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What Will You Learn in This Course? 
n  Scalable Many-Core Memory Systems  

q  July 15-19, 2013  
 
n  Topic 1: Main memory basics, DRAM scaling 
n  Topic 2: Emerging memory technologies and hybrid memories 
n  Topic 3: Main memory interference and QoS  
n  Topic 4 (unlikely): Cache management  
n  Topic 5 (unlikely): Interconnects 

n  Major Overview Reading: 
q  Mutlu, “Memory Scaling: A Systems Architecture Perspective,” 

IMW 2013. 
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Readings and Videos 

 
 
 
 



Memory Lecture Videos 
n  Memory Hierarchy (and Introduction to Caches) 

q  http://www.youtube.com/watch?
v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=22 

n  Main Memory 
q  http://www.youtube.com/watch?

v=ZLCy3pG7Rc0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=25 

n  Memory Controllers, Memory Scheduling, Memory QoS 
q  http://www.youtube.com/watch?

v=ZSotvL3WXmA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=26 
q  http://www.youtube.com/watch?

v=1xe2w3_NzmI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=27 

n  Emerging Memory Technologies 
q  http://www.youtube.com/watch?

v=LzfOghMKyA0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=35 

n  Multiprocessor Correctness and Cache Coherence 
q  http://www.youtube.com/watch?v=U-

VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32 
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Readings for Topic 1 (DRAM Scaling) 
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM 

Architecture,” HPCA 2013. 
n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 

2012. 
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism in DRAM,” 

ISCA 2012. 
n  Liu et al., “An Experimental Study of Data Retention Behavior in Modern 

DRAM Devices,” ISCA 2013. 
n  Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 

Initialization of Bulk Data,” CMU CS Tech Report 2013. 
n  David et al., “Memory Power Management via Dynamic Voltage/

Frequency Scaling,” ICAC 2011.  
n  Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement 

Learning Approach,” ISCA 2008. 

5 



Readings for Topic 2 (Emerging Technologies)  

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010. 

n  Qureshi et al., “Scalable high performance main memory system using 
phase-change memory technology,” ISCA 2009. 

n  Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE 
Comp. Arch. Letters 2012. 

n  Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid 
Memories,” ICCD 2012 Best Paper Award. 

n  Meza et al., “A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory,” WEED 2013. 

n  Kultursay et al., “Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative,” ISPASS 2013. 
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Readings for Topic 3 (Memory QoS) 
n  Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX 

Security 2007. 
n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,” 

MICRO 2007. 
n  Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 

2008, IEEE Micro 2009. 
n  Kim et al., “ATLAS: A Scalable and High-Performance Scheduling 

Algorithm for Multiple Memory Controllers,” HPCA 2010. 
n  Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE 

Micro 2011. 
n  Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011. 
n  Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 
n  Subramanian et al., “MISE: Providing Performance Predictability and 

Improving Fairness in Shared Main Memory Systems,” HPCA 2013. 
n  Das et al., “Application-to-Core Mapping Policies to Reduce Memory 

System Interference in Multi-Core Systems,” HPCA 2013. 
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Readings for Topic 3 (Memory QoS) 
n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM 

TOCS 2012. 
n  Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC 

2011. 
n  Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
n  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for 

Multi-Core Systems,” ISCA 2011. 
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Readings in Flash Memory 
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, 

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, 
Analysis and Modeling"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble, 
France, March 2013. Slides (ppt) 

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken 
Mai, 
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased 
Flash Memory Lifetime" 
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), 
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, 
and Analysis"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden, 
Germany, March 2012. Slides (ppt) 

9 



Online Lectures and More Information 
n  Online Computer Architecture Lectures 

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ  

n  Online Computer Architecture Courses 
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php 
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php  
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php  

 
n  Recent Research Papers 

q  http://users.ece.cmu.edu/~omutlu/projects.htm 
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en 
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Emerging Memory Technologies 

 
 
 
 



Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 
n  Conclusions 
n  Discussion 
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Major Trends Affecting Main Memory (I) 
n  Need for main memory capacity and bandwidth increasing  

n  Main memory energy/power is a key system design concern 

n  DRAM technology scaling is ending  
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Demand for Memory Capacity 
n  More cores è More concurrency è Larger working set 

 
n  Emerging applications are data-intensive 

n  Many applications/virtual machines (will) share main memory 

q  Cloud computing/servers: Consolidation to improve efficiency 
q  GP-GPUs: Many threads from multiple parallel applications 
q  Mobile: Interactive + non-interactive consolidation 
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IBM Power7: 8 cores Intel SCC: 48 cores  AMD Barcelona: 4 cores 



The Memory Capacity Gap 

n  Memory capacity per core expected to drop by 30% every two years 
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Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 



Major Trends Affecting Main Memory (II) 
n  Need for main memory capacity and bandwidth increasing  

q  Multi-core: increasing number of cores 
q  Data-intensive applications: increasing demand/hunger for data 
q  Consolidation: Cloud computing, GPUs, mobile 

n  Main memory energy/power is a key system design concern 

 
 
n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (III) 
n  Need for main memory capacity and bandwidth increasing  

 
n  Main memory energy/power is a key system design concern 

q  IBM servers: ~50% energy spent in off-chip memory hierarchy 
[Lefurgy, IEEE Computer 2003] 

q  DRAM consumes power when idle and needs periodic refresh 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 
n  Need for main memory capacity and bandwidth increasing  

 
 
n  Main memory energy/power is a key system design concern 

 
n  DRAM technology scaling is ending  

q  ITRS projects DRAM will not scale easily below 40nm 
q  Scaling has provided many benefits:  

n  higher capacity, higher density, lower cost, lower energy 
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The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
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Trends: Problems with DRAM as Main Memory 

n  Need for main memory capacity and bandwidth increasing 
q  DRAM capacity hard to scale  

 
n  Main memory energy/power is a key system design concern 

q  DRAM consumes high power due to leakage and refresh 

 
n  DRAM technology scaling is ending  

q  DRAM capacity, cost, and energy/power hard to scale 
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Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 
n  Conclusions 
n  Discussion 
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n  Traditional 
q  Enough capacity 
q  Low cost 
q  High system performance (high bandwidth, low latency) 

n  New 
q  Technology scalability: lower cost, higher capacity, lower energy 
q  Energy (and power) efficiency 
q  QoS support and configurability (for consolidation) 

22 

Requirements from an Ideal Memory System 



n  Traditional 
q  Higher capacity 
q  Continuous low cost 
q  High system performance (higher bandwidth, low latency) 

n  New 
q  Technology scalability: lower cost, higher capacity, lower energy 
q  Energy (and power) efficiency 
q  QoS support and configurability (for consolidation) 
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Requirements from an Ideal Memory System 

Emerging, resistive memory technologies (NVM) can help 



Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 
n  Conclusions 
n  Discussion 
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The Promise of Emerging Technologies 

n  Likely need to replace/augment DRAM with a technology that is 
q  Technology scalable 
q  And at least similarly efficient, high performance, and fault-tolerant  

n  or can be architected to be so 

n  Some emerging resistive memory technologies appear promising 
q  Phase Change Memory (PCM)? 
q  Spin Torque Transfer Magnetic Memory (STT-MRAM)? 
q  Memristors? 
q  And, maybe there are other ones 
q  Can they be enabled to replace/augment/surpass DRAM? 
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Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 

q  Background 
q  PCM (or Technology X) as DRAM Replacement 
q  Hybrid Memory Systems 

n  Conclusions 
n  Discussion 

26 



Charge vs. Resistive Memories 

n  Charge Memory (e.g., DRAM, Flash) 
q  Write data by capturing charge Q 
q  Read data by detecting voltage V 

n  Resistive Memory (e.g., PCM, STT-MRAM, memristors) 
q  Write data by pulsing current dQ/dt 
q  Read data by detecting resistance R  
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Limits of Charge Memory 
n  Difficult charge placement and control 

q  Flash: floating gate charge 
q  DRAM: capacitor charge, transistor leakage 

n  Reliable sensing becomes difficult as charge storage unit 
size reduces 
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Emerging Resistive Memory Technologies 
n  PCM 

q  Inject current to change material phase 
q  Resistance determined by phase 

n  STT-MRAM 
q  Inject current to change magnet polarity 
q  Resistance determined by polarity 

n  Memristors 
q  Inject current to change atomic structure 
q  Resistance determined by atom distance 
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What is Phase Change Memory? 
n  Phase change material (chalcogenide glass) exists in two states: 

q  Amorphous: Low optical reflexivity and high electrical resistivity 
q  Crystalline: High optical reflexivity and low electrical resistivity 
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PCM is resistive memory:  High resistance (0), Low resistance (1) 
PCM cell can be switched between states reliably and quickly 



