

FIST: A Fast, Lightweight, FPGA-Friendly Packet Latency Estimator for NoC Modeling in Full-System Simulations

Michael K. Papamichael, James C. Hoe, Onur Mutlu

papamix@cs.cmu.edu, jhoe@ece.cmu.edu, onur@cmu.edu

Computer Architecture Lab at Carnegie Mellon

Our work was supported by NSF. We thank Xilinx and Bluespec for their FPGA and tool donations.

Simulation in Computer Architecture

- Slow for large-scale multiprocessor studies
 - Full-system fidelity + long benchmarks

How can we make it faster?

- Speed, accuracy, flexibility trade-off
 Full-system simulators sacrifice accuracy for speed and flexibility
 - Accelerate simulation with FPGAs
 - Can simulate up to millions of gates
 Orders of magnitude simulation speedup

Speed

Flexibility

The FIST Project

Explores fast NoC models for full-system simulations

- FPGA-friendly, but avoid direct implementation
- Low error, many topologies, >10M packets/sec
- Simpler requirements of full-system simulation
 - Estimate packet latencies, capture high-order effects

FPGA area requirements for state-of-the-art mesh NoC*

*NoC RTL from http://nocs.stanford.edu/router.html

CALCM Computer Architecture Lab at Carnegie Mellon

FIST Approach

- View NoC as set of routers/links
- Abstract router into black-box
- Represent by load-delay curves

Specific to each router configuration and traffic pattern

FIST Approach

Treat each hop as a set of load-delay curves

Trade-off between model complexity and fidelity

Keep track of load at each node

• To track router load monitor traffic over window of time

FIST in Action

Route packet from source to destination

Determine routers that will be traversed

Sum up the delays for each traversed router

Index load-delay curves using current load at each router

Outline

Introduction to FIST

- FIST-based Network Models
- Evaluation
- Related Work & Conclusions

Outline

Introduction to FIST

FIST-based Network Models

• Evaluation

• Related Work & Conclusions

Putting FIST Into Context

FIST

Use Curves

Detailed network models

- Cycle-accurate network simulators (e.g. BookSim)
- Analytical network models

Train Curves

Updated Curves

Typically study networks under synthetic traffic patterns

- Model network within a broader simulated system
- Assign delay to each packet traversing the network
- Traffic generated by real workloads

eedba

Offline and Online FIST

Offline FIST

- Detailed network simulator generates curves offline
- Can use synthetic or actual workload traffic
- Load curves into FIST and run experiment

Online FIST (tolerates dynamic changes in network behavior)

- Initialization of curves same as offline
- Periodically run detailed network simulator on the side
- Compare accuracy and, if necessary, update curves

Online Training in Action

• Example with no initial training

CALCM Computer Architecture Lab at Carnegie Mellon

"FIST-Friendly" Networks

- Exhibit stable, predictable behavior as load fluctuates
- Actual traffic similar to training traffic

FIST Limitations

- Depends on fidelity, representativeness of training models
- Higher loads and large buffers can limit FIST's accuracy
 - High network load ightarrow increased packet latency variance
 - Large buffers → increased range of observed packet latencies
- Cannot capture fine-grain packet interactions
- Cannot replace cycle-accurate detailed network models

FIST only as good as its training data

Applying FIST to NoCs

NoCs affected by on-chip limitations and scarce resources

Employ simple routing algorithms

• Usually simple deterministic routing

Operate at low loads

- NoCs usually over-provisioned to handle worst-case
- Have been observed to operate at low injection rates

Small buffers

- On-chip abundance of wires reduces buffering requirements
- Amount of buffering in NoCs is limited or even eliminated

NoCs are "FIST-Friendly"

Outline

- Introduction to FIST
- FIST-based Network Models

Evaluation

• Related Work & Conclusions

FIST Implementations

- FIST
- Software Implementation of FIST (written in C++)
 - Implements online and offline FIST models
- Hardware Implementation (written in Bluespec)
 - Precisely replicates software-based FIST
 - Block diagram of architecture

Peeking Under The Hood

Similar issues arise for load tracking & dynamic training

CALCM Computer Architecture Lab at Carnegie Mellon

Methodology

• Examined online and offline FIST models

Replaced cycle-accurate NoC model in tiled CMP simulator

Network and system configuration

- 4x4, 8x8, 16x16 wormhole-routed mesh
- Each network node hosts core+coherent L1 and a slice of L2

Multiprogrammed and multithreaded workloads

- 26 SPEC CPU2006 benchmarks of varying network intensity
- 8 SPLASH-2 and 2 PARSEC workloads

Traffic generated by cache misses

Consists of control, data and coherence packets

Offline and Online FIST models with two curves per router

- Curves represent injection and traversal latency at each router
- Initial training using uniform random synthetic traffic

Please see paper for more details!

Accuracy Results (offline)

- 8x8 mesh using FIST offline model
 - Average Latency and Aggregate IPC Error

CALCM Computer Architecture Lab at Carnegie Mellon

Accuracy Results (online)

- 8x8 mesh using FIST online model
 - Average Latency and Aggregate IPC Error

Both Latency and IPC Error below 3%

What about a very simple model?

8x8 mesh using hop-based model

• How does simple network model affect high-order results?

Performance Results

Complexity / Level of Detail

- SW-based speedup results for 16x16 mesh
 - Offline FIST: 43x
 - Online FIST: 18x

• HW-based speedup (offline): ~3-4 orders of magnitude

Hardware Implementation Results

- FPGA resource usage & clock frequency
 - Different mesh configurations
 - Xilinx Virtex-5 LX155T FPGA

	FIST Model		Direct Implementation	
Size	FPGA Area	Freq.	FPGA Area	Freq.
4x4	4%	380 MHz	61%	130 MHz
8x8	15%	263 MHz	-	-
12x12	34%	250 MHz		
16x16	60%	214 MHz		
20x20	94%	200 MHz	-	-

FIST can scale to large NoCs with many routers

CALCM Computer Architecture Lab at Carnegie Mellon

Outline

- Introduction to FIST
- FIST-based Network Models

• Evaluation

Related Work & Conclusions

Vast body of work on network modeling

• Analytical models, hardware prototyping, etc.

Abstract network modeling

- Performance vs. accuracy trade-off studies [Burger 95]
- Load-delay curve representation of network [Lugones 09]

FPGAs for network modeling

- Cycle-accurate fidelity at the cost of limited scalability
- Time-multiplexing can help with scalability [Wang 10]
- But still suffer from high implementation complexity

Conclusions

- Full-system simulators can tolerate small inaccuracies
- FIST can provide fast SW- or HW-based NoC models
 - SW model provides 18x-43x average speedup w/ <2% error
 - HW model can scale to 100s routers with >1000x speedup
- NoCs within a CMP are "FIST-friendly"
 - But not all networks good candidates for FIST modeling

Future Directions

- FPGA-friendly NoC models at multiple levels of fidelity
- Configurable generation of hardware NoC models

Questions?

CALCM Computer Architecture Lab at Carnegie Mellon