
Orchestrated Scheduling and Prefetching for GPGPUs

Adwait Jog† Onur Kayiran† Asit K. Mishra§ Mahmut T. Kandemir†

Onur Mutlu‡ Ravishankar Iyer§ Chita R. Das†

†The Pennsylvania State University ‡ Carnegie Mellon University §Intel Labs
University Park, PA 16802 Pittsburgh, PA 15213 Hillsboro, OR 97124

{adwait, onur, kandemir, das}@cse.psu.edu onur@cmu.edu {asit.k.mishra, ravishankar.iyer}@intel.com

ABSTRACT

In this paper, we present techniques that coordinate the
thread scheduling and prefetching decisions in a General
Purpose Graphics Processing Unit (GPGPU) architecture to
better tolerate long memory latencies. We demonstrate that
existing warp scheduling policies in GPGPU architectures
are unable to effectively incorporate data prefetching. The
main reason is that they schedule consecutive warps, which
are likely to access nearby cache blocks and thus prefetch
accurately for one another, back-to-back in consecutive cy-
cles. This either 1) causes prefetches to be generated by a
warp too close to the time their corresponding addresses are
actually demanded by another warp, or 2) requires sophis-
ticated prefetcher designs to correctly predict the addresses
required by a future “far-ahead” warp while executing the
current warp.
We propose a new prefetch-aware warp scheduling policy

that overcomes these problems. The key idea is to separate
in time the scheduling of consecutive warps such that they
are not executed back-to-back. We show that this policy
not only enables a simple prefetcher to be effective in tol-
erating memory latencies but also improves memory bank
parallelism, even when prefetching is not employed. Ex-
perimental evaluations across a diverse set of applications
on a 30-core simulated GPGPU platform demonstrate that
the prefetch-aware warp scheduler provides 25% and 7% av-
erage performance improvement over baselines that employ
prefetching in conjunction with, respectively, the commonly-
employed round-robin scheduler or the recently-proposed
two-level warp scheduler. Moreover, when prefetching is
not employed, the prefetch-aware warp scheduler provides
higher performance than both of these baseline schedulers
as it better exploits memory bank parallelism.

Categories and Subject Descriptors

C.1.4 [Computer Systems Organization]: Processor Ar-
chitectures—Parallel Architectures; D.1.3 [Software]: Pro-
gramming Techniques—Concurrent Programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’13 Tel Aviv, Israel
Copyright 2013 ACM 978-1-4503-2079-5/13/06 ...$15.00.

General Terms

Design, Performance

Keywords

GPGPUs; Prefetching; Warp Scheduling; Latency Tolerance

1. INTRODUCTION
The memory subsystem is a critical determinant of perfor-

mance in General Purpose Graphics Processing Units (GPG-
PUs). And, it will become more so as more compute re-
sources continue to get integrated into the GPGPUs and
as the GPGPUs are placed onto the same chip with CPU
cores and other accelerators, resulting in higher demands for
memory performance.

Traditionally, GPGPUs tolerate long memory access la-
tencies by concurrently executing many threads. These
threads are grouped into fixed-sized batches known as warps
or wavefronts. Threads within a warp share the same in-
struction stream and execute the same instruction at the
same time, forming the basis for the term single instruction
multiple threads, SIMT [3, 4, 30]. The capability to rapidly
context switch between warps in the state-of-the-art GPG-
PUs allows the execution of other warps when one warp
stalls (on a long-latency memory operation), thereby over-
lapping memory access latencies of different warps. The ef-
fectiveness of the warp scheduling policy, which determines
the order and time in which different warps are executed,
has a critical impact on the memory latency tolerance and
memory bandwidth utilization, and thus the performance,
of a GPGPU. An effective warp scheduling policy can facil-
itate the concurrent execution of many warps, potentially
enabling all compute resources in a GPGPU to be utilized
without idle cycles (assuming there are enough threads).

Unfortunately, commonly-employed warp schedulers are
ineffective at tolerating long memory access latencies, and
therefore lead to significant underutilization of compute re-
sources, as shown in previous work [17, 21, 29, 34]. The
commonly-used round-robin (RR) policy schedules consecu-
tive warps1 in consecutive cycles, assigning all warps equal
priority in scheduling. As a result of this policy, most of the
warps arrive at a long-latency memory operation roughly at
the same time [17,34]. The core can therefore become inac-
tive as there may be no warps that are not stalling due to

1Two warps that have consecutive IDs are called consecutive
warps. Due to the way data is usually partitioned across
different warps, it is very likely that consecutive warps access
nearby cache blocks [16,17,24,34].

1

2
.1

9
1
.8

8
2
.2

0

1
.8

4

0

1

2

3

4

5

6

7

8

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L

K

F
W

T

J
P

E
G

G
M

E
A

N

IP
C

 I
m

p
ro

ve
m

e
n
t
fa

c
to

r
w

ith

p
e
rf

e
c
t
L
1
 c

a
c
h
e

Round-robin (RR) Two-level (TL) RR + Prefetching TL + Prefetching

Figure 1: IPC improvement when L1 cache is made perfect on a GPGPU that employs (1) round-robin (RR)
warp scheduling policy, (2) two-level (TL) warp scheduling policy, (3) data prefetching together with RR,
and (4) data prefetching together with TL. Section 5 describes our evaluation methodology and workloads.

a memory operation. To overcome this disadvantage of the
RR policy, the two-level (TL) warp scheduling policy [34]
was proposed. This scheduler divides all warps into fetch
groups and prioritizes warps from a single fetch group until
they reach a long-latency operation. When one fetch group
stalls due to a long-latency memory operation, the next fetch
group is scheduled. The scheduling policy of warps within
a fetch group is round robin, and so is the scheduling pol-
icy across fetch groups. The primary insight is that each
fetch group reaches the long-latency operations at different
points in time. As a result, when warps in one fetch group
are stalled on memory, warps in another fetch group can
continue to execute, thereby effectively tolerating the mem-
ory latency in a fetch group by performing computation in
another.
The leftmost two bars for each application in Figure 1

show the potential performance improvement achievable if
the L1 caches were perfect on 1) a GPGPU that employs
the RR policy and 2) the same GPGPU but with the TL
policy, across a set of ten diverse applications. The two-
level warp scheduler reduces the performance impact of L1
cache misses on performance, as shown by the lower IPC
improvement obtained by making the L1 data cache perfect
on top of the TL policy. However, a significant performance
potential remains: IPC would improve by 1.88× if the L1
cache were perfect, showing that there is significant potential
for improving memory latency tolerance in GPGPU systems.
Data prefetching, commonly employed in CPU systems

(e.g., [7,8,41,44]), is a fundamental latency hiding technique
that can potentially improve the memory latency tolerance
of GPGPUs and achieve the mentioned performance poten-
tial.2 However, we find that employing prefetching naively
does not significantly improve performance in GPGPU sys-
tems. The effect of this is shown quantitatively in the right-
most two bars for each application in Figure 1: employing
a data prefetcher (based on a spatial locality detector [18],
as described in detail in Section 4.2) with either the RR
or the TL scheduling policy does not significantly improve
performance.
In this paper, we observe that existing warp scheduling

policies in GPGPUs are unable to effectively incorporate
data prefetching mechanisms. The main reason is that they
schedule consecutive warps, which are likely to access nearby
cache blocks and thus prefetch accurately for one another,

2A form of data prefetching was developed in [29] for GPG-
PUs, where one warp prefetches data for another.

back to back in consecutive cycles. Consider the use of a
simple streaming prefetcher with the RR policy: when one
warp stalls and generates its demand requests, the prefetcher
generates requests for the next N cache blocks. Soon after,
and long before these prefetch requests complete, the suc-
ceeding warps get scheduled and likely require these cache
blocks due to the high spatial locality between consecu-
tive warps [16, 17, 24, 34]. Unfortunately, these succeeding
warps cannot take advantage of the issued prefetches be-
cause the prefetch requests were issued just before the warps
were scheduled. The TL scheduling policy suffers from the
same problem: since consecutive warps within a fetch group
are scheduled consecutively, the prefetches issued by a pre-
ceding warp are immediately demanded by the succeeding
one, and as a result, even though prefetches are accurate,
they do not provide performance improvement as they are
too late. One could potentially solve this problem by de-
signing a prefetcher that prefetches data for a “far-ahead”,
non-consecutive warp that will be scheduled far in the fu-
ture while executing the current warp such that the prefetch
requests are complete by the time the “far-ahead”warp gets
scheduled. Unfortunately, this requires a more sophisticated
prefetcher design: accurately predicting the addresses re-
quired by a “far-ahead”, non-consecutive warp is fundamen-
tally more difficult than accurately predicting the addresses
required by the next consecutive warp due to two reasons:
1) non-consecutive warps do not exhibit high spatial local-
ity among each other [17, 34]; in fact, the sets of addresses
required by two non-consecutive warps may have no rela-
tionship with each other, 2) the time at which the far-ahead
warp gets scheduled may vary depending on the other warp
scheduling decisions that happen in between the scheduling
of the current and the far-ahead warps.