How Does PCM Work? 
n  Write: change phase via current injection 

q  SET: sustained current to heat cell above Tcryst  
q  RESET: cell heated above Tmelt and quenched 

n  Read: detect phase via material resistance  
q  amorphous/crystalline 
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Large 
Current 

SET (cryst) 
Low resistance 

103-104 Ω	



Small 
Current 

RESET (amorph) 
High resistance 

Access 
Device 

Memory 
Element 

106-107 Ω	



Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM 



Opportunity: PCM Advantages 
n  Scales better than DRAM, Flash 

q  Requires current pulses, which scale linearly with feature size 
q  Expected to scale to 9nm (2022 [ITRS]) 
q  Prototyped at 20nm (Raoux+, IBM JRD 2008) 

n  Can be denser than DRAM 
q  Can store multiple bits per cell due to large resistance range 
q  Prototypes with 2 bits/cell in ISSCC’08, 4 bits/cell by 2012 

n  Non-volatile 
q  Retain data for >10 years at 85C 

n  No refresh needed, low idle power 
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Phase Change Memory Properties 

n  Surveyed prototypes from 2003-2008 (ITRS, IEDM, VLSI, 
ISSCC) 

n  Derived PCM parameters for F=90nm 

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 
Memory as a Scalable DRAM Alternative,” ISCA 2009. 
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Phase Change Memory Properties: Latency 
n  Latency comparable to, but slower than DRAM 

 
n  Read Latency 

q  50ns: 4x DRAM, 10-3x NAND Flash 
n  Write Latency 

q  150ns: 12x DRAM 

n  Write Bandwidth 
q  5-10 MB/s: 0.1x DRAM, 1x NAND Flash 
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Phase Change Memory Properties 
n  Dynamic Energy 

q  40 uA Rd, 150 uA Wr 
q  2-43x DRAM, 1x NAND Flash 

n  Endurance 
q  Writes induce phase change at 650C 
q  Contacts degrade from thermal expansion/contraction 
q  108 writes per cell 
q  10-8x DRAM, 103x NAND Flash 

n  Cell Size 
q  9-12F2 using BJT, single-level cells 
q  1.5x DRAM, 2-3x NAND     (will scale with feature size, MLC) 
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Phase Change Memory: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling 
q  Non volatility 
q  Low idle power (no refresh) 

n  Cons 
q  Higher latencies: ~4-15x DRAM (especially write) 
q  Higher active energy: ~2-50x DRAM (especially write) 
q  Lower endurance (a cell dies after ~108 writes) 

n  Challenges in enabling PCM as DRAM replacement/helper: 
q  Mitigate PCM shortcomings 
q  Find the right way to place PCM in the system 
q  Ensure secure and fault-tolerant PCM operation 
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PCM-based Main Memory: Research Challenges 
n  Where to place PCM in the memory hierarchy? 

q  Hybrid OS controlled PCM-DRAM 
q  Hybrid OS controlled PCM and hardware-controlled DRAM 
q  Pure PCM main memory 

n  How to mitigate shortcomings of PCM? 

n  How to minimize amount of DRAM in the system? 

n  How to take advantage of (byte-addressable and fast) non-
volatile main memory? 

n  Can we design specific-NVM-technology-agnostic techniques? 
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PCM-based Main Memory (I) 
n  How should PCM-based (main) memory be organized? 

 

n  Hybrid PCM+DRAM [Qureshi+ ISCA’09, Dhiman+ DAC’09, Meza+ 
IEEE CAL’12]:  
q  How to partition/migrate data between PCM and DRAM 
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Hybrid Memory Systems: Challenges  

n  Partitioning 
q  Should DRAM be a cache or main memory, or configurable? 
q  What fraction? How many controllers? 

n  Data allocation/movement (energy, performance, lifetime) 
q  Who manages allocation/movement? 
q  What are good control algorithms? 
q  How do we prevent degradation of service due to wearout? 

n  Design of cache hierarchy, memory controllers, OS 
q  Mitigate PCM shortcomings, exploit PCM advantages 

n  Design of PCM/DRAM chips and modules 
q  Rethink the design of PCM/DRAM with new requirements 
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PCM-based Main Memory (II) 
n  How should PCM-based (main) memory be organized? 

 
n  Pure PCM main memory [Lee et al., ISCA’09, Top Picks’10]:  

q  How to redesign entire hierarchy (and cores) to overcome 
PCM shortcomings 
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Aside: STT-RAM Basics 
n  Magnetic Tunnel Junction (MTJ) 

q  Reference layer: Fixed 
q  Free layer: Parallel or anti-parallel 

n  Cell 
q  Access transistor, bit/sense lines 

n  Read and Write 
q  Read: Apply a small voltage across 

bitline and senseline; read the current.  
q  Write: Push large current through MTJ.  

Direction of current determines new 
orientation of the free layer. 

n  Kultursay et al., “Evaluating STT-RAM as an 
Energy-Efficient Main Memory Alternative,” ISPASS 
2013 

Reference Layer 

Free Layer 

Barrier 

Reference Layer 

Free Layer 

Barrier 

Logical 0 

Logical 1 

Word Line 

Bit Line 
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Transistor 

MTJ 

Sense Line 



Aside: STT MRAM: Pros and Cons 
n  Pros over DRAM 

q  Better technology scaling 
q  Non volatility 
q  Low idle power (no refresh) 

n  Cons 
q  Higher write latency 
q  Higher write energy 
q  Reliability? 

n  Another level of freedom 
q  Can trade off non-volatility for lower write latency/energy (by 

reducing the size of the MTJ) 
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Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 

q  Background 
q  PCM (or Technology X) as DRAM Replacement 
q  Hybrid Memory Systems 

n  Conclusions 
n  Discussion 
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An Initial Study: Replace DRAM with PCM 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change 

Memory as a Scalable DRAM Alternative,” ISCA 2009. 
q  Surveyed prototypes from 2003-2008 (e.g. IEDM, VLSI, ISSCC) 
q  Derived “average” PCM parameters for F=90nm 
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Results: Naïve Replacement of DRAM with PCM 
n  Replace DRAM with PCM in a 4-core, 4MB L2 system 
n  PCM organized the same as DRAM: row buffers, banks, peripherals 
n  1.6x delay, 2.2x energy, 500-hour average lifetime 

 
n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 

Scalable DRAM Alternative,” ISCA 2009. 
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Architecting PCM to Mitigate Shortcomings 
n  Idea 1: Use multiple narrow row buffers in each PCM chip 

à Reduces array reads/writes à better endurance, latency, energy 

n  Idea 2: Write into array at 
    cache block or word  
    granularity 

 à Reduces unnecessary wear    
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DRAM PCM 



Results: Architected PCM as Main Memory  
n  1.2x delay, 1.0x energy, 5.6-year average lifetime 
n  Scaling improves energy, endurance, density 

n  Caveat 1: Worst-case lifetime is much shorter (no guarantees) 
n  Caveat 2: Intensive applications see large performance and energy hits 
n  Caveat 3: Optimistic PCM parameters? 
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Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 

q  Background 
q  PCM (or Technology X) as DRAM Replacement 
q  Hybrid Memory Systems 

n  Conclusions 
n  Discussion 
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Hybrid Memory Systems 

Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid Memories,” 
IEEE Comp. Arch. Letters, 2012. 

