
Scalable Many-Core Memory Systems
Topic 2: Emerging Technologies and

Hybrid Memories

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu

onur@cmu.edu
HiPEAC ACACES Summer School 2013

July 15-19, 2013

What Will You Learn in This Course?
n  Scalable Many-Core Memory Systems

q  July 15-19, 2013

n  Topic 1: Main memory basics, DRAM scaling
n  Topic 2: Emerging memory technologies and hybrid memories
n  Topic 3: Main memory interference and QoS
n  Topic 4 (unlikely): Cache management
n  Topic 5 (unlikely): Interconnects

n  Major Overview Reading:
q  Mutlu, “Memory Scaling: A Systems Architecture Perspective,”

IMW 2013.

2

Readings and Videos

Memory Lecture Videos
n  Memory Hierarchy (and Introduction to Caches)

q  http://www.youtube.com/watch?
v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=22

n  Main Memory
q  http://www.youtube.com/watch?

v=ZLCy3pG7Rc0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=25

n  Memory Controllers, Memory Scheduling, Memory QoS
q  http://www.youtube.com/watch?

v=ZSotvL3WXmA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=26
q  http://www.youtube.com/watch?

v=1xe2w3_NzmI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=27

n  Emerging Memory Technologies
q  http://www.youtube.com/watch?

v=LzfOghMKyA0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=35

n  Multiprocessor Correctness and Cache Coherence
q  http://www.youtube.com/watch?v=U-

VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
4

Readings for Topic 1 (DRAM Scaling)
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” HPCA 2013.
n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA

2012.
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism in DRAM,”

ISCA 2012.
n  Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices,” ISCA 2013.
n  Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and

Initialization of Bulk Data,” CMU CS Tech Report 2013.
n  David et al., “Memory Power Management via Dynamic Voltage/

Frequency Scaling,” ICAC 2011.
n  Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement

Learning Approach,” ISCA 2008.

5

Readings for Topic 2 (Emerging Technologies)

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

n  Qureshi et al., “Scalable high performance main memory system using
phase-change memory technology,” ISCA 2009.

n  Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

n  Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” ICCD 2012 Best Paper Award.

n  Meza et al., “A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory,” WEED 2013.

n  Kultursay et al., “Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” ISPASS 2013.

6

Readings for Topic 3 (Memory QoS)
n  Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX

Security 2007.
n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,”

MICRO 2007.
n  Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA

2008, IEEE Micro 2009.
n  Kim et al., “ATLAS: A Scalable and High-Performance Scheduling

Algorithm for Multiple Memory Controllers,” HPCA 2010.
n  Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE

Micro 2011.
n  Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011.
n  Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.
n  Subramanian et al., “MISE: Providing Performance Predictability and

Improving Fairness in Shared Main Memory Systems,” HPCA 2013.
n  Das et al., “Application-to-Core Mapping Policies to Reduce Memory

System Interference in Multi-Core Systems,” HPCA 2013.
7

Readings for Topic 3 (Memory QoS)
n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM

TOCS 2012.
n  Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC

2011.
n  Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.
n  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for

Multi-Core Systems,” ISCA 2011.

8

Readings in Flash Memory
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)

9

Online Lectures and More Information
n  Online Computer Architecture Lectures

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ

n  Online Computer Architecture Courses
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php

n  Recent Research Papers

q  http://users.ece.cmu.edu/~omutlu/projects.htm
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en

10

Emerging Memory Technologies

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies
n  Conclusions
n  Discussion

12

Major Trends Affecting Main Memory (I)
n  Need for main memory capacity and bandwidth increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

13

Demand for Memory Capacity
n  More cores è More concurrency è Larger working set

n  Emerging applications are data-intensive

n  Many applications/virtual machines (will) share main memory

q  Cloud computing/servers: Consolidation to improve efficiency
q  GP-GPUs: Many threads from multiple parallel applications
q  Mobile: Interactive + non-interactive consolidation

14

IBM Power7: 8 cores Intel SCC: 48 cores AMD Barcelona: 4 cores

The Memory Capacity Gap

n  Memory capacity per core expected to drop by 30% every two years

15

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Major Trends Affecting Main Memory (II)
n  Need for main memory capacity and bandwidth increasing

q  Multi-core: increasing number of cores
q  Data-intensive applications: increasing demand/hunger for data
q  Consolidation: Cloud computing, GPUs, mobile

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

16

Major Trends Affecting Main Memory (III)
n  Need for main memory capacity and bandwidth increasing

n  Main memory energy/power is a key system design concern

q  IBM servers: ~50% energy spent in off-chip memory hierarchy
[Lefurgy, IEEE Computer 2003]

q  DRAM consumes power when idle and needs periodic refresh

n  DRAM technology scaling is ending

17

Major Trends Affecting Main Memory (IV)
n  Need for main memory capacity and bandwidth increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

q  ITRS projects DRAM will not scale easily below 40nm
q  Scaling has provided many benefits:

n  higher capacity, higher density, lower cost, lower energy

18

The DRAM Scaling Problem
n  DRAM stores charge in a capacitor (charge-based memory)

q  Capacitor must be large enough for reliable sensing
q  Access transistor should be large enough for low leakage and high

retention time
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n  DRAM capacity, cost, and energy/power hard to scale

19

Trends: Problems with DRAM as Main Memory

n  Need for main memory capacity and bandwidth increasing
q  DRAM capacity hard to scale

n  Main memory energy/power is a key system design concern

q  DRAM consumes high power due to leakage and refresh

n  DRAM technology scaling is ending

q  DRAM capacity, cost, and energy/power hard to scale

20

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies
n  Conclusions
n  Discussion

21

n  Traditional
q  Enough capacity
q  Low cost
q  High system performance (high bandwidth, low latency)

n  New
q  Technology scalability: lower cost, higher capacity, lower energy
q  Energy (and power) efficiency
q  QoS support and configurability (for consolidation)

22

Requirements from an Ideal Memory System

n  Traditional
q  Higher capacity
q  Continuous low cost
q  High system performance (higher bandwidth, low latency)

n  New
q  Technology scalability: lower cost, higher capacity, lower energy
q  Energy (and power) efficiency
q  QoS support and configurability (for consolidation)

23

Requirements from an Ideal Memory System

Emerging, resistive memory technologies (NVM) can help

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies
n  Conclusions
n  Discussion

24

The Promise of Emerging Technologies

n  Likely need to replace/augment DRAM with a technology that is
q  Technology scalable
q  And at least similarly efficient, high performance, and fault-tolerant

n  or can be architected to be so

n  Some emerging resistive memory technologies appear promising
q  Phase Change Memory (PCM)?
q  Spin Torque Transfer Magnetic Memory (STT-MRAM)?
q  Memristors?
q  And, maybe there are other ones
q  Can they be enabled to replace/augment/surpass DRAM?

25

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies

q  Background
q  PCM (or Technology X) as DRAM Replacement
q  Hybrid Memory Systems

n  Conclusions
n  Discussion

26

Charge vs. Resistive Memories

n  Charge Memory (e.g., DRAM, Flash)
q  Write data by capturing charge Q
q  Read data by detecting voltage V

n  Resistive Memory (e.g., PCM, STT-MRAM, memristors)
q  Write data by pulsing current dQ/dt
q  Read data by detecting resistance R

27

Limits of Charge Memory
n  Difficult charge placement and control

q  Flash: floating gate charge
q  DRAM: capacitor charge, transistor leakage

n  Reliable sensing becomes difficult as charge storage unit
size reduces

28

Emerging Resistive Memory Technologies
n  PCM

q  Inject current to change material phase
q  Resistance determined by phase

n  STT-MRAM
q  Inject current to change magnet polarity
q  Resistance determined by polarity

n  Memristors
q  Inject current to change atomic structure
q  Resistance determined by atom distance

29

What is Phase Change Memory?
n  Phase change material (chalcogenide glass) exists in two states:

q  Amorphous: Low optical reflexivity and high electrical resistivity
q  Crystalline: High optical reflexivity and low electrical resistivity

30

PCM is resistive memory: High resistance (0), Low resistance (1)
PCM cell can be switched between states reliably and quickly

How Does PCM Work?
n  Write: change phase via current injection

q  SET: sustained current to heat cell above Tcryst
q  RESET: cell heated above Tmelt and quenched

n  Read: detect phase via material resistance
q  amorphous/crystalline

31

Large
Current

SET (cryst)
Low resistance

103-104 Ω	

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 Ω	

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

Opportunity: PCM Advantages
n  Scales better than DRAM, Flash

q  Requires current pulses, which scale linearly with feature size
q  Expected to scale to 9nm (2022 [ITRS])
q  Prototyped at 20nm (Raoux+, IBM JRD 2008)

n  Can be denser than DRAM
q  Can store multiple bits per cell due to large resistance range
q  Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012

n  Non-volatile
q  Retain data for >10 years at 85C

n  No refresh needed, low idle power
32

Phase Change Memory Properties

n  Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI,
ISSCC)

n  Derived PCM parameters for F=90nm

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change
Memory as a Scalable DRAM Alternative,” ISCA 2009.

