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The Main Memory System 

 
 

n  Main memory is a critical component of all computing 
systems: server, mobile, embedded, desktop, sensor 

n  Main memory system must scale (in size, technology, 
efficiency, cost, and management algorithms) to maintain 
performance growth and technology scaling benefits 
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Processor 
and caches 

Main Memory Storage (SSD/HDD) 



Memory System: A Shared Resource View 
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Storage 



State of the Main Memory System 
n  Recent technology, architecture, and application trends 

q  lead to new requirements 
q  exacerbate old requirements 

n  DRAM and memory controllers, as we know them today, 
are (will be) unlikely to satisfy all requirements 

n  Some emerging non-volatile memory technologies (e.g., 
PCM) enable new opportunities: memory+storage merging 

n  We need to rethink the main memory system 
q  to fix DRAM issues and enable emerging technologies  
q  to satisfy all requirements 
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Major Trends Affecting Main Memory (I) 
n  Need for main memory capacity, bandwidth, QoS increasing  

n  Main memory energy/power is a key system design concern 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 
n  Need for main memory capacity, bandwidth, QoS increasing  

q  Multi-core: increasing number of cores 
q  Data-intensive applications: increasing demand/hunger for data 
q  Consolidation: cloud computing, GPUs, mobile 

n  Main memory energy/power is a key system design concern 

 
 
n  DRAM technology scaling is ending  
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Example Trend: Many Cores on Chip 
n  Simpler and lower power than a single large core 
n  Large scale parallelism on chip 
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Consequence: The Memory Capacity Gap 

 

n  Memory capacity per core expected to drop by 30% every two years 
n  Trends worse for memory bandwidth per core! 
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Core count doubling ~ every 2 years  
DRAM DIMM capacity doubling ~ every 3 years 



Major Trends Affecting Main Memory (III) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
n  Main memory energy/power is a key system design concern 

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 
IEEE Computer 2003] 

q  DRAM consumes power even when not used (periodic refresh) 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
 
n  Main memory energy/power is a key system design concern 

 
n  DRAM technology scaling is ending  

q  ITRS projects DRAM will not scale easily below X nm  
q  Scaling has provided many benefits:  

n  higher capacity (density), lower cost, lower energy 
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The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
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Solutions to the DRAM Scaling Problem 

n  Two potential solutions 
q  Tolerate DRAM (by taking a fresh look at it) 
q  Enable emerging memory technologies to eliminate/minimize 

DRAM 

n  Do both 
q  Hybrid memory systems 
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Solution 1: Tolerate DRAM 
n  Overcome DRAM shortcomings with 

q  System-DRAM co-design 
q  Novel DRAM architectures, interface, functions 
q  Better waste management (efficient utilization) 

n  Key issues to tackle 
q  Reduce refresh energy 
q  Improve bandwidth and latency 
q  Reduce waste 
q  Enable reliability at low cost 

n  Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
n  Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13. 
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013. 
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Solution 2: Emerging Memory Technologies 
n  Some emerging resistive memory technologies seem more 

scalable than DRAM (and they are non-volatile) 
n  Example: Phase Change Memory 

q  Expected to scale to 9nm (2022 [ITRS]) 
q  Expected to be denser than DRAM: can store multiple bits/cell 

n  But, emerging technologies have shortcomings as well 
q  Can they be enabled to replace/augment/surpass DRAM? 

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM 
Alternative,” ISCA 2009, CACM 2010, Top Picks 2010. 

n  Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid 
Memories,” IEEE Comp. Arch. Letters 2012. 

n  Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” 
ICCD 2012 Best Paper Award. 
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Hybrid Memory Systems 

 

 
Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012. 
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD 
2012 Best Paper Award. 
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Ctrl 
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Small,  

leaky, volatile,  
high-cost 

Large, non-volatile, low-cost 
Slow, wears out, high active energy 

PCM 
Ctrl DRAM Phase Change Memory (or Tech. X) 

Hardware/software manage data allocation and movement  
to achieve the best of multiple technologies 



n  Problem: Memory interference is uncontrolled à 
uncontrollable, unpredictable, vulnerable system 

n  Goal: We need to control it à Design a QoS-aware system  

n  Solution: Hardware/software cooperative memory QoS 
q  Hardware designed to provide a configurable fairness substrate  

n  Application-aware memory scheduling, partitioning, throttling 

q  Software designed to configure the resources to satisfy different 
QoS goals 

q  E.g., fair, programmable memory controllers and on-chip 
networks provide QoS and predictable performance  

      [2007-2012, Top Picks’09,’11a,’11b,’12] 

An Orthogonal Issue: Memory Interference 



Agenda for Topic 1 (DRAM Scaling) 

n  What Will You Learn in This Course 
n  Main Memory Basics (with a Focus on DRAM) 
n  Major Trends Affecting Main Memory 
n  DRAM Scaling Problem and Solution Directions 
n  Solution Direction 1: System-DRAM Co-Design 
n  Ongoing Research 
n  Summary 
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What Will You Learn in This Course? 
n  Scalable Many-Core Memory Systems  

q  July 15-19, 2013 

n  Topic 1: Main memory basics, DRAM scaling 
n  Topic 2: Emerging memory technologies and hybrid memories 
n  Topic 3: Main memory interference and QoS  
n  Topic 4 (unlikely): Cache management  
n  Topic 5 (unlikely): Interconnects 

n  Major Overview Reading: 
q  Mutlu, “Memory Scaling: A Systems Architecture Perspective,” 

IMW 2013. 
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This Course 
n  Will cover many problems and potential solutions related to 

the design of memory systems in the many core era 

n  The design of the memory system poses many 
q  Difficult research and engineering problems 
q  Important fundamental problems 
q  Industry-relevant problems 

n  Many creative and insightful solutions are needed to solve 
these problems 

n  Goal: Acquire the basics to develop such solutions (by 
covering fundamentals and cutting edge research) 
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Course Information 

n  My Contact Information 
q  Onur Mutlu 
q  onur@cmu.edu 
q  http://users.ece.cmu.edu/~omutlu  
q  +1-512-658-0891 (my cell phone) 
q  Find me during breaks and/or email any time. 

n  Website for Course Slides and Papers 
q  http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html 
q  http://users.ece.cmu.edu/~omutlu  
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Readings and Videos 

 
 
 
 



Overview Reading 
n  Mutlu, “Memory Scaling: A Systems Architecture Perspective,” 

IMW 2013. 

n  Onur Mutlu, 
"Memory Scaling: A Systems Architecture Perspective" 
Proceedings of the 5th International Memory Workshop 
(IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)  
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Online Slides (Longer Versions) 
n  Topic 1: DRAM Basics and DRAM Scaling 

q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic1-
dram-basics-and-scaling.pptx 

q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic1-
dram-basics-and-scaling.pdf 

n  Topic 2: Emerging Technologies and Hybrid Memories 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic2-

emerging-and-hybrid-memory-technologies.pptx 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic2-

emerging-and-hybrid-memory-technologies.pdf 

n  Topic 3: Memory Interference and QoS-Aware Memory Systems 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic3-

memory-qos.pptx 
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic3-

memory-qos.pdf 
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Memory Lecture Videos 
n  Memory Hierarchy (and Introduction to Caches) 

q  http://www.youtube.com/watch?
v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=22 

n  Main Memory 
q  http://www.youtube.com/watch?

v=ZLCy3pG7Rc0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=25 

n  Memory Controllers, Memory Scheduling, Memory QoS 
q  http://www.youtube.com/watch?

v=ZSotvL3WXmA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=26 
q  http://www.youtube.com/watch?

v=1xe2w3_NzmI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=27 

n  Emerging Memory Technologies 
q  http://www.youtube.com/watch?

v=LzfOghMKyA0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=35 

n  Multiprocessor Correctness and Cache Coherence 
q  http://www.youtube.com/watch?v=U-

VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32 
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Readings for Topic 1 (DRAM Scaling) 
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM 

Architecture,” HPCA 2013. 
n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 

2012. 
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism in DRAM,” 

ISCA 2012. 
n  Liu et al., “An Experimental Study of Data Retention Behavior in Modern 

DRAM Devices,” ISCA 2013. 
n  Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 

Initialization of Bulk Data,” CMU CS Tech Report 2013. 
n  David et al., “Memory Power Management via Dynamic Voltage/

Frequency Scaling,” ICAC 2011.  
n  Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement 

Learning Approach,” ISCA 2008. 
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Readings for Topic 2 (Emerging Technologies)  

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a 
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010. 

n  Qureshi et al., “Scalable high performance main memory system using 
phase-change memory technology,” ISCA 2009. 

n  Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE 
Comp. Arch. Letters 2012. 

n  Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid 
Memories,” ICCD 2012 Best Paper Award. 

n  Meza et al., “A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory,” WEED 2013. 

n  Kultursay et al., “Evaluating STT-RAM as an Energy-Efficient Main 
Memory Alternative,” ISPASS 2013. 

n  Cai et al., “Error Analysis and Retention-Aware Error Management for 
NAND Flash Memory,” ITJ 2013. 