CPU 
DRAM
Ctrl 

Fast, durable 
Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



One Option: DRAM as a Cache for PCM 
n  PCM is main memory; DRAM caches memory rows/blocks 

q  Benefits: Reduced latency on DRAM cache hit; write filtering 

n  Memory controller hardware manages the DRAM cache 
q  Benefit: Eliminates system software overhead 

n  Three issues: 
q  What data should be placed in DRAM versus kept in PCM? 
q  What is the granularity of data movement? 
q  How to design a low-cost hardware-managed DRAM cache? 

n  Two idea directions: 
q  Locality-aware data placement [Yoon+ , ICCD 2012] 

q  Cheap tag stores and dynamic granularity [Meza+, IEEE CAL 2012] 
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DRAM as a Cache for PCM 
n  Goal: Achieve the best of both DRAM and PCM/NVM 

q  Minimize amount of DRAM w/o sacrificing performance, endurance 
q  DRAM as cache to tolerate PCM latency and write bandwidth 
q  PCM as main memory to provide large capacity at good cost and power 
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Write Filtering Techniques 
n  Lazy Write: Pages from disk installed only in DRAM, not PCM 
n  Partial Writes:  Only dirty lines from DRAM page written back 
n  Page Bypass: Discard pages with poor reuse on DRAM eviction 

n  Qureshi et al., “Scalable high performance main memory system 
using phase-change memory technology,” ISCA 2009.  
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Results: DRAM as PCM Cache (I) 
n  Simulation of 16-core system, 8GB DRAM main-memory at 320 cycles, 

HDD (2 ms) with Flash (32 us) with Flash hit-rate of 99% 
n  Assumption: PCM 4x denser, 4x slower than DRAM  
n  DRAM block size = PCM page size (4kB)  
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Results: DRAM as PCM Cache (II) 
n  PCM-DRAM Hybrid performs similarly to similar-size DRAM 
n  Significant power and energy savings with PCM-DRAM Hybrid 
n  Average lifetime: 9.7 years (no guarantees) 
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Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 

q  Background 
q  PCM (or Technology X) as DRAM Replacement 
q  Hybrid Memory Systems 

n  Row-Locality Aware Data Placement 
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Hybrid Memory	


•  Key	
  ques,on:	
  	
  How	
  to	
  place	
  data	
  between	
  the	
  
heterogeneous	
  memory	
  devices?	
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Hybrid Memory: A Closer Look	
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MC	
   MC	
  

DRAM	
  
(small	
  capacity	
  cache)	
  

PCM	
  
(large	
  capacity	
  store)	
  

CPU	
  

Memory	
  channel	
  

Bank	
   Bank	
   Bank	
   Bank	
  

Row	
  buffer	
  



	
  
	
  	
  	
  	
  Row	
  (buffer)	
  hit:	
  Access	
  data	
  from	
  row	
  buffer	
  à	
  fast	
  
	
  	
  	
  	
  Row	
  (buffer)	
  miss:	
  Access	
  data	
  from	
  cell	
  array	
  à	
  slow	
  

LOAD	
  X	
   LOAD	
  X+1	
  LOAD	
  X+1	
  LOAD	
  X	
  

Row Buffers and Latency	
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RO
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  A
DD
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ROW	
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Row	
  buffer	
  miss!	
  Row	
  buffer	
  hit!	
  

Bank	
  

Row	
  buffer	
  

CELL	
  ARRAY	
  



Key Observation	


•  Row	
  buffers	
  exist	
  in	
  both	
  DRAM	
  and	
  PCM	
  

– Row	
  hit	
  latency	
  similar	
  in	
  DRAM	
  &	
  PCM	
  [Lee+	
  ISCA’09]	
  
– Row	
  miss	
  latency	
  small	
  in	
  DRAM,	
  large	
  in	
  PCM	
  

•  Place	
  data	
  in	
  DRAM	
  which	
  
–  is	
  likely	
  to	
  miss	
  in	
  the	
  row	
  buffer	
  (low	
  row	
  buffer	
  
locality)à	
  miss	
  penalty	
  is	
  smaller	
  in	
  DRAM	
  
	
  AND	
  

–  is	
  reused	
  many	
  ,mes	
  à	
  cache	
  only	
  the	
  data	
  
worth	
  the	
  movement	
  cost	
  and	
  DRAM	
  space	
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RBL-Awareness: An Example	
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Let’s	
  say	
  a	
  processor	
  accesses	
  four	
  rows	
  

Row	
  A	
   Row	
  B	
   Row	
  C	
   Row	
  D	
  



RBL-Awareness: An Example	
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Let’s	
  say	
  a	
  processor	
  accesses	
  four	
  rows	
  
with	
  different	
  row	
  buffer	
  locali,es	
  (RBL)	
  

Row	
  A	
   Row	
  B	
   Row	
  C	
   Row	
  D	
  

Low	
  RBL	
  
(Frequently	
  miss	
  
in	
  row	
  buffer)	
  

High	
  RBL	
  
(Frequently	
  hit	
  
in	
  row	
  buffer)	
  

Case	
  1:	
  RBL-­‐Unaware	
  Policy	
  (state-­‐of-­‐the-­‐art)	
  
Case	
  2:	
  RBL-­‐Aware	
  Policy	
  (RBLA)	
  



Case 1: RBL-Unaware Policy	
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A	
  row	
  buffer	
  locality-­‐unaware	
  policy	
  could	
  
place	
  these	
  rows	
  in	
  the	
  following	
  manner	
  

DRAM	
  
(High	
  RBL)	
  

PCM	
  
(Low	
  RBL)	
  

Row	
  C	
  
Row	
  D	
  

Row	
  A	
  
Row	
  B	
  



RBL-­‐Unaware:	
  	
  	
  Stall	
  ,me	
  is	
  6	
  PCM	
  device	
  accesses	
  

Case 1: RBL-Unaware Policy	
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DRAM	
  (High	
  RBL)	
  
PCM	
  (Low	
  RBL)	
   A	
   B	
  

C	
   D	
  C C D D

A	
   B	
   A	
   B	
  

Access	
  pahern	
  to	
  main	
  memory:	
  
A	
  (oldest),	
  B,	
  C,	
  C,	
  C,	
  A,	
  B,	
  D,	
  D,	
  D,	
  A,	
  B	
  (youngest)	
  

,me	
  



Case 2: RBL-Aware Policy (RBLA)	
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A	
  row	
  buffer	
  locality-­‐aware	
  policy	
  would	
  
place	
  these	
  rows	
  in	
  the	
  opposite	
  manner	
  

DRAM	
  
(Low	
  RBL)	
  

PCM	
  
(High	
  RBL)	
  

à	
  Access	
  data	
  at	
  lower	
  row	
  
buffer	
  miss	
  latency	
  of	
  DRAM	
  

à	
  Access	
  data	
  at	
  low	
  row	
  
buffer	
  hit	
  latency	
  of	
  PCM	
  

Row	
  A	
  
Row	
  B	
  

Row	
  C	
  
Row	
  D	
  



Saved	
  cycles	
  

DRAM	
  (High	
  RBL)	
  
PCM	
  (Low	
  RBL)	
  

Case 2: RBL-Aware Policy (RBLA)	
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A	
   B	
  

C	
   D	
  C C D D

A	
   B	
   A	
   B	
  

Access	
  pahern	
  to	
  main	
  memory:	
  
A	
  (oldest),	
  B,	
  C,	
  C,	
  C,	
  A,	
  B,	
  D,	
  D,	
  D,	
  A,	
  B	
  (youngest)	
  

DRAM	
  (Low	
  RBL)	
  
PCM	
  (High	
  RBL)	
  

,me	
  

A	
   B	
  

C	
   D	
  C C D D

A	
   B	
   A	
   B	
  

RBL-­‐Unaware:	
  	
  	
  Stall	
  ,me	
  is	
  6	
  PCM	
  device	
  accesses	
  

RBL-­‐Aware:	
  Stall	
  ,me	
  is	
  6	
  DRAM	
  device	
  accesses	
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•  Background:	
  Hybrid	
  Memory	
  Systems	
  
•  Mo,va,on:	
  Row	
  Buffers	
  and	
  Implica,ons	
  on	
  
Data	
  Placement	
  

•  Mechanisms:	
  Row	
  Buffer	
  Locality-­‐Aware	
  
Caching	
  Policies	
  

•  Evalua,on	
  and	
  Results	
  
•  Conclusion	
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Our Mechanism: RBLA	


1.  For	
  recently	
  used	
  rows	
  in	
  PCM:	
  

– Count	
  row	
  buffer	
  misses	
  as	
  indicator	
  of	
  row	
  buffer	
  
locality	
  (RBL)	
  

2.  Cache	
  to	
  DRAM	
  rows	
  with	
  misses	
  ≥	
  threshold	
  
– Row	
  buffer	
  miss	
  counts	
  are	
  periodically	
  reset	
  (only	
  
cache	
  rows	
  with	
  high	
  reuse)	
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Our Mechanism: RBLA-Dyn	


1.  For	
  recently	
  used	
  rows	
  in	
  PCM:	
  

– Count	
  row	
  buffer	
  misses	
  as	
  indicator	
  of	
  row	
  buffer	
  
locality	
  (RBL)	
  

2.  Cache	
  to	
  DRAM	
  rows	
  with	
  misses	
  ≥	
  threshold	
  
– Row	
  buffer	
  miss	
  counts	
  are	
  periodically	
  reset	
  (only	
  
cache	
  rows	
  with	
  high	
  reuse)	
  

3.  Dynamically	
  adjust	
  threshold	
  to	
  adapt	
  to	
  
workload/system	
  characteris,cs	
  
–  Interval-­‐based	
  cost-­‐benefit	
  analysis	
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Implementation: “Statistics Store”	


