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What Will You Learn in This Course? 
n  Scalable Many-Core Memory Systems  

q  July 15-19, 2013 

n  Topic 1: Main memory basics, DRAM scaling 
n  Topic 2: Emerging memory technologies and hybrid memories 
n  Topic 3: Main memory interference and QoS  
n  Topic 4 (unlikely): Cache management  
n  Topic 5 (unlikely): Interconnects 

n  Major Overview Reading: 
q  Mutlu, “Memory Scaling: A Systems Architecture Perspective,” 

IMW 2013. 
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Readings and Videos 

 
 
 
 



Memory Lecture Videos 
n  Memory Hierarchy (and Introduction to Caches) 

q  http://www.youtube.com/watch?
v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=22 

n  Main Memory 
q  http://www.youtube.com/watch?

v=ZLCy3pG7Rc0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=25 

n  Memory Controllers, Memory Scheduling, Memory QoS 
q  http://www.youtube.com/watch?

v=ZSotvL3WXmA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=26 
q  http://www.youtube.com/watch?

v=1xe2w3_NzmI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=27 

n  Emerging Memory Technologies 
q  http://www.youtube.com/watch?

v=LzfOghMKyA0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=35 

n  Multiprocessor Correctness and Cache Coherence 
q  http://www.youtube.com/watch?v=U-

VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32 
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Readings for Topic 1 (DRAM Scaling) 
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM 

Architecture,” HPCA 2013. 
n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 

2012. 
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism in DRAM,” 

ISCA 2012. 
n  Liu et al., “An Experimental Study of Data Retention Behavior in Modern 

DRAM Devices,” ISCA 2013. 
n  Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 

Initialization of Bulk Data,” CMU CS Tech Report 2013. 
n  David et al., “Memory Power Management via Dynamic Voltage/

Frequency Scaling,” ICAC 2011.  
n  Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement 

Learning Approach,” ISCA 2008. 
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Readings for Topic 2 (Emerging Technologies)  

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010. 

n  Qureshi et al., “Scalable high performance main memory system using 
phase-change memory technology,” ISCA 2009. 

n  Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE 
Comp. Arch. Letters 2012. 

n  Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid 
Memories,” ICCD 2012 Best Paper Award. 

n  Meza et al., “A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory,” WEED 2013. 

n  Kultursay et al., “Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative,” ISPASS 2013. 
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Readings for Topic 3 (Memory QoS) 
n  Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX 

Security 2007. 
n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,” 

MICRO 2007. 
n  Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 

2008, IEEE Micro 2009. 
n  Kim et al., “ATLAS: A Scalable and High-Performance Scheduling 

Algorithm for Multiple Memory Controllers,” HPCA 2010. 
n  Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE 

Micro 2011. 
n  Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011. 
n  Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 
n  Subramanian et al., “MISE: Providing Performance Predictability and 

Improving Fairness in Shared Main Memory Systems,” HPCA 2013. 
n  Das et al., “Application-to-Core Mapping Policies to Reduce Memory 

System Interference in Multi-Core Systems,” HPCA 2013. 
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Readings for Topic 3 (Memory QoS) 
n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM 

TOCS 2012. 
n  Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC 

2011. 
n  Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
n  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for 

Multi-Core Systems,” ISCA 2011. 
 

8 



Readings in Flash Memory 
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, 

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, 
Analysis and Modeling"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble, 
France, March 2013. Slides (ppt) 

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken 
Mai, 
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased 
Flash Memory Lifetime" 
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), 
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, 
and Analysis"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden, 
Germany, March 2012. Slides (ppt) 
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Online Lectures and More Information 
n  Online Computer Architecture Lectures 

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ  

n  Online Computer Architecture Courses 
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php 
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php  
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php  

 
n  Recent Research Papers 

q  http://users.ece.cmu.edu/~omutlu/projects.htm 
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en 
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Main Memory Interference 

 
 
 
 



Trend: Many Cores on Chip 
n  Simpler and lower power than a single large core 
n  Large scale parallelism on chip 
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IBM	  Cell	  BE	  
8+1	  cores	  

Intel	  Core	  i7	  
8	  cores	  

Tilera	  TILE	  Gx	  
100	  cores,	  networked	  

IBM	  POWER7	  
8	  cores	  

Intel	  SCC	  
48	  cores,	  networked	  

Nvidia	  Fermi	  
448	  “cores”	  

AMD	  Barcelona	  
4	  cores	  

Sun	  Niagara	  II	  
8	  cores	  



Many Cores on Chip 

n  What we want: 
q  N times the system performance with N times the cores 

n  What do we get today? 
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Unfair Slowdowns due to Interference 

Memory Performance Hog 
Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 

matlab 
(Core 1) 

gcc 
(Core 2) 
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Uncontrolled Interference: An Example 

CORE 1 CORE 2 

    L2  
CACHE 

    L2  
CACHE 

DRAM MEMORY CONTROLLER 

DRAM  
Bank 0 

DRAM  
Bank 1 

DRAM  
Bank 2 

Shared DRAM 
Memory System 

Multi-Core 
Chip 

unfairness 
INTERCONNECT 

matlab gcc 

DRAM  
Bank 3 



Memory System is the Major Shared Resource 
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threads’ requests  
interfere 



Much More of a Shared Resource in Future 
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Inter-Thread/Application Interference 

n  Problem: Threads share the memory system, but memory 
system does not distinguish between threads’ requests 

n  Existing memory systems  
q  Free-for-all, shared based on demand 
q  Control algorithms thread-unaware and thread-unfair 
q  Aggressive threads can deny service to others 
q  Do not try to reduce or control inter-thread interference 
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Unfair Slowdowns due to Interference 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 

matlab 
(Core 1) 

gcc 
(Core 2) 
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Uncontrolled Interference: An Example 

CORE 1 CORE 2 

    L2  
CACHE 

    L2  
CACHE 

DRAM MEMORY CONTROLLER 

DRAM  
Bank 0 

DRAM  
Bank 1 

DRAM  
Bank 2 

Shared DRAM 
Memory System 

Multi-Core 
Chip 

unfairness 
INTERCONNECT 

stream random 

DRAM  
Bank 3 



// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = rand(); 
     A[index] = B[index]; 
     … 
} 
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A Memory Performance Hog 

STREAM 

-  Sequential memory access  
-  Very high row buffer locality (96% hit rate) 
-  Memory intensive 

RANDOM 

-  Random memory access 
-  Very low row buffer locality (3% hit rate) 
-  Similarly memory intensive 

// initialize large arrays A, B 
 
for (j=0; j<N; j++) { 
     index = j*linesize; 
     A[index] = B[index]; 
     … 
} 

streaming random 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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What Does the Memory Hog Do? 

Row Buffer 

R
ow

 d
ec

od
er

 
Column mux 

Data 

Row 0 

T0: Row 0 

Row 0 

T1: Row 16 
T0: Row 0 T1: Row 111 

T0: Row 0 T0: Row 0 T1: Row 5 

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 

Memory Request Buffer 

T0: STREAM 
T1: RANDOM 

Row size: 8KB, cache block size: 64B 
128 (8KB/64B) requests of T0 serviced before T1 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
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DRAM Controllers 

n  A row-conflict memory access takes significantly longer 
than a row-hit access 

n  Current controllers take advantage of the row buffer 

n  Commonly used scheduling policy (FR-FCFS) [Rixner 2000]* 

(1) Row-hit first: Service row-hit memory accesses first 
(2) Oldest-first: Then service older accesses first 

n  This scheduling policy aims to maximize DRAM throughput 
n  But, it is unfair when multiple threads share the DRAM system   

*Rixner et al., “Memory Access Scheduling,” ISCA 2000. 
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997. 



Effect of the Memory Performance Hog 

0 

0.5 

1 

1.5 

2 

2.5 

3 

STREAM RANDOM 
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1.18X slowdown 

2.82X slowdown 

Results on Intel Pentium D running Windows XP 
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)  
 
 

Sl
ow

do
w

n 

0 

0.5 

1 

1.5 

2 

2.5 

3 

STREAM gcc 
0 

0.5 

1 

1.5 

2 

2.5 

3 

STREAM Virtual PC 

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007. 
 



Greater Problem with More Cores 

n  Vulnerable to denial of service (DoS) [Usenix Security’07] 

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 
 

Uncontrollable, unpredictable system 
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Greater Problem with More Cores 

n  Vulnerable to denial of service (DoS) [Usenix Security’07] 

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 
 

Uncontrollable, unpredictable system 
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Distributed DoS in Networked Multi-Core Systems 
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Attackers 
(Cores 1-8) 

Stock option pricing application 
(Cores 9-64) 

    Cores connected via  
    packet-switched 
    routers on chip 

     ~5000X latency increase 

Grot, Hestness, Keckler, Mutlu,  
“Preemptive virtual clock: A Flexible,  
Efficient, and Cost-effective QOS  
Scheme for Networks-on-Chip,“ 
MICRO 2009. 



