
Page Overlays
An Enhanced Virtual Memory Framework to 

Enable Fine-grained Memory Management

Vivek Seshadri

Gennady Pekhimenko, Olatunji Ruwase, 

Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch,

Todd C. Mowry, Trishul Chilimbi

@CMU



Executive Summary

• Sub-page memory management has several applications

– More efficient capacity management, protection, metadata, …

• Page-granularity virtual memory →→→→ inefficient implementations

– Low performance and high memory redundancy

• Page Overlays: New Virtual Memory Framework

• Virtual Page → (physical page, overlay)

• Overlay contains new versions of subset of cache lines

• Efficiently store pages with mostly similar data

• Largely retains existing virtual memory structure

– Low cost implementation over existing frameworks

• Powerful access semantics – Enables many applications

– E.g., overlay-on-write, efficient sparse data structure representation

• Improves performance and reduces memory redundancy

2

V

P

O



Existing Virtual Memory Systems

• Virtual memory enables many OS functionalities

– Flexible capacity management

– Inter-process data protection, sharing

– Copy-on-write, page flipping

3

Virtual 
page

4KB

Physical 
Page

4KB

Page

Tables



Case Study: Copy-on-Write

4

Virtual 
page

Physical 
Page

Write

Copy entire 
page2

Change 
mapping

3 1
Allocate 
new page

Copy-on-

Write

Copy

Page

Tables
Virtual Address Space Physical Address Space



Shortcomings of Page-granularity Management

5

Virtual 
page

Physical 
Page

Write

Copy entire 
page2

Change 
mapping

3 1
Allocate 
new page

Copy-on-

Write

Copy

Page

Tables
Virtual Address Space Physical Address Space

High memory redundancy



Shortcomings of Page-granularity Management

6

Virtual 
page

Physical 
Page

Write

Copy entire 
page2

Change 
mapping

3 1
Allocate 
new page

Copy-on-

Write

Copy

Page

Tables
Virtual Address Space Physical Address Space

4KB copy: High Latency



Shortcomings of Page-granularity Management

7

Virtual 
page

Physical 
Page

Write

Copy entire 
page2

Change 
mapping

3 1
Allocate 
new page

Copy-on-

Write

Copy

Page

Tables
Virtual Address Space Physical Address Space

TLB Shootdown

High Latency



Fine-grained Memory Management

8

Fine-grained 

Memory Management

Fine-grained 

data protection
(simpler programs)

More efficient 

capacity management
(avoid internal fragmentation, 

deduplication)

Fine-grained 

metadata management
(better security, efficient 

software debugging) 

Higher Performance
(e.g., more efficient 

copy-on-write)



Goal: Efficient Fine-grained Memory Management

9

Existing Virtual Memory Framework

Low performance High memory redundancy

V

P

O

Enable efficient fine-grained managementEnable efficient fine-grained management

Low implementation costLow implementation cost

New Virtual Memory Framework



Outline

• Shortcomings of Existing Framework

• Page Overlays – Overview

• Implementation

– Challenges and solutions

• Applications and Evaluation

• Conclusion

10



The Page Overlay Framework

11

C0

C1

C2

C3

C4

C5

Virtual Page

C0

C1

C2

C3

C4

C5

Physical Page

C2

C5

Overlay

The overlay contains 

only a subset of cache 

lines from the virtual 

page

Access Semantics:

Only cache lines 

not present in the 

overlay are 

accessed from the 

physical page

C1

C1

C5 C5



Overlay-on-Write: An Efficient Copy-on-Write

12

Virtual 
page

Physical 
Page

Write

Copy-on-

Write

Page

Tables
Virtual Address Space Physical Address Space

Overlay

Overlay 

contains only 

modified 

cache lines

Does not 

require full 

page copy



Outline

• Shortcomings of Existing Framework

• Page Overlays – Overview

• Implementation

– Challenges and solutions

• Applications and Evaluation

• Conclusion

13



Implementation Overview

14

V

Virtual 

Address Space

P

O

Main Memory

Regular 

Physical 

Pages

Overlays

Three challenges



Implementation Challenges

15

C0

C1

C2

C3

C4

C5

Virtual Page C0

C1

C2

C3

C4

C5

Physical Page

C2

C5

OverlayC5

C5

?

1
Does the 
cache line 
belong to the 
overlay? 2

What is the 
address/tag of the 
overlay cache line?

C3
3

How to 
keep the 
TLBs 
coherent?



Identifying Overlay Cache Lines: Overlay Bit Vector

16

C0

C1

C2

C3

C4

C5

Virtual Page C0

C1

C2

C3

C4

C5

Physical Page

C2

C5

OverlayC5

C5

?

