
Scalable Many-Core Memory Systems
Topic 3: Memory Interference and

QoS-Aware Memory Systems

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu

onur@cmu.edu
HiPEAC ACACES Summer School 2013

July 15-19, 2013

What Will You Learn in This Course?
n  Scalable Many-Core Memory Systems

q  July 15-19, 2013

n  Topic 1: Main memory basics, DRAM scaling
n  Topic 2: Emerging memory technologies and hybrid memories
n  Topic 3: Main memory interference and QoS
n  Topic 4 (unlikely): Cache management
n  Topic 5 (unlikely): Interconnects

n  Major Overview Reading:
q  Mutlu, “Memory Scaling: A Systems Architecture Perspective,”

IMW 2013.

2

Readings and Videos

Memory Lecture Videos
n  Memory Hierarchy (and Introduction to Caches)

q  http://www.youtube.com/watch?
v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=22

n  Main Memory
q  http://www.youtube.com/watch?

v=ZLCy3pG7Rc0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=25

n  Memory Controllers, Memory Scheduling, Memory QoS
q  http://www.youtube.com/watch?

v=ZSotvL3WXmA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=26
q  http://www.youtube.com/watch?

v=1xe2w3_NzmI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=27

n  Emerging Memory Technologies
q  http://www.youtube.com/watch?

v=LzfOghMKyA0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=35

n  Multiprocessor Correctness and Cache Coherence
q  http://www.youtube.com/watch?v=U-

VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
4

Readings for Topic 1 (DRAM Scaling)
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” HPCA 2013.
n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA

2012.
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism in DRAM,”

ISCA 2012.
n  Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices,” ISCA 2013.
n  Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and

Initialization of Bulk Data,” CMU CS Tech Report 2013.
n  David et al., “Memory Power Management via Dynamic Voltage/

Frequency Scaling,” ICAC 2011.
n  Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement

Learning Approach,” ISCA 2008.

5

Readings for Topic 2 (Emerging Technologies)

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

n  Qureshi et al., “Scalable high performance main memory system using
phase-change memory technology,” ISCA 2009.

n  Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

n  Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” ICCD 2012 Best Paper Award.

n  Meza et al., “A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory,” WEED 2013.

n  Kultursay et al., “Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” ISPASS 2013.

6

Readings for Topic 3 (Memory QoS)
n  Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX

Security 2007.
n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,”

MICRO 2007.
n  Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA

2008, IEEE Micro 2009.
n  Kim et al., “ATLAS: A Scalable and High-Performance Scheduling

Algorithm for Multiple Memory Controllers,” HPCA 2010.
n  Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE

Micro 2011.
n  Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011.
n  Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.
n  Subramanian et al., “MISE: Providing Performance Predictability and

Improving Fairness in Shared Main Memory Systems,” HPCA 2013.
n  Das et al., “Application-to-Core Mapping Policies to Reduce Memory

System Interference in Multi-Core Systems,” HPCA 2013.
7

Readings for Topic 3 (Memory QoS)
n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM

TOCS 2012.
n  Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC

2011.
n  Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.
n  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for

Multi-Core Systems,” ISCA 2011.

8

Readings in Flash Memory
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)

9

Online Lectures and More Information
n  Online Computer Architecture Lectures

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ

n  Online Computer Architecture Courses
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php

n  Recent Research Papers

q  http://users.ece.cmu.edu/~omutlu/projects.htm
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en

10

Main Memory Interference

Trend: Many Cores on Chip
n  Simpler and lower power than a single large core
n  Large scale parallelism on chip

12

IBM	 Cell	 BE	
8+1	 cores	

Intel	 Core	 i7	
8	 cores	

Tilera	 TILE	 Gx	
100	 cores,	 networked	

IBM	 POWER7	
8	 cores	

Intel	 SCC	
48	 cores,	 networked	

Nvidia	 Fermi	
448	 “cores”	

AMD	 Barcelona	
4	 cores	

Sun	 Niagara	 II	
8	 cores	

Many Cores on Chip

n  What we want:
q  N times the system performance with N times the cores

n  What do we get today?

13

Unfair Slowdowns due to Interference

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

14

15

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

Memory System is the Major Shared Resource

16

threads’ requests
interfere

Much More of a Shared Resource in Future

17

Inter-Thread/Application Interference

n  Problem: Threads share the memory system, but memory
system does not distinguish between threads’ requests

n  Existing memory systems
q  Free-for-all, shared based on demand
q  Control algorithms thread-unaware and thread-unfair
q  Aggressive threads can deny service to others
q  Do not try to reduce or control inter-thread interference

18

Unfair Slowdowns due to Interference

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

matlab
(Core 1)

gcc
(Core 2)

19

20

Uncontrolled Interference: An Example

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

stream random

DRAM
Bank 3

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = rand();
 A[index] = B[index];
 …
}

21

A Memory Performance Hog

STREAM

-  Sequential memory access
-  Very high row buffer locality (96% hit rate)
-  Memory intensive

RANDOM

-  Random memory access
-  Very low row buffer locality (3% hit rate)
-  Similarly memory intensive

// initialize large arrays A, B

for (j=0; j<N; j++) {
 index = j*linesize;
 A[index] = B[index];
 …
}

streaming random

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

22

What Does the Memory Hog Do?

Row Buffer

R
ow

 d
ec

od
er

Column mux

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0 T1: Row 111

T0: Row 0 T0: Row 0 T1: Row 5

T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0 T0: Row 0

Memory Request Buffer

T0: STREAM
T1: RANDOM

Row size: 8KB, cache block size: 64B
128 (8KB/64B) requests of T0 serviced before T1

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

23

DRAM Controllers

n  A row-conflict memory access takes significantly longer
than a row-hit access

n  Current controllers take advantage of the row buffer

n  Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n  This scheduling policy aims to maximize DRAM throughput
n  But, it is unfair when multiple threads share the DRAM system

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

Effect of the Memory Performance Hog

0

0.5

1

1.5

2

2.5

3

STREAM RANDOM

24

1.18X slowdown

2.82X slowdown

Results on Intel Pentium D running Windows XP
(Similar results for Intel Core Duo and AMD Turion, and on Fedora Linux)

Sl
ow

do
w

n

0

0.5

1

1.5

2

2.5

3

STREAM gcc
0

0.5

1

1.5

2

2.5

3

STREAM Virtual PC

Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX Security 2007.

Greater Problem with More Cores

n  Vulnerable to denial of service (DoS) [Usenix Security’07]

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

25

Greater Problem with More Cores

n  Vulnerable to denial of service (DoS) [Usenix Security’07]

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

26

Distributed DoS in Networked Multi-Core Systems

27

Attackers
(Cores 1-8)

Stock option pricing application
(Cores 9-64)

 Cores connected via
 packet-switched
 routers on chip

 ~5000X latency increase

Grot, Hestness, Keckler, Mutlu,
“Preemptive virtual clock: A Flexible,
Efficient, and Cost-effective QOS
Scheme for Networks-on-Chip,“
MICRO 2009.

How Do We Solve The Problem?

n  Inter-thread interference is uncontrolled in all memory
resources
q  Memory controller
q  Interconnect
q  Caches

n  We need to control it
q  i.e., design an interference-aware (QoS-aware) memory system

28

QoS-Aware Memory Systems: Challenges

n  How do we reduce inter-thread interference?
q  Improve system performance and core utilization
q  Reduce request serialization and core starvation

n  How do we control inter-thread interference?
q  Provide mechanisms to enable system software to enforce

QoS policies
q  While providing high system performance

n  How do we make the memory system configurable/flexible?
q  Enable flexible mechanisms that can achieve many goals

n  Provide fairness or throughput when needed
n  Satisfy performance guarantees when needed

29

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores

30

QoS-Aware Memory Scheduling

n  How to schedule requests to provide
q  High system performance
q  High fairness to applications
q  Configurability to system software

n  Memory controller needs to be aware of threads

31

Memory	
Controller	

Core	 Core	

Core	 Core	
Memory	

Resolves memory contention
by scheduling requests

QoS-Aware Memory Scheduling:
Evolution

QoS-Aware Memory Scheduling: Evolution
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q  Idea: Estimate and balance thread slowdowns

q  Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q  Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

n  ATLAS memory scheduler [Kim+ HPCA’10]

33

Within-Thread Bank Parallelism	

34	

Bank	 0	

Bank	 1	

req	

req	 req	

req	

memory	 service	 +meline	

thread	 A	 	

thread	 B	 	

thread	 execu+on	 +meline	

WAIT	

WAIT	

thread	 B	 	

thread	 A	 	
Bank	 0	

Bank	 1	

req	

req	 req	

req	

memory	 service	 +meline	

thread	 execu+on	 +meline	

WAIT	

WAIT	

ra
nk
	

thread	 B	 	

thread	 A	 	

thread	 A	 	

thread	 B	 	

SAVED	 CYCLES	

Key	 Idea:	

Parallelism-Aware Batch Scheduling [ISCA’08]

n  Principle 1: Schedule requests from a
thread back to back
q  Preserves each thread’s bank parallelism
q  But, this can cause starvation…

n  Principle 2: Group a fixed number of oldest
requests from each thread into a “batch”
q  Service the batch before all other requests
q  Form a new batch when the current batch is done
q  Eliminates starvation, provides fairness

35

Bank 0 Bank 1

T0

T0

T1

T1

T3

T3

T2

T2

T3 T3

T3

Batch

T1

T0 T0

QoS-Aware Memory Scheduling: Evolution
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07]

q  Idea: Estimate and balance thread slowdowns

q  Takeaway: Proportional thread progress improves performance,
especially when threads are “heavy” (memory intensive)

n  Parallelism-aware batch scheduling [Mutlu+ ISCA’08, Top Picks’09]

q  Idea: Rank threads and service in rank order (to preserve bank
parallelism); batch requests to prevent starvation

q  Takeaway: Preserving within-thread bank-parallelism improves
performance; request batching improves fairness

n  ATLAS memory scheduler [Kim+ HPCA’10]

q  Idea: Prioritize threads that have attained the least service from the
memory scheduler

q  Takeaway: Prioritizing “light” threads improves performance
36

QoS-Aware Memory Scheduling: Evolution

n  Thread cluster memory scheduling [Kim+ MICRO’10]

q  Idea: Cluster threads into two groups (latency vs. bandwidth
sensitive); prioritize the latency-sensitive ones; employ a fairness
policy in the bandwidth sensitive group

q  Takeaway: Heterogeneous scheduling policy that is different based
on thread behavior maximizes both performance and fairness

n  Integrated Memory Channel Partitioning and Scheduling
[Muralidhara+ MICRO’11]

n  Idea: Only prioritize very latency-sensitive threads in the scheduler;
mitigate all other applications’ interference via channel partitioning

n  Takeaway: Intelligently combining application-aware channel
partitioning and memory scheduling provides better performance
than either

37

QoS-Aware Memory Scheduling: Evolution

n  Parallel application memory scheduling [Ebrahimi+ MICRO’11]

q  Idea: Identify and prioritize limiter threads of a multithreaded
application in the memory scheduler; provide fast and fair progress
to non-limiter threads

q  Takeaway: Carefully prioritizing between limiter and non-limiter
threads of a parallel application improves performance

n  Staged memory scheduling [Ausavarungnirun+ ISCA’12]

n  Idea: Divide the functional tasks of an application-aware memory
scheduler into multiple distinct stages, where each stage is
significantly simpler than a monolithic scheduler

n  Takeaway: Staging enables the design of a scalable and relatively
simpler application-aware memory scheduler that works on very
large request buffers

38

QoS-Aware Memory Scheduling: Evolution

n  MISE [Subramanian+ HPCA’13]

n  Idea: Estimate the performance of a thread by estimating its change
in memory request service rate when run alone vs. shared à use
this simple model to estimate slowdown to design a scheduling
policy that provides predictable performance or fairness

n  Takeaway: Request service rate of a thread is a good proxy for its
performance; alone request service rate can be estimated by giving
high priority to the thread in memory scheduling for a while

39

QoS-Aware Memory Scheduling: Evolution

n  Prefetch-aware shared resource management [Ebrahimi+
ISCA’12] [Ebrahimi+ MICRO’09] [Lee+ MICRO’08]

q  Idea: Prioritize prefetches depending on how they affect system
performance; even accurate prefetches can degrade performance of
the system

q  Takeaway: Carefully controlling and prioritizing prefetch requests
improves performance and fairness

n  DRAM-Aware last-level cache policies [Lee+ HPS Tech Report’10]
[Lee+ HPS Tech Report’10]
q  Idea: Design cache eviction and replacement policies such that they

proactively exploit the state of the memory controller and DRAM
(e.g., proactively evict data from the cache that hit in open rows)

q  Takeaway: Coordination of last-level cache and DRAM policies
improves performance and fairness

40

Stall-Time Fair Memory Scheduling

Onur Mutlu and Thomas Moscibroda,
"Stall-Time Fair Memory Access Scheduling for Chip Multiprocessors"

40th International Symposium on Microarchitecture (MICRO),
pages 146-158, Chicago, IL, December 2007. Slides (ppt)

STFM Micro 2007 Talk

The Problem: Unfairness

n  Vulnerable to denial of service (DoS) [Usenix Security’07]

n  Unable to enforce priorities or SLAs [MICRO’07,’10,’11, ISCA’08’11’12, ASPLOS’10]

n  Low system performance [IEEE Micro Top Picks ’09,’11a,’11b,’12]

Uncontrollable, unpredictable system

42

How Do We Solve the Problem?
n  Stall-time fair memory scheduling [Mutlu+ MICRO’07]

n  Goal: Threads sharing main memory should experience
similar slowdowns compared to when they are run alone à
fair scheduling

n  Also improves overall system performance by ensuring cores make
“proportional” progress

n  Idea: Memory controller estimates each thread’s slowdown
due to interference and schedules requests in a way to
balance the slowdowns

n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling for
Chip Multiprocessors,” MICRO 2007.