How Do We Solve The Problem? 

n  Inter-thread interference is uncontrolled in all memory 
resources 
q  Memory controller 
q  Interconnect 
q  Caches 

n  We need to control it 
q  i.e., design an interference-aware (QoS-aware) memory system 
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QoS-Aware Memory Systems: Challenges 

n  How do we reduce inter-thread interference? 
q  Improve system performance and core utilization 
q  Reduce request serialization and core starvation 
 

n  How do we control inter-thread interference? 
q  Provide mechanisms to enable system software to enforce 

QoS policies  
q  While providing high system performance 

n  How do we make the memory system configurable/flexible?  
q  Enable flexible mechanisms that can achieve many goals 

n  Provide fairness or throughput when needed 
n  Satisfy performance guarantees when needed 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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QoS-Aware Memory Scheduling 

n  How to schedule requests to provide 
q  High system performance 
q  High fairness to applications 
q  Configurability to system software  

n  Memory controller needs to be aware of threads 
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Memory	  
Controller	  

Core	   Core	  

Core	   Core	  
Memory	  

Resolves memory contention 
by scheduling requests 



QoS-Aware Memory Scheduling: 
Evolution 

 
 
 
 



QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

n  ATLAS memory scheduler [Kim+ HPCA’10] 

33 



Within-Thread Bank Parallelism	  

34	  

Bank	  0	  

Bank	  1	  

req	  

req	  req	  

req	  

memory	  service	  +meline	  

thread	  A	  	  

thread	  B	  	  

thread	  execu+on	  +meline	  

WAIT	  

WAIT	  

thread	  B	  	  

thread	  A	  	  
Bank	  0	  

Bank	  1	  

req	  

req	  req	  

req	  

memory	  service	  +meline	  

thread	  execu+on	  +meline	  

WAIT	  

WAIT	  

ra
nk
	  

thread	  B	  	  

thread	  A	  	  

thread	  A	  	  

thread	  B	  	  

SAVED	  CYCLES	  

Key	  Idea:	  



Parallelism-Aware Batch Scheduling [ISCA’08] 

n  Principle 1: Schedule requests from a 
thread back to back 
q  Preserves each thread’s bank parallelism 
q  But, this can cause starvation… 

n  Principle 2: Group a fixed number of oldest 
requests from each thread into a “batch” 
q  Service the batch before all other requests 
q  Form a new batch when the current batch is done 
q  Eliminates starvation, provides fairness 
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Bank 0 Bank 1 

T0 

T0 

T1 

T1 

T3 

T3 

T2 

T2 

T3 T3 

T3 

Batch 

T1 
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QoS-Aware Memory Scheduling: Evolution 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

q  Idea: Estimate and balance thread slowdowns 

q  Takeaway: Proportional thread progress improves performance, 
especially when threads are “heavy” (memory intensive) 

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09] 

q  Idea: Rank threads and service in rank order (to preserve bank 
parallelism); batch requests to prevent starvation 

q  Takeaway: Preserving within-thread bank-parallelism improves 
performance; request batching improves fairness 

n  ATLAS memory scheduler [Kim+ HPCA’10] 

q  Idea: Prioritize threads that have attained the least service from the 
memory scheduler  

q  Takeaway: Prioritizing “light” threads improves performance 
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QoS-Aware Memory Scheduling: Evolution 

n  Thread cluster memory scheduling [Kim+ MICRO’10] 

q  Idea: Cluster threads into two groups (latency vs. bandwidth 
sensitive); prioritize the latency-sensitive ones; employ a fairness 
policy in the bandwidth sensitive group 

q  Takeaway: Heterogeneous scheduling policy that is different based 
on thread behavior maximizes both performance and fairness 

n  Integrated Memory Channel Partitioning and Scheduling 
[Muralidhara+ MICRO’11] 

n  Idea: Only prioritize very latency-sensitive threads in the scheduler; 
mitigate all other applications’ interference via channel partitioning 

n  Takeaway: Intelligently combining application-aware channel 
partitioning and memory scheduling provides better performance 
than either 
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QoS-Aware Memory Scheduling: Evolution 

n  Parallel application memory scheduling [Ebrahimi+ MICRO’11] 

q  Idea: Identify and prioritize limiter threads of a multithreaded 
application in the memory scheduler; provide fast and fair progress 
to non-limiter threads 

q  Takeaway: Carefully prioritizing between limiter and non-limiter 
threads of a parallel application improves performance 

n  Staged memory scheduling [Ausavarungnirun+ ISCA’12] 

n  Idea: Divide the functional tasks of an application-aware memory 
scheduler into multiple distinct stages, where each stage is 
significantly simpler than a monolithic scheduler 

n  Takeaway: Staging enables the design of a scalable and relatively 
simpler application-aware memory scheduler that works on very 
large request buffers 
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QoS-Aware Memory Scheduling: Evolution 

n  MISE [Subramanian+ HPCA’13] 

n  Idea: Estimate the performance of a thread by estimating its change 
in memory request service rate when run alone vs. shared à use 
this simple model to estimate slowdown to design a scheduling 
policy that provides predictable performance or fairness 

n  Takeaway: Request service rate of a thread is a good proxy for its 
performance; alone request service rate can be estimated by giving 
high priority to the thread in memory scheduling for a while 
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QoS-Aware Memory Scheduling: Evolution 

n  Prefetch-aware shared resource management [Ebrahimi+ 
ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08] 

q  Idea: Prioritize prefetches depending on how they affect system 
performance; even accurate prefetches can degrade performance of 
the system  

q  Takeaway: Carefully controlling and prioritizing prefetch requests 
improves performance and fairness 

n  DRAM-Aware last-level cache policies [Lee+ HPS Tech Report’10] 
[Lee+ HPS Tech Report’10] 
q  Idea: Design cache eviction and replacement policies such that they 

proactively exploit the state of the memory controller and DRAM 
(e.g., proactively evict data from the cache that hit in open rows) 

q  Takeaway: Coordination of last-level cache and DRAM policies 
improves performance and fairness 
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Stall-Time Fair Memory Scheduling 

 
 
 
 

Onur Mutlu and Thomas Moscibroda,  
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"  

40th International Symposium on Microarchitecture (MICRO),  
pages 146-158, Chicago, IL, December 2007. Slides (ppt)  

STFM Micro 2007 Talk 



The Problem: Unfairness 

n  Vulnerable to denial of service (DoS) [Usenix Security’07] 

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10] 

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12] 
 

Uncontrollable, unpredictable system 
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How Do We Solve the Problem? 
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07] 

n  Goal: Threads sharing main memory should experience 
similar slowdowns compared to when they are run alone à 
fair scheduling 

n  Also improves overall system performance by ensuring cores make 
“proportional” progress 

n  Idea: Memory controller estimates each thread’s slowdown 
due to interference and schedules requests in a way to 
balance the slowdowns 

n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for 
Chip Multiprocessors,” MICRO 2007.  
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Stall-Time Fairness in Shared DRAM Systems 

n  A DRAM system is fair if it equalizes the slowdown of equal-priority threads  
relative to when each thread is run alone on the same system 

n  DRAM-related stall-time: The time a thread spends waiting for DRAM memory 

n  STshared: DRAM-related stall-time when the thread runs with other threads 
n  STalone:  DRAM-related stall-time when the thread runs alone 

n  Memory-slowdown = STshared/STalone    
q  Relative increase in stall-time 

 
n  Stall-Time Fair Memory scheduler (STFM) aims to equalize             

Memory-slowdown for interfering threads, without sacrificing performance 
q  Considers inherent DRAM performance of each thread 
q  Aims to allow proportional progress of threads 
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STFM Scheduling Algorithm [MICRO’07] 
 
n  For each thread, the DRAM controller 

q  Tracks STshared  
q  Estimates STalone  

n  Each cycle, the DRAM controller 
q  Computes Slowdown = STshared/STalone for threads with legal requests 
q  Computes unfairness = MAX Slowdown / MIN Slowdown 

n  If unfairness < α 
q  Use DRAM throughput oriented scheduling policy 

n  If unfairness ≥ α 
q  Use fairness-oriented scheduling policy  

n  (1) requests from thread with MAX Slowdown first  
n  (2) row-hit first , (3) oldest-first 
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How Does STFM Prevent Unfairness? 

Row Buffer 
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T0: Row 0 
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T1: Row 16 
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1.03 
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α 1.05 

1.03 
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1.04 

1.04 
1.11 

1.06 

1.07 

1.04 

1.10 
1.14 

1.03 

Row 16 Row 111 



STFM Pros and Cons 
n  Upsides:  

q  First work on fair multi-core memory scheduling 
q  Good at providing fairness 
q  Being fair improves performance  

n  Downsides: 
q  Does not handle all types of interference 
q  Somewhat complex to implement 
q  Slowdown estimations can be incorrect 
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Parallelism-Aware Batch Scheduling 

 
 
 
 

Onur Mutlu and Thomas Moscibroda,  
"Parallelism-Aware Batch Scheduling: Enhancing both  
Performance and Fairness of Shared DRAM Systems” 

35th International Symposium on Computer Architecture (ISCA),  
pages 63-74, Beijing, China, June 2008. Slides (ppt) 

PAR-BS ISCA 2008 Talk 



Another Problem due to Interference 

n  Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests 
q  Memory-Level Parallelism (MLP)  
q  Out-of-order execution, non-blocking caches, runahead execution 

 
n  Effective only if the DRAM controller actually services the 

multiple requests in parallel in DRAM banks 
 
n  Multiple threads share the DRAM controller 
n  DRAM controllers are not aware of a thread’s MLP 

q  Can service each thread’s outstanding requests serially, not in parallel 
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Bank Parallelism of a Thread 
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Thread A: Bank 0, Row 1 

Thread A: Bank 1, Row 1 

Bank access latencies of the two requests overlapped 
Thread stalls for ~ONE bank access latency 

Thread A : 

Bank 0 Bank 1 

Compute 

2 DRAM Requests 

Bank 0 
Stall Compute 

Bank 1 

Single Thread: 



Compute 

Compute 

2 DRAM Requests 

Bank Parallelism Interference in DRAM 
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Bank 0 Bank 1 

Thread A: Bank 0, Row 1 

Thread B: Bank 1, Row 99 

Thread B: Bank 0, Row 99 

Thread A: Bank 1, Row 1 

A : Compute 

2 DRAM Requests 

Bank 0 
Stall 

Bank 1 

Baseline Scheduler: 

B: Compute 

Bank 0 

Stall 
Bank 1 

Stall 

Stall 

Bank access latencies of each thread serialized 
Each thread stalls for ~TWO bank access latencies 



2 DRAM Requests 

Parallelism-Aware Scheduler 
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Bank 0 Bank 1 

Thread A: Bank 0, Row 1 

Thread B: Bank 1, Row 99 

Thread B: Bank 0, Row 99 
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2 DRAM Requests 
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Bank 1 
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Stall Compute 
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Compute 
Bank 0 

Stall Compute 

Bank 1 

Saved Cycles Average stall-time: 
~1.5 bank access 

latencies 



Parallelism-Aware Batch Scheduling (PAR-BS) 

n  Principle 1: Parallelism-awareness 
q  Schedule requests from a thread (to 

different banks) back to back 
q  Preserves each thread’s bank parallelism 
q  But, this can cause starvation… 

n  Principle 2: Request Batching 
q  Group a fixed number of oldest requests 

from each thread into a “batch” 
q  Service the batch before all other requests 
q  Form a new batch when the current one is done 
q  Eliminates starvation, provides fairness 
q  Allows parallelism-awareness within a batch 
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008. 



