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Buffer Management Techniques for Video Servers 
 
1.Introduction 
 
Design of video servers is a challenging task which requires careful attention to various number of 
issues. Some of the most important of these issues are disk bandwidth management, disk 
array management (storage space management), and buffer space management. The choices of the 
policies chosen for each of these will significantly affect the performance of the video server, 
where performance can be measured as the number of clients serviced by the video server without 
violating a significant amount of deadlines. In this project we focus on "buffer space management"  
for video servers and design an eff icient buffer space management algorithm that adjusts to 
dynamic changes in the load on the system.  
 
2. Buffer Space Management Problem 
 
In a video server, typically finite amount of memory is used as a buffer for the disk array. The 
available buffer space can be used for several purposes. The three most important main purposes of 
the buffer are the following: 
 
1. Buffering of data retrieved in round i and to be sent to clients in round i+1 (Demand requests) 
2. Buffering of data that is prefetched (Prefetch requests) 
3. Buffering of data that is cached (Cached data) 
 
In this document, we will refer to these three types of data that are to be stored in the buffer as 
Demand requests, Prefetch requests, and Cached data, respectively. 
 
As suggested by the above classification of data, the buffer space management scheme in a video 
server must be aware of the existence of these different data types and optimize the use buffer 
space based on the inherent difference between these three different types. We now discuss the 
characteristics of these different data types. Later we will discuss different methods of allocating 
buffer space to each of these request types. 
 
3. Characteristics of Different Request Types 
 
3.1. Demand Requests 
 
In this project, we have simulated a video file system, which employs round-based scheduling on a 
server-push architecture. Hence, the client requests are always serviced directly from the buffer in a 
given round. 
In round i the server fetches the data needed by all clients in round i+1. This data is buffered in the 
buffer space once it is fetched. In round i+1, the space allocated for this data is claimed back after 
the requests are sent to the clients. Hence, the video server needs to keep the demand data in the 
buffer space for at most 2 rounds (Note that this is the worst-case assumption for the duration of 
time demand data stays in the buffer. Most demand data will stay in the buffer for the duration of 1 
round on average). 
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In some basic level, the demand requests are the same as prefetch requests. The server-push 
architecture prefetches the data needed by the client one round before it is needed. Hence, the 
server-push architecture exploits the sequentiality present in the video stream by prefetching. 
However, we would like to make a distinction between "demand" requests and "prefetch" requests. 
 
A "demand" request is not a prefetch in the sense that it must be satisfied one round before it is 
needed by the client given that the video server would like to service all client requests from the 
memory (buffer). If the video server did not have the requirement of servicing all client requests  
from the buffer, then a demand request would be no different from a prefetch request. 
 
The reason we would like to distinguish a demand request from a prefetch request is to be able to 
make intelli gent decisions in allocation and deallocation of buffer space for these two requests. 
Demand requests are in some sense higher-priority requests compared to the prefetch requests.  
They have to be serviced immediately because the deadline of the demand request is the end of the 
round. 
 
3.2. Prefetch Requests 
 
These requests are ones that are created by the video server by exploiting the sequentiality of the 
video streams. The video server knows the exact access pattern of every client once the client 
issues its first request. Hence, in an ideal world, the video server can fetch from the disk array  
into the buffer all the data required by the client in the first round and service the client from the 
buffer for the rest of the video stream the client is accessing. 
 
We can see that the prefetching scheme a video server employs depends heavily on the size of the 
available memory buffer. If there is a big enough buffer, it is useful to generate prefetch requests. 
Generating prefetch requests for every disk would uniformly reduce the load balance across the 
disks in later rounds. The load balance of the disks will i ncrease in the round when the prefetch 
requests are inserted into the scheduler. However, this increase is not very crucial because 
we would hope that those requests are inserted intelli gently such that they do not delay any demand 
requests. We will describe such a scheme later in this report. 
 
3.3. Cached Data 
 
Caching is another method that exploits sequential nature of video access to save disk bandwidth. 
Due to the streaming nature of video accesses, traditional caching schemes that exploit temporal 
locality are not useful to employ in multimedia servers. Different caching mechanisms, such as 
ones that exploit the fact that a video file is accessed by multiple clients are more desirable. 
 
One of the most effective methods for caching video frames is interval caching [1]. In interval 
caching, the interval between two temporally spaced clients is stored in the cache. Such a 
mechanism requires the following: 
 
1. Detection of two clients accessing the same file back to back 
2. Decision on which intervals to cache 
3. Decision on which intervals to replace when a new interval is formed 
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Decision of which intervals to cache and which intervals to replace will have very significant 
effects on the disk bandwidth saved and number of clients serviced.  
 
3.4. Bandwidth Savings of Different Buffer Data Types (Buffering Schemes) 
 
We can immediately see that interval caching of video data is very powerful because it saves disk 
bandwidth. On the other hand, demand requests or prefetch requests do not really save disk 
bandwidth. They just shift the load on the disks that would be observed in a later round to previous  
rounds. This is a very important difference between caching and prefetching that needs to be 
considered during buffer space allocation for these different types of requests. 
 
3.5. Disk Utilization of Different Buffering Schemes 
 
Based on the described characteristics of the different buffered data types, we can see that demand 
requests and prefetch requests increase the disk utili zation in the video server. Especially 
prefetching increases the utili zation of the disks by inserting prefetch requests during the times 
disk is free of demand requests. On the other hand, we note that interval caching actually decreases 
the disk utili zation by preventing many of the demand requests from going to the disk. The main 
benefit of interval caching comes from savings of disk bandwidth. Hence, we conclude that 
disk utili zation is not a very good measure of the performance of the video server especially when 
there are many temporally spaced clients accessing the same data files. 
 