43

44

Stall-Time Fairness in Shared DRAM Systems

n  A DRAM system is fair if it equalizes the slowdown of equal-priority threads
relative to when each thread is run alone on the same system

n  DRAM-related stall-time: The time a thread spends waiting for DRAM memory

n  STshared: DRAM-related stall-time when the thread runs with other threads
n  STalone: DRAM-related stall-time when the thread runs alone

n  Memory-slowdown = STshared/STalone
q  Relative increase in stall-time

n  Stall-Time Fair Memory scheduler (STFM) aims to equalize

Memory-slowdown for interfering threads, without sacrificing performance
q  Considers inherent DRAM performance of each thread
q  Aims to allow proportional progress of threads

45

STFM Scheduling Algorithm [MICRO’07]

n  For each thread, the DRAM controller

q  Tracks STshared
q  Estimates STalone

n  Each cycle, the DRAM controller
q  Computes Slowdown = STshared/STalone for threads with legal requests
q  Computes unfairness = MAX Slowdown / MIN Slowdown

n  If unfairness < α
q  Use DRAM throughput oriented scheduling policy

n  If unfairness ≥ α
q  Use fairness-oriented scheduling policy

n  (1) requests from thread with MAX Slowdown first
n  (2) row-hit first , (3) oldest-first

46

How Does STFM Prevent Unfairness?

Row Buffer

Data

Row 0

T0: Row 0

Row 0

T1: Row 16
T0: Row 0

T1: Row 111

T0: Row 0 T0: Row 0

T1: Row 5

T0: Row 0 T0: Row 0

T0: Row 0

T0 Slowdown

T1 Slowdown 1.00
1.00

1.00 Unfairness

1.03

1.03

1.06

1.06

α 1.05

1.03

1.06
1.03 1.04
1.08

1.04

1.04
1.11

1.06

1.07

1.04

1.10
1.14

1.03

Row 16 Row 111

STFM Pros and Cons
n  Upsides:

q  First work on fair multi-core memory scheduling
q  Good at providing fairness
q  Being fair improves performance

n  Downsides:
q  Does not handle all types of interference
q  Somewhat complex to implement
q  Slowdown estimations can be incorrect

47

Parallelism-Aware Batch Scheduling

Onur Mutlu and Thomas Moscibroda,
"Parallelism-Aware Batch Scheduling: Enhancing both
Performance and Fairness of Shared DRAM Systems”

35th International Symposium on Computer Architecture (ISCA),
pages 63-74, Beijing, China, June 2008. Slides (ppt)

PAR-BS ISCA 2008 Talk

Another Problem due to Interference

n  Processors try to tolerate the latency of DRAM requests by
generating multiple outstanding requests
q  Memory-Level Parallelism (MLP)
q  Out-of-order execution, non-blocking caches, runahead execution

n  Effective only if the DRAM controller actually services the

multiple requests in parallel in DRAM banks

n  Multiple threads share the DRAM controller
n  DRAM controllers are not aware of a thread’s MLP

q  Can service each thread’s outstanding requests serially, not in parallel

49

Bank Parallelism of a Thread

50

Thread A: Bank 0, Row 1

Thread A: Bank 1, Row 1

Bank access latencies of the two requests overlapped
Thread stalls for ~ONE bank access latency

Thread A :

Bank 0 Bank 1

Compute

2 DRAM Requests

Bank 0
Stall Compute

Bank 1

Single Thread:

Compute

Compute

2 DRAM Requests

Bank Parallelism Interference in DRAM

51

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A : Compute

2 DRAM Requests

Bank 0
Stall

Bank 1

Baseline Scheduler:

B: Compute

Bank 0

Stall
Bank 1

Stall

Stall

Bank access latencies of each thread serialized
Each thread stalls for ~TWO bank access latencies

2 DRAM Requests

Parallelism-Aware Scheduler

52

Bank 0 Bank 1

Thread A: Bank 0, Row 1

Thread B: Bank 1, Row 99

Thread B: Bank 0, Row 99

Thread A: Bank 1, Row 1

A :

2 DRAM Requests
Parallelism-aware Scheduler:

B: Compute
Bank 0

Stall Compute

Bank 1

Stall

2 DRAM Requests

A : Compute

2 DRAM Requests

Bank 0

Stall Compute

Bank 1

B: Compute

Bank 0

Stall Compute
Bank 1

Stall

Stall

Baseline Scheduler:

Compute
Bank 0

Stall Compute

Bank 1

Saved Cycles Average stall-time:
~1.5 bank access

latencies

Parallelism-Aware Batch Scheduling (PAR-BS)

n  Principle 1: Parallelism-awareness
q  Schedule requests from a thread (to

different banks) back to back
q  Preserves each thread’s bank parallelism
q  But, this can cause starvation…

n  Principle 2: Request Batching
q  Group a fixed number of oldest requests

from each thread into a “batch”
q  Service the batch before all other requests
q  Form a new batch when the current one is done
q  Eliminates starvation, provides fairness
q  Allows parallelism-awareness within a batch

53

Bank 0 Bank 1

T1

T1

T0

T0

T2

T2

T3

T3

T2 T2

T2

Batch

T0

T1 T1

Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008.

PAR-BS Components

n  Request batching

n  Within-batch scheduling
q  Parallelism aware

54

Request Batching

n  Each memory request has a bit (marked) associated with it

n  Batch formation:
q  Mark up to Marking-Cap oldest requests per bank for each thread
q  Marked requests constitute the batch
q  Form a new batch when no marked requests are left

n  Marked requests are prioritized over unmarked ones
q  No reordering of requests across batches: no starvation, high fairness

n  How to prioritize requests within a batch?

55

Within-Batch Scheduling

n  Can use any existing DRAM scheduling policy
q  FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality

n  But, we also want to preserve intra-thread bank parallelism
q  Service each thread’s requests back to back

n  Scheduler computes a ranking of threads when the batch is
formed
q  Higher-ranked threads are prioritized over lower-ranked ones
q  Improves the likelihood that requests from a thread are serviced in

parallel by different banks
n  Different threads prioritized in the same order across ALL banks

56

HOW?

How to Rank Threads within a Batch
n  Ranking scheme affects system throughput and fairness

n  Maximize system throughput
q  Minimize average stall-time of threads within the batch

n  Minimize unfairness (Equalize the slowdown of threads)
q  Service threads with inherently low stall-time early in the batch
q  Insight: delaying memory non-intensive threads results in high

slowdown

n  Shortest stall-time first (shortest job first) ranking
q  Provides optimal system throughput [Smith, 1956]*

q  Controller estimates each thread’s stall-time within the batch
q  Ranks threads with shorter stall-time higher

57
* W.E. Smith, “Various optimizers for single stage production,” Naval Research Logistics Quarterly, 1956.

n  Maximum number of marked requests to any bank (max-bank-load)
q  Rank thread with lower max-bank-load higher (~ low stall-time)

n  Total number of marked requests (total-load)
q  Breaks ties: rank thread with lower total-load higher

Shortest Stall-Time First Ranking

58

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3
max-bank-load total-load

T0 1 3

T1 2 4

T2 2 6

T3 5 9

Ranking:
T0 > T1 > T2 > T3

7

5

3

Example Within-Batch Scheduling Order

59

T2 T3 T1

T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3 T1 T3

T2 T2 T1 T2

T1 T0 T2 T0

T3 T2 T3

T3

T3

T3 Baseline Scheduling
Order (Arrival order)

PAR-BS Scheduling
Order

T2

T3

T1 T0

Bank 0 Bank 1 Bank 2 Bank 3

T3

T3

T1

T3 T2 T2

T1 T2 T1

T0

T2

T0

T3 T2

T3

T3

T3

T3

T0 T1 T2 T3

4 4 5 7

AVG: 5 bank access latencies AVG: 3.5 bank access latencies

Stall times

T0 T1 T2 T3

1 2 4 7 Stall times

Ti
m

e

1
2

4

6

Ranking: T0 > T1 > T2 > T3

1
2
3
4
5
6
7

Ti
m

e

Putting It Together: PAR-BS Scheduling Policy
n  PAR-BS Scheduling Policy

 (1) Marked requests first
 (2) Row-hit requests first
 (3) Higher-rank thread first (shortest stall-time first)
 (4) Oldest first

n  Three properties:
q  Exploits row-buffer locality and intra-thread bank parallelism
q  Work-conserving

n  Services unmarked requests to banks without marked requests

q  Marking-Cap is important
n  Too small cap: destroys row-buffer locality
n  Too large cap: penalizes memory non-intensive threads

n  Many more trade-offs analyzed in the paper

60

Batching

Parallelism-aware
within-batch
scheduling

Hardware Cost

n  <1.5KB storage cost for
q  8-core system with 128-entry memory request buffer

n  No complex operations (e.g., divisions)

n  Not on the critical path
q  Scheduler makes a decision only every DRAM cycle

61

62

Unfairness on 4-, 8-, 16-core Systems

1

1.5

2

2.5

3

3.5

4

4.5

5

4-core 8-core 16-core

Un
fa

irn
es

s
(lo

w
er

 is
 b

et
te

r)

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

Unfairness = MAX Memory Slowdown / MIN Memory Slowdown [MICRO 2007]

1.11X 1.08X

1.11X

63

System Performance (Hmean-speedup)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

4-core 8-core 16-core

N
or

m
al

iz
ed

 H
m

ea
n

Sp
ee

du
p

FR-FCFS
FCFS
NFQ
STFM
PAR-BS

8.3% 6.1% 5.1%

PAR-BS Pros and Cons

n  Upsides:
q  First work to identify the notion of bank parallelism destruction

across multiple threads
q  Simple mechanism

n  Downsides:
q  Implementation in multiple controllers needs coordination for

best performance à too frequent coordination since batching
is done frequently

q  Does not always prioritize the latency-sensitive applications

64

ATLAS Memory Scheduler

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter,
"ATLAS: A Scalable and High-Performance

Scheduling Algorithm for Multiple Memory Controllers"
16th International Symposium on High-Performance Computer Architecture (HPCA),

Bangalore, India, January 2010. Slides (pptx)

ATLAS HPCA 2010 Talk

Rethinking Memory Scheduling
A thread alternates between two states (episodes)

§ Compute episode: Zero outstanding memory requests è High IPC
§ Memory episode: Non-zero outstanding memory requests è Low IPC

66

Goal: Minimize time spent in memory episodes

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

Time

Memory episode Compute episode

How to Minimize Memory Episode Time

§  Minimizes time spent in memory episodes across all threads
§  Supported by queueing theory:

§  Shortest-Remaining-Processing-Time scheduling is optimal in
single-server queue

Remaining length of a memory episode?

 Prioritize thread whose memory episode will end the soonest

Time

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

How much longer?

67

Predicting Memory Episode Lengths

Large attained service è Large expected remaining service

Q: Why?
A: Memory episode lengths are Pareto distributed…

68

We discovered: past is excellent predictor for future

Time

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

Remaining service
FUTURE

Attained service
PAST

Pareto Distribution of Memory Episode Lengths

69

401.bzip2

Favoring least-attained-service memory episode
 = Favoring memory episode which will end the soonest

Pr
{M

em
. e

pi
so

de
 >

 x
}

x (cycles)

Memory episode lengths of
SPEC benchmarks

Pareto distribution

Attained service correlates with
remaining service

The longer an episode has lasted
è The longer it will last further

Prioritize the job with
shortest-remaining-processing-time

Provably optimal

§  Remaining service: Correlates with attained service

§  Attained service: Tracked by per-thread counter

Least Attained Service (LAS) Memory Scheduling

70

Prioritize the memory episode with
least-remaining-service

Our Approach Queueing Theory

Least-attained-service (LAS) scheduling:

Minimize memory episode time

However, LAS does not consider
long-term thread behavior

Prioritize the memory episode with
least-attained-service

Long-Term Thread Behavior

71

Mem.
episode

Thread 1 Thread 2

Short-term
thread behavior

Mem.
episode

Long-term
thread behavior

Compute
episode

Compute
episode

>
priority

<
priority

Prioritizing Thread 2 is more beneficial:
results in very long stretches of compute episodes

Short memory episode Long memory episode

Quantum-Based Attained Service of a Thread

72

Time
O

ut
st

an
di

ng

m
em

or
y

re
qu

es
ts

Attained service

Short-term
thread behavior

We divide time into large, fixed-length intervals:
quanta (millions of cycles)

Attained service

Long-term
thread behavior

O
ut

st
an

di
ng

m

em
or

y
re

qu
es

ts

Time

…
Quantum (millions of cycles)

LAS Thread Ranking

Each thread’s attained service (AS) is tracked by MCs

ASi = A thread’s AS during only the i-th quantum

Each thread’s TotalAS computed as:

TotalASi = α · TotalASi-1 + (1- α) · ASi
High α è More bias towards history

Threads are ranked, favoring threads with lower TotalAS

Threads are serviced according to their ranking

During a quantum

End of a quantum

Next quantum

73

ATLAS Scheduling Algorithm

ATLAS
§  Adaptive per-Thread Least Attained Service

§  Request prioritization order
 1. Prevent starvation: Over threshold request
 2. Maximize performance: Higher LAS rank
 3. Exploit locality: Row-hit request
 4. Tie-breaker: Oldest request

74

How to coordinate MCs to agree upon a consistent ranking?