PAR-BS Components 

n  Request batching 
 
 
 

n  Within-batch scheduling 
q  Parallelism aware 
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Request Batching 

n  Each memory request has a bit (marked) associated with it 

n  Batch formation: 
q  Mark up to Marking-Cap oldest requests per bank for each thread 
q  Marked requests constitute the batch 
q  Form a new batch when no marked requests are left 

n  Marked requests are prioritized over unmarked ones 
q  No reordering of requests across batches: no starvation, high fairness 

n  How to prioritize requests within a batch? 
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Within-Batch Scheduling 

n  Can use any existing DRAM scheduling policy 
q  FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality 

n  But, we also want to preserve intra-thread bank parallelism 
q  Service each thread’s requests back to back 

n  Scheduler computes a ranking of threads when the batch is 
formed 
q  Higher-ranked threads are prioritized over lower-ranked ones 
q  Improves the likelihood that requests from a thread are serviced in 

parallel by different banks 
n  Different threads prioritized in the same order across ALL banks 
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HOW? 



How to Rank Threads within a Batch 
n  Ranking scheme affects system throughput and fairness 

n  Maximize system throughput 
q  Minimize average stall-time of threads within the batch 

n  Minimize unfairness (Equalize the slowdown of threads) 
q  Service threads with inherently low stall-time early in the batch 
q  Insight: delaying memory non-intensive threads results in high 

slowdown 

n  Shortest stall-time first (shortest job first) ranking 
q  Provides optimal system throughput [Smith, 1956]* 

q  Controller estimates each thread’s stall-time within the batch 
q  Ranks threads with shorter stall-time higher 
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n  Maximum number of marked requests to any bank (max-bank-load) 
q  Rank thread with lower max-bank-load higher (~ low stall-time) 

n  Total number of marked requests (total-load) 
q  Breaks ties: rank thread with lower total-load higher 

Shortest Stall-Time First Ranking 
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Putting It Together: PAR-BS Scheduling Policy 
n  PAR-BS Scheduling Policy 

  (1) Marked requests first 
  (2) Row-hit requests first 
  (3) Higher-rank thread first (shortest stall-time first) 
  (4) Oldest first 

n  Three properties: 
q  Exploits row-buffer locality and intra-thread bank parallelism   
q  Work-conserving 

n  Services unmarked requests to banks without marked requests  

q  Marking-Cap is important 
n  Too small cap: destroys row-buffer locality 
n  Too large cap: penalizes memory non-intensive threads    

n  Many more trade-offs analyzed in the paper 
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Batching 

Parallelism-aware 
within-batch 
scheduling 



Hardware Cost 

n  <1.5KB storage cost for 
q  8-core system with 128-entry memory request buffer 

n  No complex operations (e.g., divisions) 

n  Not on the critical path 
q  Scheduler makes a decision only every DRAM cycle 
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Unfairness on 4-, 8-, 16-core Systems 
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System Performance (Hmean-speedup) 
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PAR-BS Pros and Cons 

n  Upsides:  
q  First work to identify the notion of bank parallelism destruction 

across multiple threads 
q  Simple mechanism 

n  Downsides: 
q  Implementation in multiple controllers needs coordination for 

best performance à too frequent coordination since batching 
is done frequently 

q  Does not always prioritize the latency-sensitive applications 
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ATLAS Memory Scheduler 

 
 
 
 

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter, 
"ATLAS: A Scalable and High-Performance  

Scheduling Algorithm for Multiple Memory Controllers"  
16th International Symposium on High-Performance Computer Architecture (HPCA),  

Bangalore, India, January 2010. Slides (pptx)  

ATLAS HPCA 2010 Talk 



Rethinking Memory Scheduling 
A thread alternates between two states (episodes) 

§ Compute episode: Zero outstanding memory requests è High IPC 
§ Memory episode: Non-zero outstanding memory requests è Low IPC 
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Goal: Minimize time spent in memory episodes 

O
ut

st
an

di
ng

 
m

em
or

y 
re

qu
es

ts
 

Time 

Memory episode Compute episode 



How to Minimize Memory Episode Time 

§   Minimizes time spent in memory episodes across all threads 
§   Supported by queueing theory: 

§  Shortest-Remaining-Processing-Time scheduling is optimal in 
single-server queue 

Remaining length of a memory episode? 

 Prioritize thread whose memory episode will end the soonest  

Time 

O
ut

st
an

di
ng

  
m

em
or

y 
re

qu
es

ts
 

How much longer? 
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Predicting Memory Episode Lengths 

Large attained service è Large expected remaining service 
 

Q: Why? 
A: Memory episode lengths are Pareto distributed… 
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We discovered: past is excellent predictor for future 

Time 

O
ut

st
an

di
ng

  
m

em
or

y 
re

qu
es

ts
 

Remaining service 
FUTURE 

Attained service 
PAST 



Pareto Distribution of Memory Episode Lengths 
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Prioritize the job with  
shortest-remaining-processing-time 

 
Provably optimal 

§  Remaining service: Correlates with attained service 

§  Attained service: Tracked by per-thread counter 

Least Attained Service (LAS) Memory Scheduling 
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Prioritize the memory episode with 
least-remaining-service 

Our Approach Queueing Theory 

Least-attained-service (LAS) scheduling: 

Minimize memory episode time 

However, LAS does not consider  
long-term thread behavior 

Prioritize the memory episode with 
least-attained-service 



Long-Term Thread Behavior 
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Quantum-Based Attained Service of a Thread 
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LAS Thread Ranking 

Each thread’s attained service (AS) is tracked by MCs 
 

ASi = A thread’s AS during only the i-th quantum 

Each thread’s TotalAS computed as: 
 

TotalASi = α · TotalASi-1 + (1- α) · ASi 
High α è More bias towards history 

 
Threads are ranked, favoring threads with lower TotalAS 

Threads are serviced according to their ranking 

During a quantum 

End of a quantum 

Next quantum 
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ATLAS Scheduling Algorithm 

ATLAS 
§  Adaptive per-Thread Least Attained Service 
 
§  Request prioritization order 
 1. Prevent starvation: Over threshold request 
 2. Maximize performance: Higher LAS rank 
 3. Exploit locality: Row-hit request 
 4. Tie-breaker: Oldest request 
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How to coordinate MCs to agree upon a consistent ranking? 
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System throughput = ∑ Speedup 

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms 

17.0% 

9.8% 

8.4% 

5.9% 

3.5% 

Sy
st

em
 t

hr
ou

gh
pu

t 

# of memory controllers 



0	  
2	  
4	  
6	  
8	  

10	  
12	  
14	  

4	   8	   16	   24	   32	  

Cores	  

Sy
st
em

	  th
ro
ug
hp

ut
	  

PAR-‐BS	   ATLAS	  

System Throughput: 4-MC System 

# of cores increases è ATLAS performance benefit increases  

76 

1.1% 
3.5% 

4.0% 

8.4% 
10.8% 

Sy
st

em
 t

hr
ou

gh
pu

t 

# of cores 



Properties of ATLAS 

§  LAS-ranking 
§  Bank-level parallelism 
§  Row-buffer locality 
 
§  Very infrequent coordination 

§  Scale attained service with 
thread weight (in paper) 

 
§  Low complexity: Attained 

service requires a single 
counter per thread in each MC 
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§  Maximize system performance 
 
 
 
§  Scalable to large number of controllers 
 
 
 

§  Configurable by system software 

Goals Properties of ATLAS 



ATLAS Pros and Cons 
n  Upsides: 

q  Good at improving performance 
q  Low complexity 
q  Coordination among controllers happens infrequently 

n  Downsides: 
q  Lowest ranked threads get delayed significantly à high 

unfairness 
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TCM: 
Thread Cluster Memory Scheduling 

 
 
 
 

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter, 
"Thread Cluster Memory Scheduling:  

Exploiting Differences in Memory Access Behavior"  
43rd International Symposium on Microarchitecture (MICRO),  
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)  

TCM Micro 2010 Talk 



No	  previous	  memory	  scheduling	  algorithm	  provides	  
both	  the	  best	  fairness	  and	  system	  throughput	  
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Take	  turns	  accessing	  memory	  

Throughput vs. Fairness 
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Fairness	  biased	  approach	  

thread	  C	  

thread	  B	  

thread	  A	  

less	  memory	  	  
intensive	  

higher	  
priority	  

Priori[ze	  less	  memory-‐intensive	  threads	  

Throughput	  biased	  approach	  

Good	  for	  throughput	  

starva3on	  è	  unfairness	  

thread	  C	   thread	  B	  thread	  A	  

Does	  not	  starve	  

not	  priori3zed	  è	  	  
reduced	  throughput	  

Single	  policy	  for	  all	  threads	  is	  insufficient	  



Achieving the Best of Both Worlds 
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• 	  Shuffle	  asymmetrically	  

For	  Fairness	  
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thread	  

thread	  
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Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1.   Group	  threads	  into	  two	  clusters	  
2.   PrioriDze	  non-‐intensive	  cluster	  
3.   Different	  policies	  for	  each	  cluster	  
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TCM Outline 
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1.	  Clustering	  



Clustering Threads 
Step1	  Sort	  threads	  by	  MPKI	  (misses	  per	  kiloinstruc[on)	  
	  
	  
	  
	  
	  
	  

	  

85	  

th
re
ad
	  

th
re
ad
	  

th
re
ad
	  

th
re
ad
	  

th
re
ad
	  

th
re
ad
	   higher	  	  

MPKI	  

T	   α	  <	  10%	  
ClusterThreshold	  

Intensive	  	  
cluster	  αT	  
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Step2	  Memory	  bandwidth	  usage	  αT	  divides	  clusters	  
	  



TCM Outline 
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1.	  Clustering	  

2.	  Between	  	  
Clusters	  



Priori3ze	  non-‐intensive	  cluster	  

•  Increases	  system	  throughput	  
– Non-‐intensive	  threads	  have	  greater	  poten[al	  for	  
making	  progress	  

•  Does	  not	  degrade	  fairness	  
– Non-‐intensive	  threads	  are	  “light”	  
– Rarely	  interfere	  with	  intensive	  threads	  

