

Implementation of Clocks and Sensors

Term Paper

EE 382N Distributed Systems

Dr. Garg

November 30, 2000

Submitted by:

Yousuf Ahmed
Chandresh Jain
Onur Mutlu

1

Global Predicate Detection in Distributed Systems

The detection of global predicates is one of the fundamental problems in

distributed computing. The diff iculty of the problem arises due to the fact that there is no

shared memory and no shared clock in a distributed system. Hence, no process has access

to the global state. Therefore, the truth value of a global predicate cannot be determined

by a single process. Determining the truth value of a global predicate requires the

participation of those processes which can change the value of the global predicate.

The importance of global predicate detection can be seen in several domains such

as designing, testing, and debugging of distributed programs. For example, predicate

detection is crucial for implementing breakpoints in a distributed debugger. If we want to

stop the debugger when local predicates on different processes become true, it is

necessary to detect that all the local predicates on different processes became true

concurrently. This is not an easy task given that no process has access to the global state

of the distributed system. In fact Chase and Garg have shown that global predicate

detection problem is NP-complete [2].

 In this paper, our objective is to present several algorithms used to detect global

predicates and also give the implementation details of one such algorithm. In Section 1,

we present a brief classification of predicates. Section 2 is a literature review of

"predicate detection problem". It includes several possible algorithms and approaches to

detect global predicates. Section 3 presents the implementation details of our project in

which we implemented a token-based distributed algorithm to detect generalized

conjunctive predicates.

2

1. Classification of Predicates

 Predicates can be classified with respect to locality, stabilit y, and strength. We

will define each dimension and point out its importance.

1.1 Local, Channel, and Global Predicates

 A local predicate is defined as a boolean-valued formula on a local state [5]. A

process can obviously detect the truth of its local predicates. A channel predicate is any

boolean function of the state of the channel [7]. The state of the channel is determined by

the send events and receive events on the channel. A global predicate is a boolean valued

formula that is formed by the conjunction of channel predicates and local predicates on

different processes. We will call this a generalized conjunctive predicate (GCP) from

now on in our paper.

1.1.1 Linear vs. Non-Linear Channel Predicates

 A channel predicate is linear (monotonic) if given any channel state in which the

predicate is false, either receiving more messages on the channel without sending any

message or sending more messages on the channel without receiving any message is

guaranteed to leave the predicate false. Linearity is usually a necessary condition for the

eff icient detection of channel predicates.

1.2 Stable vs. Unstable Predicates

 A stable predicate remains true once it becomes true. An unstable predicate does

not have such a property. Stable predicates can be detected by taking global snapshots of

the system periodically as described by Chandy and Lamport [1]. However, such an

approach may miss some snapshots in which an unstable predicate became true and

therefore cannot be used for detection of unstable predicates.

3

1.3 Strong vs. Weak Predicates

 A run of a distributed program generates a partial order of events, and there are

many total orders consistent with this partial order [8]. A predicate is weak if there exists

a total order of a distributed computation for which the predicate becomes true. This

definition corresponds to Cooper and Marzullo's definition of possibly φ [3]. A predicate

is strong if it becomes true for all possible orders. A strong predicate corresponds to

Cooper and Marzullo's definition of definitely φ [3].

2. Review of Literature on Predicate Detection

Several different algorithms have been proposed to detect different classes of

predicates. Although we will mention many of these algorithms in this section, we will

only focus on those that are designed to detect weak unstable GCPs.

2.1 Detecting Stable Predicates

As we have already mentioned, stable predicates can be detected by taking

periodic consistent global snapshots of the distributed system and checking whether or

not the predicate was true in that snapshot. If the predicate was true at the end of a

snapshot, then the algorithm detects the predicate as true. If it was false at the end of a

snapshot then it should have been false at the beginning of the algorithm. The problem of

detecting unstable predicates is more complicated since we cannot determine whether the

predicate became true by taking periodic snapshots.