33

34

Phase Change Memory Properties: Latency
n  Latency comparable to, but slower than DRAM

n  Read Latency

q  50ns: 4x DRAM, 10-3x NAND Flash
n  Write Latency

q  150ns: 12x DRAM

n  Write Bandwidth
q  5-10 MB/s: 0.1x DRAM, 1x NAND Flash

35

Phase Change Memory Properties
n  Dynamic Energy

q  40 uA Rd, 150 uA Wr
q  2-43x DRAM, 1x NAND Flash

n  Endurance
q  Writes induce phase change at 650C
q  Contacts degrade from thermal expansion/contraction
q  108 writes per cell
q  10-8x DRAM, 103x NAND Flash

n  Cell Size
q  9-12F2 using BJT, single-level cells
q  1.5x DRAM, 2-3x NAND (will scale with feature size, MLC)

36

Phase Change Memory: Pros and Cons
n  Pros over DRAM

q  Better technology scaling
q  Non volatility
q  Low idle power (no refresh)

n  Cons
q  Higher latencies: ~4-15x DRAM (especially write)
q  Higher active energy: ~2-50x DRAM (especially write)
q  Lower endurance (a cell dies after ~108 writes)

n  Challenges in enabling PCM as DRAM replacement/helper:
q  Mitigate PCM shortcomings
q  Find the right way to place PCM in the system
q  Ensure secure and fault-tolerant PCM operation

37

PCM-based Main Memory: Research Challenges
n  Where to place PCM in the memory hierarchy?

q  Hybrid OS controlled PCM-DRAM
q  Hybrid OS controlled PCM and hardware-controlled DRAM
q  Pure PCM main memory

n  How to mitigate shortcomings of PCM?

n  How to minimize amount of DRAM in the system?

n  How to take advantage of (byte-addressable and fast) non-
volatile main memory?

n  Can we design specific-NVM-technology-agnostic techniques?
38

PCM-based Main Memory (I)
n  How should PCM-based (main) memory be organized?

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09, Meza+
IEEE CAL’12]:
q  How to partition/migrate data between PCM and DRAM

39

Hybrid Memory Systems: Challenges

n  Partitioning
q  Should DRAM be a cache or main memory, or configurable?
q  What fraction? How many controllers?

n  Data allocation/movement (energy, performance, lifetime)
q  Who manages allocation/movement?
q  What are good control algorithms?
q  How do we prevent degradation of service due to wearout?

n  Design of cache hierarchy, memory controllers, OS
q  Mitigate PCM shortcomings, exploit PCM advantages

n  Design of PCM/DRAM chips and modules
q  Rethink the design of PCM/DRAM with new requirements

40

PCM-based Main Memory (II)
n  How should PCM-based (main) memory be organized?

n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:

q  How to redesign entire hierarchy (and cores) to overcome
PCM shortcomings

41

Aside: STT-RAM Basics
n  Magnetic Tunnel Junction (MTJ)

q  Reference layer: Fixed
q  Free layer: Parallel or anti-parallel

n  Cell
q  Access transistor, bit/sense lines

n  Read and Write
q  Read: Apply a small voltage across

bitline and senseline; read the current.
q  Write: Push large current through MTJ.

Direction of current determines new
orientation of the free layer.

n  Kultursay et al., “Evaluating STT-RAM as an
Energy-Efficient Main Memory Alternative,” ISPASS
2013

Reference Layer

Free Layer

Barrier

Reference Layer

Free Layer

Barrier

Logical 0

Logical 1

Word Line

Bit Line

Access
Transistor

MTJ

Sense Line

Aside: STT MRAM: Pros and Cons
n  Pros over DRAM

q  Better technology scaling
q  Non volatility
q  Low idle power (no refresh)

n  Cons
q  Higher write latency
q  Higher write energy
q  Reliability?

n  Another level of freedom
q  Can trade off non-volatility for lower write latency/energy (by

reducing the size of the MTJ)

43

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies

q  Background
q  PCM (or Technology X) as DRAM Replacement
q  Hybrid Memory Systems

n  Conclusions
n  Discussion

44

An Initial Study: Replace DRAM with PCM
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change

Memory as a Scalable DRAM Alternative,” ISCA 2009.
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC)
q  Derived “average” PCM parameters for F=90nm

45

Results: Naïve Replacement of DRAM with PCM
n  Replace DRAM with PCM in a 4-core, 4MB L2 system
n  PCM organized the same as DRAM: row buffers, banks, peripherals
n  1.6x delay, 2.2x energy, 500-hour average lifetime

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a

Scalable DRAM Alternative,” ISCA 2009.
46

Architecting PCM to Mitigate Shortcomings
n  Idea 1: Use multiple narrow row buffers in each PCM chip

à Reduces array reads/writes à better endurance, latency, energy

n  Idea 2: Write into array at
 cache block or word
 granularity

 à Reduces unnecessary wear

47

DRAM PCM

Results: Architected PCM as Main Memory
n  1.2x delay, 1.0x energy, 5.6-year average lifetime
n  Scaling improves energy, endurance, density

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees)
n  Caveat 2: Intensive applications see large performance and energy hits
n  Caveat 3: Optimistic PCM parameters?

48

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies

q  Background
q  PCM (or Technology X) as DRAM Replacement
q  Hybrid Memory Systems

n  Conclusions
n  Discussion

49

Hybrid Memory Systems

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,”
IEEE Comp. Arch. Letters, 2012.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

One Option: DRAM as a Cache for PCM
n  PCM is main memory; DRAM caches memory rows/blocks

q  Benefits: Reduced latency on DRAM cache hit; write filtering

n  Memory controller hardware manages the DRAM cache
q  Benefit: Eliminates system software overhead

n  Three issues:
q  What data should be placed in DRAM versus kept in PCM?
q  What is the granularity of data movement?
q  How to design a low-cost hardware-managed DRAM cache?

n  Two idea directions:
q  Locality-aware data placement [Yoon+ , ICCD 2012]

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012]

51

DRAM as a Cache for PCM
n  Goal: Achieve the best of both DRAM and PCM/NVM

q  Minimize amount of DRAM w/o sacrificing performance, endurance
q  DRAM as cache to tolerate PCM latency and write bandwidth
q  PCM as main memory to provide large capacity at good cost and power

52

DATA

PCM Main Memory

DATA T

DRAM Buffer

PCM Write Queue

T=Tag-Store

Processor

Flash
Or

HDD

Write Filtering Techniques
n  Lazy Write: Pages from disk installed only in DRAM, not PCM
n  Partial Writes: Only dirty lines from DRAM page written back
n  Page Bypass: Discard pages with poor reuse on DRAM eviction

n  Qureshi et al., “Scalable high performance main memory system
using phase-change memory technology,” ISCA 2009.

53

Processor

DATA
PCM Main Memory

DATA T

DRAM Buffer
Flash

Or
HDD

Results: DRAM as PCM Cache (I)
n  Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles,

HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99%
n  Assumption: PCM 4x denser, 4x slower than DRAM
n  DRAM block size = PCM page size (4kB)

54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

db1 db2 qsort bsearch kmeans gauss daxpy vdotp gmean

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

8GB DRAM
32GB PCM
32GB DRAM
32GB PCM + 1GB DRAM

Results: DRAM as PCM Cache (II)
n  PCM-DRAM Hybrid performs similarly to similar-size DRAM
n  Significant power and energy savings with PCM-DRAM Hybrid
n  Average lifetime: 9.7 years (no guarantees)

55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Power Energy Energy x Delay

Va
lu

e
N

or
m

al
iz

ed
 to

 8
G

B
 D

R
A

M 8GB DRAM
Hybrid (32GB PCM+ 1GB DRAM)
32GB DRAM

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies

q  Background
q  PCM (or Technology X) as DRAM Replacement
q  Hybrid Memory Systems

n  Row-Locality Aware Data Placement
n  Efficient DRAM (or Technology X) Caches

n  Conclusions
n  Discussion

56

Row Buffer Locality Aware���
Caching Policies for Hybrid Memories	

HanBin	
 Yoon	

Jus,n	
 Meza	

Rachata	
 Ausavarungnirun	

Rachael	
 Harding	

Onur	
 Mutlu	

Hybrid Memory	

•  Key	
 ques,on:	
 	
 How	
 to	
 place	
 data	
 between	
 the	

heterogeneous	
 memory	
 devices?	

58	

DRAM	
 PCM	

CPU	

MC	
 MC	

Outline	

•  Background:	
 Hybrid	
 Memory	
 Systems	

•  Mo,va,on:	
 Row	
 Buffers	
 and	
 Implica,ons	
 on	

Data	
 Placement	

•  Mechanisms:	
 Row	
 Buffer	
 Locality-­‐Aware	

Caching	
 Policies	

•  Evalua,on	
 and	
 Results	

•  Conclusion	

59	

Hybrid Memory: A Closer Look	

60	

MC	
 MC	

DRAM	

(small	
 capacity	
 cache)	

PCM	

(large	
 capacity	
 store)	

CPU	

Memory	
 channel	

Bank	
 Bank	
 Bank	
 Bank	

Row	
 buffer	

	

	
 	
 	
 	
 Row	
 (buffer)	
 hit:	
 Access	
 data	
 from	
 row	
 buffer	
 à	
 fast	

	
 	
 	
 	
 Row	
 (buffer)	
 miss:	
 Access	
 data	
 from	
 cell	
 array	
 à	
 slow	

LOAD	
 X	
 LOAD	
 X+1	
 LOAD	
 X+1	
 LOAD	
 X	

Row Buffers and Latency	

61	

RO
W
	
 A
DD

RE
SS
	

ROW	
 DATA	

Row	
 buffer	
 miss!	
 Row	
 buffer	
 hit!	