Prioritization Between Clusters 
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TCM Outline 
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1.	  Clustering	  

2.	  Between	  	  
Clusters	  

3.	  Non-‐Intensive	  	  
Cluster	  

Throughput	  



Priori3ze	  threads	  according	  to	  MPKI	  

•  Increases	  system	  throughput	  
– Least	  intensive	  thread	  has	  the	  greatest	  poten[al	  
for	  making	  progress	  in	  the	  processor	  

Non-Intensive Cluster 

89	  

thread	  

thread	  

thread	  

thread	  

higher	  
priority	   lowest	  MPKI	  

highest	  MPKI	  



TCM Outline 
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1.	  Clustering	  
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Cluster	  
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Periodically	  shuffle	  the	  priority	  of	  threads	  
	  

•  Is	  trea[ng	  all	  threads	  equally	  good	  enough?	  
•  BUT:	  Equal	  turns	  ≠	  Same	  slowdown	  

Intensive Cluster 
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Case Study: A Tale of Two Threads 
Case	  Study:	  Two	  intensive	  threads	  contending	  
1.  random-‐access	  
2.  streaming	  
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Why are Threads Different? 
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TCM Outline 
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Niceness 
How	  to	  quan3fy	  difference	  between	  threads?	  
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Causes	  interference	  
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-‐Robin	  shuffling	  
2.  Niceness-‐Aware	  shuffling	  
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-‐Robin	  shuffling	  
2.  Niceness-‐Aware	  shuffling	  
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-‐Robin	  shuffling	  
2.  Niceness-‐Aware	  shuffling	  
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-‐Robin	  shuffling	  
2.  Niceness-‐Aware	  shuffling	  
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TCM Outline 
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TCM: Quantum-Based Operation 

101	  

Time	  

Previous	  quantum	  
(~1M	  cycles)	  

During	  quantum:	  
• Monitor	  thread	  behavior	  
1. Memory	  intensity	  
2. Bank-‐level	  parallelism	  
3. Row-‐buffer	  locality	  

Beginning	  of	  quantum:	  
• Perform	  clustering	  
• Compute	  niceness	  of	  
intensive	  threads	  

Current	  quantum	  
(~1M	  cycles)	  

Shuffle	  interval	  
(~1K	  cycles)	  



TCM: Scheduling Algorithm 
1.  Highest-‐rank:	  Requests	  from	  higher	  ranked	  threads	  priori[zed	  

•  Non-‐Intensive	  cluster	  >	  Intensive	  cluster	  
•  Non-‐Intensive	  cluster:	  lower	  intensity	  è	  higher	  rank	  
•  Intensive	  cluster:	  rank	  shuffling	  

2.  Row-‐hit:	  Row-‐buffer	  hit	  requests	  are	  priori[zed	  

3.  Oldest:	  Older	  requests	  are	  priori[zed	  
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TCM: Implementation Cost 
Required	  storage	  at	  memory	  controller	  (24	  cores)	  
	  
	  
	  
	  
	  
	  
•  No	  computa[on	  is	  on	  the	  cri[cal	  path	  
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Thread	  memory	  behavior	   Storage	  

MPKI	   ~0.2kb	  

Bank-‐level	  parallelism	   ~0.6kb	  

Row-‐buffer	  locality	   ~2.9kb	  

Total	   <	  4kbits	  



Previous Work 
FRFCFS	  [Rixner	  et	  al.,	  ISCA00]:	  Priori[zes	  row-‐buffer	  hits	  

–  Thread-‐oblivious	  è	  Low	  throughput	  &	  Low	  fairness	  

STFM	  [Mutlu	  et	  al.,	  MICRO07]:	  Equalizes	  thread	  slowdowns	  
–  Non-‐intensive	  threads	  not	  priori[zed	  è	  Low	  throughput	  

PAR-‐BS	  [Mutlu	  et	  al.,	  ISCA08]:	  Priori[zes	  oldest	  batch	  of	  requests	  
while	  preserving	  bank-‐level	  parallelism	  

–  Non-‐intensive	  threads	  not	  always	  priori[zed	  è	  Low	  
throughput	  

ATLAS	  [Kim	  et	  al.,	  HPCA10]:	  Priori[zes	  threads	  with	  less	  memory	  
service	  

– Most	  intensive	  thread	  starves	  è	  Low	  fairness	  
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TCM: Throughput and Fairness 
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BeZer	  system	  throughput	  

Be
Z
er
	  fa
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s	  

24	  cores,	  4	  memory	  controllers,	  96	  workloads	  	  

TCM,	  a	  heterogeneous	  scheduling	  policy,	  
provides	  best	  fairness	  and	  system	  throughput	  



TCM: Fairness-Throughput Tradeoff 
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Operating System Support 
•  ClusterThreshold	  is	  a	  tunable	  knob	  

– OS	  can	  trade	  off	  between	  fairness	  and	  throughput	  

•  Enforcing	  thread	  weights	  
– OS	  assigns	  weights	  to	  threads	  
– TCM	  enforces	  thread	  weights	  within	  each	  cluster	  
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Conclusion 
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•  No	  previous	  memory	  scheduling	  algorithm	  provides	  
both	  high	  system	  throughput	  and	  fairness	  
– Problem:	  They	  use	  a	  single	  policy	  for	  all	  threads	  

•  TCM	  groups	  threads	  into	  two	  clusters	  
1.  Priori[ze	  non-‐intensive	  cluster	  è	  throughput	  
2.  Shuffle	  priori[es	  in	  intensive	  cluster	  è	  fairness	  
3.  Shuffling	  should	  favor	  nice	  threads	  è	  fairness	  

•  TCM	  provides	  the	  best	  system	  throughput	  and	  fairness	  



TCM Pros and Cons 
n  Upsides: 

q  Provides both high fairness and high performance 

n  Downsides: 
q  Scalability to large buffer sizes? 
q  Effectiveness in a heterogeneous system? 
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Staged Memory Scheduling 

 
 
 
 

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu, 
"Staged Memory Scheduling: Achieving High Performance  

and Scalability in Heterogeneous Systems” 
39th International Symposium on Computer Architecture (ISCA),  

Portland, OR, June 2012.  

SMS ISCA 2012 Talk 



Executive Summary 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 
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n  All cores contend for limited off-chip bandwidth 
q  Inter-application interference degrades system performance 
q  The memory scheduler can help mitigate the problem 

n  How does the memory scheduler deliver good performance 
and fairness? 

Main Memory is a Bottleneck 
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B 

n  Prioritize row-buffer-hit requests [Rixner+, ISCA’00] 

q  To maximize memory bandwidth 

n  Prioritize latency-sensitive applications [Kim+, HPCA’10] 

q  To maximize system throughput 

n  Ensure that no application is starved [Mutlu and Moscibroda, 
MICRO’07] 

q  To minimize unfairness 

Three Principles of Memory Scheduling 
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Memory Scheduling for CPU-GPU Systems 
n  Current and future systems integrate a GPU along with 

multiple cores 

n  GPU shares the main memory with the CPU cores 

n  GPU is much more (4x-20x) memory-intensive than CPU 

n  How should memory scheduling be done when GPU is 
integrated on-chip? 
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n  GPU occupies a significant portion of the request buffers 

q  Limits the MC’s visibility of the CPU applications’ differing 
memory behavior à can lead to a poor scheduling decision 

Introducing the GPU into the System 
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Naïve Solution: Large Monolithic Buffer 
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n  A large buffer requires more complicated logic to: 
q  Analyze memory requests (e.g., determine row buffer hits) 
q  Analyze application characteristics 
q  Assign and enforce priorities  

n  This leads to high complexity, high power, large die area 

Problems with Large Monolithic Buffer 
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More Complex Memory Scheduler 
 
 



n  Design a new memory scheduler that is: 
q  Scalable to accommodate a large number of requests 
q  Easy to implement 
q  Application-aware 
q  Able to provide high performance and fairness, especially in 

heterogeneous CPU-GPU systems 

Our Goal 
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Key Functions of a Memory Controller 
n  Memory controller must consider three different things 

concurrently when choosing the next request: 
 
1) Maximize row buffer hits 

q  Maximize memory bandwidth 

2) Manage contention between applications 
q  Maximize system throughput and fairness 

3) Satisfy DRAM timing constraints 
 
n  Current systems use a centralized memory controller 

design to accomplish these functions  
q  Complex, especially with large request buffers 
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Key Idea: Decouple Tasks into Stages 
n  Idea: Decouple the functional tasks of the memory controller 

q  Partition tasks across several simpler HW structures (stages) 

1) Maximize row buffer hits 
q  Stage 1: Batch formation  
q  Within each application, groups requests to the same row into 

batches 

2) Manage contention between applications 
q  Stage 2: Batch scheduler  
q  Schedules batches from different applications 

3) Satisfy DRAM timing constraints 
q  Stage 3: DRAM command scheduler 
q  Issues requests from the already-scheduled order to each bank 
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SMS: Staged Memory Scheduling 
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SMS: Staged Memory Scheduling 
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Stage 1: Batch Formation 
n  Goal: Maximize row buffer hits 
 
n  At each core, we want to batch requests that access the 

same row within a limited time window 

n  A batch is ready to be scheduled under two conditions 
1) When the next request accesses a different row  
2) When the time window for batch formation expires 

n  Keep this stage simple by using per-core FIFOs 
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Core 1 Core 2 Core 3 Core 4 

Stage 1: Batch Formation Example 
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SMS: Staged Memory Scheduling 
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Stage 2: Batch Scheduler 
n  Goal: Minimize interference between applications 

n  Stage 1 forms batches within each application 
n  Stage 2 schedules batches from different applications 

q  Schedules the oldest batch from each application 

n  Question: Which application’s batch should be scheduled 
next? 

n  Goal: Maximize system performance and fairness 
q  To achieve this goal, the batch scheduler chooses between 

two different policies 
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Stage 2: Two Batch Scheduling Algorithms 
n  Shortest Job First (SJF) 

q  Prioritize the applications with the fewest outstanding memory 
requests because they make fast forward progress 

q  Pro: Good system performance and fairness 
q  Con: GPU and memory-intensive applications get deprioritized 
 