4	

6	

8	

10	

12	

14	

16	

1	 2	 4	 8	 16	

Memory	 controllers	

Sy
st
em

	 th
ro
ug
hp

ut
	

FCFS	 FR_FCFS	 STFM	 PAR-‐BS	 ATLAS	

System Throughput: 24-Core System

75

System throughput = ∑ Speedup

ATLAS consistently provides higher system throughput than
all previous scheduling algorithms

17.0%

9.8%

8.4%

5.9%

3.5%

Sy
st

em
 t

hr
ou

gh
pu

t

of memory controllers

0	
2	
4	
6	
8	

10	
12	
14	

4	 8	 16	 24	 32	

Cores	

Sy
st
em

	 th
ro
ug
hp

ut
	

PAR-‐BS	 ATLAS	

System Throughput: 4-MC System

of cores increases è ATLAS performance benefit increases

76

1.1%
3.5%

4.0%

8.4%
10.8%

Sy
st

em
 t

hr
ou

gh
pu

t

of cores

Properties of ATLAS

§  LAS-ranking
§  Bank-level parallelism
§  Row-buffer locality

§  Very infrequent coordination

§  Scale attained service with
thread weight (in paper)

§  Low complexity: Attained

service requires a single
counter per thread in each MC

77

§  Maximize system performance

§  Scalable to large number of controllers

§  Configurable by system software

Goals Properties of ATLAS

ATLAS Pros and Cons
n  Upsides:

q  Good at improving performance
q  Low complexity
q  Coordination among controllers happens infrequently

n  Downsides:
q  Lowest ranked threads get delayed significantly à high

unfairness

78

TCM:
Thread Cluster Memory Scheduling

Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior"
43rd International Symposium on Microarchitecture (MICRO),
pages 65-76, Atlanta, GA, December 2010. Slides (pptx) (pdf)

TCM Micro 2010 Talk

No	 previous	 memory	 scheduling	 algorithm	 provides	
both	 the	 best	 fairness	 and	 system	 throughput	

1	

3	

5	

7	

9	

11	

13	

15	

17	

7	 7.5	 8	 8.5	 9	 9.5	 10	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

FCFS	
FRFCFS	
STFM	
PAR-‐BS	
ATLAS	

Previous Scheduling Algorithms are Biased

80	

System	 throughput	 bias	

Fairness	 bias	

BeZer	 system	 throughput	

Be
Z
er
	 fa

irn
es
s	

24	 cores,	 4	 memory	 controllers,	 96	 workloads	 	

Take	 turns	 accessing	 memory	

Throughput vs. Fairness

81	

Fairness	 biased	 approach	

thread	 C	

thread	 B	

thread	 A	

less	 memory	 	
intensive	

higher	
priority	

Priori[ze	 less	 memory-‐intensive	 threads	

Throughput	 biased	 approach	

Good	 for	 throughput	

starva3on	 è	 unfairness	

thread	 C	 thread	 B	 thread	 A	

Does	 not	 starve	

not	 priori3zed	 è	 	
reduced	 throughput	

Single	 policy	 for	 all	 threads	 is	 insufficient	

Achieving the Best of Both Worlds

82	

thread	

thread	

higher	
priority	

thread	

thread	

thread	 	

thread	

thread	

thread	

PrioriDze	 memory-‐non-‐intensive	 threads	

For	 Throughput	

Unfairness	 caused	 by	 memory-‐intensive	
being	 prioriDzed	 over	 each	 other	 	

• 	 Shuffle	 thread	 ranking	

Memory-‐intensive	 threads	 have	 	
different	 vulnerability	 to	 interference	

• 	 Shuffle	 asymmetrically	

For	 Fairness	

thread	

thread	

thread	

thread	

Thread Cluster Memory Scheduling [Kim+ MICRO’10]

1.   Group	 threads	 into	 two	 clusters	
2.   PrioriDze	 non-‐intensive	 cluster	
3.   Different	 policies	 for	 each	 cluster	

83	

thread	

Threads	 in	 the	 system	

thread	

thread	

thread	

thread	

thread	

thread	

Non-‐intensive	 	
cluster	

Intensive	 cluster	

thread	

thread	

thread	

Memory-‐non-‐intensive	 	

Memory-‐intensive	 	

Priori3zed	

higher	
priority	

higher	
priority	

Throughput	

Fairness	

TCM Outline

84	

1.	 Clustering	

Clustering Threads
Step1	 Sort	 threads	 by	 MPKI	 (misses	 per	 kiloinstruc[on)	
	
	
	
	
	
	

	

85	

th
re
ad
	

th
re
ad
	

th
re
ad
	

th
re
ad
	

th
re
ad
	

th
re
ad
	 higher	 	

MPKI	

T	 α	 <	 10%	
ClusterThreshold	

Intensive	 	
cluster	 αT	

Non-‐intensive	
cluster	

T	 =	 Total	 memory	 bandwidth	 usage	
	

Step2	 Memory	 bandwidth	 usage	 αT	 divides	 clusters	
	

TCM Outline

86	

1.	 Clustering	

2.	 Between	 	
Clusters	

Priori3ze	 non-‐intensive	 cluster	

•  Increases	 system	 throughput	
– Non-‐intensive	 threads	 have	 greater	 poten[al	 for	
making	 progress	

•  Does	 not	 degrade	 fairness	
– Non-‐intensive	 threads	 are	 “light”	
– Rarely	 interfere	 with	 intensive	 threads	

Prioritization Between Clusters

87	

>	
priority	

TCM Outline

88	

1.	 Clustering	

2.	 Between	 	
Clusters	

3.	 Non-‐Intensive	 	
Cluster	

Throughput	

Priori3ze	 threads	 according	 to	 MPKI	

•  Increases	 system	 throughput	
– Least	 intensive	 thread	 has	 the	 greatest	 poten[al	
for	 making	 progress	 in	 the	 processor	

Non-Intensive Cluster

89	

thread	

thread	

thread	

thread	

higher	
priority	 lowest	 MPKI	

highest	 MPKI	

TCM Outline

90	

1.	 Clustering	

2.	 Between	 	
Clusters	

3.	 Non-‐Intensive	 	
Cluster	

4.	 Intensive	 	
Cluster	

Throughput	

Fairness	

Periodically	 shuffle	 the	 priority	 of	 threads	
	

•  Is	 trea[ng	 all	 threads	 equally	 good	 enough?	
•  BUT:	 Equal	 turns	 ≠	 Same	 slowdown	

Intensive Cluster

91	

thread	

thread	

thread	

Increases	 fairness	

Most	 priori3zed	 higher	
priority	

thread	

thread	

thread	

0	
2	
4	
6	
8	
10	
12	
14	

random-‐access	 streaming	
Sl
ow

do
w
n	

Case Study: A Tale of Two Threads
Case	 Study:	 Two	 intensive	 threads	 contending	
1.  random-‐access	
2.  streaming	

92	

Priori[ze	 random-‐access	 Priori[ze	 streaming	

random-‐access	 thread	 is	 more	 easily	 slowed	 down	

0	
2	
4	
6	
8	

10	
12	
14	

random-‐access	 streaming	

Sl
ow

do
w
n	

7x	
priori[zed	

1x	

11x	

priori[zed	
1x	

Which	 is	 slowed	 down	 more	 easily?	

Why are Threads Different?

93	

random-‐access	 streaming	
req	 req	 req	 req	

Bank	 1	 Bank	 2	 Bank	 3	 Bank	 4	 Memory	
rows	

• All	 requests	 parallel	
• High	 bank-‐level	 parallelism	

• All	 requests	 è	 Same	 row	
• High	 row-‐buffer	 locality	

req	 req	 req	 req	

ac3vated	 row	
req	 req	 req	 req	 req	 req	 req	 req	 stuck	

Vulnerable	 to	 interference	

TCM Outline

94	

1.	 Clustering	

2.	 Between	 	
Clusters	

3.	 Non-‐Intensive	 	
Cluster	

4.	 Intensive	 	
Cluster	

Fairness	

Throughput	

Niceness
How	 to	 quan3fy	 difference	 between	 threads?	

95	

Vulnerability	 to	 interference	
Bank-‐level	 parallelism	

Causes	 interference	
Row-‐buffer	 locality	

+ Niceness	 -

Niceness	 High	 Low	

Shuffling: Round-Robin vs. Niceness-Aware
1.  Round-‐Robin	 shuffling	
2.  Niceness-‐Aware	 shuffling	

96	

Most	 priori3zed	

ShuffleInterval	

Priority	

Time	

Nice	 thread	

Least	 nice	 thread	

GOOD:	 Each	 thread	
priori+zed	 once	

ç	 What	 can	 go	 wrong?	

A	
B	
C	
D	

D	 A	 B	 C	 D	

Shuffling: Round-Robin vs. Niceness-Aware
1.  Round-‐Robin	 shuffling	
2.  Niceness-‐Aware	 shuffling	

97	

Most	 priori3zed	

ShuffleInterval	

Priority	

Time	

Nice	 thread	

Least	 nice	 thread	

ç	 What	 can	 go	 wrong?	

A	
B	
C	
D	

D	 A	 B	 C	 D	

A	

B	

D	
C	

B	

C	

A	
D	

C	

D	

B	
A	

D	

A	

C	
B	

BAD:	 Nice	 threads	 receive	 	
lots	 of	 interference	

GOOD:	 Each	 thread	
priori+zed	 once	

Shuffling: Round-Robin vs. Niceness-Aware
1.  Round-‐Robin	 shuffling	
2.  Niceness-‐Aware	 shuffling	

98	

Most	 priori3zed	

ShuffleInterval	

Priority	

Time	

Nice	 thread	

Least	 nice	 thread	

GOOD:	 Each	 thread	
priori+zed	 once	

A	
B	
C	
D	

D	 C	 B	 A	 D	

Shuffling: Round-Robin vs. Niceness-Aware
1.  Round-‐Robin	 shuffling	
2.  Niceness-‐Aware	 shuffling	

99	

Most	 priori3zed	

ShuffleInterval	

Priority	

Time	

Nice	 thread	

Least	 nice	 thread	
A	
B	
C	
D	

D	 C	 B	 A	 D	

D	

A	

C	
B	

B	

A	

C	
D	

A	

D	

B	
C	

D	

A	

C	
B	

GOOD:	 Each	 thread	
priori+zed	 once	

GOOD:	 Least	 nice	 thread	 stays	 	
mostly	 depriori+zed	

TCM Outline

100	

1.	 Clustering	

2.	 Between	 	
Clusters	

3.	 Non-‐Intensive	 	
Cluster	

4.	 Intensive	 	
Cluster	

1.	 Clustering	

2.	 Between	 	
Clusters	

3.	 Non-‐Intensive	 	
Cluster	

4.	 Intensive	 	
Cluster	

Fairness	

Throughput	

TCM: Quantum-Based Operation

101	

Time	

Previous	 quantum	
(~1M	 cycles)	

During	 quantum:	
• Monitor	 thread	 behavior	
1. Memory	 intensity	
2. Bank-‐level	 parallelism	
3. Row-‐buffer	 locality	

Beginning	 of	 quantum:	
• Perform	 clustering	
• Compute	 niceness	 of	
intensive	 threads	

Current	 quantum	
(~1M	 cycles)	

Shuffle	 interval	
(~1K	 cycles)	

TCM: Scheduling Algorithm
1.  Highest-‐rank:	 Requests	 from	 higher	 ranked	 threads	 priori[zed	

•  Non-‐Intensive	 cluster	 >	 Intensive	 cluster	
•  Non-‐Intensive	 cluster:	 lower	 intensity	 è	 higher	 rank	
•  Intensive	 cluster:	 rank	 shuffling	

2.  Row-‐hit:	 Row-‐buffer	 hit	 requests	 are	 priori[zed	

3.  Oldest:	 Older	 requests	 are	 priori[zed	

102	

TCM: Implementation Cost
Required	 storage	 at	 memory	 controller	 (24	 cores)	
	
	
	
	
	
	
•  No	 computa[on	 is	 on	 the	 cri[cal	 path	

103	

Thread	 memory	 behavior	 Storage	

MPKI	 ~0.2kb	

Bank-‐level	 parallelism	 ~0.6kb	

Row-‐buffer	 locality	 ~2.9kb	

Total	 <	 4kbits	

Previous Work
FRFCFS	 [Rixner	 et	 al.,	 ISCA00]:	 Priori[zes	 row-‐buffer	 hits	

–  Thread-‐oblivious	 è	 Low	 throughput	 &	 Low	 fairness	

STFM	 [Mutlu	 et	 al.,	 MICRO07]:	 Equalizes	 thread	 slowdowns	
–  Non-‐intensive	 threads	 not	 priori[zed	 è	 Low	 throughput	

PAR-‐BS	 [Mutlu	 et	 al.,	 ISCA08]:	 Priori[zes	 oldest	 batch	 of	 requests	
while	 preserving	 bank-‐level	 parallelism	

–  Non-‐intensive	 threads	 not	 always	 priori[zed	 è	 Low	
throughput	

ATLAS	 [Kim	 et	 al.,	 HPCA10]:	 Priori[zes	 threads	 with	 less	 memory	
service	

– Most	 intensive	 thread	 starves	 è	 Low	 fairness	
104	

TCM: Throughput and Fairness

FRFCFS	

STFM	

PAR-‐BS	

ATLAS	

TCM	

4	

6	

8	

10	

12	

14	

16	

7.5	 8	 8.5	 9	 9.5	 10	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

105	

BeZer	 system	 throughput	

Be
Z
er
	 fa

irn
es
s	

24	 cores,	 4	 memory	 controllers,	 96	 workloads	 	

TCM,	 a	 heterogeneous	 scheduling	 policy,	
provides	 best	 fairness	 and	 system	 throughput	

TCM: Fairness-Throughput Tradeoff

106	

2	

4	

6	

8	

10	

12	

12	 12.5	 13	 13.5	 14	 14.5	 15	 15.5	 16	

M
ax
im

um
	 S
lo
w
do

w
n	

Weighted	 Speedup	

When	 configuraDon	 parameter	 is	 varied…	

Adjus+ng	 	
ClusterThreshold	

TCM	 allows	 robust	 fairness-‐throughput	 tradeoff	 	

STFM	
PAR-‐BS	

ATLAS	

TCM	

BeZer	 system	 throughput	

Be
Z
er
	 fa

irn
es
s	 FRFCFS	

Operating System Support
•  ClusterThreshold	 is	 a	 tunable	 knob	

– OS	 can	 trade	 off	 between	 fairness	 and	 throughput	

•  Enforcing	 thread	 weights	
– OS	 assigns	 weights	 to	 threads	
– TCM	 enforces	 thread	 weights	 within	 each	 cluster	

107	

Conclusion

108	

•  No	 previous	 memory	 scheduling	 algorithm	 provides	
both	 high	 system	 throughput	 and	 fairness	
– Problem:	 They	 use	 a	 single	 policy	 for	 all	 threads	

•  TCM	 groups	 threads	 into	 two	 clusters	
1.  Priori[ze	 non-‐intensive	 cluster	 è	 throughput	
2.  Shuffle	 priori[es	 in	 intensive	 cluster	 è	 fairness	
3.  Shuffling	 should	 favor	 nice	 threads	 è	 fairness	

•  TCM	 provides	 the	 best	 system	 throughput	 and	 fairness	

TCM Pros and Cons
n  Upsides:

q  Provides both high fairness and high performance

n  Downsides:
q  Scalability to large buffer sizes?
q  Effectiveness in a heterogeneous system?