Bank	

Row	
 buffer	

CELL	
 ARRAY	

Key Observation	

•  Row	
 buffers	
 exist	
 in	
 both	
 DRAM	
 and	
 PCM	

– Row	
 hit	
 latency	
 similar	
 in	
 DRAM	
 &	
 PCM	
 [Lee+	
 ISCA’09]	

– Row	
 miss	
 latency	
 small	
 in	
 DRAM,	
 large	
 in	
 PCM	

•  Place	
 data	
 in	
 DRAM	
 which	

–  is	
 likely	
 to	
 miss	
 in	
 the	
 row	
 buffer	
 (low	
 row	
 buffer	

locality)à	
 miss	
 penalty	
 is	
 smaller	
 in	
 DRAM	

	
 AND	

–  is	
 reused	
 many	
 ,mes	
 à	
 cache	
 only	
 the	
 data	

worth	
 the	
 movement	
 cost	
 and	
 DRAM	
 space	

62	

RBL-Awareness: An Example	

63	

Let’s	
 say	
 a	
 processor	
 accesses	
 four	
 rows	

Row	
 A	
 Row	
 B	
 Row	
 C	
 Row	
 D	

RBL-Awareness: An Example	

64	

Let’s	
 say	
 a	
 processor	
 accesses	
 four	
 rows	

with	
 different	
 row	
 buffer	
 locali,es	
 (RBL)	

Row	
 A	
 Row	
 B	
 Row	
 C	
 Row	
 D	

Low	
 RBL	

(Frequently	
 miss	

in	
 row	
 buffer)	

High	
 RBL	

(Frequently	
 hit	

in	
 row	
 buffer)	

Case	
 1:	
 RBL-­‐Unaware	
 Policy	
 (state-­‐of-­‐the-­‐art)	

Case	
 2:	
 RBL-­‐Aware	
 Policy	
 (RBLA)	

Case 1: RBL-Unaware Policy	

65	

A	
 row	
 buffer	
 locality-­‐unaware	
 policy	
 could	

place	
 these	
 rows	
 in	
 the	
 following	
 manner	

DRAM	

(High	
 RBL)	

PCM	

(Low	
 RBL)	

Row	
 C	

Row	
 D	

Row	
 A	

Row	
 B	

RBL-­‐Unaware:	
 	
 	
 Stall	
 ,me	
 is	
 6	
 PCM	
 device	
 accesses	

Case 1: RBL-Unaware Policy	

66	

DRAM	
 (High	
 RBL)	

PCM	
 (Low	
 RBL)	
 A	
 B	

C	
 D	
 C C D D

A	
 B	
 A	
 B	

Access	
 pahern	
 to	
 main	
 memory:	

A	
 (oldest),	
 B,	
 C,	
 C,	
 C,	
 A,	
 B,	
 D,	
 D,	
 D,	
 A,	
 B	
 (youngest)	

,me	

Case 2: RBL-Aware Policy (RBLA)	

67	

A	
 row	
 buffer	
 locality-­‐aware	
 policy	
 would	

place	
 these	
 rows	
 in	
 the	
 opposite	
 manner	

DRAM	

(Low	
 RBL)	

PCM	

(High	
 RBL)	

à	
 Access	
 data	
 at	
 lower	
 row	

buffer	
 miss	
 latency	
 of	
 DRAM	

à	
 Access	
 data	
 at	
 low	
 row	

buffer	
 hit	
 latency	
 of	
 PCM	

Row	
 A	

Row	
 B	

Row	
 C	

Row	
 D	

Saved	
 cycles	

DRAM	
 (High	
 RBL)	

PCM	
 (Low	
 RBL)	

Case 2: RBL-Aware Policy (RBLA)	

68	

A	
 B	

C	
 D	
 C C D D

A	
 B	
 A	
 B	

Access	
 pahern	
 to	
 main	
 memory:	

A	
 (oldest),	
 B,	
 C,	
 C,	
 C,	
 A,	
 B,	
 D,	
 D,	
 D,	
 A,	
 B	
 (youngest)	

DRAM	
 (Low	
 RBL)	

PCM	
 (High	
 RBL)	

,me	

A	
 B	

C	
 D	
 C C D D

A	
 B	
 A	
 B	

RBL-­‐Unaware:	
 	
 	
 Stall	
 ,me	
 is	
 6	
 PCM	
 device	
 accesses	

RBL-­‐Aware:	
 Stall	
 ,me	
 is	
 6	
 DRAM	
 device	
 accesses	

Outline	

•  Background:	
 Hybrid	
 Memory	
 Systems	

•  Mo,va,on:	
 Row	
 Buffers	
 and	
 Implica,ons	
 on	

Data	
 Placement	

•  Mechanisms:	
 Row	
 Buffer	
 Locality-­‐Aware	

Caching	
 Policies	

•  Evalua,on	
 and	
 Results	

•  Conclusion	

69	

Our Mechanism: RBLA	

1.  For	
 recently	
 used	
 rows	
 in	
 PCM:	

– Count	
 row	
 buffer	
 misses	
 as	
 indicator	
 of	
 row	
 buffer	

locality	
 (RBL)	

2.  Cache	
 to	
 DRAM	
 rows	
 with	
 misses	
 ≥	
 threshold	

– Row	
 buffer	
 miss	
 counts	
 are	
 periodically	
 reset	
 (only	

cache	
 rows	
 with	
 high	
 reuse)	

70	

Our Mechanism: RBLA-Dyn	

1.  For	
 recently	
 used	
 rows	
 in	
 PCM:	

– Count	
 row	
 buffer	
 misses	
 as	
 indicator	
 of	
 row	
 buffer	

locality	
 (RBL)	

2.  Cache	
 to	
 DRAM	
 rows	
 with	
 misses	
 ≥	
 threshold	

– Row	
 buffer	
 miss	
 counts	
 are	
 periodically	
 reset	
 (only	

cache	
 rows	
 with	
 high	
 reuse)	

3.  Dynamically	
 adjust	
 threshold	
 to	
 adapt	
 to	

workload/system	
 characteris,cs	

–  Interval-­‐based	
 cost-­‐benefit	
 analysis	
 71	

Implementation: “Statistics Store”	

•  Goal:	
 To	
 keep	
 count	
 of	
 row	
 buffer	
 misses	
 to	

recently	
 used	
 rows	
 in	
 PCM	

•  Hardware	
 structure	
 in	
 memory	
 controller	

– Opera,on	
 is	
 similar	
 to	
 a	
 cache	

•  Input:	
 row	
 address	

•  Output:	
 row	
 buffer	
 miss	
 count	

– 128-­‐set	
 16-­‐way	
 sta,s,cs	
 store	
 (9.25KB)	
 achieves	

system	
 performance	
 within	
 0.3%	
 of	
 an	
 unlimited-­‐
sized	
 sta,s,cs	
 store	

72	

Outline	

•  Background:	
 Hybrid	
 Memory	
 Systems	

•  Mo,va,on:	
 Row	
 Buffers	
 and	
 Implica,ons	
 on	

Data	
 Placement	

•  Mechanisms:	
 Row	
 Buffer	
 Locality-­‐Aware	

Caching	
 Policies	

•  Evalua,on	
 and	
 Results	

•  Conclusion	

73	

Evaluation Methodology	

•  Cycle-­‐level	
 x86	
 CPU-­‐memory	
 simulator	

– CPU:	
 16	
 out-­‐of-­‐order	
 cores,	
 32KB	
 private	
 L1	
 per	

core,	
 512KB	
 shared	
 L2	
 per	
 core	

– Memory:	
 1GB	
 DRAM	
 (8	
 banks),	
 16GB	
 PCM	
 (8	

banks),	
 4KB	
 migra,on	
 granularity	

•  36	
 mul,-­‐programmed	
 server,	
 cloud	
 workloads	

– Server:	
 TPC-­‐C	
 (OLTP),	
 TPC-­‐H	
 (Decision	
 Support)	

– Cloud:	
 Apache	
 (Webserv.),	
 H.264	
 (Video),	
 TPC-­‐C/H	

•  Metrics:	
 Weighted	
 speedup	
 (perf.),	
 perf./Wah	

(energy	
 eff.),	
 Maximum	
 slowdown	
 (fairness)	

74	

Comparison Points	

•  Conven?onal	
 LRU	
 Caching	

•  FREQ:	
 	
 Access-­‐frequency-­‐based	
 caching	

– Places	
 “hot	
 data”	
 in	
 cache	
 [Jiang+	
 HPCA’10]	

– Cache	
 to	
 DRAM	
 rows	
 with	
 accesses	
 ≥	
 threshold	

– Row	
 buffer	
 locality-­‐unaware	

•  FREQ-­‐Dyn:	
 Adap,ve	
 Freq.-­‐based	
 caching	

– FREQ	
 +	
 our	
 dynamic	
 threshold	
 adjustment	

– Row	
 buffer	
 locality-­‐unaware	

•  RBLA:	
 Row	
 buffer	
 locality-­‐aware	
 caching	

•  RBLA-­‐Dyn:	
 	