We observe that orchestrating the warp scheduling and
prefetching decisions can enable a simple prefetcher to pro-
vide effective memory latency tolerance in GPGPUs. To this
end, we propose a new prefetch-aware (PA) warp scheduling
policy. The core idea is to separate in time the scheduling of
consecutive warps such that they are not executed back-to-
back, i.e., one immediately after another. This way, when
one warp stalls and generates its demand requests, a simple
prefetcher can issue prefetches for the next N cache blocks,
which are likely to be completed by the time the consecutive
warps that need them are scheduled. While the prefetch re-
quests are in progress, other non-consecutive warps that do
not need the prefetched addresses are executed.

2

The prefetch-aware warp scheduling policy is based on
the TL scheduler, with a key difference in the way the fetch
groups are formed. Instead of placing consecutive warps in
the same fetch group as the TL scheduler does, the PA sched-
uler places non-consecutive warps in the same fetch group.
In addition to enabling a simple prefetcher to be effective,
this policy also improves memory bank-level parallelism be-
cause it enables non-consecutive warps, which are likely to
access different memory banks due to the lack of spatial
locality amongst each other, to generate their memory re-
quests concurrently. Note that the PA scheduler causes a
loss in row buffer locality due to the exact same reason,
but the use of simple spatial prefetching can restore the row
buffer locality by issuing prefetches to an already-open row.
Contributions: To our knowledge, this is the first work

that coordinates thread scheduling and prefetching decisions
for improving memory latency tolerance in GPGPUs. Our
major contributions are as follows:
• We show that the state-of-the-art warp scheduling poli-

cies in GPGPUs are unable to effectively take advantage of
data prefetching to enable better memory latency tolerance.
• We propose a prefetch-aware warp scheduling policy,

which not only enables prefetching to be more effective in
GPGPUs but also improves memory bank-level parallelism
even when prefetching is not employed.
• We show that the proposed prefetch-aware warp sched-

uler can work in tandem with a simple prefetcher that uses
spatial locality detection [18].
• Our experimental results show that this orchestrated

scheduling and prefetching mechanism achieves 25% and 7%
average IPC improvement across a diverse set of applica-
tions, over state-of-the-art baselines that employ the same
prefetcher with the round-robin and two-level warp sched-
ulers, respectively. Moreover, when prefetching is not em-
ployed, the proposed prefetch-aware warp scheduler provides
respectively 20% and 4% higher IPC than these baseline
schedulers as it better exploits memory bank parallelism.

2. BACKGROUND
This section provides a brief description of the baseline

GPGPU architecture, typical scheduling strategies, and ex-
isting prefetching mechanisms.
Baseline GPGPU architecture: Our baseline

GPGPU architecture, shown in Figure 2(A), consists of
multiple simple cores, also called streaming-multiprocessors
(SMs) [37]. Each core typically has a SIMT width of 8 to
32, and is associated with private L1 data, texture and con-
stant caches, along with a shared memory. The cores are
connected to memory channels (partitions) via an intercon-
nection network. We assume that the traffic in each direc-
tion between the cores and the memory channels are serviced
by two separate crossbars. Each memory partition is asso-
ciated with a shared L2 cache. We assume the write-evict
policy [40] for caches. Section 5 gives more details on the
baseline platform configuration.
Scheduling in GPGPUs: Execution in GPGPUs starts

with the launch of a kernel. In this work, we assume sequen-
tial execution of kernels, which means only one kernel is ex-
ecuted at a time. Each kernel consists of many thread blocks
or Cooperative Thread Arrays (CTAs). A CTA encapsulates
all synchronization and barrier primitives among a group
of threads [24]. The CUDA programming model places a
constraint on the number of CTAs that can be concurrently

executed on a core. This constraint depends on factors such
as the size of the register file and the shared memory. After
a kernel is launched on the GPU, the global CTA scheduler
issues CTAs to the cores. In our baseline configuration, we
assume a CTA allocation strategy where the CTA scheduler
keeps on scheduling CTAs to an SM until the maximum
CTA limit is reached. For example, in the 2-core system
shown in Figure 2(B), assuming that the maximum number
of concurrently executing CTAs per core is 2, if 4 CTAs need
to be assigned, the first two CTAs will be assigned to core 1
and the remaining two will be assigned to core 2. In a C-core
system, with a limit of N CTAs per core, if the number of
unassigned CTAs is more than N ×C, the first core will be
assigned the first set of N CTAs, the second core the second
set ofN CTAs, and so on. If the number of unassigned CTAs
is less than N × C, then less than N CTAs are assigned to
each core in order to distribute the load evenly across the
cores. After the assignment of the CTAs, available threads
in the cores are scheduled in the core pipelines at the granu-
larity of warps, where a warp typically consists of 32 threads.
Every 4 cycles, a warp ready for execution is selected in a
round-robin fashion and fed to the 8-way SIMT pipeline of
a GPGPU core. Typically warps that have consecutive IDs
(i.e., consecutive warps) have good spatial locality as they
access nearby cache blocks [16,17,24,34] due to the way data
is usually partitioned across different warps.

Prefetching in GPGPUs: Inter-thread L1 data
prefetching [29] was recently proposed as a latency hiding
technique in GPGPUs. In this technique, a group of threads
prefetch data for threads that are going to be scheduled
later. This inter-thread prefetcher can also be considered as
an inter-warp prefetcher, as the considered baseline archi-
tecture attempts to coalesce the memory requests of all the
threads in a warp as a single cache block request (e.g., 4B re-
quests per thread × 32 threads per warp = 128B request per
warp, which equals the cache block size). The authors pro-
pose that prefetching data for other warps (in turn, threads)
can eliminate cold misses, as the warps for which the data
is prefetched will find their requested data in the cache. In
the case where the threads demand their data before the
prefetched data arrives, the demand requests can be merged
with the already-sent prefetch requests (if accurate) via miss
status handling registers (MSHRs). In this case, the prefetch
can partially hide some of the memory latency. In this work,
we consider similar inter-warp prefetchers.

On Chip Network

C

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

L1

C
L1

C
L1

C
L1

C
L1

C
L1

Core 1 Core 30
CTA 1

C

CTA 3 CTA 4

C

On Chip Network

L2

DRAM

L2

DRAM

L2

DRAM

L2

DRAM

A B

CTA 2

Figure 2: (A) GPGPU architecture (B) Illustrative
example showing the assignment of 4 CTAs on 2
cores. Maximum CTAs/core is assumed to be 2.

3

3. INTERACTION OF SCHEDULING AND

PREFETCHING: MOTIVATION AND

BASIC IDEAS
In this section, we first illustrate the shortcomings of

state-of-the-art warp scheduling policies in integrating data
prefetching effectively. We then illustrate our proposal, the
prefetch-aware warp scheduling policy, which aims to orches-
trate scheduling and prefetching.
Our illustrations revolve around Figure 3. The left por-

tion of the figure shows the execution and memory request
timeline of a set of eight warps, W1-W8, with eight differ-
ent combinations of warp scheduling and prefetching. The
right portion shows the memory requests generated by these
eight warps and the addresses and banks accessed by their
memory requests. Note that consecutive warps W1-W4 ac-
cess a set of consecutive cache blocks X, X+1, X+2, X+3,
mapped to DRAM Bank 1, whereas consecutive warps W5-
W8 access another set of consecutive cache blocks Y, Y+1,
Y+2, Y+3, mapped to DRAM Bank 2. The legend of the
figure, shown on the rightmost side, describes how different
acronyms and shades should be interpreted.