26 



Readings for Topic 3 (Memory QoS) 
n  Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX 

Security 2007. 
n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,” 

MICRO 2007. 
n  Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 

2008, IEEE Micro 2009. 
n  Kim et al., “ATLAS: A Scalable and High-Performance Scheduling 

Algorithm for Multiple Memory Controllers,” HPCA 2010. 
n  Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE 

Micro 2011. 
n  Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011. 
n  Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 
n  Subramanian et al., “MISE: Providing Performance Predictability and 

Improving Fairness in Shared Main Memory Systems,” HPCA 2013. 
n  Das et al., “Application-to-Core Mapping Policies to Reduce Memory 

System Interference in Multi-Core Systems,” HPCA 2013. 
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Readings for Topic 3 (Memory QoS) 
n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM 

TOCS 2012. 
n  Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC 

2011. 
n  Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
n  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for 

Multi-Core Systems,” ISCA 2011. 
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Readings in Flash Memory 
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, 

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, 
Analysis and Modeling"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble, 
France, March 2013. Slides (ppt) 

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken 
Mai, 
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased 
Flash Memory Lifetime" 
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), 
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, 
and Analysis"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden, 
Germany, March 2012. Slides (ppt) 
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Online Lectures and More Information 
n  Online Computer Architecture Lectures 

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ  

n  Online Computer Architecture Courses 
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php 
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php  
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php  

 
n  Recent Research Papers 

q  http://users.ece.cmu.edu/~omutlu/projects.htm 
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en 
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Agenda for Topic 1 (DRAM Scaling) 

n  What Will You Learn in This Mini-Lecture Series 
n  Main Memory Basics (with a Focus on DRAM) 
n  Major Trends Affecting Main Memory 
n  DRAM Scaling Problem and Solution Directions 
n  Solution Direction 1: System-DRAM Co-Design 
n  Ongoing Research 
n  Summary 
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Main Memory 

 
 
 
 



Main Memory in the System 
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Ideal Memory 
n  Zero access time (latency) 
n  Infinite capacity 
n  Zero cost 
n  Infinite bandwidth (to support multiple accesses in parallel) 
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The Problem 
n  Ideal memory’s requirements oppose each other 

n  Bigger is slower 
q  Bigger à Takes longer to determine the location 

n  Faster is more expensive 
q  Memory technology: SRAM vs. DRAM 

n  Higher bandwidth is more expensive 
q  Need more banks, more ports, higher frequency, or faster 

technology 
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Memory Technology: DRAM 
n  Dynamic random access memory 
n  Capacitor charge state indicates stored value 

q  Whether the capacitor is charged or discharged indicates 
storage of 1 or 0 

q  1 capacitor 
q  1 access transistor 

n  Capacitor leaks through the RC path 
q  DRAM cell loses charge over time 
q  DRAM cell needs to be refreshed 
 
q  Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM 

Refresh,” ISCA 2012. 

36 

row enable 

_b
itl

in
e 



n  Static random access memory 
n  Two cross coupled inverters store a single bit 

q  Feedback path enables the stored value to persist in the “cell” 
q  4 transistors for storage 
q  2 transistors for access 

Memory Technology: SRAM 
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An Aside: Phase Change Memory 
n  Phase change material (chalcogenide glass) exists in two states: 

q  Amorphous: Low optical reflexivity and high electrical resistivity 
q  Crystalline: High optical reflexivity and low electrical resistivity 
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PCM is resistive memory:  High resistance (0), Low resistance (1) 

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM 
Alternative,” ISCA 2009. 



Memory Bank: A Fundamental Concept 
n  Interleaving (banking) 

q  Problem: a single monolithic memory array takes long to 
access and does not enable multiple accesses in parallel 

q  Goal: Reduce the latency of memory array access and enable 
multiple accesses in parallel 

q  Idea: Divide the array into multiple banks that can be 
accessed independently (in the same cycle or in consecutive 
cycles) 
n  Each bank is smaller than the entire memory storage 
n  Accesses to different banks can be overlapped 

q  An issue: How do you map data to different banks? (i.e., how 
do you interleave data across banks?) 

39 



Memory Bank Organization and Operation 
n  Read access sequence: 

 1. Decode row address 
& drive word-lines 
  

      2. Selected bits drive 
bit-lines 
     • Entire row read 

       
      3. Amplify row data 
       
      4. Decode column 

address & select subset 
of row 

         • Send to output 
       
      5. Precharge bit-lines 
        • For next access 
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Why Memory Hierarchy? 
n  We want both fast and large 

n  But we cannot achieve both with a single level of memory 

n  Idea: Have multiple levels of storage (progressively bigger 
and slower as the levels are farther from the processor) 
and ensure most of the data the processor needs is kept in 
the fast(er) level(s) 
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Memory Hierarchy 
n  Fundamental tradeoff 

q  Fast memory: small 
q  Large memory: slow 

n  Idea: Memory hierarchy 

n  Latency, cost, size,  
    bandwidth 
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Caching Basics: Exploit Temporal Locality 
n  Idea: Store recently accessed data in automatically 

managed fast memory (called cache) 
n  Anticipation: the data will be accessed again soon 

n  Temporal locality principle 
q  Recently accessed data will be again accessed in the near 

future 
q  This is what Maurice Wilkes had in mind: 

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE 
Trans. On Electronic Computers, 1965. 

n  “The use is discussed of a fast core memory of, say 32000 words 
as a slave to a slower core memory of, say, one million words in 
such a way that in practical cases the effective access time is 
nearer that of the fast memory than that of the slow memory.” 

43 



Caching Basics: Exploit Spatial Locality 
n  Idea: Store addresses adjacent to the recently accessed 

one in automatically managed fast memory 
q  Logically divide memory into equal size blocks 
q  Fetch to cache the accessed block in its entirety 

n  Anticipation: nearby data will be accessed soon 

n  Spatial locality principle 
q  Nearby data in memory will be accessed in the near future 

n  E.g., sequential instruction access, array traversal 

q  This is what IBM 360/85 implemented 
n  16 Kbyte cache with 64 byte blocks 
n  Liptay, “Structural aspects of the System/360 Model 85 II: the 

cache,” IBM Systems Journal, 1968. 
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A Note on Manual vs. Automatic Management 

n  Manual: Programmer manages data movement across levels 
-- too painful for programmers on substantial programs 
q  “core” vs “drum” memory in the 50’s 
q  still done in some embedded processors (on-chip scratch pad 

SRAM in lieu of a cache) 

n  Automatic: Hardware manages data movement across levels, 
transparently to the programmer 
++ programmer’s life is easier 
q  simple heuristic: keep most recently used items in cache 
q  the average programmer doesn’t need to know about it 

n  You don’t need to know how big the cache is and how it works to 
write a “correct” program! (What if you want a “fast” program?) 
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Automatic Management in Memory Hierarchy 

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” 
IEEE Trans. On Electronic Computers, 1965. 

n  “By a slave memory I mean one which automatically 
accumulates to itself words that come from a slower main 
memory, and keeps them available for subsequent use 
without it being necessary for the penalty of main memory 
access to be incurred again.” 
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A Modern Memory Hierarchy 
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The DRAM Subsystem 

 
 
 
 



DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
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Page Mode DRAM 
n  A DRAM bank is a 2D array of cells: rows x columns 
n  A “DRAM row” is also called a “DRAM page” 
n  “Sense amplifiers” also called “row buffer” 

n  Each address is a <row,column> pair 
n  Access to a “closed row” 

q  Activate command opens row (placed into row buffer) 
q  Read/write command reads/writes column in the row buffer 
q  Precharge command closes the row and prepares the bank for 

next access 

n  Access to an “open row” 
q  No need for activate command 
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DRAM Bank Operation 
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The DRAM Chip 
n  Consists of multiple banks (2-16 in Synchronous DRAM) 
n  Banks share command/address/data buses 
n  The chip itself has a narrow interface (4-16 bits per read) 
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128M x 8-bit DRAM Chip 
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DRAM Rank and Module 
n  Rank: Multiple chips operated together to form a wide 

interface 
n  All chips comprising a rank are controlled at the same time 

q  Respond to a single command 
q  Share address and command buses, but provide different data 

n  A DRAM module consists of one or more ranks 
q  E.g., DIMM (dual inline memory module) 
q  This is what you plug into your motherboard 

n  If we have chips with 8-bit interface, to read 8 bytes in a 
single access, use 8 chips in a DIMM 
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A 64-bit Wide DIMM (One Rank) 
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A 64-bit Wide DIMM (One Rank) 
n  Advantages: 

q  Acts like a high-
capacity DRAM chip 
with a wide 
interface 

q  Flexibility: memory 
controller does not 
need to deal with 
individual chips 

n  Disadvantages: 
q  Granularity: 

Accesses cannot be 
smaller than the 
interface width 
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Multiple DIMMs 
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n  Advantages: 
q  Enables even 

higher capacity 

n  Disadvantages: 
q  Interconnect 

complexity and 
energy 
consumption 
can be high 



DRAM Channels 

 
n  2 Independent Channels: 2 Memory Controllers (Above) 
n  2 Dependent/Lockstep Channels: 1 Memory Controller with 

wide interface (Not shown above) 
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Generalized Memory Structure 

59 



Generalized Memory Structure 
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Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 



The DRAM Subsystem 
The Top Down View 

 
 
 
 



DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
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DRAM Subsystem Organization 

n  Channel 
n  DIMM 
n  Rank 
n  Chip 
n  Bank 
n  Row/Column 
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Latency Components: Basic DRAM Operation 

n  CPU → controller transfer time 
n  Controller latency 

q  Queuing & scheduling delay at the controller 
q  Access converted to basic commands 

n  Controller → DRAM transfer time 
n  DRAM bank latency 

q  Simple CAS (column address strobe) if row is “open” OR 
q  RAS (row address strobe) + CAS if array precharged OR 
q  PRE + RAS + CAS (worst case) 

n  DRAM → Controller transfer time 
q  Bus latency (BL) 

n  Controller to CPU transfer time 
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Multiple Banks (Interleaving) and Channels 
n  Multiple banks 

q  Enable concurrent DRAM accesses 
q  Bits in address determine which bank an address resides in 

n  Multiple independent channels serve the same purpose 
q  But they are even better because they have separate data buses 
q  Increased bus bandwidth 

n  Enabling more concurrency requires reducing 
q  Bank conflicts 
q  Channel conflicts 

n  How to select/randomize bank/channel indices in address? 
q  Lower order bits have more entropy 
q  Randomizing hash functions (XOR of different address bits) 
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How Multiple Banks Help 
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Address Mapping (Single Channel) 
n  Single-channel system with 8-byte memory bus 

q  2GB memory, 8 banks, 16K rows & 2K columns per bank 

n  Row interleaving 
q  Consecutive rows of memory in consecutive banks 

q  Accesses to consecutive cache blocks serviced in a pipelined manner 

n  Cache block interleaving 
n  Consecutive cache block addresses in consecutive banks 
n  64 byte cache blocks 

 
n  Accesses to consecutive cache blocks can be serviced in parallel 
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Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) 

Low Col.  High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits) 
3 bits 8 bits 



Bank Mapping Randomization 
n  DRAM controller can randomize the address mapping to 

banks so that bank conflicts are less likely 
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Address Mapping (Multiple Channels) 

n  Where are consecutive cache blocks? 
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Interaction with VirtualàPhysical Mapping 
n  Operating System influences where an address maps to in 

DRAM 

n  Operating system can influence which bank/channel/rank a 
virtual page is mapped to.  

n  It can perform page coloring to  
q  Minimize bank conflicts 
q  Minimize inter-application interference [Muralidhara+ MICRO’11] 
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DRAM Refresh (I) 
n  DRAM capacitor charge leaks over time 
n  The memory controller needs to read each row periodically 

to restore the charge 
q  Activate + precharge each row every N ms 
q  Typical N = 64 ms 

n  Implications on performance? 
-- DRAM bank unavailable while refreshed 
-- Long pause times: If we refresh all rows in burst, every 64ms 

the DRAM will be unavailable until refresh ends 
n  Burst refresh: All rows refreshed immediately after one 

another 
n  Distributed refresh: Each row refreshed at a different time, 

at regular intervals 
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DRAM Refresh (II) 

n  Distributed refresh eliminates long pause times 
n  How else we can reduce the effect of refresh on 

performance? 
q  Can we reduce the number of refreshes? 
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-- Energy consumption: Each refresh consumes energy 
-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 
-- QoS/predictability impact: (Long) pause times during refresh 
-- Refresh rate limits DRAM density scaling  

 

Downsides of DRAM Refresh 
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Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012. 