 Adap,ve	
 RBL-­‐aware	
 caching	
 75	

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Server Cloud Avg

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

10%	

System Performance	

76	

14%	

Benefit	
 1:	
 Increased	
 row	
 buffer	
 locality	
 (RBL)	

in	
 PCM	
 by	
 moving	
 low	
 RBL	
 data	
 to	
 DRAM	

17%	

Benefit	
 1:	
 Increased	
 row	
 buffer	
 locality	
 (RBL)	

in	
 PCM	
 by	
 moving	
 low	
 RBL	
 data	
 to	
 DRAM	

Benefit	
 2:	
 Reduced	
 memory	
 bandwidth	

consump?on	
 due	
 to	
 stricter	
 caching	
 criteria	

Benefit	
 2:	
 Reduced	
 memory	
 bandwidth	

consump?on	
 due	
 to	
 stricter	
 caching	
 criteria	

Benefit	
 3:	
 Balanced	
 memory	
 request	
 load	

between	
 DRAM	
 and	
 PCM	

0

0.2

0.4

0.6

0.8

1

1.2

Server Cloud Avg

N
or

m
al

iz
ed

 A
vg

 M
em

or
y

L
at

en
cy

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

Average Memory Latency	

77	

14%	

9%	

12%	

0

0.2

0.4

0.6

0.8

1

1.2

Server Cloud Avg

N
or

m
al

iz
ed

 P
er

f.
pe

r W
at

t

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

Memory Energy Efficiency	

78	

Increased	
 performance	
 &	
 reduced	
 data	

movement	
 between	
 DRAM	
 and	
 PCM	

7%	
 10%	
 13%	

0

0.2

0.4

0.6

0.8

1

1.2

Server Cloud Avg

N
or

m
al

iz
ed

 M
ax

im
um

 S
lo

w
do

w
n

Workload

FREQ FREQ-Dyn RBLA RBLA-Dyn

Thread Fairness	

79	

7.6%	

4.8%	

6.2%	

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Weighted Speedup Max. Slowdown Perf. per Watt
Normalized Metric

16GB PCM RBLA-Dyn 16GB DRAM

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

iz
ed

 W
ei

gh
te

d
Sp

ee
du

p

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 M
ax

. S
lo

w
do

w
n

Compared to All-PCM/DRAM	

80	

Our	
 mechanism	
 achieves	
 31%	
 beSer	
 performance	

than	
 all	
 PCM,	
 within	
 29%	
 of	
 all	
 DRAM	
 performance	

31%	

29%	

Other Results in Paper	

•  RBLA-­‐Dyn	
 increases	
 the	
 por,on	
 of	
 PCM	
 row	

buffer	
 hit	
 by	
 6.6	
 ,mes	

•  RBLA-­‐Dyn	
 has	
 the	
 effect	
 of	
 balancing	
 memory	

request	
 load	
 between	
 DRAM	
 and	
 PCM	

– PCM	
 channel	
 u,liza,on	
 increases	
 by	
 60%.	

81	

Summary	

82	

•  Different	
 memory	
 technologies	
 have	
 different	
 strengths	

•  A	
 hybrid	
 memory	
 system	
 (DRAM-­‐PCM)	
 aims	
 for	
 best	
 of	
 both	

•  Problem:	
 	
 How	
 to	
 place	
 data	
 between	
 these	
 heterogeneous	

memory	
 devices?	

•  Observa?on:	
 PCM	
 array	
 access	
 latency	
 is	
 higher	
 than	

DRAM’s	
 –	
 But	
 peripheral	
 circuit	
 (row	
 buffer)	
 access	
 latencies	

are	
 similar	

•  Key	
 Idea:	
 Use	
 row	
 buffer	
 locality	
 (RBL)	
 as	
 a	
 key	
 criterion	
 for	

data	
 placement	

•  Solu?on:	
 Cache	
 to	
 DRAM	
 rows	
 with	
 low	
 RBL	
 and	
 high	
 reuse	

•  Improves	
 both	
 performance	
 and	
 energy	
 efficiency	
 over	

state-­‐of-­‐the-­‐art	
 caching	
 policies	

Row Buffer Locality Aware���
Caching Policies for Hybrid Memories	

HanBin	
 Yoon	

Jus,n	
 Meza	

Rachata	
 Ausavarungnirun	

Rachael	
 Harding	

Onur	
 Mutlu	

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies

q  Background
q  PCM (or Technology X) as DRAM Replacement
q  Hybrid Memory Systems

n  Row-Locality Aware Data Placement
n  Efficient DRAM (or Technology X) Caches

n  Conclusions
n  Discussion

84

The Problem with Large DRAM Caches
n  A large DRAM cache requires a large metadata (tag +

block-based information) store
n  How do we design an efficient DRAM cache?

85

DRAM	
 PCM	

CPU

(small, fast cache) (high capacity)

Mem	

Ctlr	

Mem	

Ctlr	

LOAD	
 X	

Access X

Metadata:	

X	
 à	
 DRAM	

X	

Idea 1: Tags in Memory
n  Store tags in the same row as data in DRAM

q  Store metadata in same row as their data
q  Data and metadata can be accessed together

n  Benefit: No on-chip tag storage overhead
n  Downsides:

q  Cache hit determined only after a DRAM access
q  Cache hit requires two DRAM accesses

86

Cache	
 block	
 2	
 Cache	
 block	
 0	
 Cache	
 block	
 1	

DRAM row

Tag0	
 Tag1	
 Tag2	

Idea 2: Cache Tags in SRAM
n  Recall Idea 1: Store all metadata in DRAM

q  To reduce metadata storage overhead

n  Idea 2: Cache in on-chip SRAM frequently-accessed
metadata
q  Cache only a small amount to keep SRAM size small

87

Idea 3: Dynamic Data Transfer Granularity
n  Some applications benefit from caching more data

q  They have good spatial locality

n  Others do not
q  Large granularity wastes bandwidth and reduces cache

utilization

n  Idea 3: Simple dynamic caching granularity policy
q  Cost-benefit analysis to determine best DRAM cache block size
q  Group main memory into sets of rows
q  Some row sets follow a fixed caching granularity
q  The rest of main memory follows the best granularity

n  Cost–benefit analysis: access latency versus number of cachings
n  Performed every quantum

88

TIMBER Tag Management
n  A Tag-In-Memory BuffER (TIMBER)

q  Stores recently-used tags in a small amount of SRAM

n  Benefits: If tag is cached:

q  no need to access DRAM twice
q  cache hit determined quickly

89

Tag0	
 Tag1	
 Tag2	
 Row0	

Tag0	
 Tag1	
 Tag2	
 Row27	

Row Tag

LOAD	
 X	

Cache	
 block	
 2	
 Cache	
 block	
 0	
 Cache	
 block	
 1	

DRAM row

Tag0	
 Tag1	
 Tag2	

TIMBER Tag Management Example (I)
n  Case 1: TIMBER hit

90

Bank	
 Bank	
 Bank	
 Bank	

CPU

Mem	

Ctlr	

Mem	

Ctlr	

LOAD	
 X	

TIMBER:	
 	
 X	
 à	
 DRAM	

X	

Access X

Tag0	
 Tag1	
 Tag2	
 Row0	

Tag0	
 Tag1	
 Tag2	
 Row27	

Our proposal

TIMBER Tag Management Example (II)
n  Case 2: TIMBER miss

91

CPU

Mem	

Ctlr	

Mem	

Ctlr	

LOAD	
 Y	

Y	
 à	
 DRAM	

Bank	
 Bank	
 Bank	
 Bank	

Access	
 Metadata(Y)	

Y	

1. Access M(Y)

Tag0	
 Tag1	
 Tag2	
 Row0	

Tag0	
 Tag1	
 Tag2	
 Row27	

Miss	

M(Y)	

2. Cache M(Y)

Row143	

3. Access Y (row hit)

Methodology
n  System: 8 out-of-order cores at 4 GHz

n  Memory: 512 MB direct-mapped DRAM, 8 GB PCM
q  128B caching granularity
q  DRAM row hit (miss): 200 cycles (400 cycles)
q  PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles)

n  Evaluated metadata storage techniques
q  All SRAM system (8MB of SRAM)
q  Region metadata storage
q  TIM metadata storage (same row as data)
q  TIMBER, 64-entry direct-mapped (8KB of SRAM)

92

93	

Metadata	
 Storage	
 Performance	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	
 Region	
 TIM	
 TIMBER	

N
or
m
al
iz
ed

	
 W
ei
gh
te
d	

Sp
ee
du

p	

(Ideal)	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	
 Region	
 TIM	
 TIMBER	

N
or
m
al
iz
ed

	
 W
ei
gh
te
d	

Sp
ee
du

p	

94	

Metadata	
 Storage	
 Performance	

-­‐48%	

Performance	
 degrades	
 due	

to	
 increased	
 metadata	

lookup	
 access	
 latency	

(Ideal)	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	
 Region	
 TIM	
 TIMBER	

N
or
m
al
iz
ed

	
 W
ei
gh
te
d	

Sp
ee
du

p	

95	

Metadata	
 Storage	
 Performance	

36%	

Increased	
 row	
 locality	

reduces	
 average	

memory	
 access	
 latency	

(Ideal)	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	
 Region	
 TIM	
 TIMBER	

N
or
m
al
iz
ed

	
 W
ei
gh
te
d	

Sp
ee
du

p	

96	

Metadata	
 Storage	
 Performance	

23%	

Data	
 with	
 locality	
 can	

access	
 metadata	
 at	

SRAM	
 latencies	

(Ideal)	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	
 Region	
 TIM	
 TIMBER	
 TIMBER-­‐Dyn	