4. Partitioning of the Buffer Space 
 
An important policy decision to be made in buffer space management is the decision of how to 
divide the buffer into different data types. The amount of space allocated to each request type can 
affect the performance (number of clients supported without violating a specified percentage of 
deadlines) of the video server significantly. Hence, this policy decision should be made very 
carefully. 
 
This decision of how to allocate buffer space among different request types bears many similarities 
to the allocation of disk space to different data types when designing an integrated file system [2]. 
Especially the differences between static and dynamic partitioning of the buffer space are 
analogous to the differences between a logically integrated file system and a physically integrated 
file system in the design of integrated file systems [2]. 
 
 
 
4.1. Static Partitioning 
 
One simple policy for allocation is statically partitioning the buffer space among the three different 
data types. The server can be configured during initialization with d% of the buffer space allocated 
to demand requests, p% allocated to prefetch requests, and c% of it allocated to cached data. In any 
round, if the insertion of a block of type demand causes the percentage of demands in the buffer 
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exceed d% then that request will not be inserted into the buffer and hence simply dropped (even 
though rest of the buffer (p% + c%) may have free space). 
 
Hence the disadvantage of the static buffer partitioning policy. This policy is not flexible and it 
results in higher frequency of deadline violations especially for variable bit rate video streams. In 
variable bit rate video streams, the size of data accessed in one round is not fixed. It varies from 
round to round. Hence, the size of demand data that needs to be accessed in a given round may 
exceed the amount of buffer space statically allocated to demand data. If this happens, deadlines 
will be violated. 
 
The second disadvantage of static buffer partitioning is that it results in low utili zation of the buffer 
space. Consider the case in which the demand requests do not fill up the portion of the buffer space 
allocated to demand requests. In that round, the unfill ed portion of that portion of buffer space 
will not be used at all . Prefetch requests or cache requests cannot claim and use that portion of the 
buffer, because the buffer space is strictly partitioned. Hence the low utili zation of buffer space.  
 
In some sense, low utili zation of buffer space implies low utili zation of the disk array. If buffer 
space is available for prefetch requests, then the scheduler will schedule more prefetches to the disk 
array and will keep the disk array busy. By statically partitioning the buffer space, the design 
will lim it t he buffer space available for prefetching and hence lower the disk utili zation (This 
discussion assumes that the round time is enough to issue more prefetches). 
 
4.2. Dynamic Partitioning 
 
The discussion of static partitioning makes it clear that we would like to dynamically partition the 
buffer to maximize buffer utili zation and minimize the number of deadlines missed. By using 
dynamic partitioning we can employ a greedy prefetching algorithm (bound by the service time of 
disks and round duration) which prefetches into the buffer until the buffer space is fully utili zed. Of 
course, this is not the best algorithm to use for prefetching, although it maximizes the utili zation of 
buffer space. Hence, we see that buffer space utili zation also may not be the best performance 
metric of a video server. 
 
The advantage of dynamic partitioning of the buffer space is that it maximizes the buffer space 
utili zation and results in a high disk utili zation if aggressive prefetching is employed.  
 
One disadvantage of dynamic partitioning is the complexity involved in managing the buffer space. 
Decisions of what to allocate and what to deallocate will become more complicated in a 
dynamically-partitioned buffer. Policy decisions need to be made about what type of data and 
which data block needs to be deallocated upon the fetch of another data block.  
 
In our project, we have implemented dynamic partitioning of buffer space. We will discuss the 
policy decisions we made in the later parts of this paper. 
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5. Description of the Simulation Environment 
 
We have implemented our buffer management mechanism in a video server disk array simulator 
called DiskSim that is built on top of the event-driven simulation infrastructure csim. DiskSim 
models an integrated file system, which stores text files and continuous media files. Some clients 
send requests for text files and some send requests for continuous media files. The integrated file 
system modeled is a variant of Symphony [2]. 
 
DiskSim supports many of f ile system parameters to be specified. These parameters include the 
number of disks in the array, RAID level, top-level scheduling policy, disk scheduling policy, disk 
placement policy, base disk block size, continuous media block size, striping width, round time, 
number of video files on the array, number of text files on the disk array, number of clients 
accessing the file system, number of text clients accessing the file system, parity group size, etc. 
 
We will briefly describe the important features of the simulation environment, which will help 
understand our implementation of buffer management mechanism on top of the DiskSim model. 
 
5.1. Scheduling Mechanisms in DiskSim 
 
DiskSim implements the Cello Disk Scheduling algorithm [3] used by Symphony integrated file 
system [2]. The scheduler is divided into two layers: class-specific schedulers and a class-
independent scheduler. The class independent scheduler determines when and how many requests 
from each application should be inserted into the scheduled queue (Scheduled queue is a First 
Come First Serve queue which sends the requests to the disk array). Class-independent 
scheduler also notifies the class independent schedulers as to where in the scheduled queue they 
should insert their requests. The class-independent scheduler performs these functions by allocating 
weights to each class of application. This scheduler is work-conserving in the sense that if a class 
used up all of its allocation and still has requests pending, it will i nsert those requests one by one 
into the scheduled queue if no other class has pending requests [3]. 
 