3.1 Shortcomings of the State-of-the-Art
Warp Schedulers

3.1.1 Round-robin (RR) warp scheduling

Figure 3 (A) shows the execution timeline of the eight
warps using the commonly-used round-robin (RR) warp
scheduling policy, without data prefetching employed. As
described before in Section 1, since all warps make similar
amounts of progress due to the round robin nature of the pol-
icy, they generate their memory requests (D1-D8) roughly
at the same time, and as a result stall roughly at the same
time (i.e., at the end of the first compute phase, C1, in the
figure). Since there are no warps to schedule, the core re-
mains idle until the data for at least one of the warps arrives,
which initiates the second compute phase, C2, in the figure.
We define the stall time between the two compute phases as
MemoryBlockCycles. Figure 3 (A’) shows the effect of RR
scheduling on the DRAM system. The RR policy exploits
both row buffer locality (RBL) and bank-level parallelism
(BLP) in DRAM because: i) as consecutive warps W1-W4
(W5-W8) access consecutive cache blocks, their requests D1-
D4 (D5-D8) access the same row in Bank 1 (Bank 2), thereby
exploiting RBL, ii) warp sets W1-W4 andW5-W8 access dif-
ferent banks and generate their requests roughly at the same
time, thereby exploiting BLP.

3.1.2 Round-robin (RR) warp scheduling and inter-
warp prefetching

Figures 3 (B) and (B’) show the execution timeline and
DRAM state when an inter-warp prefetcher is incorporated
on top of the baseline RR scheduler. The goal of the inter-
warp prefetcher is to reduce MemoryBlockCycles. When a
warp generates a memory request, the inter-warp prefetcher
generates a prefetch request for the next warp (in this ex-
ample, for the next sequential cache block). The prefetched
data is placed in a core’s private L1 data cache, which can
serve the other warps. For example, the issuing of demand
request D1 (to cache block X) by W1 triggers a prefetch re-
quest P1 (to cache block X+1) which will be needed by W2.
Figure 3 (B) shows that, although the prefetch requests are

accurate, adding prefetching on top of RR scheduling does
not improve performance (i.e., reduce MemoryBlockCycles).
This is because the next-consecutive warps get scheduled
soon after the prefetch requests are issued and generate de-
mand requests for the same cache blocks requested by the
prefetcher, long before the prefetch requests are complete
(e.g., W2 generates a demand request to block X+1 right
after W1 generates a prefetch request for the same block).
Hence, this example illustrates that RR scheduling cannot
effectively take advantage of simple inter-warp prefetching.

3.1.3 Two-level (TL) warp scheduling

Figure 3 (C) shows the execution timeline of the eight
warps using the recently-proposed two-level round-robin
scheduler [34], which was described in Section 1. The TL
scheduler forms smaller fetch groups out of the concurrently
executing warps launched on a core and prioritizes warps
from a single fetch group until they reach long-latency op-
erations. The eight warps in this example are divided into
two fetch groups, each containing 4 warps. The TL sched-
uler first executes warps in group 1 (W1-W4) until these
warps generate their memory requests D1-D4 and stall. Af-
ter that, the TL scheduler switches to executing warps in
group 2 (W5-W8) until these warps generate their memory
requests D5-D8 and stall. This policy thus overlaps some
of the latency of memory requests D1-D4 with computation
done in the second fetch group, thereby reducing Memo-
ryBlockCycles and improving performance compared to the
RR policy, as shown via Saved cycles in Figure 3 (C). Fig-
ure 3 (C’) shows the effect of TL scheduling on the DRAM
system. The TL policy exploits row buffer locality but it
does not fully exploit bank-level parallelism because there
are times when a bank remains idle without requests because
not all warps generate memory requests at roughly the same
time: during the first compute period of fetch group 2, bank
2 remains idle.

3.1.4 Two-level (TL) warp scheduling and intra-
fetch-group prefetching

Figures 3 (D) and (D’) show the effect of using an
intra-fetch-group prefetcher along with the TL policy. The
prefetcher used is the same inter-warp prefetcher as the
one described in Section 3.1.2, where one warp generates
a prefetch request for the next-consecutive warp in the same
fetch group. Adding this prefetching mechanism on top of
TL scheduling does not improve performance since the warp
that is being prefetched for gets scheduled immediately af-
ter the prefetch is generated. This limitation is the same as
what we observed when adding simple inter-warp prefetch-
ing over the RR policy in Section 3.1.2.

We conclude that prefetching for warps within the same
fetch group is ineffective because such warps will be sched-
uled soon after the generation of prefetches.3 Henceforth,
we assume the prefetcher employed is an inter-fetch-group
prefetcher.

3.1.5 Two-level (TL) warp scheduling and inter-
fetch-group prefetching

The idea of an inter-fetch-group prefetcher is to prefetch
data for the next (or a future) fetch group. There are two

3Note that in RR warp scheduling, although there is no fetch
group formation, all the launched warps can be considered
to be part of a single large fetch group.

4

Time

DRAM

requests

C1 C1 C2
Saved

cycles

C2

A

C1

D1
D2

D3
D4

D5
D6

D7
D8

DRAM

requests

D1
P2

D3
P4

D5
P6

D7
P8

DRAM

requests

D1
D2

D3
D4

D5
D6

D7
D8

C2

C1 C1 C2

Saved

cycles

C2

DRAM

requests

D1
P2

D3
P4

D5
P6

D7
P8

C1 C1 C2 C2

C2C1
Round-robin

(RR) Warp

Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

Inter-warp

Prefetching with

Round-robin

(RR) Warp

Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 D2 D3 D4 D5 D6 D7 D8

Fetch

Group 1

Demand

Request (D)

Warp (W)

1st Compute

Phase (C1)

2nd Compute

Phase (C2)

Fetch

Group 2

Legend

D1 P2 D3 P4 D5 P6 D7 P8

D1 D2 D3 D4 Idle for

a period

Intra-fetch-group

Prefetching with

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 P2 D3 P4 Idle for

a period

Memory
Addresses

X X
+

1

X
+

2

X
+

3

Y Y
+

1

Y
+

2

Y
+

3

A’

B B’

C C’

D D’

Time

Time

Time

C1 C1 C2

Saved

cycles

C2

DRAM

requests

D1
D2

D3
D4

P5
P6

P7
P8

C1 C1 C2
Saved

cycles

C2

DRAM

requests

D1
D3

D5
D7

P2
P4

P6
P8

C1 C1 C2
Saved

cycles

C2

DRAM

requests

D1
D3

D5
D7

D2
D4

D6
D8

C1 C1 C2
Saved

cycles

C2

DRAM

requests

D1
D2

D3
D4
UP1

UP2
UP3
UP4

D5
D6

D7
D8

Inter-fetch-group

Sophisticated

Prefetching with

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

Request (D)

Prefetch

Request (P)

D1 D2 D3 D4 P5 P6 P7 P8

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 D3 D5 D7

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 P2 D3 P4 D5 P6 D7 P8

Prefetch-aware

(PA) Warp

Scheduler

Inter-fetch-group

Simple

Prefetching with

Prefetch-aware

(PA) Warp

Scheduler

Inter-fetch-group

Simple

Prefetching with

Two-level (TL)

Warp Scheduler

W

1

W

2

W

3

W

4

W

5

W

6

W

7

W

8

Bank 1 Bank 2

D1 D2 D3 D4 UP1 UP2 UP3 UP4

Useless

Prefetch

Request

(UP)

E E’

F F’

G G’

H H’

Time

Time

Time

Time

Figure 3: An illustrative example showing the working of various scheduling and prefetching mechanisms,
motivating the need for the design of our prefetch-aware warp scheduler.

cases. First, if the prefetch requests are accurate, in which
case a sophisticated prefetching mechanism is required as the
addresses generated by the next fetch group may not have
any easy-to-predict relationship to the addresses generated
by the previous one, they can potentially improve perfor-
mance because the prefetches would be launched long before
they are needed. However, if the prefetches are inaccurate,
which could be the case with a simple prefetcher, such an
inter-fetch group prefetcher will issue useless prefetches.
Figures 3 (E) and (E’) depict the latter case: they show

the effect of using a simple inter-fetch-group prefetcher along
with the TL policy. Since the simple prefetcher cannot accu-
rately predict the addresses to be accessed by fetch group 2
(Y, Y+1, Y+2, Y+3) when observing the accesses made by
fetch group 1 (X, X+1, X+2, X+3), it ends up issuing use-
less prefetches (UP1-UP4). This not only wastes valuable
memory bandwidth and cache space, but may also degrade
performance (although the example in the figure shows no
performance loss).