N
or
m
al
iz
ed

	
 W
ei
gh
te
d	

Sp
ee
du

p	

97	

Dynamic	
 Granularity	
 Performance	

10%	

Reduced	
 channel	

conten,on	
 and	

improved	
 spa,al	
 locality	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

SRAM	
 Region	
 TIM	
 TIMBER	
 TIMBER-­‐Dyn	

N
or
m
al
iz
ed

	
 W
ei
gh
te
d	

Sp
ee
du

p	

98	

TIMBER	
 Performance	

-­‐6%	

Reduced	
 channel	

conten,on	
 and	

improved	
 spa,al	
 locality	

Meza,	
 Chang,	
 Yoon,	
 Mutlu,	
 Ranganathan,	
 “Enabling	
 Efficient	
 and	

Scalable	
 Hybrid	
 Memories,”	
 IEEE	
 Comp.	
 Arch.	
 Lehers,	
 2012.	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

SRAM	
 Region	
 TIM	
 TIMBER	
 TIMBER-­‐Dyn	

N
or
m
al
iz
ed

	
 P
er
fo
rm

an
ce
	
 p
er
	
 W

aS
	

(fo
r	
 M

em
or
y	

Sy
st
em

)	

99	

TIMBER	
 Energy	
 Efficiency	

Fewer	
 migra,ons	
 reduce	

transmihed	
 data	
 and	

channel	
 conten,on	

18%	

Meza,	
 Chang,	
 Yoon,	
 Mutlu,	
 Ranganathan,	
 “Enabling	
 Efficient	
 and	

Scalable	
 Hybrid	
 Memories,”	
 IEEE	
 Comp.	
 Arch.	
 Lehers,	
 2012.	

Enabling and Exploiting NVM: Issues
n  Many issues and ideas from

technology layer to algorithms layer

n  Enabling NVM and hybrid memory
q  How to tolerate errors?
q  How to enable secure operation?
q  How to tolerate performance and

power shortcomings?
q  How to minimize cost?

n  Exploiting emerging technologies
q  How to exploit non-volatility?
q  How to minimize energy consumption?
q  How to exploit NVM on chip?

100

Microarchitecture

ISA

Programs

Algorithms
Problems

Logic

Devices

Runtime System
(VM, OS, MM)

User

Security Challenges of Emerging Technologies

1. Limited endurance à Wearout attacks

2. Non-volatility à Data persists in memory after powerdown
 à Easy retrieval of privileged or private information

3. Multiple bits per cell à Information leakage (via side channel)

101

Securing Emerging Memory Technologies

1. Limited endurance à Wearout attacks
 Better architecting of memory chips to absorb writes
 Hybrid memory system management
 Online wearout attack detection

2. Non-volatility à Data persists in memory after powerdown
 à Easy retrieval of privileged or private information
 Efficient encryption/decryption of whole main memory
 Hybrid memory system management

3. Multiple bits per cell à Information leakage (via side channel)
 System design to hide side channel information

102

Agenda

n  Major Trends Affecting Main Memory
n  Requirements from an Ideal Main Memory System
n  Opportunity: Emerging Memory Technologies

q  Background
q  PCM (or Technology X) as DRAM Replacement
q  Hybrid Memory Systems

n  Conclusions
n  Discussion

103

Summary: Memory Scaling (with NVM)
n  Main memory scaling problems are a critical bottleneck for

system performance, efficiency, and usability

n  Solution 1: Tolerate DRAM (yesterday)

n  Solution 2: Enable emerging memory technologies
q  Replace DRAM with NVM by architecting NVM chips well
q  Hybrid memory systems with automatic data management

n  An exciting topic with many other solution directions & ideas
q  Hardware/software/device cooperation essential
q  Memory, storage, controller, software/app co-design needed
q  Coordinated management of persistent memory and storage
q  Application and hardware cooperative management of NVM

104

Scalable Many-Core Memory Systems
Topic 2: Emerging Technologies and

Hybrid Memories

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu

onur@cmu.edu
HiPEAC ACACES Summer School 2013

July 15-19, 2013

Additional Material

106

Overview Papers on Two Topics
n  Merging of Memory and Storage

q  Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie,
and Onur Mutlu,
"A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory"
Proceedings of the 5th Workshop on Energy-Efficient Design
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

n  Flash Memory Scaling

q  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian
Cristal, Osman Unsal, and Ken Mai,
"Error Analysis and Retention-Aware Error
Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory
Resiliency, Vol. 17, No. 1, May 2013.

107

Merging of Memory and Storage:
Persistent Memory Managers

A Case for Efficient Hardware/Software
Cooperative Management of

Storage and Memory

 Justin Meza*, Yixin Luo*, Samira Khan*†, Jishen Zhao§,
Yuan Xie§‡, and Onur Mutlu*

 *Carnegie Mellon University

 §Pennsylvania State University
†Intel Labs ‡AMD Research

Overview
n  Traditional systems have a two-level storage model

q  Access volatile data in memory with a load/store interface
q  Access persistent data in storage with a file system interface
q  Problem: Operating system (OS) and file system (FS) code and buffering

for storage lead to energy and performance inefficiencies

n  Opportunity: New non-volatile memory (NVM) technologies can help
provide fast (similar to DRAM), persistent storage (similar to Flash)
q  Unfortunately, OS and FS code can easily become energy efficiency and

performance bottlenecks if we keep the traditional storage model

n  This work: makes a case for hardware/software cooperative
management of storage and memory within a single-level
q  We describe the idea of a Persistent Memory Manager (PMM) for

efficiently coordinating storage and memory, and quantify its benefit
q  And, examine questions and challenges to address to realize PMM

110

Talk Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

111

A Tale of Two Storage Levels
n  Traditional systems use a two-level storage model

q  Volatile data is stored in DRAM
q  Persistent data is stored in HDD and Flash

n  Accessed through two vastly different interfaces

112

Processor
and caches

Main Memory Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

A Tale of Two Storage Levels
n  Two-level storage arose in systems due to the widely different

access latencies and methods of the commodity storage devices
q  Fast, low capacity, volatile DRAM à working storage
q  Slow, high capacity, non-volatile hard disk drives à persistent storage

n  Data from slow storage media is buffered in fast DRAM
q  After that it can be manipulated by programs à programs cannot

directly access persistent storage
q  It is the programmer’s job to translate this data between the two

formats of the two-level storage (files and data structures)

n  Locating, transferring, and translating data and formats between
the two levels of storage can waste significant energy and
performance

113

Opportunity: New Non-Volatile Memories
n  Emerging memory technologies provide the potential for unifying

storage and memory (e.g., Phase-Change, STT-RAM, RRAM)
q  Byte-addressable (can be accessed like DRAM)
q  Low latency (comparable to DRAM)
q  Low power (idle power better than DRAM)
q  High capacity (closer to Flash)
q  Non-volatile (can enable persistent storage)
q  May have limited endurance (but, better than Flash)

n  Can provide fast access to both volatile data and persistent
storage

n  Question: if such devices are used, is it efficient to keep a
two-level storage model?

114

Eliminating Traditional Storage Bottlenecks

115

Normalized Total Energy

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

0.065
0.013

Today
(DRAM +
HDD) and
two-level
storage
model Replace HDD

with NVM
(PCM-like),

keep two-level
storage model

Replace HDD
and DRAM
with NVM

(PCM-like),
eliminate all

OS+FS
overhead

Results for PostMark

Eliminating Traditional Storage Bottlenecks

116

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

User CPU Syscall CPU DRAM NVM HDD

0.065
0.013

Results for PostMark

Where is Energy Spent in Each Model?

117

0

0.2

0.4

0.6

0.8

1.0

HDD Baseline NVM Baseline Persistent Memory

Fr
ac

tio
n

of
 T

ot
al

 E
ne

rg
y

User CPU Syscall CPU DRAM NVM HDD

HDD access
wastes energy

FS/OS overhead
becomes important

Additional DRAM energy
due to buffering overhead

of two-level model

No FS/OS overhead
No additional buffering

overhead in DRAM

Results for PostMark

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

118

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

119

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

120

Before: Traditional Two-Level Store

Processor
and caches

Main Memory
Storage (SSD/HDD)

Virtual memory

Address
translation

Load/Store

Operating
system

and file system

fopen, fread, fwrite, …

Our Proposal: Coordinated HW/SW
Memory and Storage Management

n  Goal: Unify memory and storage to eliminate wasted work to
locate, transfer, and translate data
q  Improve both energy and performance
q  Simplify programming model as well

121

After: Coordinated HW/SW Management

Processor
and caches

Persistent (e.g., Phase-Change) Memory

Load/Store

Persistent Memory
Manager

Feedback

The Persistent Memory Manager (PMM)
n  Exposes a load/store interface to access persistent data

q  Applications can directly access persistent memory à no conversion,
translation, location overhead for persistent data

n  Manages data placement, location, persistence, security
q  To get the best of multiple forms of storage

n  Manages metadata storage and retrieval
q  This can lead to overheads that need to be managed

n  Exposes hooks and interfaces for system software
q  To enable better data placement and management decisions

122

The Persistent Memory Manager
n  Persistent Memory Manager

q  Exposes a load/store interface to access persistent data
q  Manages data placement, location, persistence, security
q  Manages metadata storage and retrieval
q  Exposes hooks and interfaces for system software

n  Example program manipulating a persistent object:

123

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Create persistent object and its handle
Allocate a persistent array and assign

Load/store interface

Putting Everything Together

124

2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.