2.2 Lattice-Based Predicate Detection

One of the first algorithms to detect unstable predicates was presented by Cooper

and Marzullo [3]. This algorithm constructs the lattice of consistent global states that

correspond with an observed execution. A weak unstable predicate will be detected true if

it is true for any global state in the lattice. A strong unstable predicate will be detected if

4

it becomes true in some global state for each path from the initial global state to the final

global state. By examining the lattice of consistent global states, we can detect whether a

predicate becomes true or not. Thus, Cooper and Marzullo's algorithm is able to detect

both strong and weak unstable predicates. However, the cost of detection might be

exponential due to the explosion of the number of global states in the lattice.

2.3 Centralized WCP Algorithm

 More eff icient algorithms to detect strong and weak unstable predicates were

proposed by Garg and Waldecker [8, 9]. We will focus on their work on weak unstable

predicates. In [8], they present a centralized algorithm to detect the weak conjunctive

predicate (WCP) of the form (l1 Λ l2 Λ...Λ ln) where li is a local predicate on process i. In

this algorithm one process is designated as a checker process. All the other processes

keep track of the truth values of their local predicates. Whenever its local predicate

becomes true for the first time between two external events, each process sends its vector

clock to the checker process. The checker process receives these vector clocks [4,11]

from each process in a separate queue in FIFO order and tries to find a consistent cut by

comparing the vector clocks that are at the head of the queues. If such a consistent cut is

found then the predicate would be detected. Otherwise, the checker process can advance

on the queue whose vector clock is smaller than any other. As shown in [8], this

algorithm requires O(n2m) comparisons among vectors where n is the number of

processes that are involved in the WCP and m is the maximum number of messages sent

or received by any process. This algorithm is optimal, because any algorithm that is based

on comparing vector clocks to determine the truth of a predicate requires at least Ω(n2m)

comparisons [8].

5

However, the algorithm proposed in [8] has several drawbacks. First, it requires a

single checker process to store queues from every other process. This may require an

unreasonable amount of space in the checker process. Second, there is no chance of

detecting the predicate if the checker process fails. Third, it does not handle the channel

predicates, which are different from local predicates as we mentioned in Section 1.1.

Hence, it is not suitable for an application that requires the detection of channel

predicates.

2.4 Token-based WCP Algorithm

 To alleviate some of the drawbacks of this algorithm, Garg and Chase [6] propose

two distributed algorithms for detecting weak conjunctive predicates. The first algorithm

is a token-based algorithm that requires a monitor process Mi associated with each

application process Pi. Each application process checks for its local predicate and sends a

message (local snapshot) to its monitor process whenever its local predicate becomes true

for the first time since the last receive or send event. The monitor process maintains a

queue of the local snapshots of its application process. The monitor process is activated

whenever it receives the token, which carries two vectors. One vector G defines the

current candidate cut that is being examined for consistency. If G[i] has the value k then

state k from process Pi is part of the candidate cut. Another vector, color, is used to

indicate the color of the candidate states from each process. If the color of a state is red,

then that state and all it s predecessors have been eliminated and cannot satisfy the WCP.

Therefore, the monitor process should receive a snapshot that happened after the state

that is colored red. If the color of a state is green then there is no state in cut G that

causally precedes that state.

 The token is sent to monitor process Mi only when color[i] = red. Upon receiving

6

the token, Mi receives a new candidate state from its application process and checks

whether it is consistent with the current cut. Mi repeats this process until it receives a

candidate that is consistent with states from all other processes that are in cut G. Then the

monitor process updates the vector clock of the token and examines the token to see

whether any other states in G violate the concurrency requirement. If there is such a state

on process j, Mi makes color[j] = red and sends the token to Pj. If there is no state that

violates the consistency of cut G then WCP is detected. This algorithm has the same

complexity in terms of number of comparisons as the centralized WCP algorithm

discussed previously, however it is decentralized in the sense that it does not require a

single checker process. Garg proposes a way to make this algorithm more parallel in [5].

However, this algorithm is still not suitable for detecting channel predicates. We now

turn our attention to algorithms that are designed to detect Generalized Conjunctive

Predicates, which include channel predicates.

2.5 Centralized GCP Algorithm

 The detection of the following predicate (termination) requires the detection of

several channel predicates: "All processes are passive and all channels are empty".

Hence, channel predicates need to be detected in order to detect several important GCPs

in distributed programs. We will survey a centralized and token-based algorithm for

detecting GCPs. These algorithms are designed for the eff icient detection of linear

channel predicates.