Figures 3 (F) and (F’) depict the former case: they show

5

the effect of using a sophisticated inter-fetch-group prefetcher
along with the TL policy. Since the sophisticated prefetcher
can accurately predict the addresses to be accessed by fetch
group 2 (Y, Y+1, Y+2, Y+3) when observing the ac-
cesses made by fetch group 1 (X, X+1, X+2, X+3), it
improves performance compared to the TL scheduler with-
out prefetching. Unfortunately, as explained in Section 1,
designing such a sophisticated prefetcher is fundamentally
more difficult than designing a simple (e.g., next-line [12]
or streaming [20]) prefetcher because non-consecutive warps
(in different fetch groups) do not exhibit high spatial lo-
cality among each other [17, 34]. In fact, the sets of ad-
dresses required by two non-consecutive warps may have no
predictable relationship with each other, potentially making
such sophisticated prefetching practically impossible.
In the next two sections, we illustrate the working of

our prefetch-aware warp scheduling policy which enables the
benefits of a sophisticated prefetcher without requiring the
implementation of one.

3.2 Orchestrating Warp Scheduling and Data
Prefetching

3.2.1 Prefetch-aware (PA) warp scheduling

Figures 3 (G) and (G’) show the execution timeline, group
formation, and DRAM state of the eight warps using our
proposed prefetch-aware (PA) scheduler. The PA policy
is based on the TL scheduler (shown in Figures 3 (C and
C’)), with a key difference in the way the fetch groups are
formed: the PA policy groups non-consecutive warps in the
same group. Figure 3 (G’) shows that warps W1, W3, W5,
W7 are in fetch group 1 and warps W2, W4, W6, W8 are
in fetch group 2. Similar to the TL policy, since a group is
prioritized until it stalls, this policy enables the overlap of
memory access latency in one fetch group with computation
in another, thereby improving performance over the base-
line RR policy. Different from the TL policy, the PA policy
exploits bank-level parallelism but may not fully exploit row
buffer locality. This is because non-consecutive warps, which
do not have spatial locality, generate their memory requests
roughly at the same time, and exactly because these requests
do not have spatial locality, they are likely to access differ-
ent banks. In this example, D1 and D3, which access the
same row in Bank 1, are issued concurrently with D5 and
D7, which access Bank 2, enabling both banks to be busy
with requests most of the time when there are outstanding
requests. However, D2 and D4, which access the same row
D1 and D3 access, are issued much later, which can degrade
row buffer locality if the row is closed since the time D1 and
D3 accessed it. A detailed description of the PA scheduler
will be provided in Section 4.1.

3.2.2 Prefetch-aware (PA) warp scheduling and
inter-fetch-group prefetching

Figures 3 (H) and (H’) show the execution timeline
and DRAM state of the eight warps using our proposed
prefetch-aware (PA) scheduler along with a simple inter-
fetch-group prefetcher. The simple prefetcher is a simple
next-line prefetcher, as assumed in earlier sections. Adding
this prefetching mechanism on top of PA scheduling im-
proves performance compared to TL scheduling, and in fact
achieves the same performance as TL scheduling combined
with a sophisticated, and likely difficult-to-design prefetcher,

since the warp that is being prefetched for gets scheduled
long after the warp that prefetches for it. Concretely, con-
secutive warps (e.g., W1 and W2) that have high spatial
locality are located in different fetch groups. When the
preceding warp (W1) generates its prefetch (P2 to address
X+1), the succeeding warp (W2) does not get scheduled
immediately afterwards but after the previous fetch group
completes. As a result, there is some time distance between
when the prefetch is generated and when it is needed, leading
to the prefetch covering the memory access latency partially
or fully, resulting in a reduction in MemoryBlockCycles and
execution time. Figure 3 (H’) also shows that using the PA
policy in conjunction with a simple prefetcher fully exploits
both row buffer locality and bank-level parallelism.

Conclusion: Based on this illustration, we conclude
that the prefetch-aware warp scheduling policy can enable
a simple prefetcher to provide significant performance im-
provements by ensuring that consecutive warps, which are
likely to accurately prefetch for each other with a simple
prefetcher, are placed in different fetch groups. In the next
section, we delve into the design of the prefetch-aware warp
scheduling policy and a simple prefetcher that can take ad-
vantage of this policy.

4. MECHANISM AND IMPLEMENTA-

TION
We describe the mechanism and implementation of the

prefetch-aware warp scheduler (Section 4.1), describe a sim-
ple spatial locality detector based prefetcher that can take
advantage of it (Section 4.2), and provide a hardware over-
head evaluation of both techniques (Section 4.3).

4.1 Prefetch-Aware Scheduling Mechanism
As we discussed earlier, the PA scheduler is based on the

TL scheduler, but its primary difference is in the way the
fetch groups are formed. The main goal of the fetch group
formation algorithm is to ensure consecutive warps are not
in the same group such that they can effectively prefetch for
each other by executing far apart in time. A second goal of
this algorithm is to improve memory bank-level parallelism
by enabling non-consecutive warps, which do not have good
spatial locality, to generate their memory requests roughly
at the same time and spread them across DRAM banks.
However, to enable the better exploitation of row buffer lo-
cality within a group, the algorithm we develop can assign
some number of consecutive warps into the same group. Al-
gorithm 1 depicts how group formation is performed in our
experiments. We briefly describe its operation using an ex-
ample.

Group formation depends on the number of warps avail-
able on the core (n warps), and the number of warps in a
fetch group (g size). The number of fetch groups is equal to
n warps

g size
. To understand how fetch groups are formed, con-

sider 32 as the maximum number of warps launched on a
core, and the group size to be 8 warps. In this case, 4 fetch
groups (n grp) are formed. Warps are enumerated from 0
to 31, and fetch groups are enumerated from 0 to 3. W0
(warp 0) is always assigned to G0 (group 0). The 8th (as
group size is equal to 8) warp (W8) is also assigned to G0.
Similarly, W16 and W24 are assigned to G0, in a modular
fashion until we reach W31. Since G0 has only 4 warps, 4
more warps need to be assigned to G0. The modular assign-

6

ment procedure continues with the first unassigned warp,
which is W1 in this case, and places it in G0 along with W9,
W17 and W25. Note that, in this example, two consecutive
warps belong to the same fetch group, e.g., G0 contains both
W0 and W1. The number of consecutive warps in a fetch
group, n cons warps, is equal to ⌊ g size

n grp
⌋. Having placed

8 warps in G0, in order to form G1, the algorithm starts
from W2. In a similar manner, first, W2, W10, W18 and
W26, and then, W3, W11, W19 and W27 are assigned to
G1. The group assignment policy exemplified above can be
formulated by g num[i] = ⌊ i mod g size

n cons warps
⌋, where g num[i]

denotes the group number of warp i. If there are no consec-
utive warps in the same group, the above formula simplifies
to g num[i] = i mod g size. Algorithm 1 more formally de-
picts how our evaluated PA scheduler forms fetch groups.4

Note that, in our evaluations, we used a fetch group size of
8.5 The number of warps on the cores depends on the ap-
plication and the programming model, and is limited by the
core resources.

Algorithm 1 Fetch group formation in the PA scheduler
⊲ warp and fetch group numbers start from 0

⊲ n warp is the number of concurrently-executing warps on a core
⊲ g size is the number of warps in a fetch group

⊲ n warp is assumed to be divisible by g size

⊲ n grp is the number of fetch groups
⊲ n cons warps is the number of consecutive warps in a group.