Memory Controllers 

 
 
 
 



DRAM versus Other Types of Memories 

n  Long latency memories have similar characteristics that 
need to be controlled. 

n  The following discussion will use DRAM as an example, but 
many issues are similar in the design of controllers for other 
types of memories 
q  Flash memory 
q  Other emerging memory technologies 

n  Phase Change Memory 
n  Spin-Transfer Torque Magnetic Memory 
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DRAM Controller: Functions 
n  Ensure correct operation of DRAM (refresh and timing) 

n  Service DRAM requests while obeying timing constraints of 
DRAM chips 
q  Constraints: resource conflicts (bank, bus, channel), minimum 

write-to-read delays 
q  Translate requests to DRAM command sequences 

n  Buffer and schedule requests to improve performance 
q  Reordering, row-buffer, bank, rank, bus management 

n  Manage power consumption and thermals in DRAM 
q  Turn on/off DRAM chips, manage power modes 

90 



DRAM Controller: Where to Place 
n  In chipset 

+ More flexibility to plug different DRAM types into the system 
    + Less power density in the CPU chip 

 
n  On CPU chip 

+ Reduced latency for main memory access 
+ Higher bandwidth between cores and controller 

n  More information can be communicated (e.g. request’s 
importance in the processing core) 
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A Modern DRAM Controller 



DRAM Scheduling Policies (I) 
n  FCFS (first come first served) 

q  Oldest request first 

n  FR-FCFS (first ready, first come first served) 
1. Row-hit first 
2. Oldest first 
Goal: Maximize row buffer hit rate à maximize DRAM throughput 
 
q  Actually, scheduling is done at the command level 

n  Column commands (read/write) prioritized over row commands 
(activate/precharge) 

n  Within each group, older commands prioritized over younger ones 
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DRAM Scheduling Policies (II) 
n  A scheduling policy is essentially a prioritization order 

n  Prioritization can be based on 
q  Request age 
q  Row buffer hit/miss status 
q  Request type (prefetch, read, write) 
q  Requestor type (load miss or store miss) 
q  Request criticality 

n  Oldest miss in the core? 
n  How many instructions in core are dependent on it? 
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Row Buffer Management Policies 
n  Open row 

q  Keep the row open after an access 
+ Next access might need the same row à row hit 
-- Next access might need a different row à row conflict, wasted energy 

n  Closed row 
q  Close the row after an access (if no other requests already in the request 

buffer need the same row) 
+ Next access might need a different row à avoid a row conflict 
-- Next access might need the same row à extra activate latency 

 
n  Adaptive policies 

q  Predict whether or not the next access to the bank will be to 
the same row 
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Open vs. Closed Row Policies 

Policy First access Next access Commands 
needed for next 
access 

Open row Row 0 Row 0 (row hit) Read  

Open row Row 0 Row 1 (row 
conflict) 

Precharge + 
Activate Row 1 + 
Read 

Closed row Row 0 Row 0 – access in 
request buffer  
(row hit) 

Read 

Closed row Row 0 Row 0 – access not 
in request buffer 
(row closed) 

Activate Row 0 + 
Read + Precharge 

Closed row Row 0 Row 1 (row closed) Activate Row 1 + 
Read + Precharge 
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DRAM Power Management 
n  DRAM chips have power modes 
n  Idea: When not accessing a chip power it down 

n  Power states 
q  Active (highest power) 
q  All banks idle 
q  Power-down 
q  Self-refresh (lowest power) 

n  Tradeoff: State transitions incur latency during which the 
chip cannot be accessed 
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Why are DRAM Controllers Difficult to Design? 

n  Need to obey DRAM timing constraints for correctness 
q  There are many (50+) timing constraints in DRAM 
q  tWTR: Minimum number of cycles to wait before issuing a 

read command after a write command is issued 
q  tRC: Minimum number of cycles between the issuing of two 

consecutive activate commands to the same bank 
q  … 

n  Need to keep track of many resources to prevent conflicts 
q  Channels, banks, ranks, data bus, address bus, row buffers 

n  Need to handle DRAM refresh 
n  Need to optimize for performance (in the presence of constraints) 

q  Reordering is not simple 
q  Predicting the future? 
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Many DRAM Timing Constraints 

n  From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing 
Write-Caused Interference in Memory Systems,” HPS Technical Report, 
April 2010. 
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More on DRAM Operation 
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism 

(SALP) in DRAM,” ISCA 2012. 
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low 

Cost DRAM Architecture,” HPCA 2013. 
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Self-Optimizing DRAM Controllers 
n  Problem: DRAM controllers difficult to design à It is difficult for 

human designers to design a policy that can adapt itself very well 
to different workloads and different system conditions 

n  Idea: Design a memory controller that adapts its scheduling 
policy decisions to workload behavior and system conditions 
using machine learning. 

n  Observation: Reinforcement learning maps nicely to memory 
control. 

n  Design: Memory controller is a reinforcement learning agent that 
dynamically and continuously learns and employs the best 
scheduling policy. 

101 Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008. 



Self-Optimizing DRAM Controllers 
n  Engin Ipek, Onur Mutlu, José F. Martínez, and Rich 

Caruana,  
"Self Optimizing Memory Controllers: A 
Reinforcement Learning Approach" 
Proceedings of the 
35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. 
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Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … ( 0 ≤ γ < 1)  



Self-Optimizing DRAM Controllers 
n  Dynamically adapt the memory scheduling policy via 

interaction with the system at runtime  
q  Associate system states and actions (commands) with long term 

reward values 
q  Schedule command with highest estimated long-term value in each 

state 
q  Continuously update state-action values based on feedback from 

system 
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Self-Optimizing DRAM Controllers 
n  Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,  

"Self Optimizing Memory Controllers: A Reinforcement Learning 
Approach" 
Proceedings of the 35th International Symposium on Computer Architecture 
(ISCA), pages 39-50, Beijing, China, June 2008. 
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States, Actions, Rewards 
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❖  Reward function 

•  +1 for scheduling 
Read and Write 
commands 

•  0 at all other 
times 

 

  

❖  State attributes 

•  Number of reads, 
writes, and load 
misses in 
transaction queue 

•  Number of pending 
writes and ROB 
heads waiting for 
referenced row 

•  Request’s relative 
ROB order 

  

❖  Actions 

•  Activate 

•  Write 

•  Read - load miss 

•  Read - store miss 

•  Precharge - pending 

•  Precharge - preemptive 

•  NOP 

 

  



Performance Results 
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Self Optimizing DRAM Controllers 
n  Advantages 

+ Adapts the scheduling policy dynamically to changing workload 
behavior and to maximize a long-term target 
+ Reduces the designer’s burden in finding a good scheduling 
policy. Designer specifies: 

 1) What system variables might be useful 
 2) What target to optimize, but not how to optimize it 

 
n  Disadvantages 

-- Black box: designer much less likely to implement what she  
cannot easily reason about 
-- How to specify different reward functions that can achieve 
different objectives? (e.g., fairness, QoS) 
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Trends Affecting Main Memory 

 
 
 
 



Agenda for Today 

n  What Will You Learn in This Mini-Lecture Series 
n  Main Memory Basics (with a Focus on DRAM) 
n  Major Trends Affecting Main Memory 
n  DRAM Scaling Problem and Solution Directions 
n  Solution Direction 1: System-DRAM Co-Design 
n  Ongoing Research 
n  Summary 
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Major Trends Affecting Main Memory (I) 
n  Need for main memory capacity, bandwidth, QoS increasing  

n  Main memory energy/power is a key system design concern 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (II) 
n  Need for main memory capacity, bandwidth, QoS increasing  

q  Multi-core: increasing number of cores 
q  Data-intensive applications: increasing demand/hunger for data 
q  Consolidation: cloud computing, GPUs, mobile 

n  Main memory energy/power is a key system design concern 

 
 
n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (III) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
n  Main memory energy/power is a key system design concern 

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy, 
IEEE Computer 2003] 

q  DRAM consumes power even when not used (periodic refresh) 

n  DRAM technology scaling is ending  
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Major Trends Affecting Main Memory (IV) 
n  Need for main memory capacity, bandwidth, QoS increasing  

 
 
n  Main memory energy/power is a key system design concern 

 
n  DRAM technology scaling is ending  

q  ITRS projects DRAM will not scale easily below X nm  
q  Scaling has provided many benefits:  

n  higher capacity (density), lower cost, lower energy 
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The DRAM Scaling Problem 
n  DRAM stores charge in a capacitor (charge-based memory) 

q  Capacitor must be large enough for reliable sensing 
q  Access transistor should be large enough for low leakage and high 

retention time 
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

n  DRAM capacity, cost, and energy/power hard to scale 
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Solutions to the DRAM Scaling Problem 

n  Two potential solutions 
q  Tolerate DRAM (by taking a fresh look at it) 
q  Enable emerging memory technologies to eliminate/minimize 