5

Load Store

DRAM Flash NVM HDD

Persistent Memory Manager
Hardware

Software
Data Layout, Persistence, Metadata, Security, ...

Hints from SW/OS/runtime

PMM	
 uses	
 access	
 and	
 hint	
 informa?on	
 to	
 allocate,	
 locate,	
 migrate	

and	
 access	
 data	
 in	
 the	
 heterogeneous	
 array	
 of	
 devices	

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

125

Opportunities and Benefits

n  We’ve identified at least five opportunities and benefits of a unified
storage/memory system that gets rid of the two-level model:

1.  Eliminating system calls for file operations

2.  Eliminating file system operations

3.  Efficient data mapping/location among heterogeneous devices

4.  Providing security and reliability in persistent memories

5.  Hardware/software cooperative data management

126

Eliminating System Calls for File Operations

n  A persistent memory can expose a large, linear, persistent
address space
q  Persistent storage objects can be directly manipulated with load/

store operations

n  This eliminates the need for layers of operating system code
q  Typically used for calls like open, read, and write!

n  Also eliminates OS file metadata
q  File descriptors, file buffers, and so on

127

Eliminating File System Operations
n  Locating files is traditionally done using a file system

q  Runs code and traverses structures in software to locate files

n  Existing hardware structures for locating data in virtual memory
can be extended and adapted to meet the needs of persistent
memories
q  Memory Management Units (MMUs), which map virtual addresses to

physical addresses
q  Translation Lookaside Buffers (TLBs), which cache mappings of

virtual-to-physical address translations

n  Potential to eliminate file system code
n  At the cost of additional hardware overhead to handle persistent

data storage

128

Efficient Data Mapping among Heterogeneous Devices

n  A persistent memory exposes a large, persistent address space
q  But it may use many different devices to satisfy this goal
q  From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash
q  And other NVM devices in between

n  Performance and energy can benefit from good placement of
data among these devices
q  Utilizing the strengths of each device and avoiding their weaknesses,

if possible
q  For example, consider two important application characteristics:

locality and persistence

129

130

Efficient Data Mapping among Heterogeneous Devices

131

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

Efficient Data Mapping among Heterogeneous Devices

132

X

Columns in a column store that are
scanned through only infrequently

à place on Flash

X

Frequently-updated index for a
Content Delivery Network (CDN)

à place in DRAM

Efficient Data Mapping among Heterogeneous Devices

Applica?ons	
 or	
 system	
 so[ware	
 can	
 provide	
 hints	
 for	
 data	
 placement	

Providing Security and Reliability

n  A persistent memory deals with data at the granularity of bytes
and not necessarily files
q  Provides the opportunity for much finer-grained security and

protection than traditional two-level storage models provide/afford
q  Need efficient techniques to avoid large metadata overheads

n  A persistent memory can improve application reliability by
ensuring updates to persistent data are less vulnerable to failures
q  Need to ensure that changes to copies of persistent data placed in

volatile memories become persistent

133

HW/SW Cooperative Data Management

n  Persistent memories can expose hooks and interfaces to
applications, the OS, and runtimes
q  Have the potential to provide improved system robustness and

efficiency than by managing persistent data with either software or
hardware alone

n  Can enable fast checkpointing and reboots, improve application
reliability by ensuring persistence of data
q  How to redesign availability mechanisms to take advantage of these?

n  Persistent locks and other persistent synchronization constructs
can enable more robust programs and systems

134

Quantifying Persistent Memory Benefits

n  We have identified several opportunities and benefits of using
persistent memories without the traditional two-level store model

n  We will next quantify:
q  How do persistent memories affect system performance?
q  How much energy reduction is possible?
q  Can persistent memories achieve these benefits despite additional

access latencies to the persistent memory manager?

135

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

136

Evaluation Methodology
n  Hybrid real system / simulation-based approach

q  System calls are executed on host machine (functional correctness)
and timed to accurately model their latency in the simulator

q  Rest of execution is simulated in Multi2Sim (enables hardware-level
exploration)

n  Power evaluated using McPAT and memory power models

n  16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz

n  Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency

n  Persistent memory
q  HDD (measured): 4ms seek latency, 6Gbps bus rate

q  NVM: (modeled after PCM) 4KB page size, 160-/480-cycle (read/
write) latency

137

Evaluated Systems
n  HDD Baseline (HB)

q  Traditional system with volatile DRAM memory and persistent HDD storage
q  Overheads of operating system and file system code and buffering

n  HDD without OS/FS (HW)
q  Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads
q  System calls take 0 cycles (but HDD access takes normal latency)

n  NVM Baseline (NB)
q  Same as HDD Baseline, but HDD is replaced with NVM
q  Still has OS/FS overheads of the two-level storage model

n  Persistent Memory (PM)
q  Uses only NVM (no DRAM) to ensure full-system persistence
q  All data accessed using loads and stores
q  Does not waste energy on system calls
q  Data is manipulated directly on the NVM device

138

Evaluated Workloads
n  Unix utilities that manipulate files

q  cp: copy a large file from one location to another
q  cp –r: copy files in a directory tree from one location to another
q  grep: search for a string in a large file
q  grep –r: search for a string recursively in a directory tree

n  PostMark: an I/O-intensive benchmark from NetApp
q  Emulates typical access patterns for email, news, web commerce

n  MySQL Server: a popular database management system
q  OLTP-style queries generated by Sysbench
q  MySQL (simple): single, random read to an entry
q  MySQL (complex): reads/writes 1 to 100 entries per transaction

139

Performance Results

140

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Performance Results: HDD w/o OS/FS

141

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

For HDD-based systems, eliminating OS/FS overheads typically leads to small
performance improvements à execution time dominated by HDD access latency

Performance Results: HDD w/o OS/FS

142

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Though, for more complex file system operations like directory traversal (seen with
cp -r and grep -r), eliminating the OS/FS overhead improves performance

Performance Results: HDD to NVM

143

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Switching from an HDD to NVM greatly reduces execution time due to NVM’s much
faster access latencies, especially for I/O-intensive workloads (cp, PostMark, MySQL)

Performance Results: NVM to PMM

144

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

For most workloads, eliminating OS/FS code and buffering improves performance
greatly on top of the NVM Baseline system

(even when DRAM is eliminated from the system)

Performance Results

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

145

The workloads that see the greatest improvement from using a Persistent Memory
are those that spend a large portion of their time executing system call code due to

the two-level storage model

Energy Results

146

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

User CPU Syscall CPU DRAM NVM HDD

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Energy Results: HDD to NVM

147

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

User CPU Syscall CPU DRAM NVM HDD

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Between HDD-based and NVM-based systems, lower NVM energy leads to greatly
reduced energy consumption

Energy Results: NVM to PMM

148

Between systems with and without OS/FS code, energy improvements come from:
1. reduced code footprint, 2. reduced data movement

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

User CPU Syscall CPU DRAM NVM HDD

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)

Large	
 energy	
 reduc?ons	
 with	
 a	
 PMM	
 over	
 the	
 NVM	
 based	
 system	

Scalability Analysis: Effect of PMM Latency

149

Even if each PMM access takes a non-overlapped 50 cycles (conservative),
PMM still provides an overall improvement compared to the NVM baseline

0

0.25

0.50

0.75

1.00

1.25

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

cp

cp
 -

r

gr
ep

gr
ep

 -
r

P
os

tM
ar

k

M
yS

Q
L

(s
im

pl
e)

M
yS

Q
L

(c
om

pl
ex

)

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

User CPU User Memory Syscall CPU Syscall I/O PMM

1 cycle 10 cycles 50 cyclesNB

1.53

Future	
 research	
 should	
 target	
 keeping	
 PMM	
 latencies	
 in	
 check	

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

150

Related Work
n  We provide a comprehensive overview of past work related to

single-level stores and persistent memory techniques

1.  Integrating file systems with persistent memory
q  Need optimized hardware to fully take advantage of new technologies

2.  Programming language support for persistent objects
q  Incurs the added latency of indirect data access through software

3.  Load/store interfaces to persistent storage
q  Lack efficient and fast hardware support for address translation, efficient

file indexing, fast reliability and protection guarantees

4.  Analysis of OS overheads with Flash devices
q  Our study corroborates findings in this area and shows even larger

consequences for systems with emerging NVM devices

n  The goal of our work is to provide cheap and fast hardware support
for memories to enable high energy efficiency and performance

151

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

152

New Questions and Challenges
n  We identify and discuss several open research questions

Ø  Q1. How to tailor applications for systems with persistent
memory?

Ø  Q2. How can hardware and software cooperate to support a
scalable, persistent single-level address space?

Ø  Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems?

Ø  Q4. How to mitigate potential hardware performance and energy
overheads?