Its minimum value 1.
⊲ g num[i] is the fetch group number of warp i

procedure Form Groups(n warp, g size)
n grp← n warp

g size

n cons warps← ⌊ g size
n grp

⌋

for i = 0→ n warp− 1 do

g num[i]← ⌊ i mod g size
n cons warps

⌋

end for

return g num

end procedure

4.2 Spatial Locality Detection Based
Prefetching

We develop a simple prefetching algorithm that tries to
prefetch for consecutive warps (which belong to different
fetch groups in the PA scheduler). The key idea of the algo-
rithm is to first detect the regions of memory that are fre-
quently accessed (i.e., hot regions), and based on this infor-
mation predict the addresses that are likely to be requested
soon.
Spatial locality detection: In order to detect the

frequently-accessed memory regions, we use a spatial locality
detector (SLD) similar to the one used in [18]. This tech-
nique involves the tracking of cache misses that are mapped
to the same macro-block, which is defined as a group of
consecutive cache blocks. In our evaluations, the size of
a macro-block is 512 bytes (i.e., 4 cache blocks). SLD main-
tains a fixed number of macro-block entries in a per-core
SLD table (which is organized as a fully-associative 64-entry
table in our evaluations). After a main memory request is
generated, its macro-block address is searched in the SLD

4Note that the group formation we used in Figure 3 is for
illustrative purposes only and does not strictly follow this
algorithm.
5Past works [17, 34] that developed scheduling algorithms
that form groups showed that a group size of 8 provides the
best performance on experimental setups similar to ours.

table. The SLD table entry records, using a bit vector,
which cache blocks in the macro-block have already been
requested. If no matching entry is found, the least-recently-
used entry is replaced, a new entry is created, and the cor-
responding bit in the bit vector is set. If a matching entry is
found, simply the corresponding bit in the bit vector is set.
The number of bits that are set in the bit vector indicate
the number of unique cache misses to the macro-block.

Prefetching mechanism: The key idea is to issue
prefetch requests for the cache lines in the hot macro-block
that have not yet been demanded. Our prefetching mecha-
nism considers a macro-block hot if at least C cache blocks
in the macro-block were requested. We set C to 2 in our
experiments. For example, if the macro-block size is 4 cache
blocks and C is 2, as soon as the number of misses to the
macro-block in the SLD table reaches 2, the prefetcher is-
sues prefetch requests for the remaining two cache blocks
belonging to that macro-block. Note that this SLD based
prefetcher is relatively conservative, as it has a prefetch de-
gree of 2 and a low prefetch distance, because it is opti-
mized to maximize accuracy and minimize memory band-
width wastage in a large number of applications running on
a GPGPU where memory bandwidth is at premium.

Analysis: We analyze the effect of warp scheduling, the
TL and PA schedulers in particular, on macro-block access
patterns. Figure 4 shows the distribution of main mem-
ory requests, averaged across all fetch groups, that are to
macro-blocks that have experienced, respectively, 1, 2, and
3-4 cache misses. Figure 4 (a) shows this distribution av-
eraged across all applications, (b) shows it on PVC, and (c)
shows it on BFSR. These two applications are chosen as they
show representative access patterns – PVC exhibits high spa-
tial locality, BFSR does not. Several observations are in order.
First, with the TL scheduler, on average across all applica-
tions, 36% of memory requests of a fetch group access all
cache blocks of a particular macro-block. This means that
36% of the requests from a fetch group have good spatial
locality. This confirms the claim that the warps in a fetch
group have good spatial locality when the TL scheduler is
used. However, this percentage goes down to 17% in the
PA scheduler. This is intuitive because the PA scheduler
favors non-consecutive warps to be in the same fetch group.
This results in a reduction in spatial locality between mem-
ory requests of a fetch group, but on the flip side, spatial
locality can be regained by issuing prefetch requests (as ex-
plained in Section 3.2.2) to the unrequested cache blocks in
the macro-block. Second, 38% of the memory requests from
a fetch group access only one cache block of a particular
macro-block with the TL scheduler. In BFSR, the percentage
of such requests goes up to 85%. If an application has a high
percentage of such requests, macro-block prefetching is not
useful, because these request patterns do not exhibit high
spatial locality.

4.3 Hardware Overhead
We evaluate the hardware overhead of the PA scheduler

and the spatial locality based prefetcher. We implemented
the two mechanisms in RTL using Verilog HDL and synthe-
sized them using the Synopsys Design Compiler on 65nm
TSMC libraries [43].

Scheduling: Lindholm et al. [30] suggest that the
warp scheduler used in NVIDIA GPUs has zero-cycle over-
head, and warps can be scheduled according to their pre-

7

0%

20%

40%

60%

80%

100%

Two-level Prefetch-aware

P
e
rc

e
n
ta

g
e
 o

f
 R

e
q
u
e
s
ts

1 miss 2 misses 3-4 misses

0%

20%

40%

60%

80%

100%

Two-level Prefetch-aware

P
e
rc

e
n
ta

g
e
 o

f
R

e
q
u
e
s
ts

1 miss 2 misses 3-4 misses

0%

20%

40%

60%

80%

100%

Two-level Prefetch-aware

P
e
rc

e
n
ta

g
e
 o

f
R

e
q
u
e
s
ts

1 miss 2 misses 3-4 misses

(a) Average across all applications (b) PVC (MapReduce) (c) BFSR (Rodinia)

Figure 4: The distribution of main memory requests, averaged across all fetch groups, that are to macro-blocks
that have experienced, respectively, 1, 2, and 3-4 unique cache misses. Section 5 describes our methodology
and workloads.

Table 1: Simulated baseline GPGPU configuration
Core Configuration 1300MHz, SIMT width = 8
Resources / Core Max. 1024 threads (32 warps, 32 threads/warp), 32KB shared memory, 32684 registers
Caches / Core 32KB 8-way L1 data cache, 8KB 4-way texture cache, 8KB 4-way constant cache, 128B cache block size
L2 Cache 16-way 128 KB/memory channel, 128B cache block size
Default Warp Scheduling Round-robin warp scheduling (among ready warps)
Advanced Warp Scheduling Two-level warp scheduling [34] (fetch group size = 8 warps)
Features Memory coalescing and inter-warp merging enabled,

immediate post dominator based branch divergence handling
Interconnect 1 crossbar/direction (30 cores, 8 MCs), concentration = 3, 650MHz
Memory Model 8 GDDR3 Memory Controllers (MC), FR-FCFS scheduling (64 max. requests/MC),

8 DRAM-banks/MC, 2KB row size, 1107 MHz memory clock
GDDR3 Timing [10] tCL = 10, tRP = 10, tRC = 35, tRAS = 25, tRCD = 12, tRRD = 8, tCDLR = 6, tWR = 11

determined priorities. Since the difference between PA and
TL schedulers is primarily in the fetch group formation ap-
proach, the hardware overhead of our proposal is similar to
that of the TL scheduler. The implementation of the PA
scheduler requires assignment of appropriate scheduling pri-
orities (discussed in Section 4.1) to all warps on a core. We
synthesized the RTL design of the PA scheduler and found
that it occupies 814 µm2 on each core.
Prefetching: We implement the spatial locality detec-

tion based prefetcher as described in Section 4.2. We model
a 64-entry SLD table and 4 cache blocks per macro-block.
This design requires 0.041 mm2 area per core. Note that
the prefetcher is not on the critical path of execution.
Overall Hardware Overhead: For a 30-core system,

the required hardware occupies 1.25 mm2 chip area. This
overhead, calculated using a 65nm design, corresponds to
0.27% of the area of the Nvidia GTX 285, which is also
a 30-core system, yet is implemented in a smaller, 55nm
process technology.

5. EVALUATION METHODOLOGY
We evaluate our schemes using an extensively modified

GPGPU-Sim 2.1.2b [2], a cycle-accurate GPGPU simula-
tor. Table 1 provides the details of the simulated platform.
We study 10 CUDA applications derived from representa-
tive application suites (shown in Table 2), where thread-level
parallelism is not enough to hide long memory access laten-
cies. We run these applications until they complete their
execution or reach 1B instructions, whichever comes first.
In addition to using instructions per cycle (IPC) as the

primary performance metric for evaluation, we also con-
sider auxiliary metrics such as bank-level parallelism (BLP)
and row buffer locality (RBL). BLP is defined as the aver-
age number of memory banks that are accessed when there
is at least one outstanding memory request at any of the

banks [22,23,32,33]. Improving BLP enables better utiliza-
tion of DRAM bandwidth. RBL is defined as the average
hit-rate of the row buffer across all memory banks [23]. Im-
proving RBL increases the memory service rate and also en-
ables better DRAM bandwidth utilization. We also measure
the L1 data cache miss rates when prefetching is employed.
Accurate and timely prefetches can lead to a reduction in
miss rates.

Table 2: Evaluated GPGPU applications
Suite Application Abbr.