109

Staged Memory Scheduling

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu,
"Staged Memory Scheduling: Achieving High Performance

and Scalability in Heterogeneous Systems”
39th International Symposium on Computer Architecture (ISCA),

Portland, OR, June 2012.

SMS ISCA 2012 Talk

Executive Summary
n  Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n  Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer sizes

n  Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n  Compared to state-of-the-art memory schedulers:
q  SMS is significantly simpler and more scalable
q  SMS provides higher performance and fairness

111

Outline
n  Background
n  Motivation
n  Our Goal
n  Observations
n  Staged Memory Scheduling

1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler

n  Results
n  Conclusion

112

n  All cores contend for limited off-chip bandwidth
q  Inter-application interference degrades system performance
q  The memory scheduler can help mitigate the problem

n  How does the memory scheduler deliver good performance
and fairness?

Main Memory is a Bottleneck

113

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

M
em

or
y

Re
qu

es
t

Bu
ffe

r

Req Req Req Req Req Req

Req

Data Data

Req Req

Currently open row
B

n  Prioritize row-buffer-hit requests [Rixner+, ISCA’00]

q  To maximize memory bandwidth

n  Prioritize latency-sensitive applications [Kim+, HPCA’10]

q  To maximize system throughput

n  Ensure that no application is starved [Mutlu and Moscibroda,
MICRO’07]

q  To minimize unfairness

Three Principles of Memory Scheduling

114

Req 1 Row A
Req 2 Row B
Req 3 Row C
Req 4 Row A
Req 5 Row B

Application Memory Intensity (MPKI)
1 5
2 1
3 2
4 10

Older

Newer

Outline
n  Background
n  Motivation: CPU-GPU Systems
n  Our Goal
n  Observations
n  Staged Memory Scheduling

1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler

n  Results
n  Conclusion

115

Memory Scheduling for CPU-GPU Systems
n  Current and future systems integrate a GPU along with

multiple cores

n  GPU shares the main memory with the CPU cores

n  GPU is much more (4x-20x) memory-intensive than CPU

n  How should memory scheduling be done when GPU is
integrated on-chip?

116

n  GPU occupies a significant portion of the request buffers

q  Limits the MC’s visibility of the CPU applications’ differing
memory behavior à can lead to a poor scheduling decision

Introducing the GPU into the System

117

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

Req Req

GPU

Req Req Req Req Req Req Req

Req Req Req Req Req Req Req

Req Req Req Req Req Req Req
Req

Req

Naïve Solution: Large Monolithic Buffer

118

Memory Scheduler

To DRAM

Core 1 Core 2 Core 3 Core 4

Req Req Req Req Req Req Req Req
Req Req Req Req Req Req Req Req

Req Req Req Req Req Req Req Req

Req Req Req Req Req Req Req Req

Req Req Req Req Req Req Req Req
Req Req

GPU

n  A large buffer requires more complicated logic to:
q  Analyze memory requests (e.g., determine row buffer hits)
q  Analyze application characteristics
q  Assign and enforce priorities

n  This leads to high complexity, high power, large die area

Problems with Large Monolithic Buffer

119

Memory Scheduler

Req
Req

Req

Req
Req

Req Req
Req Req Req

Req
Req

Req
Req Req

Req Req

Req Req Req

Req
Req Req

Req

Req

Req
Req

Req
Req Req

Req

Req

Req

Req

Req Req Req Req

Req Req

Req Req

More Complex Memory Scheduler

n  Design a new memory scheduler that is:
q  Scalable to accommodate a large number of requests
q  Easy to implement
q  Application-aware
q  Able to provide high performance and fairness, especially in

heterogeneous CPU-GPU systems

Our Goal

120

Outline
n  Background
n  Motivation: CPU-GPU Systems
n  Our Goal
n  Observations
n  Staged Memory Scheduling

1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler

n  Results
n  Conclusion

121

Key Functions of a Memory Controller
n  Memory controller must consider three different things

concurrently when choosing the next request:

1) Maximize row buffer hits

q  Maximize memory bandwidth

2) Manage contention between applications
q  Maximize system throughput and fairness

3) Satisfy DRAM timing constraints

n  Current systems use a centralized memory controller

design to accomplish these functions
q  Complex, especially with large request buffers

122

Key Idea: Decouple Tasks into Stages
n  Idea: Decouple the functional tasks of the memory controller

q  Partition tasks across several simpler HW structures (stages)

1) Maximize row buffer hits
q  Stage 1: Batch formation
q  Within each application, groups requests to the same row into

batches

2) Manage contention between applications
q  Stage 2: Batch scheduler
q  Schedules batches from different applications

3) Satisfy DRAM timing constraints
q  Stage 3: DRAM command scheduler
q  Issues requests from the already-scheduled order to each bank

123

Outline
n  Background
n  Motivation: CPU-GPU Systems
n  Our Goal
n  Observations
n  Staged Memory Scheduling

1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler

n  Results
n  Conclusion

124

SMS: Staged Memory Scheduling

125

Memory Scheduler

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req
Req

Req

Req
Req

Req Req
Req Req Req

Req Req Req
Req Req

Req Req

Req Req Req

Req
Req Req

Req

Req

Req
Req

Req Req
Req Req Req

Req Req Req Req Req Req
Req

Req

Req Req
Batch Scheduler

Stage 1

Stage 2

Stage 3

Req

M
on

ol
ith

ic
 S

ch
ed

ul
er

Batch
Formation

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1

Stage 2

SMS: Staged Memory Scheduling

126

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 1: Batch Formation
n  Goal: Maximize row buffer hits

n  At each core, we want to batch requests that access the

same row within a limited time window

n  A batch is ready to be scheduled under two conditions
1) When the next request accesses a different row
2) When the time window for batch formation expires

n  Keep this stage simple by using per-core FIFOs

127

Core 1 Core 2 Core 3 Core 4

Stage 1: Batch Formation Example

128

Row A Row B Row B
Row C

Row D Row D Row E
Row F

Row E

Batch Boundary

To Stage 2 (Batch Scheduling)

Row A

Time
window
expires

Next request goes to a different row Stage 1

Batch
Formation

SMS: Staged Memory Scheduling

129

Stage 1

Stage 2

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 2: Batch Scheduler
n  Goal: Minimize interference between applications

n  Stage 1 forms batches within each application
n  Stage 2 schedules batches from different applications

q  Schedules the oldest batch from each application

n  Question: Which application’s batch should be scheduled
next?

n  Goal: Maximize system performance and fairness
q  To achieve this goal, the batch scheduler chooses between

two different policies

130

Stage 2: Two Batch Scheduling Algorithms
n  Shortest Job First (SJF)

q  Prioritize the applications with the fewest outstanding memory
requests because they make fast forward progress

q  Pro: Good system performance and fairness
q  Con: GPU and memory-intensive applications get deprioritized

n  Round-Robin (RR)
q  Prioritize the applications in a round-robin manner to ensure

that memory-intensive applications can make progress
q  Pro: GPU and memory-intensive applications are treated fairly
q  Con: GPU and memory-intensive applications significantly

slow down others

131

Stage 2: Batch Scheduling Policy
n  The importance of the GPU varies between systems and

over time à Scheduling policy needs to adapt to this

n  Solution: Hybrid Policy
n  At every cycle:

q  With probability p : Shortest Job First à Benefits the CPU
q  With probability 1-p : Round-Robin à Benefits the GPU

n  System software can configure p based on the importance/
weight of the GPU
q  Higher GPU importance à Lower p value

132

SMS: Staged Memory Scheduling

133

Stage 1

Stage 2

Core 1 Core 2 Core 3 Core 4

To DRAM

GPU

Req Req Batch Scheduler

Batch
Formation

Stage 3

DRAM
Command
Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Stage 3: DRAM Command Scheduler
n  High level policy decisions have already been made by:

q  Stage 1: Maintains row buffer locality
q  Stage 2: Minimizes inter-application interference

n  Stage 3: No need for further scheduling
n  Only goal: service requests while satisfying DRAM

timing constraints

n  Implemented as simple per-bank FIFO queues

134

Current Batch
Scheduling

Policy
SJF

Current Batch
Scheduling

Policy
RR

Batch Scheduler

Bank 1 Bank 2 Bank 3 Bank 4

Putting Everything Together

135

Core 1 Core 2 Core 3 Core 4

Stage 1:
Batch
Formation

Stage 3:
DRAM
Command
Scheduler

GPU

Stage 2:

Complexity
n  Compared to a row hit first scheduler, SMS consumes*

q  66% less area
q  46% less static power

n  Reduction comes from:
q  Monolithic scheduler à stages of simpler schedulers
q  Each stage has a simpler scheduler (considers fewer

properties at a time to make the scheduling decision)
q  Each stage has simpler buffers (FIFO instead of out-of-order)
q  Each stage has a portion of the total buffer size (buffering is

distributed across stages)

136 * Based on a Verilog model using 180nm library

Outline
n  Background
n  Motivation: CPU-GPU Systems
n  Our Goal
n  Observations
n  Staged Memory Scheduling

1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler

n  Results
n  Conclusion

137

Methodology
n  Simulation parameters

q  16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870
q  DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel

n  Workloads
q  CPU: SPEC CPU 2006
q  GPU: Recent games and GPU benchmarks
q  7 workload categories based on the memory-intensity of CPU

applications
à Low memory-intensity (L)
à Medium memory-intensity (M)
à High memory-intensity (H)

138

Comparison to Previous Scheduling Algorithms
n  FR-FCFS [Rixner+, ISCA’00]

q  Prioritizes row buffer hits
q  Maximizes DRAM throughput
q  Low multi-core performance ç Application unaware

n  ATLAS [Kim+, HPCA’10]
q  Prioritizes latency-sensitive applications
q  Good multi-core performance
q  Low fairness ç Deprioritizes memory-intensive applications

n  TCM [Kim+, MICRO’10]
q  Clusters low and high-intensity applications and treats each

separately
q  Good multi-core performance and fairness
q  Not robust ç Misclassifies latency-sensitive applications

139

Evaluation Metrics
n  CPU performance metric: Weighted speedup

n  GPU performance metric: Frame rate speedup

n  CPU-GPU system performance: CPU-GPU weighted speedup

140

Evaluated System Scenarios
n  CPU-focused system

n  GPU-focused system

141

Evaluated System Scenario: CPU Focused
n  GPU has low weight (weight = 1)

n  Configure SMS such that p, SJF probability, is set to 0.9
q  Mostly uses SJF batch scheduling à prioritizes latency-

sensitive applications (mainly CPU)

142

1

n  SJF batch scheduling policy allows latency-sensitive
applications to get serviced as fast as possible

0

2

4

6

8

10

12

L ML M HL HML HM H Avg

C
G

W
S FR-FCFS

ATLAS

TCM

SMS_0.9

Performance: CPU-Focused System

143

+17.2% over ATLAS

SMS is much less complex than
previous schedulers p=0.9

Workload Categories

Evaluated System Scenario: GPU Focused
n  GPU has high weight (weight = 1000)

n  Configure SMS such that p, SJF probability, is set to 0
q  Always uses round-robin batch scheduling à prioritizes

memory-intensive applications (GPU)

144

1000

n  Round-robin batch scheduling policy schedules GPU
requests more frequently

0

200

400

600

800

1000

L ML M HL HML HM H Avg

C
G

W
S FR-FCFS

ATLAS

TCM

SMS_0

Performance: GPU-Focused System

145

+1.6% over FR-FCFS

SMS is much less complex than
previous schedulers p=0

Workload Categories

Performance at Different GPU Weights

146

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best
Best Previous
Scheduler

ATLAS TCM FR-FCFS

n  At every GPU weight, SMS outperforms the best previous
scheduling algorithm for that weight

Performance at Different GPU Weights

147

0

0.2

0.4

0.6

0.8

1

0.001 0.1 10 1000

Sy
st

em
 P

er
fo

rm
an

ce

GPUweight

Previous Best

SMS SMS

Best Previous
Scheduler

Additional Results in the Paper
n  Fairness evaluation

q  47.6% improvement over the best previous algorithms

n  Individual CPU and GPU performance breakdowns

n  CPU-only scenarios
q  Competitive performance with previous algorithms

n  Scalability results
q  SMS’ performance and fairness scales better than previous

algorithms as the number of cores and memory channels
increases

n  Analysis of SMS design parameters

148

Outline
n  Background
n  Motivation: CPU-GPU Systems
n  Our Goal
n  Observations
n  Staged Memory Scheduling

1) Batch Formation
2) Batch Scheduler
3) DRAM Command Scheduler

n  Results
n  Conclusion

149

Conclusion
n  Observation: Heterogeneous CPU-GPU systems require

memory schedulers with large request buffers

n  Problem: Existing monolithic application-aware memory
scheduler designs are hard to scale to large request buffer size

n  Solution: Staged Memory Scheduling (SMS)
decomposes the memory controller into three simple stages:
1) Batch formation: maintains row buffer locality
2) Batch scheduler: reduces interference between applications
3) DRAM command scheduler: issues requests to DRAM

n  Compared to state-of-the-art memory schedulers:
q  SMS is significantly simpler and more scalable
q  SMS provides higher performance and fairness

150

Strong Memory Service Guarantees
n  Goal: Satisfy performance bounds/requirements in the

presence of shared main memory, prefetchers,
heterogeneous agents, and hybrid memory

n  Approach:
q  Develop techniques/models to accurately estimate the

performance of an application/agent in the presence of
resource sharing

q  Develop mechanisms (hardware and software) to enable the
resource partitioning/prioritization needed to achieve the
required performance levels for all applications

q  All the while providing high system performance

151

MISE:
Providing Performance Predictability

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

152

Main Memory Interference is a Problem

Main
Memory

153

Core Core

Core Core

Unpredictable Application Slowdowns

154

0

1

2

3

4

5

6

leslie3d (core 0) gcc (core 1)