DRAM 

n  Do both 
q  Hybrid memory systems 
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Solution 1: Tolerate DRAM 
n  Overcome DRAM shortcomings with 

q  System-DRAM co-design 
q  Novel DRAM architectures, interface, functions 
q  Better waste management (efficient utilization) 

n  Key issues to tackle 
q  Reduce refresh energy 
q  Improve bandwidth and latency 
q  Reduce waste 
q  Enable reliability at low cost 

n  Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
n  Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012. 
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013. 
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13. 
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013. 
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Tolerating DRAM: 
System-DRAM Co-Design 

 
 
 
 



New DRAM Architectures 

n  RAIDR: Reducing Refresh Impact 
n  TL-DRAM: Reducing DRAM Latency 
n  SALP: Reducing Bank Conflict Impact 
n  RowClone: Fast Bulk Data Copy and Initialization 
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RAIDR: Reducing  
DRAM Refresh Impact 

 
 
 
 



DRAM Refresh 
n  DRAM capacitor charge leaks over time 

n  The memory controller needs to refresh each row 
periodically to restore charge 
q  Activate + precharge each row every N ms 
q  Typical N = 64 ms 

n  Downsides of refresh 
    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 
-- Refresh rate limits DRAM density scaling  
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Refresh Today: Auto Refresh 
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Columns 

R
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DRAM CONTROLLER 

DRAM Bus 

BANK 0 BANK 1 BANK 2 BANK 3 

A batch of rows are  
periodically refreshed 
via the auto-refresh command 



Refresh Overhead: Performance 
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8%	
  

46%	
  



Refresh Overhead: Energy 
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15%	
  

47%	
  



Problem with Conventional Refresh 
n  Today: Every row is refreshed at the same rate 

n  Observation: Most rows can be refreshed much less often 
without losing data [Kim+, EDL’09] 

n  Problem: No support in DRAM for different refresh rates per row 
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Retention Time of DRAM Rows 
n  Observation: Only very few rows need to be refreshed at the 

worst-case rate 

n  Can we exploit this to reduce refresh operations at low cost? 
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Reducing DRAM Refresh Operations 
n  Idea: Identify the retention time of different rows and 

refresh each row at the frequency it needs to be refreshed 

n  (Cost-conscious) Idea: Bin the rows according to their 
minimum retention times and refresh rows in each bin at 
the refresh rate specified for the bin 
q  e.g., a bin for 64-128ms, another for 128-256ms, … 

n  Observation: Only very few rows need to be refreshed very 
frequently [64-128ms] à Have only a few bins à Low HW 
overhead to achieve large reductions in refresh operations 

n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 
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1. Profiling: Profile the retention time of all DRAM rows 
    à can be done at DRAM design time or dynamically   
 
 
2. Binning: Store rows into bins by retention time 
   à use Bloom Filters for efficient and scalable storage 
 
 
 
3. Refreshing: Memory controller refreshes rows in different 
bins at different rates 
   à probe Bloom Filters to determine refresh rate of a row 

RAIDR: Mechanism 
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1.25KB storage in controller for 32GB DRAM memory 



1. Profiling 
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2. Binning 

n  How to efficiently and scalably store rows into retention 
time bins? 

n  Use Hardware Bloom Filters [Bloom, CACM 1970] 

130 



Bloom Filter Operation Example 
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Bloom Filter Operation Example 
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Bloom Filter Operation Example 
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Bloom Filter Operation Example 
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Benefits of Bloom Filters as Bins 
n  False positives: a row may be declared present in the 

Bloom filter even if it was never inserted 
q  Not a problem: Refresh some rows more frequently than 

needed 

n  No false negatives: rows are never refreshed less 
frequently than needed (no correctness problems) 

n  Scalable: a Bloom filter never overflows (unlike a fixed-size 
table) 

n  Efficient: No need to store info on a per-row basis; simple 
hardware à 1.25 KB for 2 filters for 32 GB DRAM system 
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3. Refreshing (RAIDR Refresh Controller) 
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3. Refreshing (RAIDR Refresh Controller) 
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Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Tolerating Temperature Changes 
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RAIDR: Baseline Design 
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Refresh control is in DRAM in today’s auto-refresh systems 
RAIDR can be implemented in either the controller or DRAM 



RAIDR in Memory Controller: Option 1 
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Overhead of RAIDR in DRAM controller: 
1.25 KB Bloom Filters, 3 counters, additional commands    
issued for per-row refresh (all accounted for in evaluations) 



RAIDR in DRAM Chip: Option 2 
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Overhead of RAIDR in DRAM chip: 
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip) 

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM) 



RAIDR Results 
n  Baseline: 

q  32 GB DDR3 DRAM system (8 cores, 512KB cache/core) 
q  64ms refresh interval for all rows 

n  RAIDR:  
q  64–128ms retention range: 256 B Bloom filter, 10 hash functions 
q  128–256ms retention range: 1 KB Bloom filter, 6 hash functions 
q  Default refresh interval: 256 ms 

n  Results on SPEC CPU2006, TPC-C, TPC-H benchmarks 
q  74.6% refresh reduction 
q  ~16%/20% DRAM dynamic/idle power reduction 
q  ~9% performance improvement  
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RAIDR Refresh Reduction 
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32 GB DDR3 DRAM system  



RAIDR: Performance 
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RAIDR performance benefits increase with workload’s memory intensity 



RAIDR: DRAM Energy Efficiency 
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RAIDR energy benefits increase with memory idleness 



DRAM Device Capacity Scaling: Performance 
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RAIDR performance benefits increase with DRAM chip capacity 



DRAM Device Capacity Scaling: Energy 
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RAIDR energy benefits increase with DRAM chip capacity RAIDR slides 



New DRAM Architectures 

n  RAIDR: Reducing Refresh Impact 
n  TL-DRAM: Reducing DRAM Latency 
n  SALP: Reducing Bank Conflict Impact 
n  RowClone: Fast Bulk Data Copy and Initialization 
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Tiered-Latency DRAM:  
Reducing DRAM Latency 

 
 
 
 

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu, 
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture"  
19th International Symposium on High-Performance Computer Architecture (HPCA),  

Shenzhen, China, February 2013. Slides (pptx) 
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  Latency,	
  Power,	
  and	
  Area	
  EvaluaUon	
  
•  Commodity	
  DRAM:	
  512	
  cells/bitline	
  
•  TL-­‐DRAM:	
  512	
  cells/bitline	
  

–  Near	
  segment:	
  32	
  cells	
  
–  Far	
  segment:	
  480	
  cells	
  

•  Latency	
  EvaluaUon	
  
–  SPICE	
  simula\on	
  using	
  circuit-­‐level	
  DRAM	
  model	
  

•  Power	
  and	
  Area	
  EvaluaUon	
  
–  DRAM	
  area/power	
  simulator	
  from	
  Rambus	
  
–  DDR3	
  energy	
  calculator	
  from	
  Micron	
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  Leveraging	
  Tiered-­‐Latency	
  DRAM	
  
•  TL-­‐DRAM	
  is	
  a	
  substrate	
  that	
  can	
  be	
  leveraged	
  
by	
  the	
  hardware	
  and/or	
  sodware	
  

•  Many	
  poten\al	
  uses	
  
1. Use	
  near	
  segment	
  as	
  hardware-­‐managed	
  inclusive	
  
cache	
  to	
  far	
  segment	
  

2. Use	
  near	
  segment	
  as	
  hardware-­‐managed	
  exclusive	
  
cache	
  to	
  far	
  segment	
  

3. Profile-­‐based	
  page	
  mapping	
  by	
  opera\ng	
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  EvaluaUon	
  Methodology	
  
•  System	
  simulator	
  

– CPU:	
  Instruc\on-­‐trace-­‐based	
  x86	
  simulator	
  
– Memory:	
  Cycle-­‐accurate	
  DDR3	
  DRAM	
  simulator	
  

•  Workloads	
  
– 32	
  Benchmarks	
  from	
  TPC,	
  STREAM,	
  SPEC	
  CPU2006	
  

•  Performance	
  Metrics	
  
– Single-­‐core:	
  Instruc\ons-­‐Per-­‐Cycle	
  
– Mul\-­‐core:	
  Weighted	
  speedup	
  

	
  



173	
  

	
  	
  ConfiguraUons	
  
•  System	
  configuraUon	
  

– CPU:	
  5.3GHz	
  
– LLC:	
  512kB	
  private	
  per	
  core	
  
– Memory:	
  DDR3-­‐1066	
  

•  1-­‐2	
  channel,	
  1	
  rank/channel	
  
•  8	
  banks,	
  32	
  subarrays/bank,	
  512	
  cells/bitline	
  
•  Row-­‐interleaved	
  mapping	
  &	
  closed-­‐row	
  policy	
  

•  TL-­‐DRAM	
  configuraUon	
  
– Total	
  bitline	
  length:	
  512	
  cells/bitline	
  
– Near	
  segment	
  length:	
  1-­‐256	
  cells	
  
– Hardware-­‐managed	
  inclusive	
  cache:	
  near	
  segment	
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  Other	
  Mechanisms	
  &	
  Results	
  
•  More	
  mechanisms	
  for	
  leveraging	
  TL-­‐DRAM	
  

– Hardware-­‐managed	
  exclusive	
  caching	
  mechanism	
  
–  Profile-­‐based	
  page	
  mapping	
  to	
  near	
  segment	
  
–  TL-­‐DRAM	
  improves	
  performance	
  and	
  reduces	
  power	
  
consump\on	
  with	
  other	
  mechanisms	
  

•  More	
  than	
  two	
  Uers	
  
–  Latency	
  evalua\on	
  for	
  three-­‐\er	
  TL-­‐DRAM	
  

•  Detailed	
  circuit	
  evaluaUon	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
for	
  DRAM	
  latency	
  and	
  power	
  consump\on	
  
–  Examina\on	
  of	
  tRC	
  and	
  tRCD	
  

•  ImplementaUon	
  details	
  and	
  storage	
  cost	
  analysis	
  	
  	
  	
  	
  	
  	
  
in	
  memory	
  controller	
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  Summary	
  of	
  TL-­‐DRAM	
  
•  Problem:	
  DRAM	
  latency	
  is	
  a	
  criUcal	
  performance	
  bonleneck	
  	
  
• Our	
  Goal:	
  Reduce	
  DRAM	
  latency	
  with	
  low	
  area	
  cost	
  
• ObservaUon:	
  Long	
  bitlines	
  in	
  DRAM	
  are	
  the	
  dominant	
  source	
  	