1 MapReduce [14,17] SimilarityScore SSC
2 MapReduce [14,17] PageViewCount PVC
3 Rodinia [5] Kmeans Clustering KMN
4 Parboil [42] Sparse Matrix Multiplication SPMV
5 Rodinia [5] Breadth First Search BFSR
6 Parboil [42] Fast Fourier Transform FFT
7 CUDA SDK [36] Scalar Product SCP
8 CUDA SDK [36] Blackscholes BLK
9 CUDA SDK [36] Fast Walsh Transform FWT
10 Third Party JPEG Decoding JPEG

6. EXPERIMENTAL RESULTS
Figure 5 shows the IPC improvement of five different

combinations of warp scheduling and prefetching normal-
ized to the baseline RR scheduler: 1) RR scheduler with
data prefetching, 2) TL scheduler, 3) TL scheduler with spa-
tial locality detection based prefetching, 4) PA scheduler, 5)
PA scheduler with prefetching. Overall, without prefetch-
ing, the PA scheduler provides 20% average IPC improve-
ment over the RR scheduler and 4% over the TL scheduler.
When prefetching is employed, the PA scheduler provides
25% improvement over the RR scheduler and 7% over the
TL scheduler, leading to performance within 1.74× of a per-
fect L1 cache. The rest of this section analyzes the different

8

1
.0

1 1
.1

6 1
.1

9
1
.2

0
1
.2

6

0.5

1

1.5

2

2.5

3

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L

K

F
W

T

J
P

E
G

G
M

E
A

N

N
o
rm

a
liz

e
d
 I
P

C

RR+Prefetching TL TL+Prefetching Prefetch-aware (PA) PA+Prefetching

Figure 5: IPC performance impact of different scheduling and prefetching strategies. Results are normalized
to the IPC with the RR scheduler.

0%

20%

40%

60%

80%

100%

RR+Prefetching TL+Prefetching PA+Prefetching

P
re

fe
tc

h
 A

c
c
u

ra
c
y

0%

20%

40%

60%

80%

100%

RR+Prefetching TL+Prefetching PA+Prefetching

F
ra

c
ti
o

n
 o

f
L

a
te

P

re
fe

tc
h

e
s

0%

5%

10%

15%

20%

RR+Prefetching TL+Prefetching PA+Prefetching

R
e
d
u
c
ti
o
n
 i
n
 L

1
D

 M
is

s

R
a
te

(a) Prefetch accuracy (b) Fraction of late prefetches (c) Normalized miss rate improvement

Figure 6: (a) Prefetch accuracy, (b) Fraction of late prefetches, and (c) Reduction in L1 data cache miss rate
when prefetching is implemented with each scheduler. The results are averaged across all applications.

combinations of scheduling and prefetching.
Effect of prefetching with the RR scheduler: On av-

erage, adding our SLD-based prefetcher over the RR sched-
uler provides only 1% IPC improvement over the RR sched-
uler without prefetching. The primary reason is that the
prefetcher cannot lead to timely transfer of data as described
in Section 3.1.2. Figure 6 shows that even though 85% of the
issued prefetches are accurate with the RR scheduler, 89%
of these accurate prefetches are late (i.e., are needed before
they are complete), and as a result the prefetcher leads to
an L1 data cache miss reduction of only 2%.
Effect of the TL scheduler: As discussed in Sec-

tion 3.1.3, the TL scheduler improves latency tolerance by
overlapping memory stall times of some fetch groups with
computation in other fetch groups. This leads to a 16% IPC
improvement over the RR scheduler due to better core uti-
lization. One of the primary limitations of TL scheduling
is its inability to maximize DRAM bank-level parallelism
(BLP). Figure 7 shows the impact of various scheduling
strategies on BLP. The TL scheduler leads to an average
8% loss in BLP over the RR scheduler. In FFT, this percent-
age goes up to 25%, leading to a 15% performance loss over
the RR scheduler.
Effect of prefetching with the TL scheduler: Fig-

ure 8 shows the L1 data cache miss rates when prefetching is
incorporated on top of the TL scheduler. Using the spatial
locality detection based prefetcher decreases the L1 miss rate
by 4% over the TL scheduler without prefetching. In KMN and
JPEG, this reduction is 15% and 2%, respectively. This L1
miss rate reduction leads to a 3% performance improvement
over the TL scheduler. Note that the performance improve-
ment provided by prefetching on top of the TL scheduler is

0

5

10

15

20

25

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L
K

F
W

T

J
P

E
G

A
V

GB
a
n
k
 L

e
v
e
l
P

a
ra

ll
e
li
s
m

RR TL PA

Figure 7: Effect of various scheduling strategies on
DRAM bank-level parallelism (BLP)

relatively low because the issued prefetches are most of the
time too late, as described in Section 3.1.4. However, the
performance improvement of prefetching on top of the TL
scheduler is still higher than that on top of the RR scheduler
because the prefetcher we use is not too simple (e.g., not as
simple as a next-line prefetcher) and its combination with
the TL scheduler enables some inter-fetch-group prefetching
to happen. Figure 6 shows that 89% of the issued prefetches
are accurate with the TL scheduler. 85% of these accurate
prefetches are still late, and as a result the prefetcher leads
to an L1 data cache miss reduction of only 4%.

Effect of the PA scheduler: As described in Sec-
tion 3.2.1, the PA scheduler is likely to provide high bank-
level parallelism at the expense of row buffer locality because
it concurrently executes non-consecutive warps, which are
likely to access different memory banks, in the same fetch
group. Figures 7 and 9 confirm this hypothesis: on average,
the PA scheduler improves BLP by 18% over the TL sched-

9

0.4

0.6

0.8

1

1.2

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L

K

F
W

T

J
P

E
G

G
M

E
A

N

N
o
rm

a
li
z
e
d

L
1
D

 M
is

s
 R

a
te

TL+Prefetching PA+Prefetching

Figure 8: Effect of various scheduling and prefetch-
ing strategies on L1D miss rate. Results are nor-
malized to miss rates with the TL scheduler.

uler while it degrades RBL by 24%. The PA scheduler is
expected to work well in applications where the loss in row
locality is less important for performance than the gain in
bank parallelism. For example, the PA scheduler provides
a 31% increase in IPC (see Figure 5) over the TL scheduler
in FFT due to a 57% increase in BLP, even though there is
a 44% decrease in row locality compared to the TL sched-
uler. On the contrary, in PVC, there is 4% reduction in IPC
compared to TL scheduler due to a 31% reduction in row-
locality, even though there is a 62% increase in BLP. This
shows that both row locality and bank-level parallelism are
important for GPGPU applications, which is in line with
the observations made in [15] and [17]. On average, the
PA scheduler provides 20% IPC improvement over the RR
scheduler and 4% improvement over the TL scheduler.
Effect of prefetching with the PA scheduler: The

use of prefetching together with the proposed PA scheduler
provides two complementary benefits: (1) the PA scheduler
enables prefetching to become more effective by ensuring
that consecutive warps that can effectively prefetch for each
other get scheduled far apart in time from each other, (2)
prefetching restores the row buffer locality loss due to the use
of the PA scheduler. We evaluate both sources of benefits
in Figures 8 and 9, respectively: (1) the use of prefetching
together with the PA scheduler reduces the L1 miss rate by
10% compared to the TL scheduler with prefetching, (2) the
addition of prefetching over the PA scheduler improves RBL
such that the RBL of the resulting system is within 16% of
the RBL of the TL scheduler with prefetching. Figure 6
shows that the PA scheduler significantly improves prefetch
timeliness compared to the TL and RR schedulers while also
slightly increasing prefetch accuracy: with the PA scheduler,
90% of the prefetches are accurate, of which only 69% are
late (as opposed to the 85% late prefetch fraction with the
TL prefetcher). Overall, our orchestrated spatial prefetching
and prefetch-aware scheduling mechanism improves perfor-
mance by 25% over the RR scheduler with prefetching and
by 7% over the TL scheduler with prefetching (as seen in
Figure 5). We conclude that the new prefetch-aware warp
scheduler effectively enables latency tolerance benefits from
a simple spatial prefetcher.
Case analyses of workload behavior: In KMN,

prefetching with the PA scheduler provides 10% IPC im-
provement over prefetching with the TL scheduler on ac-
count of a 31% decrease in L1 miss rate and 6% increase
in row locality over the PA scheduler. Note that in KMN,
prefetching on top of the PA scheduler leads to the restora-