The class-specific schedulers determine the position to insert requests of the application class they 
are supporting. This position is determined for each request. There are three class-specific 
schedulers: one that schedules real-time requests, one that schedules interactive best effort requests, 
and one that schedules throughput-intensive best effort requests. These schedulers take advantage 
of the properties of their application class. For example, real-time requests can be delayed until 
their deadlines. Hence, they have some slack in scheduling. However, interactive requests require 
good response time from the server. Therefore, interactive requests are inserted into the scheduled 
queue before any other request class as long as real-time requests' deadlines are met. After insertion 
into the scheduled queue, each class of requests is serviced in SCAN order from the disk. 
 
 
5.2. Layout of Files in DiskSim 
 
The number of f iles on the disk array is a parameter to the DiskSim simulator. Disksim takes in a 
trace of a file and randomly selects a disk in the disk array to start placing the file. In our 
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simulations, placement is done in fixed size blocks. To simulate multiple files, DiskSim places the 
same file starting from different disks. Starting positions of each placement is selected randomly. 
When a client accesses a file, it starts the access from a random position in the file and continuous 
to access until the whole file is complete. Once the whole file is complete, it starts reading the file 
from the beginning again.  
 
We modified this feature of DiskSim to support reading of multiple trace files into the disks. Most 
of our simulations were conducted with 10 trace files fed into the simulator.  
 
6. Design of Our Buffer Management Algorithm 
 
Current version of DiskSim does not include a buffer management scheme. Infinite amount of 
buffering is assumed in the disk array. Besides, no prefetching or caching algorithm is implemented 
in DiskSim. We have implemented a buffer management algorithm that models finite amount of 
buffering that is dynamically allocated between prefetch and demand requests. We have also 
implemented an intelli gent prefetching scheme that reduces the load across all disks in the disk 
array. The key features of our algorithm are: 
 
1. Dynamic partitioning of the buffer space between demand and prefetch requests. 
2. A priority mechanism used for deciding what to allocate in and what to deallocate from the  
buffer. 
3. A prefetching mechanism that tries to distribute the load evenly among all disks. 
4. A simple optional caching mechanism. 
 
Here we describe the specifics of our buffer management algorithm. 
 
6.1. Buffer Space 
 
The buffer space in our algorithm is global to all disks. There is finite amount of buffer, which 
contains space that is a multiple of the basic disk block size. This buffer is used both for demand 
requests and prefetch requests. The buffer is not statically partitioned among the different types of 
requests. At any given time there might be any combination of demand and prefetch requests in the 
buffer. Due to the variable bitrate nature of the video streams simulated, the buffer space devoted to 
client demand (server-push) requests will vary from round to round. The remaining space will be 
allocated for any prefetch request that is issued in the same round. 
 
6.2. Prefetching Scheme and Scheduling of Prefetch Requests 
 
The prefetching scheme we have implemented can prefetch ahead for n rounds for all clients, where 
n is a parameter that is supplied to the simulator. Prefetch requests are inserted into a queue 
separate from the queue that contains client demand requests. During the scheduling of requests on 
the disk array, client requests are given priority over prefetch requests. Hence the scheduler never 
schedules a prefetch request if the already inserted client requests use up the whole round time. If 
the client requests do not use up the whole round time, the scheduler inserts prefetch requests into 
the scheduled queue such that the total time to service all requests does not exceed the round 
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duration. The demand requests and prefetch requests are then each serviced by the disk in SCAN 
order. 
 
The generation of prefetches is done on a client basis. The video server knows which disk blocks 
each client will access in the next couple of rounds. Hence, it issues prefetch requests for those 
blocks for each client in the current round. In our current implementation, the video server tries to 
predict the most heavily loaded disk in the next round and starts to issue prefetches for that disk 
first. Hence, the prefetches issued would alleviate the load in the most heavily loaded disk in the 
next round. We can also order the disks based on the probabilit y of a disk being the most heavily 
loaded one in the next round. Then we can issue the prefetches in this order, the ones that are going 
to a disk that has a higher probabilit y of being the most heavily loaded first, and the ones that are 
going to a disk that has a low probabilit y of being the most heavily loaded last. 
 
The prediction of the load on a disk is currently done on a history based mechanism. The server 
keeps track of the most heavily loaded disks in every round. It calculates which disk will be most 
heavily loaded based on the access patterns of the clients and placement of data on the disks (the 
server knows exactly which frames will be accessed by the clients in round x and the location of 
those frames in the disk array). Hence, the server tries to schedule prefetch requests to the predicted 
most heavily loaded disk first.    
 
6.3. Dynamic Allocation/Deallocation of Buffer Space 
 
We use a priority-based mechanism to decide what to allocate/deallocate in the buffer space. 
Demand requests have higher priority than prefetch requests. The buffer allocates and deallocates 
on the granularity of disk block size. It keeps a list of unallocated (free) blocks. This li st contains 
all buffer blocks in the beginning. When a client demand request is fetched from the disk, the 
buffer manager checks the free list to find free blocks to allocate for the client request. If free 
blocks are found they will be removed from the free list and client’s demand data will be allocated 
in the corresponding addresses in the buffer. If no free blocks are found or if the client’s data does 
not fit the found free blocks, the buffer manager checks the prefetch list, which contains the buffer 
blocks that contain data that is prefetched. This li st is maintained in the order of prefetch request 
generation. The buffer manager frees enough of the blocks from the tail prefetch list (most recently 
inserted prefetches will be replaced with the anticipation that they will be the ones used latest in the 
future) and allocates these blocks for the incoming client demand request. Hence, prefetches are 
replaced in favor of demand requests so that deadlines will be less likely to be violated. If both the 
prefetch list and free list are empty on a demand fetch, the fetched block for the client is discarded. 
 