Sl
ow

do
w

n

0

1

2

3

4

5

6

leslie3d (core 0) mcf (core 1)

Sl
ow

do
w

n
An application’s performance depends on

which application it is running with

Need for Predictable Performance
n  There is a need for predictable performance

q  When multiple applications share resources
q  Especially if some applications require performance

guarantees

n  Example 1: In mobile systems
q  Interactive applications run with non-interactive applications
q  Need to guarantee performance for interactive applications

n  Example 2: In server systems
q  Different users’ jobs consolidated onto the same server
q  Need to provide bounded slowdowns to critical jobs

155

Our Goal: Predictable performance

in the presence of memory interference

Outline

156

1. Estimate Slowdown
q Key Observations
q  Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown

Outline

157

1. Estimate Slowdown
q Key Observations
q  Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Slowdown: Definition

158

Shared

Alone

 ePerformanc
 ePerformanc Slowdown =

Key Observation 1
For a memory bound application,

Performance ∝ Memory request service rate

0.3	
0.4	
0.5	
0.6	
0.7	
0.8	
0.9	
1	

0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	 N
or
m
al
iz
ed

	 P
er
fo
rm

an
ce
	

Normalized	 Request	 Service	 Rate	

omnetpp	

mcf	

astar	

159

Shared

Alone

 Rate ServiceRequest
 Rate ServiceRequest Slowdown =

Shared

Alone

 ePerformanc
 ePerformanc Slowdown =

Easy

Harder

Intel Core i7, 4 cores
Mem. Bandwidth: 8.5 GB/s

Key Observation 2
Request Service Rate Alone (RSRAlone) of an application can be

estimated by giving the application highest priority in
accessing memory

Highest priority à Little interference

(almost as if the application were run alone)

160

Key Observation 2

161

Request Buffer State
Main

Memory

1. Run alone
Time units Service order

Main
Memory

12

Request Buffer State
Main

Memory

2. Run with another application
Service order

Main
Memory

123

Request Buffer State
Main

Memory

3. Run with another application: highest priority
Service order

Main
Memory

123

Time units

Time units

3

162

Memory Interference-induced Slowdown Estimation
(MISE) model for memory bound applications

)(RSR Rate ServiceRequest
)(RSR Rate ServiceRequest Slowdown

SharedShared

AloneAlone
=

Key Observation 3
n  Memory-bound application

163

No
interference

Compute Phase

Memory Phase

With
interference

Memory phase slowdown dominates overall slowdown

time

time
Req

Req

Req Req

Req Req

Key Observation 3
n  Non-memory-bound application

164

time

time

No
interference

Compute Phase

Memory Phase

With
interference

Only memory fraction () slows down with interference

αα−1

α

α−1

Shared

Alone

RSR
RSR

α

Shared

Alone

RSR
RSR) - (1 Slowdown αα +=

Memory Interference-induced Slowdown Estimation
(MISE) model for non-memory bound applications

Outline

165

1. Estimate Slowdown
q Key Observations
q  Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Interval Based Operation

166

time

Interval

α

Estimate
slowdown

Interval

Estimate
slowdown

n  Measure RSRShared,
n  Estimate RSRAlone

αn  Measure RSRShared,
n  Estimate RSRAlone

Measuring RSRShared and α
n  Request Service Rate Shared (RSRShared)

q  Per-core counter to track number of requests serviced
q  At the end of each interval, measure

n  Memory Phase Fraction ()
q  Count number of stall cycles at the core
q  Compute fraction of cycles stalled for memory

Length Interval
Serviced Requests ofNumber RSRShared =

α

167

Estimating Request Service Rate Alone (RSRAlone)

n  Divide each interval into shorter epochs

n  At the beginning of each epoch

q  Memory controller randomly picks an application as the
highest priority application

n  At the end of an interval, for each application, estimate

PriorityHigh Given n Applicatio Cycles ofNumber
EpochsPriority High During Requests ofNumber RSR

Alone =

168

Goal: Estimate RSRAlone

How: Periodically give each application
highest priority in accessing memory

Inaccuracy in Estimating RSRAlone

169

Request Buffer
 State

Main
Memory

Time units Service order

Main
Memory

123

n  When an application has highest priority
q  Still experiences some interference

Request Buffer
State

Main
Memory

Time units Service order

Main
Memory

123

Time units Service order

Main
Memory

123

Interference Cycles

High Priority

Main
Memory

Time units Service order

Main
Memory

123

Request Buffer
State

Accounting for Interference in RSRAlone Estimation

n  Solution: Determine and remove interference cycles from
RSRAlone calculation

n  A cycle is an interference cycle if

q  a request from the highest priority application is
waiting in the request buffer and

q  another application’s request was issued previously

170

Cycles ceInterferen -Priority High Given n Applicatio Cycles ofNumber
EpochsPriority High During Requests ofNumber RSR

Alone =

Outline

171

1. Estimate Slowdown
q Key Observations
q  Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

MISE Model: Putting it All Together

172

time

Interval

α

Estimate
slowdown

Interval

Estimate
slowdown

n  Measure RSRShared,
n  Estimate RSRAlone

αn  Measure RSRShared,
n  Estimate RSRAlone

Outline

173

1. Estimate Slowdown
q Key Observations
q  Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Previous Work on Slowdown Estimation
n  Previous work on slowdown estimation

q  STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]

q  FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10]

q  Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13]

n  Basic Idea:

174

Shared

Alone

 Time Stall
 Time Stall Slowdown =

Hard

Easy

Count number of cycles application receives interference

Two Major Advantages of MISE Over STFM

n  Advantage 1:
q  STFM estimates alone performance while an

application is receiving interference à Hard
q  MISE estimates alone performance while giving an

application the highest priority à Easier

n  Advantage 2:
q  STFM does not take into account compute phase for

non-memory-bound applications
q  MISE accounts for compute phase à Better accuracy

175

Methodology
n  Configuration of our simulated system

q  4 cores
q  1 channel, 8 banks/channel
q  DDR3 1066 DRAM
q  512 KB private cache/core

n  Workloads

q  SPEC CPU2006
q  300 multi programmed workloads

176

Quantitative Comparison

177

1	

1.5	

2	

2.5	

3	

3.5	

4	

0	 20	 40	 60	 80	 100	

Sl
ow

do
w

n

Million Cycles

Actual
STFM
MISE

SPEC CPU 2006 application
leslie3d

Comparison to STFM

178

cactusADM

0

1

2

3

4

0 50 100

Sl
ow

do
w

n

0

1

2

3

4

0 50 100
Sl

ow
do

w
n

GemsFDTD

0

1

2

3

4

0 50 100

Sl
ow

do
w

n

soplex

0

1

2

3

4

0 50 100

Sl
ow

do
w

n

wrf

0

1

2

3

4

0 50 100

Sl
ow

do
w

n

calculix

0

1

2

3

4

0 50 100
Sl

ow
do

w
n

povray

Average error of MISE: 8.2%
Average error of STFM: 29.4%

(across 300 workloads)

Outline

179

1. Estimate Slowdown
q Key Observations
q  Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Providing “Soft” Slowdown Guarantees
n  Goal

1. Ensure QoS-critical applications meet a prescribed
slowdown bound

2. Maximize system performance for other applications

n  Basic Idea
q  Allocate just enough bandwidth to QoS-critical

application
q  Assign remaining bandwidth to other applications

180

MISE-QoS: Mechanism to Provide Soft QoS

n  Assign an initial bandwidth allocation to QoS-critical application

n  Estimate slowdown of QoS-critical application using the MISE
model

n  After every N intervals

q  If slowdown > bound B +/- ε, increase bandwidth allocation

q  If slowdown < bound B +/- ε, decrease bandwidth allocation

n  When slowdown bound not met for N intervals
q  Notify the OS so it can migrate/de-schedule jobs

181

Methodology
n  Each application (25 applications in total) considered the

QoS-critical application
n  Run with 12 sets of co-runners of different memory

intensities
n  Total of 300 multiprogrammed workloads
n  Each workload run with 10 slowdown bound values
n  Baseline memory scheduling mechanism

q  Always prioritize QoS-critical application
 [Iyer+, SIGMETRICS 2007]

q  Other applications’ requests scheduled in FRFCFS order
 [Zuravleff +, US Patent 1997, Rixner+, ISCA 2000]

182

A Look at One Workload

183

0

0.5

1

1.5

2

2.5

3

leslie3d hmmer lbm omnetpp

Sl
ow

do
w

n AlwaysPrioritize
MISE-QoS-10/1
MISE-QoS-10/3
MISE-QoS-10/5
MISE-QoS-10/7
MISE-QoS-10/9

QoS-critical non-QoS-critical

MISE is effective in
1.  meeting the slowdown bound for the QoS-

critical application
2.  improving performance of non-QoS-critical

applications

Slowdown Bound = 10 Slowdown Bound = 3.33 Slowdown Bound = 2

Effectiveness of MISE in Enforcing QoS

184

Predicted
Met

Predicted
Not Met

QoS Bound
Met 78.8% 2.1%

QoS Bound
Not Met 2.2% 16.9%

Across 3000 data points

MISE-QoS meets the bound for 80.9% of workloads

AlwaysPrioritize meets the bound for 83% of workloads

MISE-QoS correctly predicts whether or not the bound

is met for 95.7% of workloads

Performance of Non-QoS-Critical Applications

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 Avg

H
ar

m
on

ic
 S

pe
ed

up

Number of Memory Intensive Applications

AlwaysPrioritize

MISE-QoS-10/1

MISE-QoS-10/3

MISE-QoS-10/5

MISE-QoS-10/7

MISE-QoS-10/9

185

Higher performance when bound is loose

When slowdown bound is 10/3
MISE-QoS improves system performance by 10%

Outline

186

1. Estimate Slowdown
q Key Observations
q  Implementation
q MISE Model: Putting it All Together
q Evaluating the Model

2. Control Slowdown
q Providing Soft Slowdown Guarantees
q Minimizing Maximum Slowdown

Other Results in the Paper
n  Sensitivity to model parameters

q  Robust across different values of model parameters

n  Comparison of STFM and MISE models in enforcing soft
slowdown guarantees
q  MISE significantly more effective in enforcing guarantees

n  Minimizing maximum slowdown

q  MISE improves fairness across several system configurations

187

Summary
n  Uncontrolled memory interference slows down

applications unpredictably
n  Goal: Estimate and control slowdowns
n  Key contribution

q  MISE: An accurate slowdown estimation model
q  Average error of MISE: 8.2%

n  Key Idea
q  Request Service Rate is a proxy for performance
q  Request Service Rate Alone estimated by giving an application highest

priority in accessing memory

n  Leverage slowdown estimates to control slowdowns
q  Providing soft slowdown guarantees
q  Minimizing maximum slowdown

188

MISE:
Providing Performance Predictability

in Shared Main Memory Systems

Lavanya Subramanian, Vivek Seshadri,
Yoongu Kim, Ben Jaiyen, Onur Mutlu

189

Some Current Directions
n  Building a comprehensive slowdown estimation model

q  Performance predictability with other shared resources
q  Performance predictability in heterogeneous systems
q  Interaction with power and energy consumption

n  Integrated techniques for enforcing performance levels
q  Scheduling, partitioning, prioritization, interleaving, …

n  Exploiting slowdown information in software
q  Admission control
q  Migration policies
q  Billing policies

190

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores

191

Fairness via Source Throttling

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt,
"Fairness via Source Throttling: A Configurable and High-Performance

Fairness Substrate for Multi-Core Memory Systems"
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)

FST ASPLOS 2010 Talk

Many Shared Resources

Core 0 Core 1 Core 2 Core N

Shared Cache

Memory Controller

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

... DRAM
Bank K

...

Shared Memory
Resources

Chip Boundary
On-chip
Off-chip

193

The Problem with “Smart Resources”

n  Independent interference control mechanisms in
caches, interconnect, and memory can contradict
each other

n  Explicitly coordinating mechanisms for different
resources requires complex implementation

n  How do we enable fair sharing of the entire
memory system by controlling interference in a
coordinated manner?

194

An Alternative Approach: Source Throttling

n  Manage inter-thread interference at the cores, not at the
shared resources

n  Dynamically estimate unfairness in the memory system
n  Feed back this information into a controller
n  Throttle cores’ memory access rates accordingly

q  Whom to throttle and by how much depends on performance
target (throughput, fairness, per-thread QoS, etc)

q  E.g., if unfairness > system-software-specified target then
throttle down core causing unfairness &
throttle up core that was unfairly treated

n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12.

195

A4	

B1	

A1	

A2	

A3	

Oldest	
 ⎧
	

｜
	

｜
	

⎩
	

Shared Memory	

Resources	

A:	
 Compute	
 Stall on A1	
Stall on A2	
Stall on A3	
Stall on A4	

Compute	
 Stall waiting for shared resources	
 Stall on B1	
B:	

 Request Generation Order: 	

A1, A2, A3, A4, B1	

Unmanaged
Interference	

Core A’s stall time	

Core B’s stall time	

A4	

B1	

A1	

A2	

A3	

⎧
	

｜
	

｜
	

⎩
	
Shared Memory	

Resources	

A:	
 Compute	
 Stall on A1	
 Stall on A2	

Compute	
 Stall wait.	
 Stall on B1	
B:	

Dynamically detect application A’s interference for
application B and throttle down application A	

Core A’s stall time	

Core B’s stall time	

Fair Source
Throttling	

Stall wait.	