  	
  
of	
  DRAM	
  latency	
  

•  Key	
  Idea:	
  Divide	
  long	
  bitlines	
  into	
  two	
  shorter	
  segments	
  
– Fast	
  and	
  slow	
  segments	
  

•  Tiered-­‐latency	
  DRAM:	
  Enables	
  latency	
  heterogeneity	
  in	
  DRAM	
  
– Can	
  leverage	
  this	
  in	
  many	
  ways	
  to	
  improve	
  performance	
  
and	
  reduce	
  power	
  consumpUon	
  

•  Results:	
  When	
  the	
  fast	
  segment	
  is	
  used	
  as	
  a	
  cache	
  to	
  the	
  slow	
  
segment	
  à	
  Significant	
  performance	
  improvement	
  (>12%)	
  and	
  
power	
  reduc\on	
  (>23%)	
  at	
  low	
  area	
  cost	
  (3%)	
  



New DRAM Architectures 

n  RAIDR: Reducing Refresh Impact 
n  TL-DRAM: Reducing DRAM Latency 
n  SALP: Reducing Bank Conflict Impact 
n  RowClone: Fast Bulk Data Copy and Initialization 
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Subarray-Level Parallelism: 
Reducing Bank Conflict Impact 

 
 
 
 

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu, 
"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM" 

Proceedings of the 39th International Symposium on Computer Architecture (ISCA),  
Portland, OR, June 2012. Slides (pptx)  



The Memory Bank Conflict Problem 

n  Two requests to the same bank are serviced serially 
n  Problem: Costly in terms of performance and power 
n  Goal: We would like to reduce bank conflicts without 

increasing the number of banks (at low cost) 

n  Idea: Exploit the internal sub-array structure of a DRAM bank 
to parallelize bank conflicts 
q  By reducing global sharing of hardware between sub-arrays 

n  Kim, Seshadri, Lee, Liu, Mutlu, “A Case for Exploiting 
Subarray-Level Parallelism in DRAM,” ISCA 2012. 
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2.	
  Write	
  Penalty	
  3.	
  Thrashing	
  Row-­‐Buffer	
  

Served	
  in	
  parallel	
  

Wasted	
  

The Problem with Memory Bank Conflicts	
  



Goal	
  
•  Goal:	
  Mi.gate	
  the	
  detrimental	
  effects	
  of	
  
bank	
  conflicts	
  in	
  a	
  cost-­‐effec.ve	
  manner	
  

	
  

•  Naïve	
  soluUon:	
  Add	
  more	
  banks	
  
–  Very	
  expensive	
  

•  Cost-­‐effecUve	
  soluUon:	
  Approximate	
  the	
  
benefits	
  of	
  more	
  banks	
  without	
  adding	
  
more	
  banks	
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A	
  DRAM	
  bank	
  is	
  divided	
  into	
  subarrays	
  
Key	
  ObservaUon	
  #1	
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Row-­‐Buffer	
  

Row	
  
Row	
  
Row	
  

32k	
  rows	
  

Logical	
  Bank	
  

A	
  single	
  row-­‐buffer	
  
cannot	
  drive	
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  rows	
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  Bank	
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  Row-­‐Buf	
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Subarray64	
  

Many	
  local	
  row-­‐buffers,	
  
one	
  at	
  each	
  subarray	
  



Key	
  ObservaUon	
  #2	
  
Each	
  subarray	
  is	
  mostly	
  independent…	
  	
  

–  except	
  occasionally	
  sharing	
  global	
  structures	
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Key	
  Idea:	
  Reduce	
  Sharing	
  of	
  Globals	
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1.	
  Parallel	
  access	
  to	
  subarrays	
  

2.	
  U\lize	
  mul\ple	
  local	
  row-­‐buffers	
  



Overview	
  of	
  Our	
  Mechanism	
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Challenges:	
  Global	
  Structures	
  
1.	
  Global	
  Address	
  Latch	
  

2.	
  Global	
  Bitlines	
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Challenge	
  #1.	
  Global	
  Address	
  Latch	
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Challenges:	
  Global	
  Structures	
  
1.	
  Global	
  Address	
  Latch	
  

•  Problem:	
  Only	
  one	
  raised	
  wordline	
  
•  Solu\on:	
  Subarray	
  Address	
  Latch	
  

2.	
  Global	
  Bitlines	
  

190	
  



Challenge	
  #2.	
  Global	
  Bitlines	
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Challenges:	
  Global	
  Structures	
  
1.	
  Global	
  Address	
  Latch	
  

•  Problem:	
  Only	
  one	
  raised	
  wordline	
  
•  Solu\on:	
  Subarray	
  Address	
  Latch	
  

2.	
  Global	
  Bitlines	
  
•  Problem:	
  Collision	
  during	
  access 
•  Solu\on:	
  Designated-­‐Bit	
  Latch	
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MASA	
  (MulUtude	
  of	
  AcUvated	
  Subarrays)	
  



•  Baseline	
  (Subarray-­‐Oblivious)	
  

• MASA	
  

MASA:	
  Advantages	
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MASA:	
  Overhead	
  
•  DRAM	
  Die	
  Size:	
  Only	
  0.15%	
  increase	
  

–  Subarray	
  Address	
  Latches	
  
–  Designated-­‐Bit	
  Latches	
  &	
  Wire	
  

•  DRAM	
  StaUc	
  Energy:	
  Small	
  increase	
  
–  0.56mW	
  for	
  each	
  ac\vated	
  subarray	
  
–  But	
  saves	
  dynamic	
  energy	
  

•  Controller:	
  Small	
  addi\onal	
  storage	
  
–  Keep	
  track	
  of	
  subarray	
  status	
  (<	
  256B)	
  
–  Keep	
  track	
  of	
  new	
  \ming	
  constraints	
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Cheaper	
  Mechanisms	
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System	
  ConfiguraUon	
  
•  System	
  ConfiguraUon	
  

–  CPU:	
  5.3GHz,	
  128	
  ROB,	
  8	
  MSHR	
  
–  LLC:	
  512kB	
  per-­‐core	
  slice	
  

•  Memory	
  ConfiguraUon	
  
–  DDR3-­‐1066	
  
–  (default)	
  1	
  channel,	
  1	
  rank,	
  8	
  banks,	
  8	
  subarrays-­‐per-­‐bank	
  
–  (sensi.vity)	
  1-­‐8	
  chans,	
  1-­‐8	
  ranks,	
  8-­‐64	
  banks,	
  1-­‐128	
  subarrays	
  

•  Mapping	
  &	
  Row-­‐Policy	
  
–  (default)	
  Line-­‐interleaved	
  &	
  Closed-­‐row	
  
–  (sensi.vity)	
  Row-­‐interleaved	
  &	
  Open-­‐row	
  

•  DRAM	
  Controller	
  ConfiguraUon	
  
–  64-­‐/64-­‐entry	
  read/write	
  queues	
  per-­‐channel	
  
–  FR-­‐FCFS,	
  batch	
  scheduling	
  for	
  writes	
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SALP:	
  Single-­‐core	
  Results	
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SALP:	
  Single-­‐Core	
  Results	
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Subarray-­‐Level	
  Parallelism:	
  Results	
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New DRAM Architectures 

n  RAIDR: Reducing Refresh Impact 
n  TL-DRAM: Reducing DRAM Latency 
n  SALP: Reducing Bank Conflict Impact 
n  RowClone: Fast Bulk Data Copy and Initialization 
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RowClone: Fast Bulk Data  
Copy and Initialization 

 
 
 
 

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,  
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry, 

"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data" 
CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie Mellon University, April 2013. 



Today’s	
  Memory:	
  Bulk	
  Data	
  Copy	
  

Memory 
	
  
 
	
  
 
	
  
 
 

MC L3 L2 L1 CPU 

1)	
  High	
  latency	
  

2)	
  High	
  bandwidth	
  u\liza\on	
  

3)	
  Cache	
  pollu\on	
  

4)	
  Unwanted	
  data	
  movement	
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Future:	
  RowClone	
  (In-­‐Memory	
  Copy)	
  

Memory 
	
  
 
	
  
 
	
  
 
 

MC L3 L2 L1 CPU 

1)	
  Low	
  latency	
  

2)	
  Low	
  bandwidth	
  u\liza\on	
  

3)	
  No	
  cache	
  pollu\on	
  

4)	
  No	
  unwanted	
  data	
  movement	
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” CMU Tech Report 2013. 



DRAM operation (load one byte) 

Row Buffer (4 Kbits) 

Memory Bus 

Data pins (8 bits) 

DRAM array 

4 Kbits 

1. Activate row 

2. Transfer 
row 

3. Transfer 
byte onto bus 



RowClone: in-DRAM Row Copy (and Initialization) 

Row Buffer (4 Kbits) 

Memory Bus 

Data pins (8 bits) 

DRAM array 

4 Kbits 

1. Activate row A 

2. Transfer 
row 

3. Activate row B 

4. 
Transfer 
row 



Our	
  Approach:	
  Key	
  Idea	
  

•  DRAM	
  banks	
  contain	
  
1.  Mu\ple	
  rows	
  of	
  DRAM	
  cells	
  –	
  row	
  =	
  8KB	
  
2.  A	
  row	
  buffer	
  shared	
  by	
  the	
  DRAM	
  rows	
  

•  Large	
  scale	
  copy	
  
1.  Copy	
  data	
  from	
  source	
  row	
  to	
  row	
  buffer	
  
2.  Copy	
  data	
  from	
  row	
  buffer	
  to	
  des\na\on	
  row	
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DRAM	
  Subarray	
  Microarchitecture	
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DRAM	
  Opera\on	
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RowClone:	
  Intra-­‐subarray	
  Copy	
  

0 1 0 0 1 1 0 0 0 1 1 0 

1 1 0 1 0 1 1 1 0 0 1 1 
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  (src)	
   Deac\vate	
  	
  
(our	
  proposal)	
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RowClone:	
  Inter-­‐bank	
  Copy	
  

I/O	
  Bus	
  
Transfer	
  

(our	
  proposal)	
  

src	
  

dst	
  

Read	
   Write	
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RowClone:	
  Inter-­‐subarray	
  Copy	
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1.	
  Transfer	
  (src	
  to	
  temp)	
  

src	
  

dst	
  

temp	
  

2.	
  Transfer	
  (temp	
  to	
  dst)	
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Fast	
  Row	
  Ini\aliza\on	
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RowClone:	
  Latency	
  and	
  Energy	
  Savings	
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Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and 
Initialization of Bulk Data,” CMU Tech Report 2013. 