1
Does the 
cache line 
belong to the 
overlay?

0 0 1 0 0 1

Overlay Bit Vector

Indicates which 

cache lines 

belong to the 

overlay



Addressing Overlay Cache Lines: Naïve Approach

17

V

Virtual 

Address Space

P

O

Main Memory Use the location of 

the overlay in main 

memory to tag 

overlay cache lines

1. Processor must compute the address1. Processor must compute the address

2. Does not work with virtually-indexed caches2. Does not work with virtually-indexed caches

3. Complicates overlay cache line insertion3. Complicates overlay cache line insertion



Addressing Overlay Cache Lines: Dual Address Design

18

V

Virtual 

Address Space

P

O

Main Memory

P

O

Physical 

Address Space

Unused physical 

address space

Overlay cache 

address space

same 

size



Virtual-to-Overlay Mappings

19

V

Virtual 

Address Space

P

O

Main Memory

P

O

Physical 

Address Space

Overlay cache 

address spaceDirect Mapping

Overlay Mapping Table (OMT)
(maintained by memory controller)



Keeping TLBs Coherent

20

C0

C1

C2

C3

C4

C5

Virtual Page C0

C1

C2

C3

C4

C5

Physical Page

C2

C5

OverlayC5

C5

C3
3

How to 
keep the 
TLBs 
coherent?

Use the cache coherence protocol to keep TLBs 

coherent!



Final Implementation

21

CPU
L1 

Cache

Last 

Level 

Cache

Regular 

Physical 

Pages
Memory 

Controller

TLB
OMT 

Cache

OMT

Overlay Bit Vectors

3 1

2
Overlays



Other Details in the Paper

• Virtual-to-overlay mapping

• TLB and cache coherence

• OMT management (by the memory controller)

• Hardware cost 

– 94.5 KB of storage

• OS Support

22



Outline

• Shortcomings of existing frameworks

• Page Overlays – Overview

• Implementation

– Challenges and solutions

• Applications and Evaluation

• Conclusion

23



Methodology

• Memsim memory system simulator [Seshadri+ PACT 2012]

• 2.67 GHz, single core, out-of-order, 64 entry instruction window

• 64-entry L1 TLB, 1024-entry L2 TLB

• 64KB L1 cache, 512KB L2 cache, 2MB L3 cache

• Multi-entry Stream Prefetcher [Srinath+ HPCA 2007]

• Open row, FR-FCFS, 64 entry write buffer, drain when full

• 64-entry OMT cache

• DDR3 1066 MHz, 1 channel, 1 rank, 8 banks

24



Overlay-on-Write

• Lower memory 
redundancy

• Lower latency

25

Virtual 
page

Physical 
Page

Write

2

3 1

Copy-on-

Write

Virtual 
page

Physical 
Page

Write

Copy-on-

Write

Overlay

Copy-on-Write Overlay-on-Write



Fork Benchmark

• Additional memory consumption

• Performance (cycles per instruction)

26

Parent Process

Fork

(child idles)

Copy-on-Write

Overlay-on-Write
Time

write

300 million insts

Applications from SPEC CPU 2006 (varying write working sets)



Overlay-on-Write vs. Copy-on-Write on Fork

27

0

10

20

30

40

50

60

Small Dense Sparse Mean

A
d

d
it

io
n

a
l 

M
e

m
o

ry
 (

M
B

s)

Write Working Set

0

1

2

3

4

5

6

7

8

Small Dense Sparse Mean

C
y

cl
e

s 
p

e
r 

In
st

ru
ct

io
n

Write Working Set

Copy-on-Write Overlay-on-Write

53% 15%



Conclusion

• Sub-page memory management has several applications

– More efficient capacity management, protection, metadata, …

• Page-granularity virtual memory →→→→ inefficient implementations

– Low performance and high memory redundancy

• Page Overlays: New Virtual Memory Framework

• Virtual Page → (physical page, overlay)

• Overlay contains new versions of subset of cache lines

• Efficiently store pages with mostly similar data

• Largely retains existing virtual memory structure

– Low cost implementation over existing frameworks

• Powerful access semantics – Enables many applications

– E.g., overlay-on-write, efficient sparse data structure representation

• Improves performance and reduces memory redundancy

28

V

P

O



Page Overlays
An Enhanced Virtual Memory Framework to 

Enable Fine-grained Memory Management

Vivek Seshadri

Gennady Pekhimenko, Olatunji Ruwase, 

Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch,

Todd C. Mowry, Trishul Chilimbi

@CMU