 

n  Round-Robin (RR) 
q  Prioritize the applications in a round-robin manner to ensure 

that memory-intensive applications can make progress 
q  Pro: GPU and memory-intensive applications are treated fairly 
q  Con: GPU and memory-intensive applications significantly 

slow down others 
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Stage 2: Batch Scheduling Policy 
n  The importance of the GPU varies between systems and 

over time à Scheduling policy needs to adapt to this 

n  Solution: Hybrid Policy 
n  At every cycle: 

q  With probability p : Shortest Job First à Benefits the CPU 
q  With probability 1-p : Round-Robin à Benefits the GPU 

n  System software can configure p based on the importance/
weight of the GPU 
q  Higher GPU importance à Lower p value 

132 



SMS: Staged Memory Scheduling 
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Stage 3: DRAM Command Scheduler 
n  High level policy decisions have already been made by: 

q  Stage 1: Maintains row buffer locality 
q  Stage 2: Minimizes inter-application interference 

n  Stage 3: No need for further scheduling 
n  Only goal: service requests while satisfying DRAM 

timing constraints 

n  Implemented as simple per-bank FIFO queues 
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Complexity 
n  Compared to a row hit first scheduler, SMS consumes* 

q  66% less area 
q  46% less static power 

n  Reduction comes from: 
q  Monolithic scheduler à stages of simpler schedulers 
q  Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision) 
q  Each stage has simpler buffers (FIFO instead of out-of-order) 
q  Each stage has a portion of the total buffer size (buffering is 

distributed across stages) 

136 * Based on a Verilog model using 180nm library 
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Methodology 
n  Simulation parameters 

q  16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870 
q  DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel 

n  Workloads 
q  CPU: SPEC CPU 2006 
q  GPU: Recent games and GPU benchmarks 
q  7 workload categories based on the memory-intensity of CPU 

applications 
à Low memory-intensity (L) 
à Medium memory-intensity (M)  
à High memory-intensity (H) 
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Comparison to Previous Scheduling Algorithms 
n  FR-FCFS [Rixner+, ISCA’00] 

q  Prioritizes row buffer hits 
q  Maximizes DRAM throughput 
q  Low multi-core performance ç Application unaware 

n  ATLAS [Kim+, HPCA’10] 
q  Prioritizes latency-sensitive applications 
q  Good multi-core performance 
q  Low fairness ç Deprioritizes memory-intensive applications 

n  TCM [Kim+, MICRO’10] 
q  Clusters low and high-intensity applications and treats each 

separately 
q  Good multi-core performance and fairness 
q  Not robust ç Misclassifies latency-sensitive applications 
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Evaluation Metrics 
n  CPU performance metric: Weighted speedup 

 

n  GPU performance metric: Frame rate speedup 

n  CPU-GPU system performance: CPU-GPU weighted speedup 
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Evaluated System Scenarios 
n  CPU-focused system 

n  GPU-focused system 
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Evaluated System Scenario: CPU Focused 
n  GPU has low weight (weight = 1) 

n  Configure SMS such that p, SJF probability, is set to 0.9 
q  Mostly uses SJF batch scheduling à prioritizes latency-

sensitive applications (mainly CPU) 
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n  SJF batch scheduling policy allows latency-sensitive 
applications to get serviced as fast as possible 
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Evaluated System Scenario: GPU Focused 
n  GPU has high weight (weight = 1000) 

n  Configure SMS such that p, SJF probability, is set to 0 
q  Always uses round-robin batch scheduling à prioritizes 

memory-intensive applications (GPU) 
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n  Round-robin batch scheduling policy schedules GPU 
requests more frequently  
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Performance at Different GPU Weights 
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n  At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

Performance at Different GPU Weights 
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Additional Results in the Paper 
n  Fairness evaluation 

q  47.6% improvement over the best previous algorithms 

n  Individual CPU and GPU performance breakdowns 

n  CPU-only scenarios 
q  Competitive performance with previous algorithms 

n  Scalability results 
q  SMS’ performance and fairness scales better than previous 

algorithms as the number of cores and memory channels 
increases 

n  Analysis of SMS design parameters 
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Conclusion 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer size 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 
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Strong Memory Service Guarantees 
n  Goal: Satisfy performance bounds/requirements in the 

presence of shared main memory, prefetchers, 
heterogeneous agents, and hybrid memory 

n  Approach:  
q  Develop techniques/models to accurately estimate the 

performance of an application/agent in the presence of 
resource sharing 

q  Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications 

q  All the while providing high system performance  
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MISE:  
Providing Performance Predictability  

in Shared Main Memory Systems 

Lavanya Subramanian, Vivek Seshadri,  
Yoongu Kim, Ben Jaiyen, Onur Mutlu 
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Unpredictable Application Slowdowns 
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Need for Predictable Performance 
n  There is a need for predictable performance 

q  When multiple applications share resources  
q  Especially if some applications require performance 

guarantees 

n  Example 1: In mobile systems 
q  Interactive applications run with non-interactive applications 
q  Need to guarantee performance for interactive applications 
 

n  Example 2: In server systems 
q  Different users’ jobs consolidated onto the same server 
q  Need to provide bounded slowdowns to critical jobs  
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Our Goal: Predictable performance  

in the presence of memory interference 
 



Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
 

 



Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Slowdown: Definition 
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Key Observation 1 
For a memory bound application,   
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Key Observation 2 
Request Service Rate Alone (RSRAlone) of an application can be 

estimated by giving the application highest priority in 
accessing memory  

 
Highest priority à Little interference 

(almost as if the application were run alone) 
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Key Observation 2 
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications 
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Key Observation 3 
n  Memory-bound application 
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Key Observation 3 
n  Non-memory-bound application 
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Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Interval Based Operation 
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αn  Measure RSRShared,  
n  Estimate RSRAlone 

 



Measuring RSRShared and α 
n  Request Service Rate Shared (RSRShared) 

q  Per-core counter to track number of requests serviced 
q  At the end of each interval, measure 

n  Memory Phase Fraction (  ) 
q  Count number of stall cycles at the core 
q  Compute fraction of cycles stalled for memory 
 

Length Interval
Serviced Requests ofNumber   RSRShared =

α
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Estimating Request Service Rate Alone (RSRAlone) 

n  Divide each interval into shorter epochs 
 
n  At the beginning of each epoch 

q  Memory controller randomly picks an application as the 
highest priority application 

 
n  At the end of an interval, for each application, estimate  

PriorityHigh Given n Applicatio Cycles ofNumber 
EpochsPriority High  During Requests ofNumber RSR

           

Alone =
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Goal: Estimate RSRAlone 

How: Periodically give each application 
highest priority in accessing memory  



Inaccuracy in Estimating RSRAlone 
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Memory 
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Main 
Memory 
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n  When an application has highest priority 
q  Still experiences some interference 

Request Buffer  
State 

Main 
Memory 

Time units Service order 

Main 
Memory 

123

Time units Service order 

Main 
Memory 

123

Interference Cycles 

High Priority 

Main 
Memory 

Time units Service order 

Main 
Memory 
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Request Buffer  
State 



Accounting for Interference in RSRAlone Estimation 

n  Solution: Determine and remove interference cycles from 
RSRAlone calculation 

 
 
n  A cycle is an interference cycle if 

q  a request from the highest priority application is 
waiting in the request buffer and 

q  another application’s request was issued previously 
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Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber 
EpochsPriority High  During Requests ofNumber RSR

           

Alone =
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



MISE Model: Putting it All Together  
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time 

Interval 

α

Estimate  
slowdown 

Interval 

Estimate  
slowdown 

n  Measure RSRShared,  
n  Estimate RSRAlone 

 

αn  Measure RSRShared,  
n  Estimate RSRAlone 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Previous Work on Slowdown Estimation 
n  Previous work on slowdown estimation 

q  STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]  

q  FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10] 

q  Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13] 

n  Basic Idea: 
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Shared

Alone

 Time Stall
 Time Stall Slowdown =

Hard 

Easy 

Count number of cycles application receives interference 



Two Major Advantages of MISE Over STFM 

n  Advantage 1: 
q  STFM estimates alone performance while an 

application is receiving interference à Hard 
q  MISE estimates alone performance while giving an 

application the highest priority à Easier 
 

n  Advantage 2: 
q  STFM does not take into account compute phase for 

non-memory-bound applications  
q  MISE accounts for compute phase à Better accuracy 
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Methodology 
n  Configuration of our simulated system 

q  4 cores 
q  1 channel, 8 banks/channel 
q  DDR3 1066 DRAM  
q  512 KB private cache/core 

 
n  Workloads 

q  SPEC CPU2006  
q  300 multi programmed workloads 
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Quantitative Comparison 

177 

1	  

1.5	  

2	  

2.5	  

3	  

3.5	  

4	  

0	   20	   40	   60	   80	   100	  

Sl
ow

do
w

n 

Million Cycles 

Actual 
STFM 
MISE 

SPEC CPU 2006 application 
leslie3d 



Comparison to STFM 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Providing “Soft” Slowdown Guarantees 
n  Goal 

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound 

2. Maximize system performance for other applications 
 

n  Basic Idea 
q  Allocate just enough bandwidth to QoS-critical 

application 
q  Assign remaining bandwidth to other applications 
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MISE-QoS: Mechanism to Provide Soft QoS 

n  Assign an initial bandwidth allocation to QoS-critical application 

n  Estimate slowdown of QoS-critical application using the MISE 
model 

n  After every N intervals 

q  If slowdown > bound B +/- ε, increase bandwidth allocation 

q  If slowdown < bound B +/- ε, decrease bandwidth allocation 

n  When slowdown bound not met for N intervals 
q  Notify the OS so it can migrate/de-schedule jobs 
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Methodology 
n  Each application (25 applications in total) considered the 

QoS-critical application 
n  Run with 12 sets of co-runners of different memory 

intensities 
n  Total of 300 multiprogrammed workloads 
n  Each workload run with 10 slowdown bound values 
n  Baseline memory scheduling mechanism 

q  Always prioritize QoS-critical application  
 [Iyer+, SIGMETRICS 2007] 

q  Other applications’ requests scheduled in FRFCFS order 
 [Zuravleff +, US Patent 1997, Rixner+, ISCA 2000] 
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A Look at One Workload 
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Effectiveness of MISE in Enforcing QoS 
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Not Met 2.2% 16.9% 