•  Goal:	
  To	
  keep	
  count	
  of	
  row	
  buffer	
  misses	
  to	
  
recently	
  used	
  rows	
  in	
  PCM	
  

•  Hardware	
  structure	
  in	
  memory	
  controller	
  
– Opera,on	
  is	
  similar	
  to	
  a	
  cache	
  

•  Input:	
  row	
  address	
  
•  Output:	
  row	
  buffer	
  miss	
  count	
  

– 128-­‐set	
  16-­‐way	
  sta,s,cs	
  store	
  (9.25KB)	
  achieves	
  
system	
  performance	
  within	
  0.3%	
  of	
  an	
  unlimited-­‐
sized	
  sta,s,cs	
  store	
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Evaluation Methodology	


•  Cycle-­‐level	
  x86	
  CPU-­‐memory	
  simulator	
  

– CPU:	
  16	
  out-­‐of-­‐order	
  cores,	
  32KB	
  private	
  L1	
  per	
  
core,	
  512KB	
  shared	
  L2	
  per	
  core	
  

– Memory:	
  1GB	
  DRAM	
  (8	
  banks),	
  16GB	
  PCM	
  (8	
  
banks),	
  4KB	
  migra,on	
  granularity	
  

•  36	
  mul,-­‐programmed	
  server,	
  cloud	
  workloads	
  
– Server:	
  TPC-­‐C	
  (OLTP),	
  TPC-­‐H	
  (Decision	
  Support)	
  
– Cloud:	
  Apache	
  (Webserv.),	
  H.264	
  (Video),	
  TPC-­‐C/H	
  

•  Metrics:	
  Weighted	
  speedup	
  (perf.),	
  perf./Wah	
  
(energy	
  eff.),	
  Maximum	
  slowdown	
  (fairness)	
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Comparison Points	


•  Conven?onal	
  LRU	
  Caching	
  
•  FREQ:	
  	
  Access-­‐frequency-­‐based	
  caching	
  

– Places	
  “hot	
  data”	
  in	
  cache	
  [Jiang+	
  HPCA’10]	
  
– Cache	
  to	
  DRAM	
  rows	
  with	
  accesses	
  ≥	
  threshold	
  
– Row	
  buffer	
  locality-­‐unaware	
  

•  FREQ-­‐Dyn:	
  Adap,ve	
  Freq.-­‐based	
  caching	
  
– FREQ	
  +	
  our	
  dynamic	
  threshold	
  adjustment	
  
– Row	
  buffer	
  locality-­‐unaware	
  

•  RBLA:	
  Row	
  buffer	
  locality-­‐aware	
  caching	
  
•  RBLA-­‐Dyn:	
  	
  Adap,ve	
  RBL-­‐aware	
  caching	
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14%	
  

Benefit	
  1:	
  Increased	
  row	
  buffer	
  locality	
  (RBL)	
  
in	
  PCM	
  by	
  moving	
  low	
  RBL	
  data	
  to	
  DRAM	
  

17%	
  

Benefit	
  1:	
  Increased	
  row	
  buffer	
  locality	
  (RBL)	
  
in	
  PCM	
  by	
  moving	
  low	
  RBL	
  data	
  to	
  DRAM	
  
Benefit	
  2:	
  Reduced	
  memory	
  bandwidth	
  

consump?on	
  due	
  to	
  stricter	
  caching	
  criteria	
  
Benefit	
  2:	
  Reduced	
  memory	
  bandwidth	
  

consump?on	
  due	
  to	
  stricter	
  caching	
  criteria	
  
Benefit	
  3:	
  Balanced	
  memory	
  request	
  load	
  

between	
  DRAM	
  and	
  PCM	
  



0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Server Cloud Avg 

N
or

m
al

iz
ed

 A
vg

 M
em

or
y 

L
at

en
cy

 

Workload 

FREQ FREQ-Dyn RBLA RBLA-Dyn 

Average Memory Latency	



77	
  

14%	
  

9%	
  
12%	
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Increased	
  performance	
  &	
  reduced	
  data	
  
movement	
  between	
  DRAM	
  and	
  PCM	
  

7%	
   10%	
  13%	
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7.6%	
  

4.8%	
  
6.2%	
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Our	
  mechanism	
  achieves	
  31%	
  beSer	
  performance	
  
than	
  all	
  PCM,	
  within	
  29%	
  of	
  all	
  DRAM	
  performance	
  

31%	
  

29%	
  



Other Results in Paper	


•  RBLA-­‐Dyn	
  increases	
  the	
  por,on	
  of	
  PCM	
  row	
  
buffer	
  hit	
  by	
  6.6	
  ,mes	
  

•  RBLA-­‐Dyn	
  has	
  the	
  effect	
  of	
  balancing	
  memory	
  
request	
  load	
  between	
  DRAM	
  and	
  PCM	
  
– PCM	
  channel	
  u,liza,on	
  increases	
  by	
  60%.	
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Summary	
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•  Different	
  memory	
  technologies	
  have	
  different	
  strengths	
  
•  A	
  hybrid	
  memory	
  system	
  (DRAM-­‐PCM)	
  aims	
  for	
  best	
  of	
  both	
  
•  Problem:	
  	
  How	
  to	
  place	
  data	
  between	
  these	
  heterogeneous	
  

memory	
  devices?	
  
•  Observa?on:	
  PCM	
  array	
  access	
  latency	
  is	
  higher	
  than	
  

DRAM’s	
  –	
  But	
  peripheral	
  circuit	
  (row	
  buffer)	
  access	
  latencies	
  
are	
  similar	
  

•  Key	
  Idea:	
  Use	
  row	
  buffer	
  locality	
  (RBL)	
  as	
  a	
  key	
  criterion	
  for	
  
data	
  placement	
  

•  Solu?on:	
  Cache	
  to	
  DRAM	
  rows	
  with	
  low	
  RBL	
  and	
  high	
  reuse	
  
•  Improves	
  both	
  performance	
  and	
  energy	
  efficiency	
  over	
  

state-­‐of-­‐the-­‐art	
  caching	
  policies	
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The Problem with Large DRAM Caches 
n  A large DRAM cache requires a large metadata (tag + 

block-based information) store 
n  How do we design an efficient DRAM cache? 
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DRAM	
   PCM	
  

CPU 

(small, fast cache) (high capacity) 

Mem	
  
Ctlr	
  

Mem	
  
Ctlr	
  

LOAD	
  X	
  

Access X 

Metadata:	
  
X	
  à	
  DRAM	
  

X	
  



Idea 1: Tags in Memory 
n  Store tags in the same row as data in DRAM 

q  Store metadata in same row as their data 
q  Data and metadata can be accessed together 

n  Benefit: No on-chip tag storage overhead 
n  Downsides:  

q  Cache hit determined only after a DRAM access 
q  Cache hit requires two DRAM accesses 
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Cache	
  block	
  2	
  Cache	
  block	
  0	
   Cache	
  block	
  1	
  
DRAM row 

Tag0	
   Tag1	
   Tag2	
  



Idea 2: Cache Tags in SRAM 
n  Recall Idea 1: Store all metadata in DRAM  

q  To reduce metadata storage overhead 

n  Idea 2: Cache in on-chip SRAM frequently-accessed 
metadata 
q  Cache only a small amount to keep SRAM size small 
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Idea 3: Dynamic Data Transfer Granularity 
n  Some applications benefit from caching more data 

q  They have good spatial locality 

n  Others do not 
q  Large granularity wastes bandwidth and reduces cache 

utilization 

n  Idea 3: Simple dynamic caching granularity policy 
q  Cost-benefit analysis to determine best DRAM cache block size 
q  Group main memory into sets of rows 
q  Some row sets follow a fixed caching granularity 
q  The rest of main memory follows the best granularity 

n  Cost–benefit analysis:  access latency versus number of cachings 
n  Performed every quantum 
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TIMBER Tag Management 
n  A Tag-In-Memory BuffER (TIMBER) 

q  Stores recently-used tags in a small amount of SRAM 

 
n  Benefits: If tag is cached: 

q  no need to access DRAM twice 
q  cache hit determined quickly 
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TIMBER Tag Management Example (I) 
n  Case 1: TIMBER hit 
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TIMBER Tag Management Example (II) 
n  Case 2: TIMBER miss 
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Tag0	
   Tag1	
   Tag2	
  Row27	
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2. Cache M(Y) 
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Methodology 
n  System:  8 out-of-order cores at 4 GHz 

n  Memory: 512 MB direct-mapped DRAM, 8 GB PCM 
q  128B caching granularity 
q  DRAM row hit (miss): 200 cycles (400 cycles) 
q  PCM row hit (clean / dirty miss): 200 cycles (640 / 1840 cycles) 

n  Evaluated metadata storage techniques 
q  All SRAM system (8MB of SRAM) 
q  Region metadata storage 
q  TIM metadata storage (same row as data) 
q  TIMBER, 64-entry direct-mapped (8KB of SRAM) 
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Enabling and Exploiting NVM: Issues 
n  Many issues and ideas from 

technology layer to algorithms layer 

n  Enabling NVM and hybrid memory 
q  How to tolerate errors? 
q  How to enable secure operation? 
q  How to tolerate performance and 

power shortcomings? 
q  How to minimize cost? 
 