Upon the fetch of a prefetched block from the disk, the buffer manager first checks if there are 
blocks in the free list. If blocks exist in the free list the prefetched data is placed in those blocks and 
those blocks are moved from the free list into the prefetch list. If there are no blocks available in the 
free list then the prefetched block is simply discarded. A prefetch request cannot deallocate a 
demand request from the buffer under any conditions. 
 
As can be seen from this description, our mechanism is very flexible in dynamic allocation of 
requests and tries to maximize buffer space utili zation and minimize deadline violations. 
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Figure 1. High Level Organization of the Video Server and Lists Used by Buffer Manager 
 
 
6.4. Simple Interval Caching 
Our buffer management scheme also employs a simple interval caching algorithm by allowing 
some demand requests not to be deallocated once their deadline has passed. Normally, once we 
service a demand request from the buffer, we free the blocks corresponding to that request. 
Alternatively, if we want to form links between two temporally spaced clients we can extend the 
deallocation time of the blocks fetched by the first client until the round they are read by the 
following client. Hence the interval caching algorithm will save disk bandwidth. Cached data has 
lower priority than demand requests in this scheme. However it has equal priority with prefetch 
requests. Hence, if a demand block is fetched and there is no free buffer space available either a 
cached block or a prefetched block is deallocated in the buffer to make space for the demand 
request. The choice of which block will be deallocated depends on which one of the block types is 
fetched latest in the future. 
 
6.5. Putting It All Together 
Figure 1 shows the high-level organization of the video server with a focus on buffer management. 
The scheduler on the right is a general logical scheduler that determines whether to send requests to 
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disks or to the buffer. Therefore it has connections to both the disk array controller and the buffer 
manager. If a request hits in the buffer, the scheduler will not schedule that request to the disk. 
As mentioned before, the buffer manager is in charge of managing the three lists: free list, prefetch 
list, and the demand list. It is also in charge of communicating with the scheduler about what is 
contained in the buffer.  
 
There are simple main rules used by the scheduler as to whether or not to generate/schedule a 
prefetch request: 
 
1. If there are still client requests to be serviced, the scheduler will not schedule any prefetch 
request. 
2. If there is no buffer space left, the scheduler will not schedule a prefetch request. 
3. If the completion time of a prefetch request will exceed the round duration the scheduler will not 
schedule a prefetch request. 
4. If none of the above conditions are true, the prefetch request can be scheduled. 
 
The buffer space manager also uses simple rules to decide what to allocate/deallocate: 
 
1. If the incoming data block is prefetched, never deallocate a block that is fetched by a client 
request (demand). Insert the prefetch into the buffer only if there are free blocks. The deadline of 
the prefetch is determined by the scheduler. Prefetch can stay in the buffer up to n rounds. 
2. If the incoming data block is a demand request allocate a free block. If a free block does not exist 
in the buffer find the youngest prefetched block and deallocate it. 
 
The server also uses a simple metric to determine what to prefetch: 
1. It keeps a history of most heavily loaded disks over rounds.  
2. Based on that history, it sorts the disks in order of predicted heavy load for the next round (This 
prediction is not always accurate). 
3. It starts issuing prefetch requests for those disks that are predicted to be heavily-loaded in the 
next round.  
 
7. Implementation of Our Buffer Space Manager in DiskSim 
 The implementation of our buffer space management algorithm follows closely what we 
have described in the previous section. We allocate a buffer structure, which contains n number of 
basic disc blocks where n is the size of buffer as supplied by the user of the simulator. This struture 
has three lists associated with it: free list, prefetch list, and demand list. Free list points to the 
unused blocks in the buffer. Prefetch list points to the blocks that are allocated for prefetched 
blocks. Demand list points to blocks that are allocated for server-push demand requests.  
 We implement the priority-based allocation/deallocation mechanism by tagging each block 
in the buffer as prefetch or demand request. The blocks that are tagged as demand requests are 
deallocated at the end of each round when their deadlines have passed. The blocks that are tagged 
as prefetch requests are deallocated when a demand request needs a free block and no free block is 
available. A prefetched block that is later used by a client is promoted to demand status and 
deallocated at the end of the round. Our server employs a simple kind of interval caching algorithm 
by supporting the demand requests to stay in the buffer space for n rounds where n is input by 
simulator user. 
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 Prefetching is supported by the addition of a new prefetch queue. When the server-push 
requests for a client is generated for the periodic queue, prefetch requests are also generated for the 
prefetch queue. These requests are then inserted to the scheduled queue, which services the requests 
in SCAN order for each class (demand vs. prefetch). As mentioned before demand (server-push) 
requests have higher priority than prefetch requests. Hence, prefetches are not inserted into the 
scheduled queue if a demand request is outstanding. Once all demand requests are inserted into the 
scheduled queue, scheduler inserts prefetch requests in SCAN order and makes sure that the 
deadline of no demand request will be violated by inserting the new prefetch into the scheduled 
queue. 
 The following diagram shows the scheduler queues used to control demand and prefetch 
requests. The periodic demand queue and prefetch request queue are each kept in SCAN order. 
Demand requests are first inserted into the scheduled queue and prefetches are inserted when no 
requests are ready in the periodic queue. 
 