 The centralized GCP algorithm was proposed by Garg, Chase, Kilgore, and

Mitchell [7]. This algorithm is quite similar to the centralized WCP algorithm. It makes

use of a checker process to detect the GCP. All application processes are responsible for

7

detecting their own local predicates and keeping track of the state of their outgoing and

incoming channels. The application process sends a local snapshot message to the

checker process whenever it detects that its local predicate became true for the first time

since the last receive or send event on the process. In this message, it includes its current

vector clock just as in the centralized WCP algorithm along with some information about

the current state of its channels. Specifically it sends the list of messages it received from

(incremental receive history) and list of messages it sent (incremental send history) to

other application processes since the last time it sent a local snapshot to the checker

process, which maintains this information in separate queues dedicated for each process.

 The task of the checker process is to find a consistent cut that satisfies all the

channel predicates. Similar to the centralized WCP algorithm the checker process

advances the cut on the state that has the smallest vector clock or on the state which does

not satisfy any one of the channel predicates. Whenever the checker process finds a cut in

which all states are concurrent and all channel predicates are satisfied, the GCP is

detected. Obviously, this algorithm shares the same drawback with the centralized WCP

algorithm in that it might impose unreasonable space and time requirements on the

checker process and the whole detection process depends on one central process. Hence,

we turn our attention to a token-based GCP algorithm proposed by Mitchell and Garg

[12].

2.6 Token-based GCP Algorithm

 This algorithm is an extension of the token-based WCP algorithm that handles

channel predicates. The distributed system is divided into two domains by this algorithm:

Application Domain and Detection Domain. Application Domain consists of the

8

application processes which communicate with each other using the normal program

messages. The Detection Domain contains the monitor processes, which are paired with a

specific application process. A monitor process can send messages to other monitor

processes using a single token but not the application processes. It can receive messages

from other monitor processes and its application process. To make the algorithm less

costly the application process and monitor process can be placed on the same

uniprocessor so that the communication cost between the monitor and the corresponding

application process is minimized.

 An application process keeps track of its local predicates and records the activity

on its incoming and outgoing channels. When all of its local predicates become true, the

application process sends to its monitor process its vector clock and lists of messages it

has sent/received on its channels since the last time it sent a message to its monitor.

These messages are queued in the monitor process.

 The monitor process stays passive until it receives the token from another monitor

process in the system. When it receives the token, it starts receiving candidate states

from the queue (application process) until it gets a vector clock which is later than the

vector clock that is maintained in the token. The vector clock maintained in the token

specifies a possible cut in which desired predicates could be true. After receiving such a

candidate state from the queue, the monitor process updates its own component of the

vector clock maintained in the token and checks whether there are any states in the

current cut that violates consistency. If it finds out that the candidate state on process j is

inconsistent with then it sends the token to the monitor process j. Otherwise if the current

cut is consistent, then the monitor process checks whether all the channel predicates are

9

satisfied. It is able to do so, because it has received information on all the channels of its

application process. If all the channel predicates are true, the GCP is detected. On a high

level view the application processes are responsible for detecting their local predicates

and the monitor processes are responsible for detecting the channel predicates and finding

a consistent cut that satisfies all the predicates. We will elaborate more on the details of

the implementation of this algorithm in Section 3.

3. Implementation of Vector Clocks and Sensors

The implementation of vector clocks and sensors is an extension of the Webscape

system designed initially. A Webscape system can be viewed as a collection of tables on

the internet, where each table is a two dimensional array of cells. Each cell has two fields

associated with it – expression and value. The value is the number displayed for the cell .

The expression is a formula associated with the cell , which is used to evaluate its value.

This may result in communication with other tables, for instance, if the cell ’s value is

dependent on the value of some remote cells in other tables. A cell may also have a target

cell . Whenever the value of the cell changes, the new value is sent to the target cell ,

which in turn updates its value. Target cells can be remote cells as well . The

communication between the tables is established using cell servers as discussed in the

problem statement.