153

Outline
n  Background: Storage and Memory Models

n  Motivation: Eliminating Operating/File System Bottlenecks

n  Our Proposal: Hardware/Software Coordinated Management of

Storage and Memory

q  Opportunities and Benefits

n  Evaluation Methodology

n  Evaluation Results

n  Related Work

n  New Questions and Challenges

n  Conclusions

154

Summary and Conclusions
n  Traditional two-level storage model is inefficient in terms of

performance and energy
q  Due to OS/FS code and buffering needed to manage two models
q  Especially so in future devices with NVM technologies, as we show

n  New non-volatile memory based persistent memory designs that
use a single-level storage model to unify memory and storage can
alleviate this problem

n  We quantified the performance and energy benefits of such a
single-level persistent memory/storage design
q  Showed significant benefits from reduced code footprint, data

movement, and system software overhead on a variety of workloads

n  Such a design requires more research to answer the questions we
have posed and enable efficient persistent memory managers
à can lead to a fundamentally more efficient storage system

155

A Case for Efficient Hardware/Software
Cooperative Management of

Storage and Memory

 Justin Meza*, Yixin Luo*, Samira Khan*†, Jishen Zhao§,
Yuan Xie§‡, and Onur Mutlu*

 *Carnegie Mellon University

 §Pennsylvania State University
†Intel Labs ‡AMD Research

Flash Memory Scaling

Readings in Flash Memory
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)

158

Evolution of NAND Flash Memory

n  Flash memory widening its range of applications
q  Portable consumer devices, laptop PCs and enterprise servers

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

CMOS scaling
More bits per Cell

UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

Decreasing Endurance with Flash Scaling

n  Endurance of flash memory decreasing with scaling and multi-level cells
n  Error correction capability required to guarantee storage-class reliability

(UBER < 10-15) is increasing exponentially to reach less endurance

160

Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

SLC 5x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC

P
/E

 C
yc

le
 E

nd
ur

an
ce

100k

10k
5k 3k 1k

4-bit ECC

8-bit ECC

15-bit ECC

24-bit ECC

Error Correction Capability
(per 1 kB of data)

Future NAND Flash Storage Architecture

Memory
Signal

Processing

Error
Correction

Raw Bit
Error Rate

•  Hamming codes
•  BCH codes
•  Reed-Solomon codes
•  LDPC codes
•  Other Flash friendly codes

BER < 10-15

Need to understand NAND flash error patterns

•  Read voltage adjusting
•  Data scrambler
•  Data recovery
•  Soft-information estimation

Noisy

Test System Infrastructure

Host USB PHY

USB Driver

Software Platform

USB
PHYChip

Control
Firmware

FPGA
USB controller

NAND
Controller

Signal Processing

Wear Leveling
Address Mapping
Garbage Collection

Algorithms

ECC
(BCH, RS, LDPC)

Flash
Memories

Host Computer USB Daughter Board Mother Board Flash Board

1.  Reset
2.  Erase block
3.  Program page
4.  Read page

NAND Flash Testing Platform

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm
NAND Flash

NAND Flash Usage and Error Model

…

(Page0 - Page128)
Program

Page
Erase
Block

Retention1
(t1 days)

Read
Page

Retention j
(tj days)

Read
Page

P/E cycle 0

P/E cycle i

Start

…

P/E cycle n

…

End of life

Erase Errors Program Errors

Retention Errors Read Errors

Read Errors Retention Errors

Error Types and Testing Methodology
n  Erase errors

q  Count the number of cells that fail to be erased to “11” state

n  Program interference errors
q  Compare the data immediately after page programming and the data

after the whole block being programmed

n  Read errors
q  Continuously read a given block and compare the data between

consecutive read sequences

n  Retention errors
q  Compare the data read after an amount of time to data written

n  Characterize short term retention errors under room temperature
n  Characterize long term retention errors by baking in the oven

under 125℃

retention errors

n  Raw bit error rate increases exponentially with P/E cycles
n  Retention errors are dominant (>99% for 1-year ret. time)
n  Retention errors increase with retention time requirement

Observations: Flash Error Analysis

166

P/E Cycles

Retention Error Mechanism
LSB/MSB

n  Electron loss from the floating gate causes retention errors
q  Cells with more programmed electrons suffer more from

retention errors
q  Threshold voltage is more likely to shift by one window than by

multiple

11 10 01 00
Vth

REF1 REF2 REF3

Erased Fully programmed

Stress Induced Leakage Current (SILC)

Floating
Gate

Retention Error Value Dependency

00 à01
01 à10

n  Cells with more programmed electrons tend to suffer more
from retention noise (i.e. 00 and 01)

More Details on Flash Error Analysis

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis"
Proceedings of the
Design, Automation, and Test in Europe Conference
(DATE), Dresden, Germany, March 2012. Slides (ppt)

169

Threshold Voltage Distribution Shifts

As P/E cycles increase ...
n Distribution shifts to the right
n Distribution becomes wider

P1	
 State P2	
 State P3	
 State

More Detail

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis and Modeling"
Proceedings of the
Design, Automation, and Test in Europe Conference
(DATE), Grenoble, France, March 2013. Slides (ppt)

171

Flash Correct-and-Refresh

Retention-Aware Error Management
for Increased Flash Memory Lifetime

Yu Cai1 Gulay Yalcin2 Onur Mutlu1 Erich F. Haratsch3
Adrian Cristal2 Osman S. Unsal2 Ken Mai1

1 Carnegie Mellon University
2 Barcelona Supercomputing Center
3 LSI Corporation

Executive Summary
n  NAND flash memory has low endurance: a flash cell dies after 3k P/E

cycles vs. 50k desired à Major scaling challenge for flash memory
n  Flash error rate increases exponentially over flash lifetime
n  Problem: Stronger error correction codes (ECC) are ineffective and

undesirable for improving flash lifetime due to
q  diminishing returns on lifetime with increased correction strength
q  prohibitively high power, area, latency overheads

n  Our Goal: Develop techniques to tolerate high error rates w/o strong ECC
n  Observation: Retention errors are the dominant errors in MLC NAND flash

q  flash cell loses charge over time; retention errors increase as cell gets worn out
n  Solution: Flash Correct-and-Refresh (FCR)

q  Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

q  Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

n  Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs

173

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

174

Problem: Limited Endurance of Flash Memory
n  NAND flash has limited endurance

q  A cell can tolerate a small number of Program/Erase (P/E) cycles
q  3x-nm flash with 2 bits/cell à 3K P/E cycles

n  Enterprise data storage requirements demand very high
endurance
q  >50K P/E cycles (10 full disk writes per day for 3-5 years)

n  Continued process scaling and more bits per cell will reduce
flash endurance

n  One potential solution: stronger error correction codes (ECC)
q  Stronger ECC not effective enough and inefficient

175

UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

Decreasing Endurance with Flash Scaling

n  Endurance of flash memory decreasing with scaling and multi-level cells
n  Error correction capability required to guarantee storage-class reliability

(UBER < 10-15) is increasing exponentially to reach less endurance

176

Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

SLC 5x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC

P
/E

 C
yc

le
 E

nd
ur

an
ce

100k

10k
5k 3k 1k

4-bit ECC

8-bit ECC

15-bit ECC

24-bit ECC

Error Correction Capability
(per 1 kB of data)

The Problem with Stronger Error Correction

n  Stronger ECC detects and corrects more raw bit errors à
increases P/E cycles endured

n  Two shortcomings of stronger ECC:

1. High implementation complexity
 à Power and area overheads increase super-linearly, but

 correction capability increases sub-linearly with ECC strength

2. Diminishing returns on flash lifetime improvement
 à Raw bit error rate increases exponentially with P/E cycles, but

 correction capability increases sub-linearly with ECC strength

177

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

178

Methodology: Error and ECC Analysis
n  Characterized errors and error rates of 3x-nm MLC NAND

flash using an experimental FPGA-based flash platform
q  Cai et al., “Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization, and Analysis,” DATE 2012.

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction

n  Quantified error correction capability (and area and power
consumption) of various BCH-code implementations
q  Identified how much RBER each code can tolerate

 à how many P/E cycles (flash lifetime) each code can sustain

179

NAND Flash Error Types

n  Four types of errors [Cai+, DATE 2012]

n  Caused by common flash operations
q  Read errors
q  Erase errors
q  Program (interference) errors

n  Caused by flash cell losing charge over time
q  Retention errors

n  Whether an error happens depends on required retention time
n  Especially problematic in MLC flash because voltage threshold

window to determine stored value is smaller

180

retention errors

n  Raw bit error rate increases exponentially with P/E cycles
n  Retention errors are dominant (>99% for 1-year ret. time)
n  Retention errors increase with retention time requirement

Observations: Flash Error Analysis

181

P/E Cycles

Methodology: Error and ECC Analysis
n  Characterized errors and error rates of 3x-nm MLC NAND

flash using an experimental FPGA-based flash platform
q  Cai et al., “Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization, and Analysis,” DATE 2012.