 
 

 
 

Figure 2. Scheduling of Prefetch and Demand Requests 
 
 
8. Simulation Parameters Used in Experiments  
 
Although DiskSim models an integrated file system, we did not experiment with text clients in this 
assignment. Our goal was to maximize the number of video clients supported by a video server. 
Hence, we did not place any text files in the disk array. Nor did we simulate the access of text 
clients. Therefore, the best effort queue was never used in our experiments. Besides, we did not 
experiment with aperiodic real-time requests. All real-time requests seen by our server were 
periodic.  
 
Here is a li sting of parameters we used to conduct our experiments. Some of the parameters are 
varied in experiments. We will t alk about how those are varied in the evaluation section. 
 
Number of disks in the disk array: Variable in experiments 
RAID level: 0 
Top level scheduling policy: PLOOKEDF 
Disk Scheduling policy: FCFS 
Disk Placement Policy: Round robin 
Base block size: 4 KB 
Use fixed block size: Yes 
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Continuous media block size: Variable in experiments 
Stripe across all disks: Yes 
Use default disk (Seagate Elite 3): Yes 
Round duration: Variable in experiments (default is 1000 ms) 
Data rate: 30 frames per second 
Number of continuous media files on disk: 10 
Number of text files on disk: 0 
Size of text files on disk: 0 
Assume all clients arrive at time = 0: Yes 
Number of video clients: Variable in experiments 
Number of text clients: 0 
Use server push for all continuous media clients: Yes 
Simulation length: Variable number of rounds 
Starting round for collecting statistics: 1 
Partition disk bandwidth: No 
Prefetch for the next n rounds n = 1. 
Deallocate prefetches after n rounds n = 4. 
 
We do not use failure recovery mechanisms in our simulations. We assume a fault-free 
environment. 
 
We have performed extensive experiments to evaluate the effectiveness of our buffer management 
scheme. We will now talk about these experiments and comment on the effectiveness of our 
mechanism. 
 
9. Evaluation of Our Mechanism and Answers to the Questions 
 
9.1. Evaluation Mechanism 
 
In this section we describe the evaluation of our implementation of buffer management scheme in 
DiskSim. The evaluation of our scheme is tied closely with the project questions given in the 
project handout. While answering each question we will show that our buffer management scheme 
provides more flexibilit y and increases the performance of the video server under certain 
conditions. 
 
9.2. Answers to Project Questions 
 
9.2.1. Question 1 
“ For a given a server configuration (i.e., number of disks, amount of buffer space, and 
characteristics of client requested files), how will you select a round duration? “  
 
Selection of Round Duration 
 
The selection of round duration depends on many parameters of the server. Most important of these 
are: 
1. Number of disks in the server (This affects how the load is distributed on disks). 
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2. Amount of buffer space available in the server 
3. If the server employs prefetching or caching 
 
Given a server configuration, to determine the optimal round duration, we need to find the round 
duration that supports maximum number of clients without violating more than 0.1% of the 
deadlines. Hence, we need to plot the graph of “Round duration vs. Maximum number of clients 
supported” for a given server configuration. The maximum point in this graph will correspond to 
the optimal round duration we would like to select. 
 
Graph 1 shows one such graph for a given server configuration. The configuration corresponding to 
Graph 1 is depicted in Table 1. 
 
Number of disks 20 
Amount of buffer space available 2700 blocks (10.8 MB) 
Buffer allocation policy Dynamic partitioning 
Number of f iles on server 10 
Data rate of f iles 30 frames per second 
Type of f iles 8 variable bit rate, 2 constant bit rate 
Disk block size 4 KB 
Continuous media block size (stripe unit size) 16 KB 
Number of simulation rounds  500 
 

Table 1: Server and simulation configuration used for data shown in Graph 1. 
 
Interpretation of Graph 1 
 
Graph 1 shows several important characteristics of our scheme. It also shows how the optimal 
round time changes based on server configuration. The line marked “2700 blocks, no prefetch” 
shows a server which does not employ our prefetching algorithm. It has a buffer space of 2700 
blocks (10.8 MB). All of the space is available for client requests (i.e. buffer space is not 
partitioned). For this configuration, we see that the optimal round duration is around 750 ms. The 
shape of the curve is quite interesting in the sense that it portrays the limitations of the server in 
extreme cases. If the round duration is very low (100 ms), the server is round-duration-limited. This 
means that buffer space is not a bottleneck. However, the short round duration is a bottleneck 
because it does not permit the addition of more clients. If we add more clients to the system, the 
service time will start to go up and frames will start to get dropped, because the server does not 
have enough time in a round to service all client requests. On the other hand, when the round 
duration is too high, buffer space becomes a bottleneck and frames will get dropped because they 
will not fit in the buffer. We can clearly start seeing this effect for round durations greater than 
1000 ms. 
 
The second configuration, which is marked “1000 blocks, no prefetch” shows a server 
configuration that also does not employ prefetching but has a buffer size of 1000 blocks (4 MB). 
All other parameters of the server are the same as the previous one. There are two observations we 
can make based on this configuration: 
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Graph 1: Round duration vs. Number of supported clients for a given server configuration 
 
 
1. We can see that small buffer size seriously limits the number of clients that can be serviced. The 
maximum number of clients that can be supported using a 2700-block buffer is around 80, whereas 
the maximum number of clients that can be supported using a 1000 block buffer is around 50. 
 