n  Exploiting emerging technologies 
q  How to exploit non-volatility? 
q  How to minimize energy consumption? 
q  How to exploit NVM on chip? 
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Security Challenges of Emerging Technologies 

1. Limited endurance à Wearout attacks 
 
 
 
 
2. Non-volatility à Data persists in memory after powerdown 
    à Easy retrieval of privileged or private information 
 
 
 
3. Multiple bits per cell à Information leakage (via side channel) 
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Securing Emerging Memory Technologies 

1. Limited endurance à Wearout attacks 
    Better architecting of memory chips to absorb writes 
    Hybrid memory system management 
    Online wearout attack detection 
 
2. Non-volatility à Data persists in memory after powerdown 
    à Easy retrieval of privileged or private information 
    Efficient encryption/decryption of whole main memory 
    Hybrid memory system management 
 
3. Multiple bits per cell à Information leakage (via side channel) 
    System design to hide side channel information 
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Agenda 

n  Major Trends Affecting Main Memory 
n  Requirements from an Ideal Main Memory System 
n  Opportunity: Emerging Memory Technologies 

q  Background 
q  PCM (or Technology X) as DRAM Replacement 
q  Hybrid Memory Systems 

n  Conclusions 
n  Discussion 
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Summary: Memory Scaling (with NVM) 
n  Main memory scaling problems are a critical bottleneck for 

system performance, efficiency, and usability 

n  Solution 1: Tolerate DRAM (yesterday) 

n  Solution 2: Enable emerging memory technologies  
q  Replace DRAM with NVM by architecting NVM chips well 
q  Hybrid memory systems with automatic data management 

n  An exciting topic with many other solution directions & ideas 
q  Hardware/software/device cooperation essential 
q  Memory, storage, controller, software/app co-design needed 
q  Coordinated management of persistent memory and storage 
q  Application and hardware cooperative management of NVM 
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Overview Papers on Two Topics 
n  Merging of Memory and Storage 

q  Justin Meza, Yixin Luo, Samira Khan, Jishen Zhao, Yuan Xie, 
and Onur Mutlu, 
"A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory" 
Proceedings of the 5th Workshop on Energy-Efficient Design 
(WEED), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  

 
n  Flash Memory Scaling 

q  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian 
Cristal, Osman Unsal, and Ken Mai, 
"Error Analysis and Retention-Aware Error 
Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory 
Resiliency, Vol. 17, No. 1, May 2013.  
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Merging of Memory and Storage: 
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Overview 
n  Traditional systems have a two-level storage model 

q  Access volatile data in memory with a load/store interface 
q  Access persistent data in storage with a file system interface 
q  Problem: Operating system (OS) and file system (FS) code and buffering 

for storage lead to energy and performance inefficiencies 

n  Opportunity: New non-volatile memory (NVM) technologies can help 
provide fast (similar to DRAM), persistent storage (similar to Flash) 
q  Unfortunately, OS and FS code can easily become energy efficiency and 

performance bottlenecks if we keep the traditional storage model 

n  This work: makes a case for hardware/software cooperative 
management of storage and memory within a single-level 
q  We describe the idea of a Persistent Memory Manager (PMM) for 

efficiently coordinating storage and memory, and quantify its benefit 
q  And, examine questions and challenges to address to realize PMM 
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Talk Outline 
n  Background: Storage and Memory Models 

n  Motivation: Eliminating Operating/File System Bottlenecks 

n  Our Proposal: Hardware/Software Coordinated Management of 

Storage and Memory 

q  Opportunities and Benefits 

n  Evaluation Methodology 

n  Evaluation Results 

n  Related Work 

n  New Questions and Challenges 

n  Conclusions 
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A Tale of Two Storage Levels 
n  Traditional systems use a two-level storage model 

q  Volatile data is stored in DRAM 
q  Persistent data is stored in HDD and Flash 

n  Accessed through two vastly different interfaces 
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A Tale of Two Storage Levels 
n  Two-level storage arose in systems due to the widely different 

access latencies and methods of the commodity storage devices 
q  Fast, low capacity, volatile DRAM à working storage 
q  Slow, high capacity, non-volatile hard disk drives à persistent storage 

n  Data from slow storage media is buffered in fast DRAM 
q  After that it can be manipulated by programs à programs cannot 

directly access persistent storage 
q  It is the programmer’s job to translate this data between the two 

formats of the two-level storage (files and data structures) 

n  Locating, transferring, and translating data and formats between 
the two levels of storage can waste significant energy and 
performance 
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Opportunity: New Non-Volatile Memories 
n  Emerging memory technologies provide the potential for unifying 

storage and memory (e.g., Phase-Change, STT-RAM, RRAM) 
q  Byte-addressable (can be accessed like DRAM) 
q  Low latency (comparable to DRAM) 
q  Low power (idle power better than DRAM) 
q  High capacity (closer to Flash) 
q  Non-volatile (can enable persistent storage) 
q  May have limited endurance (but, better than Flash) 

n  Can provide fast access to both volatile data and persistent 
storage 

n  Question: if such devices are used, is it efficient to keep a      
two-level storage model? 
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Eliminating Traditional Storage Bottlenecks 
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Eliminating Traditional Storage Bottlenecks 
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Where is Energy Spent in Each Model? 
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Outline 
n  Background: Storage and Memory Models 

n  Motivation: Eliminating Operating/File System Bottlenecks 

n  Our Proposal: Hardware/Software Coordinated Management of 

Storage and Memory 

q  Opportunities and Benefits 

n  Evaluation Methodology 

n  Evaluation Results 

n  Related Work 

n  New Questions and Challenges 

n  Conclusions 
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Our Proposal: Coordinated HW/SW      
Memory and Storage Management 

n  Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 
q  Improve both energy and performance 
q  Simplify programming model as well 
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Our Proposal: Coordinated HW/SW    
Memory and Storage Management 

n  Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 
q  Improve both energy and performance 
q  Simplify programming model as well 
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Our Proposal: Coordinated HW/SW     
Memory and Storage Management 

n  Goal: Unify memory and storage to eliminate wasted work to 
locate, transfer, and translate data 
q  Improve both energy and performance 
q  Simplify programming model as well 
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The Persistent Memory Manager (PMM) 
n  Exposes a load/store interface to access persistent data 

q  Applications can directly access persistent memory à no conversion, 
translation, location overhead for persistent data  

n  Manages data placement, location, persistence, security 
q  To get the best of multiple forms of storage 

n  Manages metadata storage and retrieval 
q  This can lead to overheads that need to be managed 

n  Exposes hooks and interfaces for system software 
q  To enable better data placement and management decisions 
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The Persistent Memory Manager 
n  Persistent Memory Manager 

q  Exposes a load/store interface to access persistent data 
q  Manages data placement, location, persistence, security 
q  Manages metadata storage and retrieval 
q  Exposes hooks and interfaces for system software 

n  Example program manipulating a persistent object: 
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.
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Putting Everything Together 
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2.2.1 Efficient Hardware and Software Support: We propose to investigate the efficient software and
hardware support needed for single-level stores. A single-level store system should provide an abstraction
that maps persistent user data to physical addresses in memory. A software interface for programs would
map a pointer to the actual persistent data. Programs would be able to access any part of the data using
normal load and store instructions. Figure 2 shows two examples of high-level abstractions which could
be provided to programs to access persistent data in a single-level store system. In it, a program creates
a persistent file (Figure 2 left) or object (Figure 2 right) using the handle “file.dat” and allocates an array
of integers in it. Later—perhaps after the application or system is restarted—when the program executes
the updateValue() function, the system retrieves the persistent data for the same handle, and the program
modifies its state. With such an abstraction, a single-level store can eliminate the OS system calls to transfer
data to and from disk. In addition, it eliminates the need for a file system to track physical file addresses
by traversing metadata (such as inodes) in the OS. In this way, single-level stores provide the opportunity to
design a simple and efficient persistent data lookup system in hardware. We plan to research efficient ways
to map files or objects to the virtual address space. In such a hardware-based design, the processor would
manage how data handles correspond to physical addresses. Note that, single-level stores can use alternative
design choices, such as segments, to provide the high-level abstraction instead of files or objects. Regardless,
segments, files, or objects will be mapped to physical addresses with hardware support. Prior works tried to
make file lookup and update efficient in software [27, 28] in the presence of persistent memory, and other
works proposed using complex and potentially inefficient hardware directory techniques (e.g., [15]). Our
goal is to design fast and efficient techniques that take into account the byte addressability of persistent
memory in a single-level store. To this end, we will research the following:
• The efficient use of hash table and B-tree indices for locating files in a single-level store.
• How techniques such as key-value stores can provide fast and efficient lookups in single-level stores.
• Policies for intelligently caching some entries of these indices in hardware to improve system perfor-