3.1 Vector Clocks

Vector clocks are associated with every Webscape table. It shows the vector clock

for that process at all times. It is assumed that each process knows the total number of

tables (processes) and identity (process_id) of each table. This is read from the input file

during the initialization of the Webscape tables. The format of the input file is discussed

10

later. The vector clock of a process is included in all out-going messages and is updated

using Mattern’s vector clock update rules [11]. Whenever a message is sent, the local

component of the clock is incremented and upon receiving a message, a component-wise

maximum of the vector is taken and then the local component is incremented.

3.2 Sensors

A sensor is a cell type in the Webscape table. Two types of sensors are

implemented – local and global sensors. A local sensor is simply a boolean condition on

local data cells. For example, (R2C3 > 4) && (R0C0 == 7) is a local sensor which

becomes true only when the value of the cell i n R2C3 exceeds 4 AND value of the cell

R0C0 equals 7. The sensors can only acquire a value of 0 or 1 depending on whether the

predicate defined by that sensor is true or false. A suff ix LS is displayed in the table to

distinguish between a normal cell and a local sensor.

Two types of global sensors, channel sensor and conjunctive sensors are also

implemented. A channel sensor detects a channel property. It acquires a value of 1, if the

channel predicate associated with it becomes true. For example the following channel

predicate R1C0 → tick:8888 > 2 will be true if at anytime the number of messages sent

from the cell R1C0 in this table to the table at tick exceeds 2. A suff ix CS is displayed in

the table to differentiate a channel sensor from other cells.

A conjunctive sensor detects conjunction of local and channel sensors. It is set to

1, when all the conjuncts (local sensor and channel sensor) become true, for example the

following predicate (R1C0 → sorata:8888 >= 10) && (R0C0 > 20) is a conjunction of

the channel sensor (R1C0 → sorata:8888 >= 10) and the local sensor (R0C0 > 20). A

11

suff ix CNJS is displayed in the table to differentiate a conjunctive sensor from the other

cells.

Webscape application can have one cell to detect the global predicate, which is a

conjunction of local and channel predicates on multiple tables for example

(tick:8888/R1C1 > 5) && (sorata:8888/R3C2 < 100) && (omni:8888/R1C1 →

tick:8888 == 5) . The value of the cell i s set to 1, when the global predicate is detected. A

suff ix GS is displayed in the table to differentiate a global sensor from the other cells.

All the sensors detect if the property they are monitoring ever became true. Once

they turn true they stay true. An interface is provided to the user to manually reset them

to false (0).

3.2.1 Channel Predicates

We have implemented an algorithm to detect linear, stable as well as unstable

channel predicates. Also, our algorithm considers multiple channels between processes,

i.e., there is a channel between each cell of the Webscape application to all other

Webscape applications. Channel predicates are of the form R1C1 → tick:8888 > 5

The application process keeps track of the minimum (Tmin) and maximum (Tmax)

number of messages in transit in the channel from each cell to every other process.

• Tmin [no_of_processes] [no_of_rows] [no_of_cols]
• Tmax [no_of_processes] [no_of_rows] [no_of_cols]

An AckHandler process keeps track of the number of messages sent (incsend history)

by each cell to other processes and the number of messages received (increcv history) by

a particular cell of other processes.

• SEND [no_of_processes] [no_of_rows] [no_of_cols]
• RECV [no_of_processes] [no_of_rows] [no_of_cols]

12

Whenever a cell (a, b) of process Ai sends a message to process Aj, it updates its

AckHandler process Hi. Hi increments the send count of the messages from cell (a, b) to

Aj in SEND. Then it sends a request message to AckHandler Hj to get the number of

messages received by Aj from cell (a, b) of process Ai. Hj returns the receive count from

its receive array RECV. Hi calculates the number of messages in transit at this state and

returns the current value to Ai. Ai updates its Tmin and Tmax based on the current

number of messages in transit.

Upon receive of a message from cell (a, b) of process Aj, the process updates its

AckHandler, which simply increments the receive count of the messages from cell (a, b)

of Aj in RECV. Whenever a channel sensor cell i s evaluated, it gets the Tmin and Tmax

values for that. Whenever the local predicates are true in a process, information about the

channels is sent to the monitor process.