Agenda for Today 

n  What Will You Learn in This Mini-Lecture Series 
n  Main Memory Basics (with a Focus on DRAM) 
n  Major Trends Affecting Main Memory 
n  DRAM Scaling Problem and Solution Directions 
n  Solution Direction 1: System-DRAM Co-Design 
n  Ongoing Research 
n  Summary 
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Sampling of Ongoing Research 

n  Online retention time profiling  
q  Preliminary work in ISCA 2013 
q  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 

"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture (ISCA), 
Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  

n  More computation in memory and controllers 

n  Refresh/demand parallelization 
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Summary 
n  Major problems with DRAM scaling and design: high refresh 

rate, high latency, low parallelism, bulk data movement  

n  Four new DRAM designs 
q  RAIDR: Reduces refresh impact 
q  TL-DRAM: Reduces DRAM latency at low cost 
q  SALP: Improves DRAM parallelism  
q  RowClone: Reduces energy and performance impact of bulk data copy 

n  All four designs 
q  Improve both performance and energy consumption 
q  Are low cost (low DRAM area overhead) 
q  Enable new degrees of freedom to software & controllers 

n  Rethinking DRAM interface and design essential for scaling 
q  Co-design DRAM with the rest of the system 
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Thank you. 
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Scalable Many-Core Memory Systems 
Topic 1: DRAM Basics and  

DRAM Scaling 

Prof. Onur Mutlu 
http://www.ece.cmu.edu/~omutlu 

onur@cmu.edu 
HiPEAC ACACES Summer School 2013 

July 15-19, 2013 

 
 



Additional Material 
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Three Papers 

n  Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu, 
"Memory Power Management via Dynamic Voltage/Frequency Scaling" 
Proceedings of the 8th International Conference on Autonomic Computing 
(ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)  

n  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu, 
"An Experimental Study of Data Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time Profiling Mechanisms" 
Proceedings of the 40th International Symposium on Computer Architecture 
(ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)  
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Memory Power is Significant 
n  Power consumption is a primary concern in modern servers 
n  Many works: CPU, whole-system or cluster-level approach 
n  But memory power is largely unaddressed 
n  Our server system*: memory is 19% of system power (avg) 

q  Some work notes up to 40% of total system power 

n  Goal: Can we reduce this figure? 
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Existing Solution: Memory Sleep States? 
n  Most memory energy-efficiency work uses sleep states 

q  Shut down DRAM devices when no memory requests active 

n  But, even low-memory-bandwidth workloads keep memory 
awake 
q  Idle periods between requests diminish in multicore workloads 
q  CPU-bound workloads/phases rarely completely cache-resident 
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Memory Bandwidth Varies Widely 
n  Workload memory bandwidth requirements vary widely 

 
n  Memory system is provisioned for peak capacity 

 à often underutilized 
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Memory Power can be Scaled Down 
n  DDR can operate at multiple frequencies à reduce power 

q  Lower frequency directly reduces switching power 
q  Lower frequency allows for lower voltage 
q  Comparable to CPU DVFS 

n  Frequency scaling increases latency à reduce performance 
q  Memory storage array is asynchronous 
q  But, bus transfer depends on frequency 
q  When bus bandwidth is bottleneck, performance suffers 
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Observations So Far 
n  Memory power is a significant portion of total power 

q  19% (avg) in our system, up to 40% noted in other works 

n  Sleep state residency is low in many workloads 
q  Multicore workloads reduce idle periods 
q  CPU-bound applications send requests frequently enough 

to keep memory devices awake 

n  Memory bandwidth demand is very low in some workloads 

n  Memory power is reduced by frequency scaling 
q  And voltage scaling can give further reductions 
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DVFS for Memory 
n  Key Idea: observe memory bandwidth utilization, then 

adjust memory frequency/voltage, to reduce power with 
minimal performance loss 

  
 à Dynamic Voltage/Frequency Scaling (DVFS) 
    for memory 

n  Goal in this work: 
q  Implement DVFS in the memory system, by: 
q  Developing a simple control algorithm to exploit opportunity 

for reduced memory frequency/voltage by observing behavior  
q  Evaluating the proposed algorithm on a real system 
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DRAM Operation 
n  Main memory consists of DIMMs of DRAM devices 
n  Each DIMM is attached to a memory bus (channel) 
n  Multiple DIMMs can connect to one channel 
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Inside a DRAM Device 
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Banks 
•  Independent arrays 
•  Asynchronous: 

independent of 
memory bus speed 

I/O Circuitry 
•  Runs at bus speed 
•  Clock sync/distribution 
•  Bus drivers and receivers 
•  Buffering/queueing 

On-Die Termination 
•  Required by bus electrical characteristics 

for reliable operation 
•  Resistive element that dissipates power 

when bus is active 



Effect of Frequency Scaling on Power 
n  Reduced memory bus frequency: 
n  Does not affect bank power: 

q  Constant energy per operation 
q  Depends only on utilized memory bandwidth 

n  Decreases I/O power: 
q  Dynamic power in bus interface and clock circuitry 

reduces due to less frequent switching 
n  Increases termination power: 

q  Same data takes longer to transfer 
q  Hence, bus utilization increases 

n  Tradeoff between I/O and termination results in a net 
power reduction at lower frequencies 
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Effects of Voltage Scaling on Power 
n  Voltage scaling further reduces power because all parts of 

memory devices will draw less current (at less voltage) 
n  Voltage reduction is possible because stable operation 

requires lower voltage at lower frequency: 
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How Much Memory Bandwidth is Needed? 
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Performance Impact of Static Frequency Scaling 
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n  Performance impact is proportional to bandwidth demand 
n  Many workloads tolerate lower frequency with minimal 

performance drop 
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Memory Latency Under Load 
n  At low load, most time is in array access and bus transfer 

 à small constant offset between bus-frequency latency curves 

n  As load increases, queueing delay begins to dominate 
 à bus frequency significantly affects latency 
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Control Algorithm: Demand-Based Switching 

After each epoch of length Tepoch: 
 Measure per-channel bandwidth BW 
 if     BW < T800  : switch to   800MHz 
 else if BW < T1066  : switch to 1066MHz 
 else   : switch to 1333MHz 
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Implementing V/F Switching 
n  Halt Memory Operations 

q  Pause requests 
q  Put DRAM in Self-Refresh 
q  Stop the DIMM clock 

n  Transition Voltage/Frequency 
q  Begin voltage ramp 
q  Relock memory controller PLL at new frequency 
q  Restart DIMM clock 
q  Wait for DIMM PLLs to relock 

n  Begin Memory Operations 
q  Take DRAM out of Self-Refresh 
q  Resume requests 
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C Memory frequency already adjustable statically 

C Voltage regulators for CPU DVFS can work for 
     memory DVFS 

C Full transition takes ~20µs 
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Evaluation Methodology 
n  Real-system evaluation 

q  Dual 4-core Intel Xeon®, 3 memory channels/socket 

q  48 GB of DDR3 (12 DIMMs, 4GB dual-rank, 1333MHz) 

n  Emulating memory frequency for performance 
q  Altered memory controller timing registers (tRC, tB2BCAS) 
q  Gives performance equivalent to slower memory frequencies 

n  Modeling power reduction 
q  Measure baseline system (AC power meter, 1s samples) 
q  Compute reductions with an analytical model (see paper) 
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Evaluation Methodology 

n  Workloads 
q  SPEC CPU2006: CPU-intensive workloads 
q  All cores run a copy of the benchmark 

n  Parameters 
q  Tepoch = 10ms 
q  Two variants of algorithm with different switching thresholds: 
q  BW(0.5, 1): T800 = 0.5GB/s, T1066 = 1GB/s 
q  BW(0.5, 2): T800  = 0.5GB/s, T1066 = 2GB/s 

à More aggressive frequency/voltage scaling 
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Performance Impact of Memory DVFS 
n  Minimal performance degradation: 0.2% (avg), 1.7% (max)   
n  Experimental error ~1% 
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Memory Frequency Distribution 
n  Frequency distribution shifts toward higher memory 
   frequencies with more memory-intensive benchmarks 
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Memory Power Reduction 
n  Memory power reduces by 10.4% (avg), 20.5% (max)  
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System Power Reduction 
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n  As a result, system power reduces by 1.9% (avg), 3.5% (max)  



n  System energy reduces by 2.4% (avg), 5.1% (max)  

System Energy Reduction 
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Related Work 
n  MemScale [Deng11], concurrent work (ASPLOS 2011) 

q  Also proposes Memory DVFS 
q  Application performance impact model to decide voltage and 

frequency: requires specific modeling for a given system; our 
bandwidth-based approach avoids this complexity 

q  Simulation-based evaluation; our work is a real-system proof 
of concept 

 
n  Memory Sleep States (Creating opportunity with data placement 

[Lebeck00,Pandey06], OS scheduling [Delaluz02], VM subsystem [Huang05]; 
Making better decisions with better models [Hur08,Fan01]) 

n  Power Limiting/Shifting (RAPL [David10] uses memory throttling for 
thermal limits; CPU throttling for memory traffic [Lin07,08]; Power shifting 
across system [Felter05]) 
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Conclusions 
n  Memory power is a significant component of system power 

q  19% average in our evaluation system, 40% in other work 

n  Workloads often keep memory active but underutilized 
q  Channel bandwidth demands are highly variable 
q  Use of memory sleep states is often limited 

n  Scaling memory frequency/voltage can reduce memory 
power with minimal system performance impact 
q  10.4% average memory power reduction 
q  Yields 2.4% average system energy reduction 

n  Greater reductions are possible with wider frequency/
voltage range and better control algorithms 
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Summary (I) 
n  DRAM requires periodic refresh to avoid data loss 

q  Refresh wastes energy, reduces performance, limits DRAM density scaling 
n  Many past works observed that different DRAM cells can retain data for 

different times without being refreshed; proposed reducing refresh rate 
for strong DRAM cells 
q  Problem: These techniques require an accurate profile of the retention time of 

all DRAM cells 

n  Our goal: To analyze the retention time behavior of DRAM cells in modern 
DRAM devices to aid the collection of accurate profile information 

n  Our experiments: We characterize 248 modern commodity DDR3 DRAM 
chips from 5 manufacturers using an FPGA based testing platform 

n  Two Key Issues:  
1. Data Pattern Dependence: A cell’s retention time is heavily dependent on data    
values stored in itself and nearby cells, which cannot easily be controlled.  
2. Variable Retention Time: Retention time of some cells change unpredictably 
from high to low at large timescales. 