2. We can also see that buffer size can have a significant impact on the optimal round duration. 
Optimal round duration for a server with 2700-block buffer is 750 ms, whereas optimal round 
duration for a server with 1000-block buffer is 200 ms.   
 
The third configuration employs our prefetching algorithm as described in Section 6. In rounds 
where client requests do not consume the whole round duration, prefetch requests are sent to the 
disk array to utili ze the round duration better and possibly reduce the load on the disks in the next 
few rounds (if enough buffer space to hold the prefetched data exists). Note that dues to the 
variable bit-rate nature of the media stored in disks, client requests require variable amount of data 
in any given round. We exploit this characteristic of the video data and round-based scheduling in 
our prefetching algorithm. 
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Third configuration shows that our prefetching algorithm is especially effective in small round 
durations. This makes sense because in short round durations, the buffer space devoted to client 
requests will be quite small . Hence, whenever prefetch requests have time to be inserted, they will 
always be allocated in the buffer. Besides, our prefetching scheme also acts li ke a caching scheme 
in the sense that we do not deallocate prefetches from the buffer unless a client request requires 
space in the buffer. Due to these effects, prefetching increases the maximum number of supported 
clients for small round durations. In larger round durations, this effect is not visible, because the 
server becomes buffer-limited and prefetch requests are not issued, because almost all of the buffer 
space is devoted to client requests. 
 
Hence, the conclusions we draw from this graph are: 
 
1. Our prefetching scheme works effectively. 
2. Our modeling of the buffer management works reasonably (As the buffer size changes, the 
maximum number of clients we can support also changes). 
3. Optimal round duration for a server depends on whether or not prefetching is employed on the 
server. It also depends on the buffer space available. 
 
9.2.2. Question 2 
 
“How does the total buffer size required increases with the round duration? How does the number 
of clients supported by the server increase with the round duration? What is the average utili zation 
of the buffer space (i.e., what is the average of the percentage of buffers utili zed during each round) 
with your buffer management scheme? What is the average buffer space utili zation if you had 
partitioned your available buffer space statically between the buffering and prefetching functions?”  
 
Round Duration vs. Buffer Size 
 
Graph2 shows the relationship between buffer size and round duration for several server 
configurations. Parameters of each configuration are determined so that each can support 50 clients. 
Hence, the buffer size (y axis) is the minimum buffer size that is required to be present in the server 
so that the server can support 50 clients (with frame drop probabilit y less than 0.1%). The 
configuration of the server is the same as the one given in Table 1, except for the buffer size, which 
is variable in this case. The server employs prefetching. Graph 2 depicts two configurations: 
 
1. Dynamic partitioning: The server partitions the buffer space between prefetches and client 
requests dynamically. There is no fixed or predetermined allocation for each type of request. If 
space is available, the server will prefetch aggressively. 
 
2. Static partitioning: Buffer space is statically partitioned between prefetches and client requests. 
In this experiment 20% of the buffer space is allocated for prefetches. Remaining 80% of the buffer 
space is used for client requests. 
 
Graph 2 shows a linear relationship between round duration and buffer size. As we increase the 
round duration, the buffer size required to support 50 clients increases linearly. This is expected, 
because the buffer space required should at least be able to hold data that will be fetched by 50 
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clients in one round duration. As round duration increases, the amount of data that needs to be 
fetched by the client also increases. In fact an idealized equation for the amount of buffer space 
required is: 
 
 minimum blocks in buffer = (frames / second) * (disk blocks / frame) * (rounds / second) 
 
Hence, it is reasonable to expect a linear relationship between round duration and required buffer 
size. The above equation is ideal because due to the variable bitrate encoding nature of the stored 
video data (disk blocks / frame) is variable. 
 

 
 
Graph 2. Required buffer size to support 50 clients vs. round duration of the server based on buffer 

management policy. 
 
 
Note that our prefetching algorithm will be less likely to be effective in this experiment because we 
are simulating a buffer space-limited server. Hence, we are less likely to prefetch data (or store the 
prefetched data) due to unavailabilit y of free space in the buffer. 
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Graph 2 clearly shows the advantage of dynamic partitioning over static partitioning of the buffer. 
Dynamic partitioning increases the utili zation of buffer. However, with static partitioning the buffer 
needs to be bigger to be able to service same number of clients without violating more than 0.1% of 
the deadlines. We see that the difference between static and dynamic partitioning in the required 
buffer size becomes magnified as round duration increases. This is due to the fact that bigger 
buffers are required for larger rounds (Because bigger buffers are required static partition that 
contributes to ineff iciency becomes larger in size.). 
 
Round Duration vs. Number of Clients Supported 
 
We discussed about the relationship between number of clients supported vs. round duration when 
answering Question 1. As shown in Graph 1 this relationship is a concave down function. As the 
round duration increases, the number of clients supported increases up to some point. After that 
point, buffer space becomes the bottleneck and the number of clients supported starts to decrease. 
Hence, for a given server configuration we can find a round duration that supports the maximum 
number of clients. Further explanation of the relationship between round duration and number of 
clients supported is given in the answer to the previous question. 
 