Application Process (Ai):

Initialize_clocks_and_vars(i);
Before send of message m to Aj do

Increment_send_count(j, myrow, mycol);
Upon receive of message m from Aj do

Increment_receive_count(j,row,col);
Upon local_predicate_true() do {
 send(v) to Mi as candidate
 clear_send_rcv_vars();
}

Monitor Process (Mi):

Upon receive of token do {
 do {
 receive candidate from Ai
 update send_rcv_of_token(i);
 } until candidate.v[i] > token.v[i]
 update_token(candidate.v[i]);
 if ∃j : j ≠ i: token.v[j] < candidate.v[j]
 then send_token(j); /* Send token to Mj */
 if (still has_token) {
 if chan_predicates_true() {
 then GCP = true;
 send_broadcast(pred_detected);
 }
 }
}

Figure 1 : GCP detection algorithm

13

3.2.3 Token Based Distributed Algorithm for Detecting Generalized Conjunctive

Predicates (GCP)

A token based distributed algorithm for detecting GCP is implemented (Figure 1).

It is based on the algorithm suggested by Mitchell and Garg [12]. The implementation of

the algorithm is divided into application and monitor portions at each process. The

application process checks for local predicates and keeps track of the activity in the

channels associated with this process. The algorithm uses a token to detect GCP. The

token contains a possible global cut in which the desired predicates could be true. The

monitor receives the token and checks for a consistent cut. If the global cut is consistent

then all the local predicates are true concurrently. If not, the token is forwarded to any

process which violates the consistency. Also, other processes that violate the consistent

cut are marked so that they will receive the token at some point in the future. Before

forwarding the token, vector clock information inside the token is updated according to

the current candidate. If the global cut is consistent, then the monitor process checks for

the channel predicates associated with the application process. If channel predicates are

also satisfied, then GCP will be detected. Otherwise, the whole detection process starts

again by labeling the violating processes as inconsistent and sending them the token.

The monitor code is activated only if it has the token, otherwise it just buffers the

candidates received from the application process. Figure 2 shows the message flow

between the application process and monitor process. Candidates are nothing but the

vector clocks in which the local predicate became true first time after an external event

and channel states associated with them. The application and the monitor process are

placed on the same uniprocessor to reduce communication complexity.

14

3.3 Implementation Details

3.3.1 Initialization of the Webscape Table

The first step at the start of the process is the initialization of the Webscape table. The

initial configuration of the table is read from an input file. The input file has the

following information:

• Total number of processes

• Process ID of the running process

• Identity of the other tables (machine name:port, process id)

• Total number of rows and columns in this table

• Initial cell entries (expression, value, target)

• Local conjuncts (process’ part of the global predicate)

Application Process

Ai

Monitor

Mi

Application Process

Aj

Monitor

Mj

Candidates

Candidates

Token

Figure 2 : The application and monitor process of GCP

15

User interface for updating the cell entries and saving the current state into a file is

also provided. It is assumed that the table has a fixed size.

Every process has a unique process id. A hashtable of process id’s and addresses is

constructed and it is used for communication with other tables. A cell -server thread is

launched during the initialization phase. The cell -server serves the requests for reading

and updating cells. This server starts li stening on the port number associated with the

table. TCP/IP sockets are used for communication. Initialization for the AckHandler and

the monitor processes is then done. The token, vector clock and other data structures are

also initialized. Only one monitor process has the token in the beginning. The vector

clock of the token is initialized so that the token eventually visits all the monitor

processes at least once before the global predicate is detected.

3.3.2 Cell Updates

The run time system picks the cell i n a round robin fashion, evaluates the

expression associated with the cell , updates the new value in the table and if a target cell

exists, it sends its value to the remote cell . Two interfaces getRemoteVal and

sendRemoteVal are provided to achieve this functionality. getRemoteVal gets the value of

the remote cell and sendRemoteVal sends the current value to the remote cell . It then

checks if the local predicate and the channel predicates associated with it are true. If true,

then it sends a candidate to the monitor process. The GCP algorithm is run in the

monitor process as described in Section 3.2.3. One of the monitor process eventually

detects the global predicate (if it exists) and sends a broadcast to all the other processes so

that they stop checking for their local predicates.