tion of 100% of the row-locality lost by the PA scheduler
over the TL scheduler. In SPMV, the use of prefetching im-
proves row buffer locality by 2× over the TL scheduler. This
enhancement, along with a 9% increase in BLP over the
TL scheduler leads to 3% higher IPC over TL+Prefetching.
In BFSR, we do not observe any significant change in per-
formance with our proposal because of the high number of
unrelated memory requests that do not have significant spa-
tial locality: in this application, many macro-blocks have
only one cache block accessed, as was shown in Figure 4 (c).
In FFT, adding prefetching on top of the PA scheduler pro-
vides 3% additional performance benefit. Yet, as described
earlier, FFT benefits most from the improved BLP provided
by the PA scheduler. In FFT, the combination of prefetch-
ing and PA scheduling actually increases the L1 miss rate
by 1% compared to the combination of prefetching and TL
scheduling (due to higher cache pollution), yet the former
combination has 3% higher performance than the latter as
it has much higher bank-level parallelism. This shows that
improving memory bank-level parallelism, and thereby re-
ducing the cost of each cache miss by increasing the overlap
between misses can actually be more important than reduc-
ing the L1 cache miss rate, as was also observed previously
for CPU workloads [38].
Analysis of cache pollution due to prefetching: One
of the drawbacks of prefetching is the potential increase
in cache pollution, which triggers early evictions of cache
blocks that are going to be needed later. To measure cache
pollution, we calculated the Evicted Block Reference Rate
(EBRR) using Equation 1. This metric indicates the frac-
tion of read misses that are to cache blocks that were in the
cache but were evicted due to a conflict.

EBRR =
#read misses to already evicted cache blocks

#read misses
(1)

Figure 10 shows that prefetching causes a 26% increase in
EBRR when a 32KB L1 data cache (as in our evaluations) is
used. When cache size is increased to 64KB, the increase in
EBRR goes down to 10%. This is intuitive as a large cache
will have fewer conflict misses. One can thus reduce pollu-
tion by increasing the size of L1 caches (or by incorporat-
ing prefetch buffers), but that would lead to reduced hard-
ware resources dedicated for computation, thereby hamper-
ing thread-level parallelism and the ability of the architec-
ture to hide memory latency via thread-level parallelism.
Cache pollution/contention can also be reduced via more in-
telligent warp scheduling techniques, as was shown in prior
work [17, 40]. We leave the development of warp schedul-
ing mechanisms that can reduce pollution in the presence of
prefetching as a part of future work.

7. RELATED WORK
To our knowledge, this is the first paper that shows that

the commonly-employed GPGPU warp scheduling policies
are prefetch-unaware, and hence straightforward incorpora-
tion of simple prefetching techniques do not lead to large
performance benefits. The key contribution of this paper is a
prefetch-aware warp scheduler, which not only enhances the
effectiveness of prefetching but also improves overall DRAM
bandwidth utilization. We briefly describe and compare to
the closely related works.

Scheduling techniques in GPUs: The two-level warp

10

0

2

4

6

8

10

12

S
S

C

P
V

C

K
M

N

S
P

M
V

B
F

S
R

F
F

T

S
C

P

B
L
K

F
W

T

J
P

E
G

A
V

G

R
o
w

 B
u
ff

e
r

L
o
c
a
li
ty

TL TL+Prefetching PA PA+Prefetching

Figure 9: Effect of different scheduling and prefetching strategies on
DRAM row buffer locality

0

0.1

0.2

0.3

0.4

0.5

0.6

16KB 32KB 64KB

E
B

R
R

L1D Cache Size

PA PA+Prefetching

Figure 10: Effect of prefetch-
ing on Evicted Block Reference
Rate (EBRR) for various L1 data
cache sizes

scheduler proposed by Narasiman et al. [34] splits the con-
currently executing warps into groups to improve mem-
ory latency tolerance. We have already provided extensive
qualitative and quantitative comparisons of our proposal to
the two-level scheduler. Rogers et al. [40] propose cache-
conscious wavefront scheduling to improve the performance
of cache-sensitive GPGPU applications. Gebhart et al. [11]
propose a two-level warp scheduling technique that aims to
reduce energy consumption in GPUs. Kayiran et al. [21]
propose a CTA scheduling mechanism that dynamically es-
timates the amount of thread-level parallelism to improve
GPGPU performance by reducing cache and DRAM con-
tention. Jog et al. [17] propose OWL, a series of CTA-aware
scheduling techniques to reduce cache contention and im-
prove DRAM performance for bandwidth-limited GPGPU
applications. None of these works consider the effects of
warp scheduling on data prefetching. Our work examines
the interaction of scheduling and prefetching, and develops
a new technique to orchestrate these two methods of latency
tolerance.
Data prefetching: Lee et al. [29] propose a many-thread

aware prefetching strategy in the context of GPGPUs. Our
prefetch-aware warp scheduling technique can be synergisti-
cally combined with this prefetcher for better performance.
Jog et al. [17] propose a memory-side prefetching technique
that improves L2 cache hit rates in GPGPU applications.
Our work describes how a spatial locality detection mech-
anism can be used to perform core-side data prefetching.
Lee et al. [28] evaluate the benefits and limitations of both
software and hardware prefetching mechanisms for emerg-
ing high-end processor systems. Many other prefetching and
prefetch control mechanisms (e.g., [6,9,19,35,41]) have been
proposed within the context of CPU systems. Our prefetch-
aware scheduler is complementary to these techniques. We
also provide a specific core-side prefetching mechanism for
GPGPUs that is based on spatial locality detection [18].
Row buffer locality and bank-level parallelism:

Several memory request scheduling techniques for improving
bank-level parallelism and row buffer locality [1, 22, 23, 25–
27,31,33,39,45] have been proposed. In particular, the work
by Hassan et al. [13] quantifies the trade-off between BLP
and row locality for multi-core systems, and concludes that
bank-level parallelism is more important. Our results show
that the prefetch-aware warp scheduler, which favors bank-
level parallelism, provides higher average performance than

the two-level scheduler [34], which favors row buffer locality
(but this effect could be due to the characteristics of appli-
cations we evaluate). On the other hand, Jeong et al. [15]
observe that both bank-level parallelism and row buffer lo-
cality are important in multi-core systems. We also find that
improving row locality at the expense of bank parallelism
improves performance in some applications yet reduces per-
formance in others, as evidenced by the two-level scheduler
outperforming the prefetch-aware scheduler in some bench-
marks and vice versa in others. Lakshminarayana et al. [25]
propose a DRAM scheduling policy that essentially chooses
between Shortest Job First and FR-FCFS [39, 46] schedul-
ing policies at run-time, based on the number of requests
from each thread and their potential of generating a row
buffer hit. Yuan et al. [45] propose an arbitration mecha-
nism in the interconnection network to restore the lost row
buffer locality caused by the interleaving of requests in the
network when an in-order DRAM request scheduler is used.
Ausavarungnirun et al. [1] propose a staged memory sched-
uler that batches memory requests going to the same row to
improve row locality while also employing a simple in-order
request scheduler at the DRAM banks. Lee et al. [26, 27]
explore the effects of prefetching on row buffer locality and
bank-level parallelism in a CPU system, and develop mem-
ory request scheduling [26, 27] and memory buffer manage-
ment [27] techniques to improve both RBL and BLP in the
presence of prefetching. Mutlu and Moscibroda [31, 33] de-
velop mechanisms that preserve and improve bank-level par-
allelism of threads in the presence of inter-thread interfer-
ence in a multi-core system. None of these works propose
a warp scheduling technique that exploits bank-level paral-
lelism, which our work does. We explore the interplay be-
tween row locality and bank parallelism in GPGPUs, espe-
cially in the presence of prefetching, and aim to achieve high
levels of both by intelligently orchestrating warp scheduling
and prefetching.