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction

n  Quantified error correction capability (and area and power
consumption) of various BCH-code implementations
q  Identified how much RBER each code can tolerate

 à how many P/E cycles (flash lifetime) each code can sustain

182

ECC Strength Analysis
n  Examined characteristics of various-strength BCH codes

with the following criteria
q  Storage efficiency: >89% coding rate (user data/total storage)
q  Reliability: <10-15 uncorrectable bit error rate
q  Code length: segment of one flash page (e.g., 4kB)

183

Code length
(n)

Correctable
Errors (t)

Acceptable
Raw BER

Norm.
Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1
1024 12 4.0x10-4 (4x) 2 2.1
2048 22 1.0x10-3 (10x) 4.1 3.9
4096 40 1.7x10-3 (17x) 8.6 10.3
8192 74 2.2x10-3 (22x) 17.8 21.3
32768 259 2.6x10-3 (26x) 71 85

Error	
 correc,on	
 capability	
 increases	
 sub-­‐linearly	

Power	
 and	
 area	
 overheads	
 increase	
 super-­‐linearly	

n  Lifetime improvement comparison of various BCH codes

Resulting Flash Lifetime with Strong ECC

184

0

2000

4000

6000

8000

10000

12000

14000

512b-BCH 1k-BCH 2k-BCH 4k-BCH 8k-BCH 32k-BCH

P
/E

 C
yc

le
 E

nd
ur

an
ce

 4X Lifetime
Improvement

71X Power Consumption
85X Area Consumption

Strong	
 ECC	
 is	
 very	
 inefficient	
 at	
 improving	
 life,me	

Our Goal

 Develop new techniques
 to improve flash lifetime
 without relying on stronger ECC

185

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

186

Flash Correct-and-Refresh (FCR)
n  Key Observations:

q  Retention errors are the dominant source of errors in flash
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011]

 à limit flash lifetime as they increase over time
q  Retention errors can be corrected by “refreshing” each flash

page periodically

n  Key Idea:
q  Periodically read each flash page,
q  Correct its errors using “weak” ECC, and
q  Either remap it to a new physical page or reprogram it in-place,
q  Before the page accumulates more errors than ECC-correctable
q  Optimization: Adapt refresh rate to endured P/E cycles

187

FCR Intuition

188

Errors with
No refresh

Program
Page ×

After
time T × × ×

After
time 2T × × × × ×

After
time 3T × × × × × × ×

×

× × ×

× × ×

× × ×

×

×

Errors with
Periodic refresh

×

× Retention Error × Program Error

FCR: Two Key Questions

n  How to refresh?
q  Remap a page to another one
q  Reprogram a page (in-place)
q  Hybrid of remap and reprogram

n  When to refresh?
q  Fixed period
q  Adapt the period to retention error severity

189

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

190

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

191

Remapping Based FCR

n  Idea: Periodically remap each page to a different physical
page (after correcting errors)

q  Also [Pan et al., HPCA 2012]

q  FTL already has support for
 changing logical à physical
 flash block/page mappings
q  Deallocated block is
 erased by garbage collector

n  Problem: Causes additional erase operations à more wearout
q  Bad for read-intensive workloads (few erases really needed)
q  Lifetime degrades for such workloads (see paper)

192

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

193

In-Place Reprogramming Based FCR

n  Idea: Periodically reprogram (in-place) each physical page
(after correcting errors)

q  Flash programming techniques
 (ISPP) can correct retention
 errors in-place by recharging
 flash cells

n  Problem: Program errors accumulate on the same page à
may not be correctable by ECC after some time

194

Reprogram	
 corrected	
 data	

n  Pro: No remapping needed à no additional erase operations
n  Con: Increases the occurrence of program errors

In-Place Reprogramming of Flash Cells

195

Retention errors are
caused by cell voltage
shifting to the left

ISPP moves cell
voltage to the right;
fixes retention errors

Floating Gate
Voltage Distribution

for each Stored Value

Floating Gate

Program Errors in Flash Memory

n  When a cell is being programmed, voltage level of a
neighboring cell changes (unintentionally) due to parasitic
capacitance coupling

 à can change the data value stored

n  Also called program interference error

n  Program interference causes neighboring cell voltage to
shift to the right

196

Problem with In-Place Reprogramming

197

11 10 01 00
VT

REF1 REF2 REF3

Floating
Gate

Additional
Electrons Injected

… … 11 01 00 10 11 00 00 Original data
to be programmed

… … 10 01 00 10 11 00 00 Program errors after
initial programming

… … Retention errors
after some time 10 10 00 11 11 01 01

… … Errors after in-place
reprogramming 10 01 00 10 10 00 00

1. Read data
2. Correct errors
3. Reprogram back

Problem: Program errors can accumulate over time

Floating Gate
Voltage Distribution

Hybrid Reprogramming/Remapping Based FCR

n  Idea:
q  Monitor the count of right-shift errors (after error correction)
q  If count < threshold, in-place reprogram the page
q  Else, remap the page to a new page

n  Observation:
q  Program errors much less frequent than retention errors à

Remapping happens only infrequently

n  Benefit:
q  Hybrid FCR greatly reduces erase operations due to remapping

198

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

199

Adaptive-Rate FCR

n  Observation:
q  Retention error rate strongly depends on the P/E cycles a flash

page endured so far
q  No need to refresh frequently (at all) early in flash lifetime

n  Idea:
q  Adapt the refresh rate to the P/E cycles endured by each page
q  Increase refresh rate gradually with increasing P/E cycles

n  Benefits:
q  Reduces overhead of refresh operations
q  Can use existing FTL mechanisms that keep track of P/E cycles

200

Adaptive-Rate FCR (Example)

201

Acceptable raw BER for 512b-BCH

3-year
FCR

3-month
FCR

3-week
FCR

3-day
FCR

P/E Cycles

Select refresh frequency such that error rate is below acceptable rate

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

202

FCR: Other Considerations

n  Implementation cost
q  No hardware changes
q  FTL software/firmware needs modification

n  Response time impact
q  FCR not as frequent as DRAM refresh; low impact

n  Adaptation to variations in retention error rate
q  Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012]

n  FCR requires power
q  Enterprise storage systems typically powered on

203

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

204

Evaluation Methodology
n  Experimental flash platform to obtain error rates at

different P/E cycles [Cai+ DATE 2012]

n  Simulation framework to obtain P/E cycles of real
workloads: DiskSim with SSD extensions

n  Simulated system: 256GB flash, 4 channels, 8 chips/
channel, 8K blocks/chip, 128 pages/block, 8KB pages

n  Workloads
q  File system applications, databases, web search
q  Categories: Write-heavy, read-heavy, balanced

n  Evaluation metrics
q  Lifetime (extrapolated)
q  Energy overhead, P/E cycle overhead

205

Extrapolated Lifetime

206

Maximum full disk P/E Cycles for a Technique

Total full disk P/E Cycles for a Workload
× # of Days of Given Application

Obtained from Experimental Platform Data

Obtained from Workload Simulation
Real length (in time) of
each workload trace

Normalized Flash Memory Lifetime

207

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

512b-­‐BCH	
 1k-­‐BCH	
 2k-­‐BCH	
 4k-­‐BCH	
 8k-­‐BCH	
 32k-­‐BCH	

N
or
m
al
iz
ed

	
 L
ife

?m
e	

Base	
 (No-­‐Refresh)	

Remapping-­‐Based	
 FCR	

Hybrid	
 FCR	

Adap,ve	
 FCR	

46x

Adap?ve-­‐rate	
 FCR	
 provides	
 the	
 highest	
 life?me	
 Life?me	
 of	
 FCR	
 much	
 higher	
 than	
 life?me	
 of	
 stronger	
 ECC	

4x

Lifetime Evaluation Takeaways
n  Significant average lifetime improvement over no refresh

q  Adaptive-rate FCR: 46X
q  Hybrid reprogramming/remapping based FCR: 31X
q  Remapping based FCR: 9X

n  FCR lifetime improvement larger than that of stronger ECC
q  46X vs. 4X with 32-kbit ECC (over 512-bit ECC)
q  FCR is less complex and less costly than stronger ECC

n  Lifetime on all workloads improves with Hybrid FCR
q  Remapping based FCR can degrade lifetime on read-heavy WL
q  Lifetime improvement highest in write-heavy workloads

208

Energy Overhead

n  Adaptive-rate refresh: <1.8% energy increase until daily

refresh is triggered

209

0%

2%

4%

6%

8%

10%

1 Year 3 Months 3 Weeks 3 Days 1 Day

En
er

gy
 O

ve
rh

ea
d

Remapping-based Refresh Hybrid Refresh

7.8%

5.5%

2.6%
1.8%

0.4% 0.3%

Refresh Interval

Overhead of Additional Erases

n  Additional erases happen due to remapping of pages

n  Low (2%-20%) for write intensive workloads
n  High (up to 10X) for read-intensive workloads

n  Improved P/E cycle lifetime of all workloads largely
outweighs the additional P/E cycles due to remapping

210

More Results in the Paper

n  Detailed workload analysis

n  Effect of refresh rate

211

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

212

Conclusion
n  NAND flash memory lifetime is limited due to uncorrectable

errors, which increase over lifetime (P/E cycles)

n  Observation: Dominant source of errors in flash memory is
retention errors à retention error rate limits lifetime

n  Flash Correct-and-Refresh (FCR) techniques reduce
retention error rate to improve flash lifetime
q  Periodically read, correct, and remap or reprogram each page

before it accumulates more errors than can be corrected
q  Adapt refresh period to the severity of errors

n  FCR improves flash lifetime by 46X at no hardware cost
q  More effective and efficient than stronger ECC
q  Can enable better flash memory scaling

213

Flash Correct-and-Refresh

Retention-Aware Error Management
for Increased Flash Memory Lifetime

Yu Cai1 Gulay Yalcin2 Onur Mutlu1 Erich F. Haratsch3
Adrian Cristal2 Osman S. Unsal2 Ken Mai1

1 Carnegie Mellon University
2 Barcelona Supercomputing Center
3 LSI Corporation