Request Generation Order	

A1, 	
A2, A3, A4, 	
B1	
B1, 	
A2, A3, A4	

queue of requests to 	

shared resources	

queue of requests to 	

shared resources	

Saved Cycles Core B	

Oldest	

Intensive application A generates many requests and
causes long stall times for less intensive application B	

Throttled 	

Requests	

Stall on A4	
Stall on A3	

Extra Cycles 	

Core A	

Fairness via Source Throttling (FST)

n  Two components (interval-based)

n  Run-time unfairness evaluation (in hardware)
q  Dynamically estimates the unfairness in the memory system
q  Estimates which application is slowing down which other

n  Dynamic request throttling (hardware or software)
q  Adjusts how aggressively each core makes requests to the

shared resources
q  Throttles down request rates of cores causing unfairness

n  Limit miss buffers, limit injection rate

197

198

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

｜

⎨

｜

⎧

⎩
 Slowdown

Estimation

Time
Interval 1 Interval 2 Interval 3

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

Fairness via Source Throttling (FST)

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

199

Fairness via Source Throttling (FST)

Estimating System Unfairness

n  Unfairness =

n  Slowdown of application i =

n  How can be estimated in shared mode?

n  is the number of extra cycles it takes
application i to execute due to interference

n 

200

Max{Slowdown i} over all applications i

Min{Slowdown i} over all applications i

Shared
Ti

Ti
Alone

Ti
Alone

Ti
Excess

Ti
Shared

= Ti
Alone

- Ti
Excess

Tracking Inter-Core Interference

201

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7 ...

Memory Controller

Shared Cache

Three interference sources:
1. Shared Cache
2. DRAM bus and bank
3. DRAM row-buffers

FST hardware

Bank 2

Row

Row A

Tracking DRAM Row-Buffer Interference

202

Core 0	
 Core 1	

Bank 0	
 Bank 1 	
 Bank 2	
 Bank 7	
…

Shadow Row Address Register
(SRAR) Core 1:

Shadow Row Address Register
(SRAR) Core 0:

Queue of requests to bank 2 0 0

Row B

Row A

Row A

Row B

Row B

Interference
per core bit vector Row Conflict Row Hit

Interference
induced row conflict

1

Row A

Tracking Inter-Core Interference

203

0 0 0 0

Interference per core
bit vector

Core # 0 1 2 3

0	

0	

0	

0	

Excess Cycles
Counters per core

1

T	
Cycle Count T+1	

1	

T+2	

2	

FST hardware

1

T+3	

3	

1	

Core 0 Core 1 Core 2 Core 3

Bank 0 Bank 1 Bank 2 Bank 7 ...

Memory Controller

Shared Cache

Ti
Excess

｜

｜

Ti
Shared

= Ti
Alone

- Ti
Excess

Runtime
Unfairness
Evaluation

Dynamic
Request Throttling

1- Estimating system unfairness
2- Find app. with the highest
slowdown (App-slowest)
3- Find app. causing most
interference for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST
Unfairness Estimate

App-slowest
App-interfering

204

Fairness via Source Throttling (FST)

Tracking Inter-Core Interference

n  To identify App-interfering, for each core i
q  FST separately tracks interference caused by each core j

(j ≠ i)

205

Cnt 3	
Cnt 2	
Cnt 1	
Cnt 0	
0	

0	
 0	
 0	
 -	

Interference per core	

bit vector	

Core #	
0 1	
 2	
 3	

-	

Cnt 1,0	

Cnt 2,0	

Cnt 3,0	

Excess Cycles 	

Counters per core	

0	
 0	
 -	
 0	

0	
 -	
 0	
 0	

-	
 0	
 0	
 0	

｜

⎨

｜

⎧

⎩

｜
⎨
｜
⎧

⎩

Interfered with core	

Interfering 	

core	

Cnt 0,1	

-	

Cnt 2,1	

Cnt 3,1	

Cnt 0,2	

Cnt 1,2	

-	

Cnt 3,2	

Cnt 0,3	

Cnt 1,3	

Cnt 2,3	

-	

1	

core 2	

interfered 	

with	

core 1	

Cnt 2,1+	

0	

1	

2	

3	

Row with largest count 	

determines App-interfering	

App-slowest = 2	

Pairwise interference	

bit matrix	

Pairwise excess cycles 	

matrix	

Fairness via Source Throttling (FST)

206

Runtime Unfairness	

Evaluation	

Dynamic	

Request Throttling	

1- Estimating system unfairness
2- Find app. with the highest slowdown
(App-slowest)
3- Find app. causing most interference
for App-slowest
(App-interfering)

if (Unfairness Estimate >Target)
{
 1-Throttle down App-interfering
 2-Throttle up App-slowest
}

FST	

Unfairness Estimate	

App-slowest	

App-interfering	

Dynamic Request Throttling

n  Goal: Adjust how aggressively each core makes requests to

the shared memory system

n  Mechanisms:
q  Miss Status Holding Register (MSHR) quota

n  Controls the number of concurrent requests accessing shared
resources from each application

q  Request injection frequency
n  Controls how often memory requests are issued to the last level

cache from the MSHRs

207

Dynamic Request Throttling

n  Throttling level assigned to each core determines both

MSHR quota and request injection rate

208

Throttling level	
 MSHR quota	
 Request Injection Rate	

100%	
 128	
 Every cycle	

50%	
 64	
 Every other cycle	

25%	
 32	
 Once every 4 cycles	

10%	
 12	
 Once every 10 cycles	

5%	
 6	
 Once every 20 cycles	

4%	
 5	
 Once every 25 cycles	

3%	
 3	
 Once every 30 cycles	

2%	
 2	
 Once every 50 cycles	

Total # of
MSHRs: 128

FST at Work

209

Time	

Interval i Interval i+1 Interval i+2

Runtime Unfairness	

Evaluation	

	

Dynamic	

Request Throttling	

FST	

Unfairness Estimate	

App-slowest	

App-interfering	

Throttling Levels	

Core 0	
 Core 1	
 Core 3	

50%	
 100%	
 10%	
 100%	

25%	
 100%	
 25%	
 100%	

25%	
 50%	
 50%	
 100%	

Interval i	

Interval i + 1	

Interval i + 2	

3	

Core 2	

Core 0	

Core 0	
 Core 2	

Throttle down	
 Throttle up	

2.5	

Core 2	

Core 1	

Throttle down	
 Throttle up	

System software ���
fairness goal: 1.4	

Slowdown 	

Estimation	

｜

⎨

｜

⎧

⎩

Slowdown 	

Estimation	

｜

⎨

｜

⎧

⎩

System Software Support

n  Different fairness objectives can be configured by

system software
q  Keep maximum slowdown in check

n  Estimated Max Slowdown < Target Max Slowdown

q  Keep slowdown of particular applications in check to achieve a
particular performance target
n  Estimated Slowdown(i) < Target Slowdown(i)

n  Support for thread priorities
q  Weighted Slowdown(i) =

 Estimated Slowdown(i) x Weight(i)

210

FST Hardware Cost

n  Total storage cost required for 4 cores is ~12KB

n  FST does not require any structures or logic that are on the
processor’s critical path

211

FST Evaluation Methodology

n  x86 cycle accurate simulator
n  Baseline processor configuration

q  Per-core
n  4-wide issue, out-of-order, 256 entry ROB

q  Shared (4-core system)
n  128 MSHRs
n  2 MB, 16-way L2 cache

q  Main Memory
n  DDR3 1333 MHz
n  Latency of 15ns per command (tRP, tRCD, CL)
n  8B wide core to memory bus

212

FST: System Unfairness Results

213

44.4%	

36%	

FST: System Performance Results

214
214

25.6%	

14%	

214

Source Throttling Results: Takeaways

n  Source throttling alone provides better performance than a
combination of “smart” memory scheduling and fair caching
q  Decisions made at the memory scheduler and the cache

sometimes contradict each other

n  Neither source throttling alone nor “smart resources” alone
provides the best performance

n  Combined approaches are even more powerful
q  Source throttling and resource-based interference control

215

FST ASPLOS 2010 Talk

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores

216

Memory Channel Partitioning

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via

Application-Aware Memory Channel Partitioning”
 44th International Symposium on Microarchitecture (MICRO),

Porto Alegre, Brazil, December 2011. Slides (pptx)

MCP Micro 2011 Talk

Outline

218

Goal:
Mitigate

Inter-Application Interference

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Previous Approach

219

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Previous Approach:
Application-Aware Memory

Request Scheduling

Goal:
Mitigate

Inter-Application Interference

Application-Aware Memory Request Scheduling

n  Monitor application memory access
characteristics

n  Rank applications based on memory access

characteristics

n  Prioritize requests at the memory controller,

based on ranking

220

thread	

Threads in the
system

thread	

thread	

thread	

thread	

thread	

thread	

Non-
intensive
cluster

Intensive
cluster

thread	

thread	

thread	

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput	

Fairness	

An Example: Thread Cluster Memory Scheduling

Figure: Kim et al., MICRO 2010

221

Application-Aware Memory Request Scheduling

222

Advantages
n  Reduces interference between applications by

 request reordering
n  Improves system performance

Disadvantages
n  Requires modifications to memory scheduling logic for

q  Ranking
q  Prioritization

n  Cannot completely eliminate interference by request
reordering

Our Approach

223

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Goal:
Mitigate

Inter-Application Interference

Observation: Modern Systems Have Multiple Channels

A new degree of freedom
Mapping data across multiple channels

224

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Data Mapping in Current Systems

225

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Causes interference between applications’ requests

Page

Partitioning Channels Between Applications

226

Channel 0 Red
App

Blue
App

Memory
Controller

Memory
Controller

Channel 1

Memory

Core

Core

Memory

Page

Eliminates interference between applications’ requests

Overview: Memory Channel Partitioning (MCP)

n  Goal
q  Eliminate harmful interference between applications

n  Basic Idea

q  Map the data of badly-interfering applications to different
channels

n  Key Principles

q  Separate low and high memory-intensity applications
q  Separate low and high row-buffer locality applications

227

Key Insight 1: Separate by Memory Intensity
High memory-intensity applications interfere with low

memory-intensity applications in shared memory channels

228

Map data of low and high memory-intensity applications
to different channels

1 2 3 4 5
Channel 0

Bank 1

Channel 1

Bank 0

Conventional Page Mapping

Red
App

Blue
App

Time Units

Core

Core

Bank 1

Bank 0

Channel Partitioning

Red
App

Blue
App

Channel 0
Time Units

1 2 3 4 5

Channel 1

Core

Core

Bank 1

Bank 0

Bank 1

Bank 0

Saved Cycles

Saved Cycles

Key Insight 2: Separate by Row-Buffer Locality

229

High row-buffer locality applications interfere with low
row-buffer locality applications in shared memory channels

Conventional Page Mapping

Channel 0

Bank 1

Channel 1

Bank 0 R1

R0 R2 R3 R0

R4

Request Buffer
State

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4

R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Channel 0

R0 R0

Service Order

1 2 3 4 5 6

R2 R3

R4 R1

Time
units

Bank 1

Bank 0

Bank 1

Bank 0

R0

Channel 0

R1

R2 R3

R0

R4

Request Buffer
State

Channel Partitioning

Bank 1

Bank 0

Bank 1

Bank 0

Channel 1

Saved
Cycles Map data of low and high row-buffer locality applications

to different channels

Memory Channel Partitioning (MCP) Mechanism

1. Profile applications
2. Classify applications into groups
3. Partition channels between application groups
4. Assign a preferred channel to each application
5. Allocate application pages to preferred channel

230

Hardware

System
Software

1. Profile Applications

231

n  Hardware counters collect application memory
access characteristics

n  Memory access characteristics
q  Memory intensity:
 Last level cache Misses Per Kilo Instruction (MPKI)

q  Row-buffer locality:
 Row-buffer Hit Rate (RBH) - percentage of
accesses that hit in the row buffer

2. Classify Applications

232

Test MPKI

High Intensity

High Low

Low Intensity

Test RBH

High Intensity
Low Row-Buffer

Locality

Low

High Intensity
High Row-Buffer

Locality

High

3. Partition Channels Among Groups: Step 1

233

Channel 1

Assign number of channels
proportional to number of
applications in group

.

.

.

High Intensity
Low Row-Buffer

Locality

Low Intensity
Channel 2

Channel N-1

Channel N

Channel 3

High Intensity
High Row-Buffer

Locality

3. Partition Channels Among Groups: Step 2

234

Channel 1

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity
Channel 2

Channel N-1

Channel N

.

.

.

Assign number of channels
proportional to bandwidth
demand of group

Channel 3

Channel 1

.

.

High Intensity
Low Row-Buffer

Locality

High Intensity
High Row-Buffer

Locality

Low Intensity
Channel 2

Channel N-1

Channel N

Channel N-1

Channel N

Channel 3

.

.

.