mance.
Every access in the single-level store needs to be translated from a virtual address used by a program to

a physical address used to access a device. We will investigate how to efficiently manage address translation
so that locating data is simple and fast. We intend to explore the following directions to solve this problem:
• We will design mechanisms to predict access patterns based on program behavior and pre-compute

virtual-to-physical address translations. We are interested in answering questions such as: What is the
pattern of data accesses to a single-level store, and how can prefetching techniques be redesigned with
single-level stores in mind to enable efficient address translation? How can simple application-level or
profile-based hints on access patterns be communicated to and used by hardware to make address translation
and prefetching efficient?
• We will design efficient translation lookaside buffer (TLB)-like structures which will cache the trans-

lation between virtual and physical addresses but for a much larger amount of physical memory than in
existing systems. In the presence of such a single-level store, many disparate data accesses could need a
large translation table to be serviced effectively. To reduce overhead of such hardware, we are interested in
exploring whether TLB-like structures should favor storing translations only for particular classes of data,
such as data with locality or data which is on the critical path of execution, which get the most benefit
out of the limited structure space. In addition, we will investigate centralized versus distributed translation
structures to design techniques that, for example, buffer private data translation entries near the processor,
while distributing shared entries across processors to minimize translation overheads. Such translation struc-

1 int main(void) {
2 // data in file.dat is persistent
3 FILE myData = "file.dat";
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 FILE myData = "file.dat";
8 myData[n] = value; // value is persistent
9 }

1 int main(void) {
2 // data in file.dat is persistent
3 int *myData = new PersistentObject("file.dat");
4 myData = new int[64];
5 }
6 void updateValue(int n, int value) {
7 int *myData = PersistentObject.open("file.dat");
8 myData[n] = value; // value is persistent
9 }

Figure 2: Sample program with access to file-based (left) and object-based (right) persistent data.
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Opportunities and Benefits 

n  We’ve identified at least five opportunities and benefits of a unified 
storage/memory system that gets rid of the two-level model: 

1.  Eliminating system calls for file operations 

2.  Eliminating file system operations 

3.  Efficient data mapping/location among heterogeneous devices 

4.  Providing security and reliability in persistent memories 

5.  Hardware/software cooperative data management 
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Eliminating System Calls for File Operations 

n  A persistent memory can expose a large, linear, persistent 
address space 
q  Persistent storage objects can be directly manipulated with load/

store operations 

n  This eliminates the need for layers of operating system code 
q  Typically used for calls like open, read, and write!

n  Also eliminates OS file metadata 
q  File descriptors, file buffers, and so on 
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Eliminating File System Operations 
n  Locating files is traditionally done using a file system 

q  Runs code and traverses structures in software to locate files 

n  Existing hardware structures for locating data in virtual memory 
can be extended and adapted to meet the needs of persistent 
memories 
q  Memory Management Units (MMUs), which map virtual addresses to 

physical addresses 
q  Translation Lookaside Buffers (TLBs), which cache mappings of 

virtual-to-physical address translations 

n  Potential to eliminate file system code 
n  At the cost of additional hardware overhead to handle persistent 

data storage 
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Efficient Data Mapping among Heterogeneous Devices 

n  A persistent memory exposes a large, persistent address space 
q  But it may use many different devices to satisfy this goal 
q  From fast, low-capacity volatile DRAM to slow, high-capacity non-

volatile HDD or Flash 
q  And other NVM devices in between 

n  Performance and energy can benefit from good placement of 
data among these devices 
q  Utilizing the strengths of each device and avoiding their weaknesses, 

if possible 
q  For example, consider two important application characteristics:  

locality and persistence 
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Providing Security and Reliability 

n  A persistent memory deals with data at the granularity of bytes 
and not necessarily files 
q  Provides the opportunity for much finer-grained security and 

protection than traditional two-level storage models provide/afford 
q  Need efficient techniques to avoid large metadata overheads 

n  A persistent memory can improve application reliability by 
ensuring updates to persistent data are less vulnerable to failures 
q  Need to ensure that changes to copies of persistent data placed in 

volatile memories become persistent 
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HW/SW Cooperative Data Management 

n  Persistent memories can expose hooks and interfaces to 
applications, the OS, and runtimes 
q  Have the potential to provide improved system robustness and 

efficiency than by managing persistent data with either software or 
hardware alone 

n  Can enable fast checkpointing and reboots, improve application 
reliability by ensuring persistence of data 
q  How to redesign availability mechanisms to take advantage of these? 

n  Persistent locks and other persistent synchronization constructs 
can enable more robust programs and systems 

134 



Quantifying Persistent Memory Benefits 

n  We have identified several opportunities and benefits of using 
persistent memories without the traditional two-level store model 
 

n  We will next quantify: 
q  How do persistent memories affect system performance? 
q  How much energy reduction is possible? 
q  Can persistent memories achieve these benefits despite additional 

access latencies to the persistent memory manager? 
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Evaluation Methodology 
n  Hybrid real system / simulation-based approach 

q  System calls are executed on host machine (functional correctness) 
and timed to accurately model their latency in the simulator 

q  Rest of execution is simulated in Multi2Sim (enables hardware-level 
exploration) 

n  Power evaluated using McPAT and memory power models 

n  16 cores, 4-wide issue, 128-entry instruction window, 1.6 GHz 

n  Volatile memory: 4GB DRAM, 4KB page size, 100-cycle latency 

n  Persistent memory 
q  HDD (measured): 4ms seek latency, 6Gbps bus rate 

q  NVM: (modeled after PCM) 4KB page size, 160-/480-cycle (read/
write) latency 
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Evaluated Systems 
n  HDD Baseline (HB) 

q  Traditional system with volatile DRAM memory and persistent HDD storage 
q  Overheads of operating system and file system code and buffering 

n  HDD without OS/FS (HW) 
q  Same as HDD Baseline, but with the ideal elimination of all OS/FS overheads 
q  System calls take 0 cycles (but HDD access takes normal latency) 

n  NVM Baseline (NB) 
q  Same as HDD Baseline, but HDD is replaced with NVM 
q  Still has OS/FS overheads of the two-level storage model 

n  Persistent Memory (PM) 
q  Uses only NVM (no DRAM) to ensure full-system persistence 
q  All data accessed using loads and stores 
q  Does not waste energy on system calls 
q  Data is manipulated directly on the NVM device 
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Evaluated Workloads 
n  Unix utilities that manipulate files 

q  cp: copy a large file from one location to another 
q  cp –r: copy files in a directory tree from one location to another 
q  grep: search for a string in a large file 
q  grep –r: search for a string recursively in a directory tree 

n  PostMark: an I/O-intensive benchmark from NetApp 
q  Emulates typical access patterns for email, news, web commerce 

n  MySQL Server: a popular database management system 
q  OLTP-style queries generated by Sysbench 
q  MySQL (simple): single, random read to an entry 
q  MySQL (complex): reads/writes 1 to 100 entries per transaction 
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Performance Results 

140 

0

0.2

0.4

0.6

0.8

1.0

HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM HBHWNB PM

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
T

im
e

User CPU User Memory Syscall CPU Syscall I/O

cp cp -r grep grep -r PostMark MySQL
(simple)

MySQL
(complex)



Performance Results: HDD w/o OS/FS 
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For HDD-based systems, eliminating OS/FS overheads typically leads to small 
performance improvements à execution time dominated by HDD access latency 



Performance Results: HDD w/o OS/FS 
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Though, for more complex file system operations like directory traversal (seen with 
cp -r and grep -r), eliminating the OS/FS overhead improves performance 