Across 3000 data points 

 
 
 
 

MISE-QoS meets the bound for 80.9% of workloads 
 
 
 
 

 
 
 
 

AlwaysPrioritize  meets the bound for 83% of workloads 
 
 
 
 

 
MISE-QoS correctly predicts whether or not the bound 

is met for 95.7% of workloads 
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Higher performance when bound is loose 
 

When slowdown bound is 10/3  
MISE-QoS improves system performance by 10%    



Outline 

186 

1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Other Results in the Paper 
n  Sensitivity to model parameters 

q  Robust across different values of model parameters 

n  Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees 
q  MISE significantly more effective in enforcing guarantees 

 
n  Minimizing maximum slowdown 

q  MISE improves fairness across several system configurations 
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Summary 
n  Uncontrolled memory interference slows down  

applications unpredictably 
n  Goal: Estimate and control slowdowns 
n  Key contribution 

q  MISE: An accurate slowdown estimation model  
q  Average error of MISE: 8.2% 

n  Key Idea 
q  Request Service Rate is a proxy for performance 
q  Request Service Rate Alone estimated by giving an application highest 

priority in accessing memory 

n  Leverage slowdown estimates to control slowdowns 
q  Providing soft slowdown guarantees 
q  Minimizing maximum slowdown 
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MISE:  
Providing Performance Predictability  

in Shared Main Memory Systems 

Lavanya Subramanian, Vivek Seshadri,  
Yoongu Kim, Ben Jaiyen, Onur Mutlu 
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Some Current Directions 
n  Building a comprehensive slowdown estimation model 

q  Performance predictability with other shared resources 
q  Performance predictability in heterogeneous systems 
q  Interaction with power and energy consumption 

n  Integrated techniques for enforcing performance levels 
q  Scheduling, partitioning, prioritization, interleaving, … 

n  Exploiting slowdown information in software 
q  Admission control 
q  Migration policies 
q  Billing policies 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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Fairness via Source Throttling 

 
 
 
 

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Fairness via Source Throttling: A Configurable and High-Performance  

Fairness Substrate for Multi-Core Memory Systems"  
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),  

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)  

FST ASPLOS 2010 Talk 



Many Shared Resources 

Core 0 Core 1 Core 2 Core N 

Shared Cache 

Memory Controller 

DRAM 
Bank 0 

DRAM 
Bank 1 

DRAM 
Bank 2 

... DRAM 
Bank K 

... 

Shared Memory 
Resources 

Chip Boundary 
On-chip 
Off-chip 
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The Problem with “Smart Resources” 

n  Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other 

n  Explicitly coordinating mechanisms for different 
resources requires complex implementation 

n  How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner? 
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An Alternative Approach: Source Throttling 

n  Manage inter-thread interference at the cores, not at the 
shared resources 

n  Dynamically estimate unfairness in the memory system  
n  Feed back this information into a controller 
n  Throttle cores’ memory access rates accordingly 

q  Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

q  E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12. 
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Fairness via Source Throttling (FST) 

n  Two components (interval-based) 

n  Run-time unfairness evaluation (in hardware) 
q  Dynamically estimates the unfairness in the memory system 
q  Estimates which application is slowing down which other 

n  Dynamic request throttling (hardware or software) 
q  Adjusts how aggressively each core makes requests to the 

shared resources 
q  Throttles down request rates of cores causing unfairness 

n  Limit miss buffers, limit injection rate 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 
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Fairness via Source Throttling (FST) 



Estimating System Unfairness 
 
n  Unfairness =  

n  Slowdown of application i =  

n  How can            be estimated in shared mode? 

n              is the number of extra cycles it takes  
application i to execute due to interference 

n    
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Min{Slowdown i} over all applications i 

Shared 
Ti 

Ti 
Alone 

Ti 
Alone 

Ti 
Excess 

Ti 
Shared 

= Ti 
Alone 

- Ti 
Excess 



Tracking Inter-Core Interference 
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Tracking DRAM Row-Buffer Interference 
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Tracking Inter-Core Interference 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 
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Fairness via Source Throttling (FST) 
 



Tracking Inter-Core Interference 

n  To identify App-interfering, for each core i 
q  FST separately tracks interference caused by each core j 

( j ≠ i ) 
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Fairness via Source Throttling (FST) 
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Runtime Unfairness	

Evaluation	


Dynamic	

Request Throttling	
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Dynamic Request Throttling 
 
n  Goal: Adjust how aggressively each core makes requests to 

the shared memory system  

n  Mechanisms: 
q  Miss Status Holding Register (MSHR) quota 

n  Controls the number of concurrent requests accessing shared 
resources from each application 

q  Request injection frequency 
n  Controls how often memory requests are issued to the last level 

cache from the MSHRs 
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Dynamic Request Throttling 
 
n  Throttling level assigned to each core determines both 

MSHR quota and request injection rate 
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Throttling level	
 MSHR quota	
 Request Injection Rate	
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 Every cycle	


50%	
 64	
 Every other cycle	
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4%	
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3%	
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2%	
 2	
 Once every 50 cycles	

Total # of 
MSHRs: 128 



FST at Work 
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System Software Support 
 
n  Different fairness objectives can be configured by       

system software 
q  Keep maximum slowdown in check 

n  Estimated Max Slowdown < Target Max Slowdown 

q  Keep slowdown of particular applications in check to achieve a 
particular performance target 
n  Estimated Slowdown(i) < Target Slowdown(i) 

n  Support for thread priorities 
q  Weighted Slowdown(i) =  

        Estimated Slowdown(i) x Weight(i) 
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FST Hardware Cost 

n  Total storage cost required for 4 cores is ~12KB 

n  FST does not require any structures or logic that are on the 
processor’s critical path 
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FST Evaluation Methodology 

n  x86 cycle accurate simulator 
n  Baseline processor configuration 

q  Per-core 
n  4-wide issue, out-of-order, 256 entry ROB 

q  Shared (4-core system) 
n  128 MSHRs  
n  2 MB, 16-way L2 cache 

q  Main Memory 
n  DDR3 1333 MHz 
n  Latency of 15ns per command (tRP, tRCD, CL) 
n  8B wide core to memory bus 
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FST: System Unfairness Results 
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44.4%	


36%	




FST: System Performance Results 
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Source Throttling Results: Takeaways 

n  Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching 
q  Decisions made at the memory scheduler and the cache 

sometimes contradict each other 

n  Neither source throttling alone nor “smart resources” alone 
provides the best performance 

n  Combined approaches are even more powerful  
q  Source throttling and resource-based interference control 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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Memory Channel Partitioning 

 
 
 
 

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,  
"Reducing Memory Interference in Multicore Systems via  

Application-Aware Memory Channel Partitioning” 
 44th International Symposium on Microarchitecture (MICRO),  

Porto Alegre, Brazil, December 2011. Slides (pptx)  

MCP Micro 2011 Talk 
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Previous Approach 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 
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Application-Aware Memory Request Scheduling 

n  Monitor application memory access 
characteristics 

 
n  Rank applications based on memory access 

characteristics 
 
n  Prioritize requests at the memory controller, 

based on ranking 
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Application-Aware Memory Request Scheduling 

222 

Advantages 
n  Reduces interference between applications by  

 request reordering 
n  Improves system performance 

Disadvantages 
n  Requires modifications to memory scheduling logic for 

q  Ranking 
q  Prioritization 

n  Cannot completely eliminate interference by request 
reordering  



Our Approach 

223 

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Goal:  
Mitigate  

Inter-Application Interference  



Observation: Modern Systems Have Multiple Channels 

A new degree of freedom 
Mapping data across multiple channels 
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Data Mapping in Current Systems 
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Partitioning Channels Between Applications 
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Overview: Memory Channel Partitioning (MCP)  

n  Goal 
q  Eliminate harmful interference between applications 

 
n  Basic Idea 

q  Map the data of badly-interfering applications to different 
channels 

 
n  Key Principles 

q  Separate low and high memory-intensity applications 
q  Separate low and high row-buffer locality applications 
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Key Insight 1: Separate by Memory Intensity 
High memory-intensity applications interfere with low 

memory-intensity applications in shared memory channels 
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Key Insight 2: Separate by Row-Buffer Locality 
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High row-buffer locality applications interfere with low  
row-buffer locality applications in shared memory channels 
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Memory Channel Partitioning (MCP) Mechanism 

1. Profile applications 
2. Classify applications into groups 
3. Partition channels between application groups 
4. Assign a preferred channel to each application 
5. Allocate application pages to preferred channel 
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1. Profile Applications 
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n  Hardware counters collect application memory 
access characteristics 

n  Memory access characteristics 
q  Memory intensity: 
 Last level cache Misses Per Kilo Instruction (MPKI) 

q  Row-buffer locality: 
 Row-buffer Hit Rate (RBH) - percentage of 
accesses that hit in the row buffer 



2. Classify Applications 
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3. Partition Channels Among Groups: Step 1 
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3. Partition Channels Among Groups: Step 2 
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4. Assign Preferred Channel to Application 
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Channel 1 

Low Intensity 

Channel 2 

MPKI: 1 

MPKI: 3 

MPKI: 4 

MPKI: 1 

MPKI: 3 

MPKI: 4 

n  Assign each application a preferred channel from 
its group’s allocated channels 

n  Distribute applications to channels such that 
group’s bandwidth demand is balanced across its 
channels 

 
 



5. Allocate Page to Preferred Channel 

n  Enforce channel preferences                    
computed in the previous step 

 
n  On a page fault, the operating system 

q  allocates page to preferred channel if free page 
available in preferred channel 

q  if free page not available, replacement policy tries to 
allocate page to preferred channel 

q  if it fails, allocate page to another channel 
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Interval Based Operation 
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time 

Current Interval Next Interval 

1. Profile applications 

2. Classify applications into groups 
3. Partition channels between groups 
4. Assign preferred channel to applications 

5. Enforce channel preferences 



Integrating Partitioning and Scheduling 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Goal:  
Mitigate  