Summary (II) 
n  Key findings on Data Pattern Dependence 

q  There is no observed single data pattern that elicits the lowest 
retention times for a DRAM device à very hard to find this pattern  

q  DPD varies between devices due to variation in DRAM array circuit 
design between manufacturers 

q  DPD of retention time gets worse as DRAM scales to smaller feature 
sizes 

n  Key findings on Variable Retention Time 
q  VRT is common in modern DRAM cells that are weak 
q  The timescale at which VRT occurs is very large (e.g., a cell can stay 

in high retention time state for a day or longer) à finding minimum 
retention time can take very long 

n  Future work on retention time profiling must address these 
issues 
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Talk Agenda 
n  DRAM Refresh: Background and Motivation 
n  Challenges and Our Goal 
n  DRAM Characterization Methodology 
n  Foundational Results 

q  Temperature Dependence 
q  Retention Time Distribution 
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A DRAM Cell 

 
n  A DRAM cell consists of a capacitor and an access transistor 
n  It stores data in terms of charge in the capacitor 
n  A DRAM chip consists of (10s of 1000s of) rows of such cells 
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DRAM Refresh 

n  DRAM capacitor charge leaks over time 

n  Each DRAM row is periodically refreshed to restore charge 
q  Activate each row every N ms 
q  Typical N = 64 ms 

n  Downsides of refresh 
    -- Energy consumption: Each refresh consumes energy 

-- Performance degradation: DRAM rank/bank unavailable while 
refreshed 

-- QoS/predictability impact: (Long) pause times during refresh 
-- Refresh rate limits DRAM capacity scaling  
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Refresh Overhead: Performance 
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8%	
  

46%	
  

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Refresh Overhead: Energy 
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15%	
  

47%	
  

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Previous Work on Reducing Refreshes 
n  Observed significant variation in data retention times of 

DRAM cells (due to manufacturing process variation) 
q  Retention time: maximum time a cell can go without being 

refreshed while maintaining its stored data 

n  Proposed methods to take advantage of widely varying 
retention times among DRAM rows 
q  Reduce refresh rate for rows that can retain data for longer 

than 64 ms, e.g., [Liu+ ISCA 2012] 

q  Disable rows that have low retention times, e.g., [Venkatesan+ 
HPCA 2006] 

n  Showed large benefits in energy and performance 
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1. Profiling: Profile the retention time of all DRAM rows 
 
 
 
2. Binning: Store rows into bins by retention time 
   à use Bloom Filters for efficient and scalable storage 
 
 
 
3. Refreshing: Memory controller refreshes rows in different 
bins at different rates 
   à probe Bloom Filters to determine refresh rate of a row 

An Example: RAIDR [Liu+, ISCA 2012] 
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1.25KB storage in controller for 32GB DRAM memory 

Can reduce refreshes by ~75%  
à reduces energy consumption and improves performance 

Problem: Requires accurate profiling of DRAM row retention times 

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012. 



Motivation 
n  Past works require accurate and reliable measurement of 

retention time of each DRAM row 
q  To maintain data integrity while reducing refreshes 

n  Assumption: worst-case retention time of each row can be 
determined and stays the same at a given temperature 
q  Some works propose writing all 1’s and 0’s to a row, and 

measuring the time before data corruption 

n  Question: 
q  Can we reliably and accurately determine retention times of all 

DRAM rows? 
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Two Challenges to Retention Time Profiling 
n  Data Pattern Dependence (DPD) of retention time 

 
n  Variable Retention Time (VRT) phenomenon 

265 



Two Challenges to Retention Time Profiling 
n  Challenge 1: Data Pattern Dependence (DPD) 

q  Retention time of a DRAM cell depends on its value and the 
values of cells nearby it 

q  When a row is activated, all bitlines are perturbed simultaneously 
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n  Electrical noise on the bitline affects reliable sensing of a DRAM cell 
n  The magnitude of this noise is affected by values of nearby cells via 

q  Bitline-bitline coupling à electrical coupling between adjacent bitlines 
q  Bitline-wordline coupling à electrical coupling between each bitline and 

the activated wordline 

n  Retention time of a cell depends on data patterns stored in 
nearby cells  

    à need to find the worst data pattern to find worst-case retention time 

Data Pattern Dependence 
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Two Challenges to Retention Time Profiling 
n  Challenge 2: Variable Retention Time (VRT) 

q  Retention time of a DRAM cell changes randomly over time        
n  a cell alternates between multiple retention time states 

q  Leakage current of a cell changes sporadically due to a charge 
trap in the gate oxide of the DRAM cell access transistor 

q  When the trap becomes occupied, charge leaks more readily from 
the transistor’s drain, leading to a short retention time 
n  Called Trap-Assisted Gate-Induced Drain Leakage 

q  This process appears to be a random process [Kim+ IEEE TED’11] 

q  Worst-case retention time depends on a random process  
à need to find the worst case despite this 

268 



Our Goal 
n  Analyze the retention time behavior of DRAM cells in 

modern commodity DRAM devices  
q  to aid the collection of accurate profile information 

n  Provide a comprehensive empirical investigation of two key 
challenges to retention time profiling 
q  Data Pattern Dependence (DPD) 
q  Variable Retention Time (VRT) 
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DRAM Testing Platform and Method 
n  Test platform: Developed a DDR3 DRAM testing platform 

using the Xilinx ML605 FPGA development board 
q  Temperature controlled 

n  Tested DRAM chips: 248 commodity DRAM chips from five 
manufacturers (A,B,C,D,E) 

n  Seven families based on equal capacity per device: 
q  A 1Gb, A 2Gb 
q  B 2Gb 
q  C 2Gb 
q  D 1Gb, D 2Gb 
q  E 2Gb 
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Experiment Design 
n  Each module tested for multiple rounds of tests. 

n  Each test searches for the set of cells with a retention time 
less than a threshold value for a particular data pattern 

n  High-level structure of a test: 
q  Write data pattern to rows in a DRAM bank 
q  Prevent refresh for a period of time tWAIT, leave DRAM idle 
q  Read stored data pattern, compare to written pattern and 

record corrupt cells as those with retention time < tWAIT 

n  Test details and important issues to pay attention to are 
discussed in paper 
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Experiment Structure 
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Experiment Parameters 
n  Most tests conducted at 45 degrees Celsius 

n  No cells observed to have a retention time less than 1.5 
second at 45oC 

n  Tested tWAIT in increments of 128ms from 1.5 to 6.1 
seconds 
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Tested Data Patterns 
n  All 0s/1s: Value 0/1 is written to all bits  

q  Previous work suggested this is sufficient 

n  Checkerboard: Consecutive bits alternate between 0 and 1  
q  Coupling noise increases with voltage difference between the 

neighboring bitlines à May induce worst case data pattern (if adjacent 
bits mapped to adjacent cells) 

n  Walk: Attempts to ensure a single cell storing 1 is 
surrounded by cells storing 0  
q  This may lead to even worse coupling noise and retention time due to 

coupling between nearby bitlines [Li+ IEEE TCSI 2011] 
q  Walk pattern is permuted in each round to exercise different cells 

n  Random: Randomly generated data is written to each row 
q  A new set of random data is generated for each round 
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Temperature Stability 
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Some Terminology 
n  Failure population of cells with Retention Time X: The set of 

all cells that exhibit retention failure in any test with any 
data pattern at that retention time (tWAIT) 

n  Retention Failure Coverage of a Data Pattern DP: Fraction 
of cells with retention time X that exhibit retention failure 
with that particular data pattern DP 

n  If retention times are not dependent on data pattern stored 
in cells, we would expect 
q  Coverage of any data pattern to be 100% 
q  In other words, if one data pattern causes a retention failure, 

any other data pattern also would 
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Recall the Tested Data Patterns 
n  All 0s/1s: Value 0/1 is written to all bits 

n  Checkerboard: Consecutive bits alternate between 0 and 1  

n  Walk: Attempts to ensure a single cell storing 1 is 
surrounded by cells storing 0  

n  Random: Randomly generated data is written to each row 
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Data Pattern Dependence: Observations (I) 
n  A cell’s retention time is heavily influenced by data pattern 

stored in other cells  
q  Pattern affects the coupling noise, which affects cell leakage  

n  No tested data pattern exercises the worst case retention 
time for all cells (no pattern has 100% coverage)  
q  No pattern is able to induce the worst-case coupling noise for 

every cell 
q  Problem: Underlying DRAM circuit organization is not known to 

the memory controller à very hard to construct a pattern that 
exercises the worst-case cell leakage 
 à Opaque mapping of addresses to physical DRAM geometry 
 à Internal remapping of addresses within DRAM to tolerate faults 
 à Second order coupling effects are very hard to determine 
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Data Pattern Dependence: Observations (II) 
n  Fixed, simple data patterns have low coverage 

q  They do not exercise the worst-case coupling noise 

n  The effectiveness of each data pattern varies significantly 
between DRAM devices (of the same or different vendors) 
q  Underlying DRAM circuit organization likely differs between 

different devices à patterns leading to worst coupling are 
different in different devices 

n  Technology scaling appears to increase the impact of data 
pattern dependence 
q  Scaling reduces the physical distance between circuit elements, 

increasing the magnitude of coupling effects 
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Effect of Technology Scaling on DPD 
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DPD: Implications on Profiling Mechanisms 
n  Any retention time profiling mechanism must handle data pattern 

dependence of retention time 
n  Intuitive approach: Identify the data pattern that induces the 

worst-case retention time for a particular cell or device 

n  Problem 1: Very hard to know at the memory controller which 
bits actually interfere with each other due to 
q  Opaque mapping of addresses to physical DRAM geometry à 

logically consecutive bits may not be physically consecutive 
q  Remapping of faulty bitlines/wordlines to redundant ones internally 

within DRAM 

n  Problem 2: Worst-case coupling noise is affected by non-obvious 
second order bitline coupling effects 
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DPD: Suggestions (for Future Work) 
n  A mechanism for identifying worst-case data pattern(s) 

likely requires support from DRAM device 
q  DRAM manufacturers might be in a better position to do this 
q  But, the ability of the manufacturer to identify and expose the 

entire retention time profile is limited due to VRT 

n  An alternative approach: Use random data patterns to 
increase coverage as much as possible; handle incorrect 
retention time estimates with ECC 
q  Need to keep profiling time in check 
q  Need to keep ECC overhead in check 
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Variable Retention Time 
n  Retention time of a cell can vary over time 

n  A cell can randomly switch between multiple leakage 
current states due to Trap-Assisted Gate-Induced Drain 
Leakage, which appears to be a random process  