16

4. Conclusion

In this project we have implemented a token-based distributed algorithm that is

able to detect weak unstable Generalized Conjunctive Predicates, which are formed by

the conjunction of local and channel predicates on multiple independent processes. Our

implementation is based on an algorithm proposed by Mitchell and Garg in [12]. This

algorithm would be very useful in debugging and testing distributed programs as

discussed in Section 1.

 One shortcoming of our implementation is the fact that it is not fault-tolerant. If

one of the monitor processes or application processes become faulty, our implementation

will not work correctly. Perhaps a next step to improve our project is to make it more

fault-tolerant. Garg and Mitchell describe an algorithm that will detect a conjunction of

local and send-monotonic channel predicates in faulty, asynchronous distributed

environments in [10] using infinitely-often accurate detectors. Our implementation might

be modified to be suited for their algorithm to be made more fault-tolerant.

 Another problem with our implementation is that it relies on only one token. It is

not distributed enough to provide higher levels of fault-tolerance. A more distributed

algorithm is proposed in [7]. Perhaps, by combining the approaches of [7] and [10], a

more fault-tolerant and parallel predicate detection scheme can be implemented.

References

[1] K. M. Chandy, and L. Lamport, "Distributed Snapshots: Determining Global
 States of Distributed Systems", ACM Transactions on Computer Systems, Vol. 3,
 No. 1, pp. 63-75, February 1985.
[2] C. M. Chase, and V. K. Garg, "Eff icient Detection of Restricted Classes of Global

17

 Predicates", Proceedings of the 9th International Workshop on Distributed
 Algorithms, Lecture Notes in Computer Science, Vol. 927, pp. 303-317, 1995.
[3] R. Cooper, and K. Marzullo, "Consistent Detection of Global Predicates",
 Proceedings of the ACM/ONR Workshop on Parallel and Distributed Debugging,
 Santa Cruz, Cali fornia, pp. 163-173, May 1991.
[4] C. Fidge, "Partial Orders for Parallel Debugging", Proceedings of the ACM
 Workshop on Parallel and Distributed Debugging, Madison, Wisconsin, pp. 130-
 140, May 1988.
[5] V. K. Garg, "Observation of global properties in distributed systems'', IEEE
 International Conference on Software and Knowledge Engineering, Lake Tahoe,
 Nevada, pp. 418-425, June 1996.
[6] V. K. Garg, C. Chase, ̀ `Distributed Algorithms for Detecting Conjunctive
 Predicates'', Proc. IEEE International Conference on Distributed Computing
 Systems, Vancouver, Canada, pp. 423-430, June 1995.
[7] V. K. Garg, C. Chase, J. R. Mitchell , R. Kilgore, ̀ `Detecting Conjunctive
 Channel Predicates in a Distributed Programming Environment'', 28th Hawaii
 International Conference on System Sciences, pp. 232-241, January 1995.
[8] V. K. Garg, B. Waldecker, ̀ `Detection of Weak Unstable Predicates in
 Distributed Programs'', IEEE Transactions on Parallel and Distributed Systems,
 Vol. 5, No. 3, pp. 299-307, March 1994.
[9] V. K. Garg, B. Waldecker, ̀ `Detection of Strong Unstable Predicates in
 Distributed Programs'', IEEE Transactions on Parallel and Distributed Systems,
 Vol. 7, No. 12, pp. 1323 - 1333, December 1996.
[10] V. K. Garg, J. R. Mitchell , ̀ `Distributed Predicate Detection in a Faulty

Environment” , Proceedings of IEEE International Conference on Distributed
Computing Systems, Amsterdam, Netherlands, 1998

[11] F. Mattern, "Virtual Time and Global States of Distributed Systems", Parallel
 and Distributed Algorithms: Proceedings of the International Workshop on
 Parallel and Distributed Algorithms, Elsevier Science Publishers, pp 215-226,
 1989.
[12] J. R. Mitchell , V. K. Garg, ̀ `Deriving Distributed Algorithms from a General
 Predicate Detector'', Proceedings of the Nineteenth Intl. Computer Software and
 Applications Conference, Dallas, Texas, pp. 268 -- 273, August 1995.

