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Executive Summary

• Sub-page memory management has several applications

– More efficient capacity management, protection, metadata, …

• Page-granularity virtual memory →→→→ inefficient implementations

– Low performance and high memory redundancy

• Page Overlays: New Virtual Memory Framework

• Virtual Page → (physical page, overlay)

• Overlay contains new versions of subset of cache lines

• Efficiently store pages with mostly similar data

• Largely retains existing virtual memory structure

– Low cost implementation over existing frameworks

• Powerful access semantics – Enables many applications

– E.g., overlay-on-write, efficient sparse data structure representation

• Improves performance and reduces memory redundancy
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Existing Virtual Memory Systems

• Virtual memory enables many OS functionalities

– Flexible capacity management

– Inter-process data protection, sharing

– Copy-on-write, page flipping
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Case Study: Copy-on-Write
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Shortcomings of Page-granularity Management
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Shortcomings of Page-granularity Management
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Shortcomings of Page-granularity Management
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Fine-grained Memory Management
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Goal: Efficient Fine-grained Memory Management
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Outline

• Shortcomings of Existing Framework

• Page Overlays – Overview

• Implementation

– Challenges and solutions

• Applications and Evaluation

• Conclusion
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The Page Overlay Framework
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Overlay-on-Write: An Efficient Copy-on-Write
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Outline

• Shortcomings of Existing Framework

• Page Overlays – Overview

• Implementation

– Challenges and solutions

• Applications and Evaluation

• Conclusion

13



Implementation Overview
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Implementation Challenges
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Identifying Overlay Cache Lines: Overlay Bit Vector

16

C0

C1

C2

C3

C4

C5

Virtual Page C0

C1

C2

C3

C4

C5

Physical Page

C2

C5

OverlayC5

C5

?

1
Does the 
cache line 
belong to the 
overlay?

0 0 1 0 0 1

Overlay Bit Vector

Indicates which 

cache lines 

belong to the 

overlay



Addressing Overlay Cache Lines: Naïve Approach
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Addressing Overlay Cache Lines: Dual Address Design
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Virtual-to-Overlay Mappings
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Keeping TLBs Coherent
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Final Implementation
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Other Details in the Paper

• Virtual-to-overlay mapping

• TLB and cache coherence

• OMT management (by the memory controller)

• Hardware cost 

– 94.5 KB of storage

• OS Support
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Outline

• Shortcomings of existing frameworks

• Page Overlays – Overview

• Implementation

– Challenges and solutions

• Applications and Evaluation

• Conclusion
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Methodology

• Memsim memory system simulator [Seshadri+ PACT 2012]

• 2.67 GHz, single core, out-of-order, 64 entry instruction window

• 64-entry L1 TLB, 1024-entry L2 TLB

• 64KB L1 cache, 512KB L2 cache, 2MB L3 cache

• Multi-entry Stream Prefetcher [Srinath+ HPCA 2007]

• Open row, FR-FCFS, 64 entry write buffer, drain when full

• 64-entry OMT cache

• DDR3 1066 MHz, 1 channel, 1 rank, 8 banks

24



Overlay-on-Write

• Lower memory 
redundancy

• Lower latency
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Fork Benchmark

• Additional memory consumption

• Performance (cycles per instruction)
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Overlay-on-Write vs. Copy-on-Write on Fork
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Conclusion

• Sub-page memory management has several applications

– More efficient capacity management, protection, metadata, …

• Page-granularity virtual memory →→→→ inefficient implementations

– Low performance and high memory redundancy

• Page Overlays: New Virtual Memory Framework

• Virtual Page → (physical page, overlay)

• Overlay contains new versions of subset of cache lines

• Efficiently store pages with mostly similar data

• Largely retains existing virtual memory structure

– Low cost implementation over existing frameworks

• Powerful access semantics – Enables many applications

– E.g., overlay-on-write, efficient sparse data structure representation

• Improves performance and reduces memory redundancy
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