8. CONCLUSION
This paper shows that state-of-the-art thread schedul-

ing techniques in GPGPUs cannot effectively integrate data
prefetching. The main reason is that consecutive thread
warps, which are likely to generate accurate prefetches for
each other as they have good spatial locality, are scheduled
closeby in time with each other. This gives the prefetcher
little time to hide the memory access latency before the ad-

11

dress prefetched by one warp is requested by another warp.
To orchestrate thread scheduling and prefetching deci-

sions, this paper introduces a prefetch-aware (PA) warp
scheduling technique. The main idea is to form groups of
thread warps such that those that have good spatial local-
ity are in separate groups. Since warps in different thread
groups are scheduled at separate times, not immediately af-
ter each other, this scheduling policy enables the prefetcher
to have more time to hide the memory latency. This schedul-
ing policy also better exploits memory bank-level paral-
lelism, even when employed without prefetching, as threads
in the same group are more likely to spread their memory
requests across memory banks.
Experimental evaluations show that the proposed

prefetch-aware warp scheduling policy improves perfor-
mance compared to two state-of-the-art scheduling policies,
when employed with or without a hardware prefetcher that
is based on spatial locality detection. We conclude that or-
chestrating thread scheduling and data prefetching decisions
in a GPGPU architecture via prefetch-aware warp schedul-
ing can provide a promising way to improve memory latency
tolerance in GPGPU architectures.

Acknowledgments

We thank the anonymous reviewers, Nachiappan Chi-
dambaram Nachiappan, and Bikash Sharma for their feed-
back on earlier drafts of this paper. This research is
supported in part by NSF grants #1213052, #1152479,
#1147388, #1139023, #1017882, #0963839, #0811687,
#0953246, and grants from Intel, Microsoft and Nvidia.
Onur Mutlu is partially supported by an Intel Early Career
Faculty Award.

References
[1] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H.

Loh, and O. Mutlu. Staged Memory Scheduling: Achieving
High Prformance and Scalability in Heterogeneous Systems. In
ISCA, 2012.

[2] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt.
Analyzing CUDA Workloads Using a Detailed GPU Simulator.
In ISPASS, 2009.

[3] M. M. Baskaran, J. Ramanujam, and P. Sadayappan.
Automatic C-to-CUDA Code Generation for Affine Programs.
In CC/ETAPS 2010.

[4] M. Bauer, H. Cook, and B. Khailany. CudaDMA: Optimizing
GPU Memory Bandwidth via Warp Specialization. In SC, 2011.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee,
and K. Skadron. Rodinia: A Benchmark Suite for
Heterogeneous Computing. In IISWC, 2009.

[6] D. Chiou, S. Devadas, J. Jacobs, P. Jain, V. Lee, E. Peserico,
P. Portante, L. Rudolph, G. E. Suh, and D. Willenson.
Scheduler-Based Prefetching for Multilevel Memories. Technical
Report Memo 444, MIT, July 2001.

[7] J. Doweck. Inside Intel Core Microarchitecture and Smart
Memory Access. Technical report, Intel Corporation, 2006.

[8] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated
Control of Multiple Prefetchers in Multi-core Systems. In
MICRO, 2009.

[9] E. Ebrahimi, O. Mutlu, and Y. N. Patt. Techniques for
Bandwidth-efficient Prefetching of Linked Data Structures in
Hybrid Prefetching Systems. In HPCA, 2009.

[10] W. W. L. Fung, I. Singh, A. Brownsword, and T. M. Aamodt.
Hardware Transactional Memory for GPU Architectures. In
MICRO, 2011.

[11] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J.
Dally, E. Lindholm, and K. Skadron. Energy-efficient
Mechanisms for Managing Thread Context in Throughput
Processors. In ISCA, 2011.

[12] J. D. Gindele. Buffer Block Prefetching Method. IBM
Technical Disclosure Bulletin, 20(2), July 1977.

[13] S. Hassan, D. Choudhary, M. Rasquinha, and S. Yalamanchili.
Regulating Locality vs. Parallelism Tradeoffs in Multiple
Memory Controller Environments. In PACT, 2011.

[14] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang.
Mars: A MapReduce Framework on Graphics Processors. In
PACT, 2008.

[15] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and
M. Erez. Balancing DRAM Locality and Parallelism in Shared
Memory CMP Systems . In HPCA, 2012.

[16] W. Jia, K. A. Shaw, and M. Martonosi. Characterizing and
Improving the Use of Demand-fetched Caches in GPUs. In ICS,
2012.

[17] A. Jog, O. Kayiran, N. C. Nachiappan, A. K. Mishra, M. T.
Kandemir, O. Mutlu, R. Iyer, and C. R. Das. OWL:
Cooperative Thread Array Aware Scheduling Techniques for
Improving GPGPU Performance. In ASPLOS, 2013.

[18] T. L. Johnson, M. C. Merten, and W. W. Hwu. Run-Time
Spatial Locality Detection and Optimization. In MICRO, 1997.

[19] D. Joseph and D. Grunwald. Prefetching Using Markov
Predictors. In ISCA, 1997.

[20] N. P. Jouppi. Improving Direct-Mapped Cache Performance by
the Addition of a Small Fully-Associative Cache and Prefetch
Buffers. In ISCA, 1990.

[21] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither
More Nor Less: Optimizing Thread-Level Parallelism for
GPGPUs. In CSE Penn State Tech Report,
TR-CSE-2012-006, 2012.

[22] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A
Scalable and High-performance Scheduling Algorithm for
Multiple Memory Controllers. In HPCA, 2010.

[23] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter.
Thread Cluster Memory Scheduling: Exploiting Differences in
Memory Access Behavior. In MICRO, 2010.

[24] D. Kirk and W. W. Hwu. Programming Massively Parallel
Processors. Morgan Kaufmann, 2010.

[25] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. DRAM
Scheduling Policy for GPGPU Architectures Based on a
Potential Function. Computer Architecture Letters, 2012.

[26] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt.
Prefetch-Aware DRAM Controllers. In MICRO, 2008.

[27] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving
Memory Bank-level Parallelism in the Presence of Prefetching.
In MICRO, 2009.

[28] J. Lee, H. Kim, and R. Vuduc. When Prefetching Works, When
It Doesn’t, and Why. In TACO, 2012.

[29] J. Lee, N. Lakshminarayana, H. Kim, and R. Vuduc.
Many-Thread Aware Prefetching Mechanisms for GPGPU
Applications. In MICRO, 2010.

[30] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym.
NVIDIA Tesla: A Unified Graphics and Computing
Architecture. Micro, IEEE, 28(2), 2008.

[31] T. Moscibroda and O. Mutlu. Distributed Order Scheduling
and Its Application to Multi-core Dram Controllers. In PODC,
2008.

[32] O. Mutlu and T. Moscibroda. Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors. In MICRO, 2007.

[33] O. Mutlu and T. Moscibroda. Parallelism-Aware Batch
Scheduling: Enhancing Both Performance and Fairness of
Shared DRAM Systems. In ISCA, 2008.

[34] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov,
O. Mutlu, and Y. N. Patt. Improving GPU Performance via
Large Warps and Two-level Warp Scheduling. In MICRO, 2011.

[35] K. Nesbit and J. Smith. Data Cache Prefetching Using a Global
History Buffer. In HPCA, 2004.

[36] NVIDIA. CUDA C/C++ SDK Code Samples, 2011.
[37] NVIDIA. Fermi: NVIDIA’s Next Generation CUDA Compute

Architecture, Nov. 2011.
[38] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A Case

for MLP-Aware Cache Replacement. ISCA, 2006.
[39] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.

Owens. Memory Access Scheduling. In ISCA, 2000.
[40] T. G. Rogers, M. O’Connor, and T. M. Aamodt.

Cache-Conscious Wavefront Scheduling. In MICRO, 2012.
[41] S. Srinath, O. Mutlu, H. Kim, and Y. Patt. Feedback Directed

Prefetching: Improving the Performance and
Bandwidth-Efficiency of Hardware Prefetchers. In HPCA, 2007.

[42] J. A. Stratton et al. Scheduler-Based Prefetching for Multilevel
Memories. Technical Report IMPACT-12-01, University of
Illinois, at Urbana-Champaign, March 2012.

[43] Synopsys Inc. Design Compiler.
[44] J. M. Tendler, J. S. Dodson, J. S. Fields, H. Le, and

B. Sinharoy. POWER4 System Microarchitecture. IBM J. Res.
Dev., Jan. 2002.

[45] G. Yuan, A. Bakhoda, and T. Aamodt. Complexity Effective
Memory Access Scheduling for Many-core Accelerator
Architectures. In MICRO, 2009.

[46] W. K. Zuravleff and T. Robinson. Controller for a Synchronous
DRAM that Maximizes Throughput by Allowing Memory
Requests and Commands to be Issued Out of Order. (U.S.
Patent Number 5,630,096), Sept. 1997.

12