4. Assign Preferred Channel to Application

235

Channel 1

Low Intensity

Channel 2

MPKI: 1

MPKI: 3

MPKI: 4

MPKI: 1

MPKI: 3

MPKI: 4

n  Assign each application a preferred channel from
its group’s allocated channels

n  Distribute applications to channels such that
group’s bandwidth demand is balanced across its
channels

5. Allocate Page to Preferred Channel

n  Enforce channel preferences
computed in the previous step

n  On a page fault, the operating system

q  allocates page to preferred channel if free page
available in preferred channel

q  if free page not available, replacement policy tries to
allocate page to preferred channel

q  if it fails, allocate page to another channel

236

Interval Based Operation

237

time

Current Interval Next Interval

1. Profile applications

2. Classify applications into groups
3. Partition channels between groups
4. Assign preferred channel to applications

5. Enforce channel preferences

Integrating Partitioning and Scheduling

238

Previous Approach:
Application-Aware Memory

Request Scheduling

Our First Approach:
Application-Aware Memory

Channel Partitioning

Our Second Approach:
Integrated Memory

Partitioning and Scheduling

Goal:
Mitigate

Inter-Application Interference

Observations

n  Applications with very low memory-intensity rarely

access memory
à Dedicating channels to them results in precious
memory bandwidth waste

n  They have the most potential to keep their cores busy
à We would really like to prioritize them

n  They interfere minimally with other applications
à Prioritizing them does not hurt others

239

Integrated Memory Partitioning and Scheduling (IMPS)

n  Always prioritize very low memory-intensity
applications in the memory scheduler

n  Use memory channel partitioning to mitigate

interference between other applications

240

Hardware Cost
n  Memory Channel Partitioning (MCP)

q  Only profiling counters in hardware
q  No modifications to memory scheduling logic
q  1.5 KB storage cost for a 24-core, 4-channel system

n  Integrated Memory Partitioning and Scheduling (IMPS)
q  A single bit per request
q  Scheduler prioritizes based on this single bit

241

Methodology
n  Simulation Model

q  24 cores, 4 channels, 4 banks/channel
q  Core Model

n  Out-of-order, 128-entry instruction window
n  512 KB L2 cache/core

q  Memory Model – DDR2

n  Workloads
q  240 SPEC CPU 2006 multiprogrammed workloads

(categorized based on memory intensity)

n  Metrics
q  System Performance

242

∑=
i

alone
i

shared
i

IPC
IPCSpeedupWeighted

Previous Work on Memory Scheduling
n  FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000]

q  Prioritizes row-buffer hits and older requests
q  Application-unaware

n  ATLAS [Kim et al., HPCA 2010]

q  Prioritizes applications with low memory-intensity

n  TCM [Kim et al., MICRO 2010]

q  Always prioritizes low memory-intensity applications
q  Shuffles request priorities of high memory-intensity applications

243

Comparison to Previous Scheduling Policies

244

1%

5%

0.9	

0.95	

1	

1.05	

1.1	

1.15	
N
or
m
al
iz
ed

	 	
Sy
st
em

	 P
er
fo
rm

an
ce
	

FRFCFS	

ATLAS	

TCM	

MCP	

IMPS	

7%

11%

Significant performance improvement over baseline FRFCFS Better system performance than the best previous scheduler
at lower hardware cost

Averaged over 240 workloads

245

0.94	
0.96	
0.98	

1	
1.02	
1.04	
1.06	
1.08	
1.1	

1.12	

FRFCFS	 ATLAS	 TCM	

N
or
m
al
iz
ed

	
Sy
st
em

	 P
er
fo
rm

an
ce
	

No	 IMPS	
IMPS	

0.94	
0.96	
0.98	

1	
1.02	
1.04	
1.06	
1.08	
1.1	

1.12	

FRFCFS	 ATLAS	 TCM	

N
or
m
al
iz
ed

	 	
Sy
st
em

	 P
er
fo
rm

an
ce
	

No	 IMPS	

IMPS improves performance regardless of scheduling policy
Highest improvement over FRFCFS as IMPS designed for FRFCFS

Interaction with Memory Scheduling
Averaged over 240 workloads

MCP Summary
n  Uncontrolled inter-application interference in main memory

degrades system performance

n  Application-aware memory channel partitioning (MCP)
q  Separates the data of badly-interfering applications

to different channels, eliminating interference

n  Integrated memory partitioning and scheduling (IMPS)
q  Prioritizes very low memory-intensity applications in scheduler
q  Handles other applications’ interference by partitioning

n  MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost

246

Summary: Memory QoS Approaches and Techniques

n  Approaches: Smart vs. dumb resources
q  Smart resources: QoS-aware memory scheduling
q  Dumb resources: Source throttling; channel partitioning
q  Both approaches are effective in reducing interference
q  No single best approach for all workloads

n  Techniques: Request scheduling, source throttling, memory
partitioning
q  All approaches are effective in reducing interference
q  Can be applied at different levels: hardware vs. software
q  No single best technique for all workloads

n  Combined approaches and techniques are the most powerful
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11]

247 MCP Micro 2011 Talk

Handling Interference in Parallel Applications

n  Threads in a multithreaded application are inter-dependent
n  Some threads can be on the critical path of execution due

to synchronization; some threads are not
n  How do we schedule requests of inter-dependent threads to

maximize multithreaded application performance?

n  Idea: Estimate limiter threads likely to be on the critical path and
prioritize their requests; shuffle priorities of non-limiter threads
to reduce memory interference among them [Ebrahimi+, MICRO’11]

n  Hardware/software cooperative limiter thread estimation:
n  Thread executing the most contended critical section
n  Thread that is falling behind the most in a parallel for loop

248 PAMS Micro 2011 Talk

Designing QoS-Aware Memory Systems: Approaches

n  Smart resources: Design each shared resource to have a
configurable interference control/reduction mechanism
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07]

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11,
MICRO’11] [Ausavarungnirun+, ISCA’12]

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09,
ISCA’11, Top Picks ’12]

q  QoS-aware caches

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10,

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10]

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11]

q  QoS-aware thread scheduling to cores [Das+ HPCA’13]

249

Conclusions: Topic 3

n  Technology, application, architecture trends dictate
new needs from memory system

n  A fresh look at (re-designing) the memory hierarchy
q  Scalability: DRAM-System Codesign and New Technologies
q  QoS: Reducing and controlling main memory interference:

QoS-aware memory system design
q  Efficiency: Customizability, minimal waste, new technologies

n  QoS-unaware memory: uncontrollable and unpredictable
n  Providing QoS awareness improves performance,

predictability, fairness, and utilization of the memory system

250

Scalable Many-Core Memory Systems
Topic 3: Memory Interference and

QoS-Aware Memory Systems

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu

onur@cmu.edu
HiPEAC ACACES Summer School 2013

July 15-19, 2013

Additional Material

252

Two Works

n  Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh
Kumar, and Mani Azimi,
"Application-to-Core Mapping Policies to Reduce Memory
System Interference in Multi-Core Systems"
Proceedings of the
19th International Symposium on High-Performance Computer
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx)

n  Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee,
Onur Mutlu, and Yale N. Patt,
"Parallel Application Memory Scheduling"
Proceedings of the 44th International Symposium on Microarchitecture
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)

253

Application-to-Core Mapping Policies
to Reduce Memory System Interference

Reetuparna Das* Rachata Ausavarungnirun$ Onur Mutlu$
Akhilesh Kumar§ Mani Azimi§

*University of Michigan $Carnegie Mellon University §Intel

Multi-Core to Many-Core

Multi-Core Many-Core

255

Many-Core On-Chip Communication

256

Memory
Controller

Shared
Cache Bank $

$

Light

Heavy

Applications

Task Scheduling
n  Traditional

 When to schedule a task? – Temporal

n  Many-Core
 When to schedule a task? – Temporal
+ Where to schedule a task? – Spatial

n  Spatial scheduling impacts performance of memory
hierarchy
q  Latency and interference in interconnect, memory, caches

257

Problem: Spatial Task Scheduling

Applications Cores

How to map applications to cores?

258

Challenges in Spatial Task Scheduling

Applications Cores

How to reduce destructive interference between applications?

How to reduce communication distance?

259

How to prioritize applications to improve throughput?

Application-to-Core Mapping

260

Clustering

Balancing

Isolation

Radial
Mapping

Improve Locality
Reduce Interference

Improve Bandwidth
Utilization

Reduce Interference

Improve Bandwidth
Utilization

Step 1 — Clustering

261

Inefficient data mapping to memory and caches

Memory
Controller

Step 1 — Clustering

Improved Locality

262

Reduced Interference

Cluster 0 Cluster 2

Cluster 1 Cluster 3

Step 1 — Clustering
n  Clustering memory accesses

q  Locality aware page replacement policy (cluster-CLOCK)
n  When allocating free page, give preference to pages

belonging to the cluster’s memory controllers (MCs)
n  Look ahead “N” pages beyond the default replacement

candidate to find page belonging to cluster’s MC

n  Clustering cache accesses
q  Private caches automatically enforce clustering
q  Shared caches can use Dynamic Spill Receive* mechanism

263 *Qureshi et al, HPCA 2009

Step 2 — Balancing

Heavy

Light

Applications Cores

264

Too much load in clusters with heavy applications

Step 2 — Balancing

Is this the best we can do? Let’s take a look at application characteristics

Heavy

Light

Applications Cores

265

Better bandwidth utilization

Application Types

266 （c） PHD Comics

Application Types

Identify and isolate sensitive applications while ensuring load balance

267

Medium
Med Miss Rate
High MLP

Guru
There for cookies

Heavy
High Miss Rate
High MLP

Adversary
Bitter rival

Light
Low Miss Rate

Nice Guy
No opinions

Asst.
Professor

Sensitive

High Miss Rate
Low MLP

Advisor
Sensitive

Th
es

is
 C

om
m

it
te

e
A

pp
lic

at
io

n
s

（c） PHD Comics

Step 3 — Isolation

Heavy

Light

Applications Cores

Sensitive

Medium

Isolate sensitive applications to a cluster

268
Balance load for remaining applications across clusters

Step 3 — Isolation
n  How to estimate sensitivity?

q  High Miss— high misses per kilo instruction (MPKI)
q  Low MLP— high relative stall cycles per miss (STPM)
q  Sensitive if MPKI > Threshold and relative STPM is high

n  Whether to or not to allocate cluster to sensitive
applications?

n  How to map sensitive applications to their own
cluster?
q  Knap-sack algorithm

269

Step 4 — Radial Mapping

Heavy

Light

Applications Cores

Sensitive

Medium

Map applications that benefit most from
being close to memory controllers close to these resources

270

Step 4 — Radial Mapping
n  What applications benefit most from being close to the

memory controller?
q  High memory bandwidth demand
q  Also affected by network performance
q  Metric => Stall time per thousand instructions

271

Putting It All Together

272

Balancing Radial Mapping Isolation Clustering

Inter-Cluster
Mapping

Intra-Cluster
Mapping

Improve Locality

Reduce Interference

Improve Shared Resource Utilization

Evaluation Methodology
n  60-core system

q  x86 processor model based on Intel Pentium M
q  2 GHz processor, 128-entry instruction window
q  32KB private L1 and 256KB per core private L2 caches
q  4GB DRAM, 160 cycle access latency, 4 on-chip DRAM controllers
q  CLOCK page replacement algorithm

n  Detailed Network-on-Chip model
q  2-stage routers (with speculation and look ahead routing)
q  Wormhole switching (4 flit data packets)
q  Virtual channel flow control (4 VCs, 4 flit buffer depth)
q  8x8 Mesh (128 bit bi-directional channels)

273

Configurations
n  Evaluated configurations

q  BASE—Random core mapping
q  BASE+CLS—Baseline with clustering
q  A2C

n  Benchmarks
q  Scientific, server, desktop benchmarks (35 applications)
q  128 multi-programmed workloads
q  4 categories based on aggregate workload MPKI

n  MPKI500, MPKI1000, MPKI1500, MPKI2000

274

System Performance

0.8

0.9

1.0

1.1

1.2

1.3

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p
BASE BASE+CLS A2C

275

System performance improves by 17%

Network Power

276

0.0

0.2

0.4

0.6

0.8

1.0

1.2

MPKI500 MPKI1000 MPKI1500 MPKI2000 Avg

N
or

m
al

iz
ed

 N
oC

 P
ow

er

BASE BASE+CLS A2C

Average network power consumption reduces by 52%

Summary of Other Results
n  A2C can reduce page fault rate

277

0

20

40

60

80

100

120

0 2 4 6 8 %
 A

cc
es

se
s

w
it

hi
n

C
lu

st
er

memory footprint of workload
(GB)

CLOCK cluster-CLOCK

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 2 4 6 8

 N
or

m
al

iz
ed

 P
ag

e
Fa

ul
ts

memory footprint of workload
(GB)

Summary of Other Results
n  A2C can reduce page faults
n  Dynamic A2C also improves system performance

q  Continuous “Profiling” + “Enforcement” intervals
q  Retains clustering benefits
q  Migration overheads are minimal

n  A2C complements application-aware packet
prioritization* in NoCs

n  A2C is effective for a variety of system parameters
q  Number of and placement of memory controllers
q  Size and organization of last level cache

278 *Das et al, MICRO 2009

Conclusion
n  Problem: Spatial scheduling for Many-Core processors

q  Develop fundamental insights for core mapping policies

n  Solution: Application-to-Core (A2C) mapping policies

n  A2C improves system performance, system fairness
and network power significantly

279

Clustering Balancing Radial Isolation

Application-to-Core Mapping Policies
to Reduce Memory System Interference

Reetuparna Das* Rachata Ausavarungnirun$ Onur Mutlu$
Akhilesh Kumar§ Mani Azimi§

*University of Michigan $Carnegie Mellon University §Intel

Parallel Application
Memory Scheduling

Eiman Ebrahimi*

Rustam Miftakhutdinov*, Chris Fallin‡

Chang Joo Lee*+, Jose Joao*

Onur Mutlu‡, Yale N. Patt*

* HPS Research Group The
University of Texas at Austin

‡ Computer Architecture Laboratory
Carnegie Mellon University

+ Intel Corporation
 Austin

282

Background

Core 0	
 Core 1	
 Core 2	
 Core N	

Shared Cache	

Memory Controller	

DRAM	

Bank 0	

DRAM	

Bank 1	

DRAM
Bank 2	

... DRAM	

Bank K	

...

Shared Memory	

Resources	

Chip Boundary	

On-chip	

Off-chip	

282

Background

n  Memory requests from different
cores interfere in shared memory
resources

n  Multi-programmed workloads
o  System Performance and Fairness

n  A single multi-threaded
application?

283	

Core
0	

Core
1	

Core
2	

Core
N	

Shared Cache	

Memory Controller	

... DRAM	

Bank K	

...