Inter-Application Interference  



Observations 
 
n  Applications with very low memory-intensity rarely 

access memory                                                         
à Dedicating channels to them results in precious 
memory bandwidth waste 

n  They have the most potential to keep their cores busy  
à We would really like to prioritize them 

n  They interfere minimally with other applications            
à Prioritizing them does not hurt others 
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Integrated Memory Partitioning and Scheduling (IMPS) 

n  Always prioritize very low memory-intensity 
applications in the memory scheduler 

 
 
n  Use memory channel partitioning to mitigate 

interference between other applications 

240 



Hardware Cost 
n  Memory Channel Partitioning (MCP) 

q  Only profiling counters in hardware 
q  No modifications to memory scheduling logic 
q  1.5 KB storage cost for a 24-core, 4-channel system 
 

n  Integrated Memory Partitioning and Scheduling (IMPS) 
q  A single bit per request 
q  Scheduler prioritizes based on this single bit 
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Methodology 
n  Simulation Model 

q  24 cores, 4 channels, 4 banks/channel 
q  Core Model 

n  Out-of-order, 128-entry instruction window 
n  512 KB L2 cache/core 

q  Memory Model – DDR2 
 

n  Workloads 
q  240 SPEC CPU 2006 multiprogrammed workloads  

(categorized based on memory intensity) 
 

n  Metrics 
q  System Performance 
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Previous Work on Memory Scheduling 
n  FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000] 

q  Prioritizes row-buffer hits and older requests 
q  Application-unaware 
 
 

n  ATLAS [Kim et al., HPCA 2010] 

q  Prioritizes applications  with low memory-intensity 
 
 

n  TCM [Kim et al., MICRO 2010] 

q  Always prioritizes low memory-intensity applications 
q  Shuffles request priorities of high memory-intensity applications 
 

243 



Comparison to Previous Scheduling Policies 
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MCP Summary 
n  Uncontrolled inter-application interference in main memory 

degrades system performance 

n  Application-aware memory channel partitioning (MCP) 
q  Separates the data of badly-interfering applications              

to different channels, eliminating interference  
 

n  Integrated memory partitioning and scheduling (IMPS) 
q  Prioritizes very low memory-intensity applications in scheduler 
q  Handles other applications’ interference by partitioning 
 

n  MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost 
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Summary: Memory QoS Approaches and Techniques 

n  Approaches: Smart vs. dumb resources 
q  Smart resources: QoS-aware memory scheduling 
q  Dumb resources: Source throttling; channel partitioning 
q  Both approaches are effective in reducing interference 
q  No single best approach for all workloads 

n  Techniques: Request scheduling, source throttling, memory 
partitioning 
q  All approaches are effective in reducing interference 
q  Can be applied at different levels: hardware vs. software 
q  No single best technique for all workloads 

n  Combined approaches and techniques are the most powerful 
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11] 
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Handling Interference in Parallel Applications 

n  Threads in a multithreaded application are inter-dependent 
n  Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
n  How do we schedule requests of inter-dependent threads to 

maximize multithreaded application performance? 

n  Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

n  Hardware/software cooperative limiter thread estimation: 
n  Thread executing the most contended critical section 
n  Thread that is falling behind the most in a parallel for loop 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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Conclusions: Topic 3 

n  Technology, application, architecture trends dictate            
new needs from memory system 

n  A fresh look at (re-designing) the memory hierarchy 
q  Scalability: DRAM-System Codesign and New Technologies 
q  QoS: Reducing and controlling main memory interference:     

QoS-aware memory system design 
q  Efficiency: Customizability, minimal waste, new technologies 

n  QoS-unaware memory: uncontrollable and unpredictable 
n  Providing QoS awareness improves performance, 

predictability, fairness, and utilization of the memory system 
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Additional Material 
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Two Works 

n  Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh 
Kumar, and Mani Azimi, 
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"  
Proceedings of the 
19th International Symposium on High-Performance Computer 
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx) 

n  Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, 
Onur Mutlu, and Yale N. Patt,  
"Parallel Application Memory Scheduling" 
Proceedings of the 44th International Symposium on Microarchitecture 
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)  
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Multi-Core to Many-Core 

Multi-Core Many-Core 
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Many-Core On-Chip Communication 
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Task Scheduling 
n  Traditional 

    When to schedule a task? – Temporal 
 

n  Many-Core 
    When to schedule a task? – Temporal 
+ Where to schedule a task? – Spatial 
 

n   Spatial scheduling impacts performance of memory 
hierarchy 
q  Latency and interference in interconnect, memory, caches 
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Problem: Spatial Task Scheduling 

Applications Cores 

How to map applications to cores? 
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Challenges in Spatial Task Scheduling 

Applications Cores 

How to reduce destructive interference between applications?  

How to reduce communication distance?  
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How to prioritize applications to improve throughput?  



Application-to-Core Mapping 
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Step 1 — Clustering 
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Step 1 — Clustering 

Improved Locality 
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Step 1 — Clustering 
n  Clustering memory accesses 

q  Locality aware page replacement policy (cluster-CLOCK) 
n  When allocating free page, give preference to pages 

belonging to the cluster’s memory controllers (MCs) 
n  Look ahead “N” pages beyond the default replacement 

candidate to find page belonging to cluster’s MC 

n  Clustering cache accesses 
q  Private caches automatically enforce clustering  
q  Shared caches can use Dynamic Spill Receive* mechanism 

263 *Qureshi et al, HPCA 2009 



Step 2 — Balancing 

Heavy 

Light 

Applications Cores 
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Too much load in clusters with heavy applications 



Step 2 — Balancing 

Is this the best we can do? Let’s take a look at application characteristics 

Heavy 

Light 

Applications Cores 
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Better bandwidth utilization 



Application Types 
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Application Types 

Identify and isolate sensitive applications while ensuring load balance  
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Step 3 — Isolation 

Heavy 

Light 

Applications Cores 

Sensitive 

Medium 

Isolate sensitive applications to a cluster 
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Balance load for remaining applications across clusters 



Step 3 — Isolation 
n  How to estimate sensitivity? 

q  High Miss— high misses per kilo instruction (MPKI) 
q  Low MLP— high relative stall cycles per miss (STPM) 
q  Sensitive if MPKI > Threshold and relative STPM is high 

n  Whether to or not to allocate cluster to sensitive 
applications? 

n  How to map sensitive applications to their own 
cluster? 
q  Knap-sack algorithm 
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Step 4 — Radial Mapping 

Heavy 

Light 

Applications Cores 

Sensitive 

Medium 

Map applications that benefit most from  
being close to memory controllers close to these resources 
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Step 4 — Radial Mapping 
n  What applications benefit most from being close to the 

memory controller?  
q  High memory bandwidth demand 
q  Also affected by network performance 
q  Metric => Stall time per thousand instructions 
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Putting It All Together 
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Evaluation Methodology 
n  60-core system 

q  x86 processor model based on Intel Pentium M 
q  2 GHz processor, 128-entry instruction window 
q  32KB private L1 and 256KB per core private L2 caches 
q  4GB DRAM, 160 cycle access latency, 4 on-chip DRAM controllers 
q  CLOCK page replacement algorithm 

n  Detailed Network-on-Chip model  
q  2-stage routers (with speculation  and look ahead routing) 
q  Wormhole switching (4 flit data packets) 
q  Virtual channel flow control (4 VCs, 4 flit buffer depth) 
q  8x8 Mesh (128 bit bi-directional channels) 
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Configurations 
n  Evaluated configurations 

q  BASE—Random core mapping 
q  BASE+CLS—Baseline with clustering 
q  A2C 

n  Benchmarks 
q  Scientific, server, desktop benchmarks (35 applications) 
q  128 multi-programmed workloads 
q  4 categories based on aggregate workload MPKI 

n  MPKI500, MPKI1000, MPKI1500, MPKI2000  
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System Performance 
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System performance improves by 17% 



Network Power 
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Summary of Other Results 
n  A2C can reduce page fault rate 
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Summary of Other Results 
n  A2C can reduce page faults 
n  Dynamic A2C also improves system performance 

q  Continuous “Profiling” + “Enforcement” intervals 
q  Retains clustering benefits 
q  Migration overheads are minimal 

n  A2C complements application-aware packet 
prioritization* in NoCs 

n  A2C is effective for a variety of system parameters 
q  Number of and placement of memory controllers 
q  Size and organization of last level cache  

 

278 *Das et al, MICRO 2009 



Conclusion 
n  Problem: Spatial scheduling for Many-Core processors 

q  Develop fundamental insights for core mapping policies 

n  Solution: Application-to-Core (A2C) mapping policies 

n  A2C improves system performance, system fairness 
and network power significantly 
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Background 

n  Memory requests from different 
cores interfere in shared memory 
resources 

n  Multi-programmed workloads 
o  System Performance and Fairness 

n  A single multi-threaded 
application? 
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Memory System Interference in  
A Single Multi-Threaded Application 

n  Inter-dependent threads from the same 
application slow each other down 

n  Most importantly the critical path of execution  
can be significantly slowed down 

n  Problem and goal are very different from 
interference between independent applications 
o  Interdependence between threads 
o  Goal: Reduce execution time of a single application 
o  No notion of fairness among the threads  

of the same application 
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Potential in 
A Single Multi-Threaded Application 
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 If all main-memory related interference is ideally 
eliminated, execution time is reduced by 45% on average 
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Outline 

n  Problem Statement 
n  Parallel Application Memory Scheduling 
n  Evaluation 
n  Conclusion 
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Outline 

n  Problem Statement 
n  Parallel Application Memory Scheduling 
n  Evaluation 
n  Conclusion 
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Parallel Application Memory Scheduler 

n  Identify the set of threads likely to be on the 
critical path as limiter threads 
o  Prioritize requests from limiter threads  
 

n  Among limiter threads: 
o  Prioritize requests from latency-sensitive threads 

(those with lower MPKI) 

n  Among non-limiter threads: 
o  Shuffle priorities of non-limiter threads to reduce 

inter-thread memory interference  
o  Prioritize requests from threads falling behind 

others in a parallel for-loop 
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Parallel Application Memory Scheduler 

n  Identify the set of threads likely to be on the 
critical path as limiter threads 
o  Prioritize requests from limiter threads  
 

n  Among limiter threads: 
o  Prioritize requests from latency-sensitive threads 

(those with lower MPKI) 

n  Among non-limiter threads: 
o  Shuffle priorities of non-limiter threads to reduce 

inter-thread memory interference  
o  Prioritize requests from threads falling behind 

others in a parallel for-loop 
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Runtime System Limiter Identification 

n  Contended critical sections are often on the critical path of 
execution 
 

n  Extend runtime system to identify thread executing  
the most contended critical section as the limiter thread 
o  Track total amount of time all threads wait on  

each lock in a given interval 
o  Identify the lock with largest waiting time as  

the most contended 
o  Thread holding the most contended lock is a limiter and 

this information is exposed to the memory controller 
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Prioritizing Requests from  
Limiter Threads 
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Parallel Application Memory Scheduler 

n  Identify the set of threads likely to be on the 
critical path as limiter threads 
o  Prioritize requests from limiter threads  
 

n  Among limiter threads: 
o  Prioritize requests from latency-sensitive threads 

(those with lower MPKI) 

n  Among non-limiter threads: 
o  Shuffle priorities of non-limiter threads to reduce 

inter-thread memory interference  
o  Prioritize requests from threads falling behind 

others in a parallel for-loop 
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Time-based classification of threads 
as latency- vs. BW-sensitive 
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Terminology 

n  A code-segment is defined as: 
o  A program region between two consecutive 

synchronization operations 
o  Identified with a 2-tuple: 