Performance Results: HDD to NVM 
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Switching from an HDD to NVM greatly reduces execution time due to NVM’s much 
faster access latencies, especially for I/O-intensive workloads (cp, PostMark, MySQL) 



Performance Results: NVM to PMM 
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For most workloads, eliminating OS/FS code and buffering improves performance 
greatly on top of the NVM Baseline system  

(even when DRAM is eliminated from the system) 
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The workloads that see the greatest improvement from using a Persistent Memory 
are those that spend a large portion of their time executing system call code due to 

the two-level storage model 



Energy Results 
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Energy Results: HDD to NVM 
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Between HDD-based and NVM-based systems, lower NVM energy leads to greatly 
reduced energy consumption 



Energy Results: NVM to PMM 

148 

Between systems with and without OS/FS code, energy improvements come from:  
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Scalability Analysis: Effect of PMM Latency 
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Even if each PMM access takes a non-overlapped 50 cycles (conservative),  
PMM still provides an overall improvement compared to the NVM baseline 
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Related Work 
n  We provide a comprehensive overview of past work related to 

single-level stores and persistent memory techniques 

1.  Integrating file systems with persistent memory 
q  Need optimized hardware to fully take advantage of new technologies 

2.  Programming language support for persistent objects 
q  Incurs the added latency of indirect data access through software 

3.  Load/store interfaces to persistent storage 
q  Lack efficient and fast hardware support for address translation, efficient 

file indexing, fast reliability and protection guarantees 

4.  Analysis of OS overheads with Flash devices 
q  Our study corroborates findings in this area and shows even larger 

consequences for systems with emerging NVM devices 

n  The goal of our work is to provide cheap and fast hardware support 
for memories to enable high energy efficiency and performance 
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New Questions and Challenges 
n  We identify and discuss several open research questions 

Ø  Q1. How to tailor applications for systems with persistent 
memory? 

Ø  Q2. How can hardware and software cooperate to support a 
scalable, persistent single-level address space? 

Ø  Q3. How to provide efficient backward compatibility (for two-
level stores) on persistent memory systems? 

Ø  Q4. How to mitigate potential hardware performance and energy 
overheads? 
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Summary and Conclusions 
n  Traditional two-level storage model is inefficient in terms of 

performance and energy 
q  Due to OS/FS code and buffering needed to manage two models 
q  Especially so in future devices with NVM technologies, as we show 

n  New non-volatile memory based persistent memory designs that 
use a single-level storage model to unify memory and storage can 
alleviate this problem 

n  We quantified the performance and energy benefits of such a 
single-level persistent memory/storage design 
q  Showed significant benefits from reduced code footprint, data 

movement, and system software overhead on a variety of workloads 

n  Such a design requires more research to answer the questions we 
have posed and enable efficient persistent memory managers 
à can lead to a fundamentally more efficient storage system 
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Readings in Flash Memory 
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, 

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, 
Analysis and Modeling"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble, 
France, March 2013. Slides (ppt) 

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken 
Mai, 
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased 
Flash Memory Lifetime" 
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), 
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, 
and Analysis"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden, 
Germany, March 2012. Slides (ppt) 
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Evolution of NAND Flash Memory 

n  Flash memory widening its range of applications 
q  Portable consumer devices, laptop PCs and enterprise servers 

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix) 

CMOS scaling 
More bits per Cell 



UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

n  Endurance of flash memory decreasing with scaling and multi-level cells 
n  Error correction capability required to guarantee storage-class reliability  

(UBER < 10-15) is increasing exponentially to reach less endurance 
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Future NAND Flash Storage Architecture 

Memory 
Signal  

Processing 

Error 
Correction 

Raw Bit  
Error Rate 

•  Hamming codes 
•  BCH codes  
•  Reed-Solomon codes 
•  LDPC codes 
•  Other Flash friendly codes 

BER < 10-15 

Need to understand NAND flash error patterns 

•  Read voltage adjusting 
•  Data scrambler 
•  Data recovery 
•  Soft-information estimation 
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Test System Infrastructure 
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NAND Flash Testing Platform 
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NAND Flash Usage and Error Model 
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Error Types and Testing Methodology 
n  Erase errors 

q   Count the number of cells that fail to be erased to “11” state 

n  Program interference errors 
q  Compare the data immediately after page programming and the data 

after the whole block being programmed 

n  Read errors 
q  Continuously read a given block and compare the data between 

consecutive read sequences 

n  Retention errors 
q  Compare the data read after an amount of time to data written 

n  Characterize short term retention errors under room temperature 
n  Characterize long term retention errors by baking in the oven 

under 125℃ 



retention errors 

n  Raw bit error rate increases exponentially with P/E cycles 
n  Retention errors are dominant (>99% for 1-year ret. time) 
n  Retention errors increase with retention time requirement 

Observations: Flash Error Analysis 
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Retention Error Mechanism 
LSB/MSB 

n  Electron loss from the floating gate causes retention errors 
q   Cells with more programmed electrons suffer more from 

retention errors 
q   Threshold voltage is more likely to shift  by one window than by 

multiple 
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Retention Error Value Dependency  

00 à01 
01 à10 

n  Cells with more programmed electrons tend to suffer more 
from retention noise (i.e. 00 and 01) 



More Details on Flash Error Analysis 

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"  
Proceedings of the 
Design, Automation, and Test in Europe Conference 
(DATE), Dresden, Germany, March 2012. Slides (ppt) 
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Threshold Voltage Distribution Shifts 

As P/E cycles increase ... 
n Distribution shifts to the right  
n Distribution becomes wider 

P1	
  State P2	
  State P3	
  State



More Detail 

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"  
Proceedings of the 
Design, Automation, and Test in Europe Conference 
(DATE), Grenoble, France, March 2013. Slides (ppt) 
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Flash Correct-and-Refresh 
  

Retention-Aware Error Management  
for Increased Flash Memory Lifetime 

Yu Cai1   Gulay Yalcin2   Onur Mutlu1   Erich F. Haratsch3  
Adrian Cristal2   Osman S. Unsal2   Ken Mai1 

1 Carnegie Mellon University 
2 Barcelona Supercomputing Center  
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Executive Summary 
n  NAND flash memory has low endurance: a flash cell dies after 3k P/E 

cycles vs. 50k desired à Major scaling challenge for flash memory 
n  Flash error rate increases exponentially over flash lifetime 
n  Problem: Stronger error correction codes (ECC) are ineffective and 

undesirable for improving flash lifetime due to 
q  diminishing returns on lifetime with increased correction strength 
q  prohibitively high power, area, latency overheads 

n  Our Goal: Develop techniques to tolerate high error rates w/o strong ECC 
n  Observation: Retention errors are the dominant errors in MLC NAND flash 

q  flash cell loses charge over time; retention errors increase as cell gets worn out 
n  Solution: Flash Correct-and-Refresh (FCR) 

q  Periodically read, correct, and reprogram (in place) or remap each flash page 
before it accumulates more errors than can be corrected by simple ECC 

q  Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles) 

n  Results: FCR improves flash memory lifetime by 46X with no hardware 
changes and low energy overhead; outperforms strong ECCs 
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Problem: Limited Endurance of Flash Memory 
n  NAND flash has limited endurance 

q  A cell can tolerate a small number of Program/Erase (P/E) cycles 
q  3x-nm flash with 2 bits/cell à 3K P/E cycles 

n  Enterprise data storage requirements demand very high 
endurance 
q  >50K P/E cycles (10 full disk writes per day for 3-5 years) 

n  Continued process scaling and more bits per cell will reduce 
flash endurance 

n  One potential solution: stronger error correction codes (ECC) 
q  Stronger ECC not effective enough and inefficient 
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UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

n  Endurance of flash memory decreasing with scaling and multi-level cells 
n  Error correction capability required to guarantee storage-class reliability  

(UBER < 10-15) is increasing exponentially to reach less endurance 
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The Problem with Stronger Error Correction 

n  Stronger ECC detects and corrects more raw bit errors à 
increases P/E cycles endured 

n  Two shortcomings of stronger ECC: 
 
1. High implementation complexity 
    à Power and area overheads increase super-linearly, but     

   correction capability increases sub-linearly with ECC strength 
  

2. Diminishing returns on flash lifetime improvement 
    à Raw bit error rate increases exponentially with P/E cycles, but 

   correction capability increases sub-linearly with ECC strength 
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Methodology: Error and ECC Analysis 
n  Characterized errors and error rates of 3x-nm MLC NAND 

flash using an experimental FPGA-based flash platform 
q  Cai et al., “Error Patterns in MLC NAND Flash Memory: 

Measurement, Characterization, and Analysis,” DATE 2012. 