Shared
Memory	

Resources	

Chip
Boundary	

283

DRAM	

Bank 0	

DRAM	

Bank 1	

DRAM	

Bank 2	

Memory System Interference in
A Single Multi-Threaded Application

n  Inter-dependent threads from the same
application slow each other down

n  Most importantly the critical path of execution
can be significantly slowed down

n  Problem and goal are very different from
interference between independent applications
o  Interdependence between threads
o  Goal: Reduce execution time of a single application
o  No notion of fairness among the threads

of the same application
284

Potential in
A Single Multi-Threaded Application

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

N
or

m
al

iz
ed

Ex

ec
u

ti
on

 T
im

e

 If all main-memory related interference is ideally
eliminated, execution time is reduced by 45% on average

285

Normalized to system	

using FR-FCFS memory	

scheduling	

Outline

n  Problem Statement
n  Parallel Application Memory Scheduling
n  Evaluation
n  Conclusion

286	

Outline

n  Problem Statement
n  Parallel Application Memory Scheduling
n  Evaluation
n  Conclusion

287	

Parallel Application Memory Scheduler

n  Identify the set of threads likely to be on the
critical path as limiter threads
o  Prioritize requests from limiter threads

n  Among limiter threads:
o  Prioritize requests from latency-sensitive threads

(those with lower MPKI)

n  Among non-limiter threads:
o  Shuffle priorities of non-limiter threads to reduce

inter-thread memory interference
o  Prioritize requests from threads falling behind

others in a parallel for-loop

288

Parallel Application Memory Scheduler

n  Identify the set of threads likely to be on the
critical path as limiter threads
o  Prioritize requests from limiter threads

n  Among limiter threads:
o  Prioritize requests from latency-sensitive threads

(those with lower MPKI)

n  Among non-limiter threads:
o  Shuffle priorities of non-limiter threads to reduce

inter-thread memory interference
o  Prioritize requests from threads falling behind

others in a parallel for-loop

289

Runtime System Limiter Identification

n  Contended critical sections are often on the critical path of
execution

n  Extend runtime system to identify thread executing
the most contended critical section as the limiter thread
o  Track total amount of time all threads wait on

each lock in a given interval
o  Identify the lock with largest waiting time as

the most contended
o  Thread holding the most contended lock is a limiter and

this information is exposed to the memory controller

290

Prioritizing Requests from
Limiter Threads

291

Critical Section 1	
 Barrier	
Non-Critical Section	

Waiting for Sync ���
or Lock	

Thread D	

Thread C	

Thread B	

Thread A	

Time	

Barrier	

Time	

Barrier	

Thread D	

Thread C	

Thread B	

Thread A	

Critical Section 2	
 Critical Path	

Saved���
Cycles	
 Limiter Thread: 	
D	
B	
C	
A	

Most Contended���
Critical Section:	
 1	

Limiter Thread Identification	

	

Parallel Application Memory Scheduler

n  Identify the set of threads likely to be on the
critical path as limiter threads
o  Prioritize requests from limiter threads

n  Among limiter threads:
o  Prioritize requests from latency-sensitive threads

(those with lower MPKI)

n  Among non-limiter threads:
o  Shuffle priorities of non-limiter threads to reduce

inter-thread memory interference
o  Prioritize requests from threads falling behind

others in a parallel for-loop

292

Time-based classification of threads
as latency- vs. BW-sensitive

293	

Critical Section	

Barrier	

Non-Critical Section	

Waiting for Sync	

Thread D	

Thread C	

Thread B	

Thread A	

Time	

Barrier	
Time	

 Interval 1	

Time 	

Interval 2	

Thread Cluster Memory Scheduling (TCM) [Kim et. al., MICRO’10]	

Terminology

n  A code-segment is defined as:
o  A program region between two consecutive

synchronization operations
o  Identified with a 2-tuple:

<beginning IP, lock address>

n  Important for classifying threads as
latency- vs. bandwidth-sensitive
o  Time-based vs. code-segment based

classification

294	

Code-segment based classification of
threads as latency- vs. BW-sensitive

295	

Thread D	

Thread C	

Thread B	

Thread D	

Thread C	

Thread B	

Thread A	

Time	

Code-Segment Changes	

Barrier	

Thread A	

Time	

Barrier	
Time 	

Interval 1	

Time 	

Interval 2	

Code	

Segment 1	

Code	

Segment 2	

Critical Section	

Barrier	

Non-Critical Section	

Waiting for Sync	

Parallel Application Memory Scheduler

n  Identify the set of threads likely to be on the
critical path as limiter threads
o  Prioritize requests from limiter threads

n  Among limiter threads:
o  Prioritize requests from latency-sensitive threads

(those with lower MPKI)

n  Among non-limiter threads:
o  Shuffle priorities of non-limiter threads to reduce

inter-thread memory interference
o  Prioritize requests from threads falling behind

others in a parallel for-loop

296

Shuffling Priorities of
Non-Limiter Threads

n  Goal:
o  Reduce inter-thread interference among a set of threads

with the same importance in terms of our estimation of
the critical path

o  Prevent any of these threads from becoming
new bottlenecks

n  Basic Idea:
o  Give each thread a chance to be high priority in the memory

system and exploit intra-thread bank parallelism and
row-buffer locality

o  Every interval assign a set of random priorities to the
threads and shuffle priorities at the end of the interval

297

Shuffling Priorities of
Non-Limiter Threads

Barrier	

Thread A	

Thread B	

Thread C	

Thread D	

Barrier	

Time	

Thread A	

Thread B	

Thread C	

Thread D	

Time	

Thread A	

Thread B	

Thread C	

Thread D	

Time	

Thread A	

Thread B	

Thread C	

Thread D	

Barrier	
 Barrier	

Time	

Thread A	

Thread B	

Thread C	

Thread D	

Time	

Thread A	

Thread B	

Thread C	

Thread D	

Time	

4	

3	

2	

1	

3	

2	

1	

2	

1	

1	

Saved Cycles	

Saved Cycles	
 Saved 	

Lost Cycles	

298

Baseline���
(No shuffling)	

Policy 1	

Threads with similar memory behavior	

Policy 2	

Shuffling	
 Shuffling	

4	

2	

3	

1	

1	

2	

3	

2	

1	
 1	

Cycles	

Active	

Waiting	

Legend	
 Threads with different memory behavior	

Outline

n  Problem Statement
n  Parallel Application Memory Scheduling
n  Evaluation
n  Conclusion

299	

Evaluation Methodology
n  x86 cycle accurate simulator

n  Baseline processor configuration
o  Per-core

-  4-wide issue, out-of-order, 64 entry ROB

o  Shared (16-core system)
-  128 MSHRs
-  4MB, 16-way L2 cache

o  Main Memory
-  DDR3 1333 MHz
-  Latency of 15ns per command (tRP, tRCD, CL)
-  8B wide core to memory bus

300	

PAMS Evaluation

0

0.2

0.4

0.6

0.8

1

1.2

hist mg cg is bt ft gmean

N
or

m
al

iz
ed

 E
xe

cu
ti

on

Ti
m

e
(n

or
m

al
iz

ed
 t

o
FR

-
FC

FS
)

Thread cluster memory scheduler [Kim+,
MICRO'10]

13%	

301

7%	

Thread criticality predictors (TCP) [Bhattacherjee+, ISCA’09]	

302

Sensitivity to system parameters

-10.5%	
-15.9%	
-16.7%	

L2 Cache Size	

4 MB	
 8 MB	
 16 MB	

Δ FR-FCFS Δ FR-FCFS Δ FR-FCFS

-10.4%	
-11.6%	
-16.7%	

Number of Memory Channels	

1 Channel	
 2 Channels	
 4 Channels	

Δ FR-FCFS Δ FR-FCFS Δ FR-FCFS

Conclusion
n  Inter-thread main memory interference within a

multi-threaded application increases execution time

n  Parallel Application Memory Scheduling (PAMS) improves a

single multi-threaded application’s performance by
o  Identifying a set of threads likely to be on the critical path and

prioritizing requests from them
o  Periodically shuffling priorities of non-likely critical threads to

reduce inter-thread interference among them

n  PAMS significantly outperforms
o  Best previous memory scheduler designed for

multi-programmed workloads
o  A memory scheduler that uses a state-of-the-art

thread criticality predictor (TCP)

303	

Parallel Application
Memory Scheduling

Eiman Ebrahimi*

Rustam Miftakhutdinov*, Chris Fallin‡

Chang Joo Lee*+, Jose Joao*

Onur Mutlu‡, Yale N. Patt*

* HPS Research Group The
University of Texas at Austin

‡ Computer Architecture Laboratory
Carnegie Mellon University

+ Intel Corporation
 Austin

Related Works

Some Related Past Work
n  That I could not cover…

n  How to handle prefetch requests in a QoS-aware multi-core
memory system?
q  Prefetch-aware shared resource management, ISCA’11.
q  Prefetch-aware memory controllers, MICRO’08, IEEE-TC’11.
q  Coordinated control of multiple prefetchers, MICRO’09.

n  How to design QoS mechanisms in the interconnect?
q  Topology-aware, scalable QoS, ISCA’11, IEEE Micro’12.
q  Slack-based packet scheduling, ISCA’10, IEEE Micro’11.
q  Efficient bandwidth guarantees, MICRO’09.
q  Application-aware request prioritization, MICRO’09.

306

ISCA 2011 Talk

Micro 2009 Talk

Micro 2008 Talk

Some Issues in Cache Design

DRAM-Aware LLC Writeback
n  Problem 1: Writebacks to DRAM interfere with reads and

cause additional performance penalty
q  Write-to-read turnaround time in DRAM bus
q  Write-recovery latency in DRAM bank
q  Change of row buffer à reduced row-buffer locality for read requests

n  Problem 2: Writebacks that occur once in a while have low
row buffer locality

n  Idea: When evicting a dirty cache block to a row,
proactively search the cache for other dirty blocks to the
same row à evict them à write to DRAM in a batch
q  Improves row buffer locality
q  Reduces write-to-read switching penalties on DRAM bus
q  Improves performance on both single-core and multi-core systems

308

More Information
n  Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N.

Patt,
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused
Interference in Memory Systems"
HPS Technical Report, TR-HPS-2010-002, April 2010.

309

DRAM-Aware Cache Design:
An Example of Resource Coordination

DRAM-Aware Cache Design

n  Coordination of cache policies with memory controllers

n  Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and
Yale N. Patt,
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-
Caused Interference in Memory Systems"
HPS Technical Report, TR-HPS-2010-002, April 2010.

n  Chang Joo Lee, Eiman Ebrahimi, Veynu Narasiman, Onur Mutlu, and
Yale N. Patt,
"DRAM-Aware Last-Level Cache Replacement"
HPS Technical Report, TR-HPS-2010-007, December 2010.

311

7/1/13

312

Write-Caused Interference:
Read-Write Switching

•  Read-write switching penalty for requests to any bank

Data bus:

Idle (~10 processor cycles)

Data A

Idle (~85 processor cycles)

Data C

Frequent read-write switching incurs many idle cycles

Data B

Command:
Read A Write C Read B

Data bus:

Data A

Data B Command:
Read A Read B

•  Row-hit read-to-read (write-to-write) to any bank:
back-to-back data transfer

7/1/13

313

No precharge
(~60 processor cycles)

Write-Caused Interference:
Write-to-Row-Conflict

•  Row-conflict after read (in the same bank)

Row-conflict after a write causes more idle cycles

Command:
Read A Precharge

Data bus:
Data A

Idle (~120 processor cycles)
Data B

Activate B Read or write B

Command:
Write A Precharge

Data bus:
Data A Data B

Activate B Read or write B

•  Row-conflict after write (in the same bank)

Idle (~225 processor cycles)

Row-conflict

Row-conflict

7/1/13

314

Write-Caused Interference

•  Read-Write Switching
– Frequent read-write switching incurs many

 idle cycles

•  Write-to-Row-Conflict
– A row-conflict after a write causes more idl

e cycles

Generating many row-hit writes rather than
row-conflict writes is preferred

7/1/13

315

LRU vs. Interference-Aware
Replacement

Read A Write B

Row B
Row Buffer in Bank 0

DRAM

All requests are to the same cache set

DRAM
Controller

Read
buffer

Write
buffer

Dirty C Set X

Ø  Conventional LRU:

Reading A
Row-conflict after write penalty

Writing B Writing C
Servicing

Write B (row-hit), Write C (row-conflict)

Clean

Clean A

Clean Dirty B

Write C

Last-level cache

Less recently used

7/1/13

316

LRU vs. Interference-Aware
Replacement

Read A Write B

Row B
Row Buffer for writes

DRAM

All requests are to the same cache set

DRAM
Controller

Read
buffer

Write
buffer

Dirty C

Last-level cache

Set X

Ø  Conventional LRU:

Less recently used

Ø  Interference-aware:

Reading A
Row-conflict after write penalty

Writing B Writing C

Writing B

Reading A
Writing B

Reduced idle cycles

Servicing
Write B (row-hit), Write C (row-conflict)

Clean

Clean A

Clean Dirty B

Write B

Write B (row-hit), Write B (row-hit)

A simple policy can reduce write service time

7/1/13

317

Performance of
DRAM-Aware Replacement

0

0.2

0.4

0.6

0.8

1

1.2

Base MLP DAC

Pe
rf

or
m

an
ce

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

12.3% 4-core 1-core 11.4%

0

0.2

0.4

0.6

0.8

1

1.2

Base MLP DAC

Pe
rf

or
m

an
ce

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

7/1/13

318

Outline
•  Problem
•  Solutions

–  Prefetch-Aware DRAM Controller
–  BLP-Aware Request Issue Policies
–  DRAM-Aware Cache Replacement
–  DRAM-Aware Writeback

•  Combination of Solutions
•  Related Work
•  Conclusion

7/1/13

319

DRAM-Aware Writeback

•  Write-caused interference-aware replacem
ent is not enough
–  Row-hit writebacks are sent only when a repl

acement occurs
•  Lose opportunities to service more writes quickly

•  To minimize write-caused interference,
proactively clean row-hit dirty lines
→ Reads are serviced without write-caused inter
ference for a longer period

7/1/13

320

DRAM-Aware Writeback

1. When a dirty line is evicted for the last-level
cache, store its address

2. Using the stored address, search all possible
sets for row-hit dirty lines and clean them
whenever the cache bank is idle

•  Many row-hit writes (up to the row size) are m
serviced quickly
–  Reads can be serviced for a longer time without being

 interfered with by writes

7/1/13

321

Performance of
DRAM-Aware Writeback

0

0.2

0.4

0.6

0.8

1

1.2

Base Eager DAW

Pe
rf

or
m

an
ce

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

12.8% 4-core 1-core 7.1%

0

0.2

0.4

0.6

0.8

1

1.2

Base Eager DAW

Pe
rf

or
m

an
ce

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

