4.5

4

Thread 4

7
4.5

5.5

Average

5
4.375

3.125

Stall times

FCFS schedule
FR-FCFS schedule

PAR-BS schedule
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batches, and they’re prioritized over other
requests within a batch.

In addition to the integer-based priority
levels, PAR-BS provides a priority level L,
which indicates the lowest-priority threads.
Requests from such threads are never marked
and they’re assigned the lowest priority
among unmarked requests. Consequently,
PAR-BS schedules requests from threads at
level L purely opportunistically—only if the
memory system is free—to minimize their
disturbance on other threads.

Finally, we let the system software set
Marking-Cap, which serves as a lever to
determine how much unfairness exists in
the system.

Evaluation
PAR-BS’s storage cost on an 8-core sys-

tem is only 1,412 bits.5 PAR-BS is based
solely on simple request prioritization rules,
similarly to existing DRAM scheduling poli-
cies. It doesn’t require complex operations
(such as division) unlike other QoS-aware
schedulers.

Our ISCA paper comprehensively com-
pares PAR-BS with four previously proposed
throughput or fairness-oriented DRAM
controllers (FR-FCFS, FCFS, NFQ, and
STFM) both qualitatively and quantitatively
in terms of fairness, system throughput, and
configurability.5 None of the previous con-
trollers try to preserve individual threads’
memory-level parallelism. In addition, each
of them unfairly penalizes threads with cer-
tain properties,5 whereas PAR-BS’s request
batching provides a high degree of fairness
and starvation freedom for all threads.

We evaluated PAR-BS on a wide variety
of workloads consisting of SPEC CPU2006
and Windows applications on 4-, 8-, and
16-core systems using an x86 CMP simula-
tor. Our simulator models the DDR2-800
memory system in detail, faithfully capturing
bandwidth limitations, contention, and
enforcing bank, port, channel, and bus con-
flicts. Our previous work details our experi-
mental methodology.5 Figure 7 summarizes
our main results. PAR-BS provides the best
fairness,5 the highest system throughput
(weighted speedup),13 and the best thread
turnaround time (in terms of harmonic
mean speedup)13 averaged over all 100, 16,

and 12 randomly selected multiprogrammed
workloads on the 4-, 8-, and 16-core systems.

On the 4-core system, compared to
the FR-FCFS scheduler, PAR-BS improves
fairness by 2.56�, harmonic mean speedup
by 32.6 percent, and weighted speedup by
12.4 percent. Compared to the STFM sched-
uler, PAR-BS improves fairness by 1.11�,
harmonic mean speedup by 8.3 percent, and
weighted speedup by 4.4 percent. Hence,
PAR-BS significantly outperforms the best-
performing DRAM controller while requiring
substantially simpler hardware. PAR-BS is also
robust. It doesn’t significantly degrade fairness,
performance, or maximum request latency on
any evaluated multiprogrammed workload.

Our previous work uses detailed case stud-
ies and analyses to provide insights into why
PAR-BS performs better than other techni-
ques.5 The main reasons for PAR-BS’s per-
formance improvement are its ability to
preserve single-thread memory-level parallel-
ism and its shortest-job-first within-batch
scheduling policy. Batching and thread rank-
ing together result in the large fairness
improvements. PAR-BS is effective with mul-
tiple memory controllers, even without any
coordination between the different control-
lers, as our previous ISCA presentation shows.

Our article makes three major contri-
butions, which we hope will serve as

building blocks for future research in both
industry and academia.

First, we identify a new problem in shared-
memory systems: interthread interference can
destroy the MLP and serialize requests of indi-
vidual threads, leading to significant degrada-
tion in single-thread and system performance
in multicore and multithreaded systems.
Computer architects and compiler designers
strive to parallelize a thread’s memory requests
to tolerate memory latency and have devel-
oped and used many techniques to exploit
MLP (and thus improve single-thread per-
formance). These techniques, including out-
of-order execution, can become less effective
when multiple threads interfere in the mem-
ory system. Over time, this new research prob-
lem can lead to novel techniques to preserve
MLP (and thus the difficult-to-extract single-
thread performance) in other shared system
resources as well as memory controllers.
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We also introduce the idea of thread
ranking and rank-based scheduling to pre-
serve individual threads’ MLP. We pro-
pose several specific mechanisms to rank
threads within a batch, and show that
shortest-stall-time-first ranking performs
the best. Even when unfairness isn’t a
problem, preserving MLP significantly
improves single-thread and system per-
formance.5 In the long term, thread rank-
ing can serve as a building block for new
techniques to preserve MLP in other
shared system resources.

Finally, we adapt the idea of request
batching from I/O systems14 to provide fair-
ness and starvation-freedom to threads shar-
ing the DRAM system. As we show
elsewhere,5 this idea can be used with any
existing or future DRAM scheduling techni-
que to improve fairness.

Request batching provides not only fair-
ness at a low hardware cost but also a frame-
work for new scheduling optimizations
within the batch. In the long term, we
hope this framework will enable sophisti-
cated within-batch DRAM scheduling
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Figure 7. Performance of PAR-BS and other DRAM scheduling techniques in terms of unfair-

ness (a), inverse of thread turnaround time (harmonic mean speedup) (b), and system through-

put (weighted speedup) (c). The best achievable unfairness value is 1 in these workloads.
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policies that aggressively exploit the increas-
ingly valuable DRAM bandwidth. For exam-
ple, a DRAM controller can use this
framework to provide fairness while maxi-
mizing DRAM throughput within a batch
using machine learning or by aggressively
prioritizing accurate prefetches. Batching
can also serve as a building block for fairness
in other shared system resources. In fact,
batching and awareness of thread ranking
and parallelism can help provide effective
sharing of cache bandwidth. We believe
and hope the problem discovered in this
article will inspire new solutions and that
our building blocks will enable both industry
and academia to design fair and high-
performance shared resource-management
techniques. M I CR O
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