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction 

n  Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 
q  Identified how much RBER each code can tolerate  

    à how many P/E cycles (flash lifetime) each code can sustain  
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NAND Flash Error Types 

n  Four types of errors [Cai+, DATE 2012] 

n  Caused by common flash operations 
q  Read errors 
q  Erase errors 
q  Program (interference) errors 

n  Caused by flash cell losing charge over time 
q  Retention errors 

n  Whether an error happens depends on required retention time 
n  Especially problematic in MLC flash because voltage threshold 

window to determine stored value is smaller 

180 



retention errors 

n  Raw bit error rate increases exponentially with P/E cycles 
n  Retention errors are dominant (>99% for 1-year ret. time) 
n  Retention errors increase with retention time requirement 

Observations: Flash Error Analysis 
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Methodology: Error and ECC Analysis 
n  Characterized errors and error rates of 3x-nm MLC NAND 

flash using an experimental FPGA-based flash platform 
q  Cai et al., “Error Patterns in MLC NAND Flash Memory: 

Measurement, Characterization, and Analysis,” DATE 2012. 

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction 

n  Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 
q  Identified how much RBER each code can tolerate  

    à how many P/E cycles (flash lifetime) each code can sustain  
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ECC Strength Analysis 
n  Examined characteristics of various-strength BCH codes 

with the following criteria 
q  Storage efficiency: >89% coding rate (user data/total storage) 
q  Reliability: <10-15 uncorrectable bit error rate 
q  Code length: segment of one flash page (e.g., 4kB) 
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Code length 
(n)

Correctable 
Errors (t)

Acceptable 
Raw BER

Norm. 
Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1
1024 12 4.0x10-4 (4x) 2 2.1
2048 22 1.0x10-3 (10x) 4.1 3.9
4096 40 1.7x10-3 (17x) 8.6 10.3
8192 74 2.2x10-3 (22x) 17.8 21.3
32768 259 2.6x10-3 (26x) 71 85

Error	
  correc,on	
  capability	
  increases	
  sub-­‐linearly	
  

Power	
  and	
  area	
  overheads	
  increase	
  super-­‐linearly	
  



n  Lifetime improvement comparison of various BCH codes 

Resulting Flash Lifetime with Strong ECC 
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Our Goal 

     

 
    Develop new techniques  
    to improve flash lifetime   
    without relying on stronger ECC 
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Flash Correct-and-Refresh (FCR) 
n  Key Observations: 

q  Retention errors are the dominant source of errors in flash 
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011] 

    à limit flash lifetime as they increase over time 
q  Retention errors can be corrected by “refreshing” each flash 

page periodically  

n  Key Idea: 
q  Periodically read each flash page, 
q  Correct its errors using “weak” ECC, and  
q  Either remap it to a new physical page or reprogram it in-place, 
q  Before the page accumulates more errors than ECC-correctable 
q  Optimization: Adapt refresh rate to endured P/E cycles 
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FCR Intuition 
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Errors with 
No refresh 

Program
Page × 

After 
time T × × × 

After 
time 2T × × × × × 

After 
time 3T × × × × × × × 

× 

× × × 

× × × 

× × × 

× 

× 

Errors with 
Periodic refresh 

× 

× Retention Error × Program Error 



FCR: Two Key Questions 

n  How to refresh?  
q  Remap a page to another one 
q  Reprogram a page (in-place) 
q  Hybrid of remap and reprogram 

n  When to refresh?  
q  Fixed period 
q  Adapt the period to retention error severity 
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Remapping Based FCR 

n  Idea: Periodically remap each page to a different physical 
page (after correcting errors) 

q  Also [Pan et al., HPCA 2012] 

q  FTL already has support for 
    changing logical à physical 
    flash block/page mappings 
q  Deallocated block is 
    erased by garbage collector 

 

n  Problem: Causes additional erase operations à more wearout 
q  Bad for read-intensive workloads (few erases really needed) 
q  Lifetime degrades for such workloads (see paper) 
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In-Place Reprogramming Based FCR 

n  Idea: Periodically reprogram (in-place) each physical page 
(after correcting errors) 

q  Flash programming techniques 
    (ISPP) can correct retention  
    errors in-place by recharging 
    flash cells 
 

n  Problem: Program errors accumulate on the same page à 
may not be correctable by ECC after some time 
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Reprogram	
  corrected	
  data	
  



 

 
n  Pro: No remapping needed à no additional erase operations 
n  Con: Increases the occurrence of program errors 

In-Place Reprogramming of Flash Cells 
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Program Errors in Flash Memory 

n  When a cell is being programmed, voltage level of a 
neighboring cell changes (unintentionally) due to parasitic 
capacitance coupling  

   à can change the data value stored 

n  Also called program interference error 

n  Program interference causes neighboring cell voltage to 
shift to the right 
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Problem with In-Place Reprogramming 
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Hybrid Reprogramming/Remapping Based FCR 

n  Idea: 
q  Monitor the count of right-shift errors (after error correction) 
q  If count < threshold, in-place reprogram the page 
q  Else, remap the page to a new page 

n  Observation: 
q  Program errors much less frequent than retention errors à 

Remapping happens only infrequently  

n  Benefit:  
q  Hybrid FCR greatly reduces erase operations due to remapping 
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Adaptive-Rate FCR 

n  Observation: 
q  Retention error rate strongly depends on the P/E cycles a flash 

page endured so far 
q  No need to refresh frequently (at all) early in flash lifetime 

n  Idea: 
q  Adapt the refresh rate to the P/E cycles endured by each page 
q  Increase refresh rate gradually with increasing P/E cycles 

n  Benefits: 
q  Reduces overhead of refresh operations 
q  Can use existing FTL mechanisms that keep track of P/E cycles 
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Adaptive-Rate FCR (Example) 
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FCR: Other Considerations 

n  Implementation cost 
q  No hardware changes 
q  FTL software/firmware needs modification 
 

n  Response time impact 
q  FCR not as frequent as DRAM refresh; low impact 

n  Adaptation to variations in retention error rate 
q  Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012] 

n  FCR requires power 
q  Enterprise storage systems typically powered on 
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Evaluation Methodology 
n  Experimental flash platform to obtain error rates at 

different P/E cycles [Cai+ DATE 2012] 

n  Simulation framework to obtain P/E cycles of real 
workloads: DiskSim with SSD extensions 

n  Simulated system: 256GB flash, 4 channels, 8 chips/
channel, 8K blocks/chip, 128 pages/block, 8KB pages 

n  Workloads  
q  File system applications, databases, web search 
q  Categories: Write-heavy, read-heavy, balanced 
 

n  Evaluation metrics 
q  Lifetime (extrapolated) 
q  Energy overhead, P/E cycle overhead 
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Extrapolated Lifetime 
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Normalized Flash Memory Lifetime  
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Lifetime Evaluation Takeaways 
n  Significant average lifetime improvement over no refresh 

q  Adaptive-rate FCR: 46X 
q  Hybrid reprogramming/remapping based FCR: 31X 
q  Remapping based FCR: 9X 

n  FCR lifetime improvement larger than that of stronger ECC 
q  46X vs. 4X with 32-kbit ECC (over 512-bit ECC) 
q  FCR is less complex and less costly than stronger ECC 

n  Lifetime on all workloads improves with Hybrid FCR 
q  Remapping based FCR can degrade lifetime on read-heavy WL 
q  Lifetime improvement highest in write-heavy workloads 
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Energy Overhead 

 
n  Adaptive-rate refresh: <1.8% energy increase until daily 

refresh is triggered 
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Overhead of Additional Erases 

n  Additional erases happen due to remapping of pages 

n  Low (2%-20%) for write intensive workloads 
n  High (up to 10X) for read-intensive workloads 

n  Improved P/E cycle lifetime of all workloads largely 
outweighs the additional P/E cycles due to remapping 
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More Results in the Paper 

n  Detailed workload analysis 

n  Effect of refresh rate 
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Conclusion 
n  NAND flash memory lifetime is limited due to uncorrectable 

errors, which increase over lifetime (P/E cycles) 

n  Observation: Dominant source of errors in flash memory is 
retention errors à retention error rate limits lifetime 

n  Flash Correct-and-Refresh (FCR) techniques reduce 
retention error rate to improve flash lifetime 
q  Periodically read, correct, and remap or reprogram each page 

before it accumulates more errors than can be corrected 
q  Adapt refresh period to the severity of errors 

n  FCR improves flash lifetime by 46X at no hardware cost 
q  More effective and efficient than stronger ECC  
q  Can enable better flash memory scaling 
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