<beginning IP, lock address> 

n  Important for classifying threads as  
latency- vs. bandwidth-sensitive 
o  Time-based vs. code-segment based 

classification 
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Code-segment based classification of 
threads as latency- vs. BW-sensitive 
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Parallel Application Memory Scheduler 

n  Identify the set of threads likely to be on the 
critical path as limiter threads 
o  Prioritize requests from limiter threads  
 

n  Among limiter threads: 
o  Prioritize requests from latency-sensitive threads 

(those with lower MPKI) 

n  Among non-limiter threads: 
o  Shuffle priorities of non-limiter threads to reduce 

inter-thread memory interference  
o  Prioritize requests from threads falling behind 

others in a parallel for-loop 
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Shuffling Priorities of  
Non-Limiter Threads 

n  Goal:  
o  Reduce inter-thread interference among a set of threads 

with the same importance in terms of our estimation of 
the critical path 

o  Prevent any of these threads from becoming  
new bottlenecks 

n  Basic Idea:  
o  Give each thread a chance to be high priority in the memory 

system and exploit intra-thread bank parallelism and  
row-buffer locality 

o  Every interval assign a set of random priorities to the 
threads and shuffle priorities at the end of the interval 
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Shuffling Priorities of  
Non-Limiter Threads 
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Outline 

n  Problem Statement 
n  Parallel Application Memory Scheduling 
n  Evaluation 
n  Conclusion 
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Evaluation Methodology 
n  x86 cycle accurate simulator 

n  Baseline processor configuration 
o  Per-core 

-  4-wide issue, out-of-order, 64 entry ROB 

o  Shared (16-core system) 
-  128 MSHRs 
-  4MB, 16-way L2 cache 

o  Main Memory 
-  DDR3 1333 MHz 
-  Latency of 15ns per command (tRP, tRCD, CL) 
-  8B wide core to memory bus 
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PAMS Evaluation 
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7%	


Thread criticality predictors (TCP) [Bhattacherjee+, ISCA’09]	
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Sensitivity to system parameters 

-10.5%	
-15.9%	
-16.7%	


L2 Cache Size	


4 MB	
 8 MB	
 16 MB	

Δ FR-FCFS Δ FR-FCFS Δ FR-FCFS 

-10.4%	
-11.6%	
-16.7%	


Number of Memory Channels	


1 Channel	
 2 Channels	
 4 Channels	


Δ FR-FCFS Δ FR-FCFS Δ FR-FCFS 



Conclusion 
n  Inter-thread main memory interference within a  

multi-threaded application increases execution time 
 
n  Parallel Application Memory Scheduling (PAMS) improves a 

single multi-threaded application’s performance by 
o  Identifying a set of threads likely to be on the critical path and 

prioritizing requests from them 
o  Periodically shuffling priorities of non-likely critical threads to 

reduce inter-thread interference among them 
 

n  PAMS significantly outperforms  
o  Best previous memory scheduler designed for  

multi-programmed workloads 
o  A memory scheduler that uses a state-of-the-art  

thread criticality predictor (TCP)  
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Related Works 



Some Related Past Work 
n  That I could not cover… 

n  How to handle prefetch requests in a QoS-aware multi-core 
memory system? 
q  Prefetch-aware shared resource management, ISCA’11. 
q  Prefetch-aware memory controllers, MICRO’08, IEEE-TC’11. 
q  Coordinated control of multiple prefetchers, MICRO’09. 

n  How to design QoS mechanisms in the interconnect? 
q  Topology-aware, scalable QoS, ISCA’11, IEEE Micro’12. 
q  Slack-based packet scheduling, ISCA’10, IEEE Micro’11. 
q  Efficient bandwidth guarantees, MICRO’09. 
q  Application-aware request prioritization, MICRO’09. 
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Some Issues in Cache Design 

 
 
 
 



DRAM-Aware LLC Writeback 
n  Problem 1: Writebacks to DRAM interfere with reads and 

cause additional performance penalty 
q  Write-to-read turnaround time in DRAM bus 
q  Write-recovery latency in DRAM bank 
q  Change of row buffer à reduced row-buffer locality for read requests 

n  Problem 2: Writebacks that occur once in a while have low 
row buffer locality 

n  Idea: When evicting a dirty cache block to a row, 
proactively search the cache for other dirty blocks to the 
same row à evict them à write to DRAM in a batch 
q  Improves row buffer locality 
q  Reduces write-to-read switching penalties on DRAM bus 
q  Improves performance on both single-core and multi-core systems 
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More Information 
n  Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. 

Patt,  
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused 
Interference in Memory Systems" 
HPS Technical Report, TR-HPS-2010-002, April 2010.  
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DRAM-Aware Cache Design: 
An Example of Resource Coordination 

 
 
 
 



DRAM-Aware Cache Design 

n  Coordination of cache policies with memory controllers 

n  Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and 
Yale N. Patt,  
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-
Caused Interference in Memory Systems" 
HPS Technical Report, TR-HPS-2010-002, April 2010.  

n  Chang Joo Lee, Eiman Ebrahimi, Veynu Narasiman, Onur Mutlu, and 
Yale N. Patt,  
"DRAM-Aware Last-Level Cache Replacement" 
HPS Technical Report, TR-HPS-2010-007, December 2010.  
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Write-Caused Interference:  
Read-Write Switching 

•  Read-write switching penalty for requests to any bank   

Data bus: 

Idle (~10 processor cycles) 

Data A 

Idle (~85 processor cycles) 

Data C 

Frequent read-write switching incurs many idle cycles 

Data B 

Command: 
Read A Write C Read B 

Data bus: 

Data A 

Data B Command: 
Read A Read B 

•  Row-hit read-to-read (write-to-write) to any bank:  
back-to-back data transfer   
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No precharge  
(~60 processor cycles) 

Write-Caused Interference: 
Write-to-Row-Conflict 

•  Row-conflict after read (in the same bank)  

Row-conflict after a write causes more idle cycles 

Command: 
Read A Precharge 

Data bus: 
Data A 

Idle (~120 processor cycles) 
Data B 

Activate B  Read or write B 

Command: 
Write A Precharge 

Data bus: 
Data A Data B 

Activate B Read or write B 

•  Row-conflict after write (in the same bank)  

Idle (~225 processor cycles) 

Row-conflict 

Row-conflict 
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Write-Caused Interference 

•  Read-Write Switching 
– Frequent read-write switching incurs many

 idle cycles 

•  Write-to-Row-Conflict 
– A row-conflict after a write causes more idl

e cycles 

Generating many row-hit writes rather than  
row-conflict writes is preferred 
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LRU vs. Interference-Aware  
Replacement 

Read A Write B 

Row B 
Row Buffer in Bank 0 

DRAM 

All requests are to the same cache set 

DRAM 
Controller 

Read 
buffer 

Write 
buffer 

Dirty C Set X 

Ø  Conventional LRU:   
 

Reading A 
Row-conflict after write penalty 

Writing B Writing C 
Servicing 

Write B (row-hit), Write C (row-conflict) 

Clean  

Clean A  

Clean  Dirty B  

Write C 

Last-level cache 

Less recently used 
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LRU vs. Interference-Aware  
Replacement 

Read A Write B 

Row B 
Row Buffer for writes 

DRAM 

All requests are to the same cache set 

DRAM 
Controller 

Read 
buffer 

Write 
buffer 

Dirty C 

Last-level cache 

Set X 

Ø  Conventional LRU:   
 

Less recently used 

Ø  Interference-aware:  

Reading A 
Row-conflict after write penalty 

Writing B Writing C 

Writing B 

Reading A 
Writing B 

Reduced idle cycles 

Servicing 
Write B (row-hit), Write C (row-conflict) 

Clean  

Clean A  

Clean  Dirty B  

Write B 

Write B (row-hit), Write B (row-hit) 

A simple policy can reduce write service time 
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Performance of  
DRAM-Aware Replacement 
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Outline 
•  Problem 
•  Solutions 

–  Prefetch-Aware DRAM Controller  
–  BLP-Aware Request Issue Policies 
–  DRAM-Aware Cache Replacement 
–  DRAM-Aware Writeback  

•  Combination of Solutions 
•  Related Work 
•  Conclusion 
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DRAM-Aware Writeback 

•  Write-caused interference-aware replacem
ent is not enough 
–   Row-hit writebacks are sent only when a repl

acement occurs 
•  Lose opportunities to service more writes quickly 

•  To minimize write-caused interference, 
proactively clean row-hit dirty lines 
→ Reads are serviced without write-caused inter
ference for a longer period 
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DRAM-Aware Writeback 

1. When a dirty line is evicted for the last-level       
cache, store its address  

2. Using the stored address, search all possible     
sets for row-hit dirty lines and clean them           
whenever the cache bank is idle 
 

•  Many row-hit writes (up to the row size) are m    
serviced quickly 
–  Reads can be serviced for a longer time without being

 interfered with by writes 
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Performance of  
DRAM-Aware Writeback 
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