Average Buffer Utilization and the Effect of Static vs. Dynamic Partitioning 
 
Graph 3 shows the relationship between the round duration and the buffer utili zation. The size of 
the buffer in this experiment is the size required to support 50 clients. The configuration of the 
server is exactly the same as the one used for Graph 2 (prefetching server). We make several 
important observations in this graph: 
 
1. Buffer utili zation does not really depend on round duration. 
 
2. Buffer utili zation of the static partitioning scheme is much lower than the buffer utili zation of the 
dynamic partitioning scheme. This explains the difference between static and dynamic partitioning 
observed in Graph 2. 
 
3. Even for dynamic partitioning, the buffer utili zation is around 80% although the buffer size is 
selected such that it is the minimum size that can support 50 clients. This is due to the variable 
bitrate nature of the video files stored in the disk array. The required amount of buffer space varies 
every round. Hence, in many of the rounds we do not require the maximum buffer space. Therefore 
the utili zation is on the lower side. However, if the stored media files were constant bitrate, the 
utili zation of the buffer space would be much higher (perhaps 100%). 
 
We conclude that our dynamic partitioning and prefetching scheme works very well because: 
 
1. It increases the buffer utili zation compared to static partitioning. 
 
2. Compared to a non-prefetching configuration, it increases the number of clients supported by the 
video server for a given buffer size. 
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3. Compared to static partitioning it needs a smaller buffer to be able to support a given number of 
clients. 
 
 

 
 

Graph 3. Average buffer utili zation when the buffer is dynamically or statically partitioned. 
 
9.2.3. Question 3 
 
“How does increasing the number of disks in the system affect your answer to Question 2?”  
 
In this question we analyze the same issues in Question 2. We now look at how these issues change 
when we decrease/increase the number of disks in the system. 
 
 
Round Duration vs. Buffer Size 
 
As the number of disks in the system increases, the linear relationship between the minimum buffer 
size required and the round duration does not change. In fact, as we can see from Graph 4, the 
number of disks in the system does not affect the required buffer size for a given round duration. 
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This is expected because our buffer management scheme accommodates a “global” buffer which 
sits on top of the disk array. The requests coming from all disks are placed in this global buffer. It is 
not the case that each disk has its own “ local” buffer. If that were the case, then we would expect an 
increase in the buffer size requirement as we increased the number of disks in the disk array. In our 
buffer management scheme, the factor that determines the required buffer size is the amount of data 
that is required to be fetched in one round and the effectiveness of prefetching. 
 
 

 
 

Graph 4. Relationship between buffer size required vs. round duration based on number of disks 
present in the system. 

 
 
 
 
Round Duration vs. Number of Clients Supported 
 
Intuitively, the number of disks present in the system should affect the number of clients supported 
by the system. Having a larger number of disks increases the possibilit y that request load in a given 
round will be distributed among more disks and hence the load on a given disk will decrease. This 
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means the service time of each disk will i ncrease. Hence the server will be able to service more 
clients in a fixed round duration. 
 
Graphs 5 and 6 confirm this intuition. As number of disks in the system increases, the number of 
clients supported by the system increases. The configuration of the server is the same as given in 
Table 1. Graph 5 shows the simulation results for a non-prefetching server. Graph 6 shows the 
results for a server that employs our prefetching algorithm.  
 
We can see that greater number of disks results in greater number of supported clients for a given 
round duration. This is due to the distribution of load across more disks. We can also see that this 
effect diminishes for larger round durations. This is mainly due to the fact that the server becomes 
buffer-space-limited (In this case we assume a fixed buffer size of 2700 blocks). As buffer space 
becomes a bottleneck, it really does not matter how many disks are on the server because regardless 
of the number of requests that can be serviced in a round (round duration and service time are not 
bottlenecks) many requests will be dropped due to the small buffer size. 
 
Another observation from Graphs 5 and 6 is that our prefetching scheme consistently outperforms 
the non-prefetching server configuration. This is true for smaller round durations where buffer size 
is not a bottleneck. We can see that our prefetching scheme is effective especially when there is a 
small number of disks in the system. For example, for a 100 ms round duration, the number of 
clients supported by the server that employs our prefetching scheme is 36 whereas this number is 
21 for a server that does not employ any form of prefetching.  
 
Average Buffer Utilization and the Effect of Static vs. Dynamic Partitioning 
 
This interaction of this relationship with the number of disks in the system is very similar to the 
interaction of “ round duration vs. buffer size” with the number of disks in the system: A change 
number of disks does not affect the average buffer utili zation of the system. This is due to the fact 
that we are working in a buffer-space limited environment that can support 50 clients. The 
utili zation of the buffer depends on the number of requests coming from the 50 clients. It does not 
depend on the number of disks present in the system. Even if the environment is not buffer space 
limited we would not expect the average buffer utili zation to change with a change in the number 
of disks. 
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Graphs 5 and 6. Variation of the relationship between clients supported vs. round duration with a 
change in number of disks. Above figure shows a non-prefetching server. Below figure shows a 
prefetching server 
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9.2.4. Question 4 
 
“What is the minimal server configuration that you would need to design a video server that can 
service up to n clients? Provide your answer for n=32, 64, 128, 256, and 512.”  
 
To answer this question we needed to reduce the simulation design space of the video server. 
Hence we ordered the resource requirements based on a priority scheme. We assume that the round 
duration is fixed to 1000 ms. Other configuration parameters of the server is the same as described 
in Table 1 except for the ones we modify below. 
 
Our first aim was to get the minimum number of disks that can support n clients given infinite 
buffer size. After finding this minimum number we found the minimum buffer size that can support 
n clients. For n=256 and n=512 we encountered many problems with DiskSim. The maximum 
number of disks we were able to simulate using DiskSim was 39. Hence, for n=256 and 512, we 
followed a different algorithm to determine the minimum server configuration. We tried to choose 
a minimum round duration that can support 256 or 512 clients on a system that has 39 disks. The 
simulations for these configurations were quite slow hence the reported value may not be the 
minimum configuration. 
 
The following are the minimal configurations that support n clients: 
 
n = 32: 
disks = 5 
buffer size = 1380 blocks (5.5 MB) 
round duration = 1000 ms 
 
n = 64: 
disks = 10 
buffer size = 2800 blocks (11.2 MB) 
round duration = 1000 ms 
 
n = 128: 
disks = 22 
buffer size = 6000 blocks (24 MB) 
round duration = 1000 ms 
 
n = 256: 
disks = 39 
buffer size = 40000 blocks (160 MB) 
round duration = 4000 ms 
 
n = 512: 
disks = 39 
buffer size = 80000 blocks (320 MB) 
round duration = 5000 ns 
 



     

 23 

10. Addition of Caching Support to the Proposed Buffer Management Scheme 
 
As we already described our scheme supports caching to some level (and unintelli gently) by 
allowing prefetches to stay in the buffer even after they are used by a client. Clearly this is not the 
best was of caching objects and instead of this we would like to use an interval-based caching 
scheme that probably would work well due to the characteristics of client accesses. 
 
Here we describe a simple mechanism in which interval caching can be added to our buffer 
management scheme. First of all , a mechanism that detects temporally spaced accesses to the same 
file by different clients needs to be implemented. This is easy to implement. The server can keep 
track of accesses to each individual file and figure out which files are accessed by temporally-
spaced clients. One implementation decision is to decide what is the largest possible temporal-
spacing that can be handled. The server can either set a predetermined limit to this spacing (for 
example, it can say that if the spacing is greater than n frames the interval will not be cached.). Or 
this can be determined dynamically based on the buffer space allocated for the cache. 
 
A more important decision is how to allocate space for the cache. We propose several schemes: 
 
1. One simple but static scheme is to allocate a cache space separate from the buffering mechanism 
we discussed in this report. When the server is started some memory space can be allocated to the 
cache and solely used for caching purposes. This mechanism guarantees that at least some data will 
be cached at any given time and surely saves bandwidth. However, if we are memory-limited, 
statically allocating this cache space may lead to violation of deadlines of client requests because 
they may not fit in the rest of the buffer. This is a problem with all static allocation schemes and 
needs to be addressed using a more flexible dynamic approach. 
 
2. A second scheme is to extend our buffering mechanism to include cache requests. To be able to 
do this we need to determine the priority of cache requests. It might make sense to make cache 
requests higher priority than prefetch requests but lower priority than demand (client) requests. 
However, in this case we need to make sure that prefetch requests are also being issued. Hence, we 
might want to limit the buffer space occupied by cached data. But this will be going back to static 
cache partitioning in some sense, therefore we propose a better mechanism. 
 
The mechanism dynamically allocates space in the buffer between prefetch and cache requests. We 
value cache requests more because, as discussed in the beginning of this report, they save disk 
bandwidth. However, prefetch requests are also useful because they are effective in reducing the 
load on the disks.  
 
Our scheme works as follows: 
- Client requests have higher priority over all requests so they can evict a prefetch request or a 
cached block. Eviction is done based on the cost of eviction. When trying to allocate a demand 
block the server calculates the predicted cost of evicting each prefetch block or cache block. 
Prefetched blocks that are used to reduce the load on the predicted most heavily loaded disk are the 
less likely ones to be evicted. Cache blocks that have the least time to reaccess are also least likely 
to be evicted. 
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- Prefetches are inserted if round time permits for them to be inserted. Hence, they will not always 
be inserted. Taking advantage of this fact, the server will pick an n value for temporal spacing limit 
for what data to cache (as discussed above). If not many of the prefetches are getting inserted the 
server will limit t he number of buffer blocks consumed by cache requests by reducing n (meaning 
that only frames of clients that are following each other very closely in time will be cached). The 
details of this algorithm are dependent on the implementation. 
 
We have not implemented any of these schemes due to lack of time. Both schemes have advantages 
and disadvantages. The first scheme is advantageous in the sense that cached data will never be 
flushed from the buffer because it has its own space. However, due to static partitioning, buffer 
utili zation will be low and possibly some deadlines will be violated. The second scheme employs a 
more dynamic approach, increasing buffer utili zation, but it does not guarantee anything for the 
cached data. Some of the cached data may be useless due to the fact that it might be flushed before 
it is used (This reduces the “effective” buffer utili zation). Both schemes need to be implemented 
and evaluated to see if any of them is more advantageous. 
 
11. Conclusion 
 
We believe that the most important learning experience we had in this project is the realization of 
the fact that a dynamic buffer management scheme performs much better than a static buffer 
management scheme which statically allocates buffer space between prefetches and client requests. 
Due to the limitations of DiskSim and lack of documentation we were not able to perform all the 
experiments we would have liked to perform to gain a better understanding of our mechanism and 
the video servers in general, nor were we able to implement caching. We think that the number of 
clients supported by our buffer management scheme will i ncrease dramatically when caching 
support is incorporated into the scheme. 
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