    [Yaney+ IEDM 1987, Restle+ IEDM 1992] 
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An Example VRT Cell 
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VRT: Questions and Methodology 
n  Key Questions 

q  How prevalent is VRT in modern DRAM devices? 
q  What is the timescale of observation of the lowest retention 

time state? 
q  What are the implications on retention time profiling? 

n  Test Methodology 
q  Each device was tested for at least 1024 rounds over 24 hours 
q  Temperature fixed at 45oC 
q  Data pattern used is the most effective data pattern for each 

device  
q  For each cell that fails at any retention time, we record the 

minimum and the maximum retention time observed 
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Variable Retention Time 
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VRT: Observations So Far 
n  VRT is common among weak cells (i.e., those cells that 

experience low retention times) 

n  VRT can result in significant retention time changes 
q  Difference between minimum and maximum retention times of 

a cell can be more than 4x, and may not be bounded 
q  Implication: Finding a retention time for a cell and using a 

guardband to ensure minimum retention time is “covered” 
requires a large guardband or may not work 

n  Retention time profiling mechanisms must identify lowest 
retention time in the presence of VRT 
q  Question: How long to profile a cell to find its lowest retention 

time state? 
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Time Between Retention Time State Changes 

n  How much time does a cell spend in a high retention state 
before switching to the minimum observed retention time 
state? 
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VRT: Implications on Profiling Mechanisms 
n  Problem 1: There does not seem to be a way of 

determining if a cell exhibits VRT without actually observing 
a cell exhibiting VRT 
q  VRT is a memoryless random process [Kim+ JJAP 2010] 

n  Problem 2: VRT complicates retention time profiling by 
DRAM manufacturers 
q  Exposure to very high temperatures can induce VRT in cells that 

were not previously susceptible  
    à can happen during soldering of DRAM chips 
    à manufacturer’s retention time profile may not be accurate 

n  One option for future work: Use ECC to continuously profile 
DRAM online while aggressively reducing refresh rate 
q  Need to keep ECC overhead in check 
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Summary and Conclusions 
n  DRAM refresh is a critical challenge in scaling DRAM technology 

efficiently to higher capacities and smaller feature sizes 
n  Understanding the retention time of modern DRAM devices can 

enable old or new methods to reduce the impact of refresh 
q  Many mechanisms require accurate and reliable retention time profiles 

n  We presented the first work that comprehensively examines data 
retention behavior in modern commodity DRAM devices 
q  Characterized 248 devices from five manufacturers 

n  Key findings: Retention time of a cell significantly depends on data 
pattern stored in other cells (data pattern dependence) and 
changes over time via a random process (variable retention time) 
q  Discussed the underlying reasons and provided suggestions 

n  Future research on retention time profiling should solve the 
challenges posed by the DPD and VRT phenomena 
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Aside: Scaling Flash Memory [Cai+, ICCD’12] 
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n  NAND flash memory has low endurance: a flash cell dies after 3k P/E 
cycles vs. 50k desired à Major scaling challenge for flash memory 

n  Flash error rate increases exponentially over flash lifetime 
n  Problem: Stronger error correction codes (ECC) are ineffective and 

undesirable for improving flash lifetime due to 
q  diminishing returns on lifetime with increased correction strength 
q  prohibitively high power, area, latency overheads 

n  Our Goal: Develop techniques to tolerate high error rates w/o strong ECC 
n  Observation: Retention errors are the dominant errors in MLC NAND flash 

q  flash cell loses charge over time; retention errors increase as cell gets worn out 
n  Solution: Flash Correct-and-Refresh (FCR) 

q  Periodically read, correct, and reprogram (in place) or remap each flash page 
before it accumulates more errors than can be corrected by simple ECC 

q  Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles) 

n  Results: FCR improves flash memory lifetime by 46X with no hardware 
changes and low energy overhead; outperforms strong ECCs 



Readings in Flash Memory 
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai, 

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory" 
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization, 
Analysis and Modeling"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble, 
France, March 2013. Slides (ppt) 

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken 
Mai, 
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased 
Flash Memory Lifetime" 
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD), 
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)  

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization, 
and Analysis"  
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden, 
Germany, March 2012. Slides (ppt) 
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Evolution of NAND Flash Memory 

n  Flash memory widening its range of applications 
q  Portable consumer devices, laptop PCs and enterprise servers 

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix) 

CMOS scaling 
More bits per Cell 



UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

n  Endurance of flash memory decreasing with scaling and multi-level cells 
n  Error correction capability required to guarantee storage-class reliability  

(UBER < 10-15) is increasing exponentially to reach less endurance 
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Future NAND Flash Storage Architecture 

Memory 
Signal  

Processing 

Error 
Correction 

Raw Bit  
Error Rate 

•  Hamming codes 
•  BCH codes  
•  Reed-Solomon codes 
•  LDPC codes 
•  Other Flash friendly codes 

BER < 10-15 

Need to understand NAND flash error patterns 

•  Read voltage adjusting 
•  Data scrambler 
•  Data recovery 
•  Soft-information estimation 

Noisy 



Test System Infrastructure 

Host USB PHY 

USB Driver 
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USB  
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NAND  
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Wear Leveling 
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Flash  
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Host Computer USB Daughter Board Mother Board Flash Board 

1.  Reset 
2.  Erase block 
3.  Program page 
4.  Read page 



NAND Flash Testing Platform 
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(USB controller) 
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NAND Flash Usage and Error Model 
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Error Types and Testing Methodology 
n  Erase errors 

q   Count the number of cells that fail to be erased to “11” state 

n  Program interference errors 
q  Compare the data immediately after page programming and the data 

after the whole block being programmed 

n  Read errors 
q  Continuously read a given block and compare the data between 

consecutive read sequences 

n  Retention errors 
q  Compare the data read after an amount of time to data written 

n  Characterize short term retention errors under room temperature 
n  Characterize long term retention errors by baking in the oven 

under 125℃ 



retention errors 

n  Raw bit error rate increases exponentially with P/E cycles 
n  Retention errors are dominant (>99% for 1-year ret. time) 
n  Retention errors increase with retention time requirement 

Observations: Flash Error Analysis 
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P/E Cycles 



Retention Error Mechanism 
LSB/MSB 

n  Electron loss from the floating gate causes retention errors 
q   Cells with more programmed electrons suffer more from 

retention errors 
q   Threshold voltage is more likely to shift  by one window than by 

multiple 

 

11 10 01 00 
Vth 

REF1 REF2 REF3 

Erased Fully programmed 

Stress Induced Leakage Current (SILC) 

Floating 
Gate 



Retention Error Value Dependency  

00 à01 
01 à10 

n  Cells with more programmed electrons tend to suffer more 
from retention noise (i.e. 00 and 01) 



More Details on Flash Error Analysis 

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Error Patterns in MLC NAND Flash Memory: 
Measurement, Characterization, and Analysis"  
Proceedings of the 
Design, Automation, and Test in Europe Conference 
(DATE), Dresden, Germany, March 2012. Slides (ppt) 
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Threshold Voltage Distribution Shifts 

As P/E cycles increase ... 
n Distribution shifts to the right  
n Distribution becomes wider 

P1	
  State P2	
  State P3	
  State



More Detail 

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai, 
"Threshold Voltage Distribution in MLC NAND Flash 
Memory: Characterization, Analysis and Modeling"  
Proceedings of the 
Design, Automation, and Test in Europe Conference 
(DATE), Grenoble, France, March 2013. Slides (ppt) 
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Flash Correct-and-Refresh 
  

Retention-Aware Error Management  
for Increased Flash Memory Lifetime 

Yu Cai1   Gulay Yalcin2   Onur Mutlu1   Erich F. Haratsch3  
Adrian Cristal2   Osman S. Unsal2   Ken Mai1 

1 Carnegie Mellon University 
2 Barcelona Supercomputing Center  
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Executive Summary 
n  NAND flash memory has low endurance: a flash cell dies after 3k P/E 

cycles vs. 50k desired à Major scaling challenge for flash memory 
n  Flash error rate increases exponentially over flash lifetime 
n  Problem: Stronger error correction codes (ECC) are ineffective and 

undesirable for improving flash lifetime due to 
q  diminishing returns on lifetime with increased correction strength 
q  prohibitively high power, area, latency overheads 

n  Our Goal: Develop techniques to tolerate high error rates w/o strong ECC 
n  Observation: Retention errors are the dominant errors in MLC NAND flash 

q  flash cell loses charge over time; retention errors increase as cell gets worn out 
n  Solution: Flash Correct-and-Refresh (FCR) 

q  Periodically read, correct, and reprogram (in place) or remap each flash page 
before it accumulates more errors than can be corrected by simple ECC 

q  Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles) 

n  Results: FCR improves flash memory lifetime by 46X with no hardware 
changes and low energy overhead; outperforms strong ECCs 
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Problem: Limited Endurance of Flash Memory 
n  NAND flash has limited endurance 

q  A cell can tolerate a small number of Program/Erase (P/E) cycles 
q  3x-nm flash with 2 bits/cell à 3K P/E cycles 

n  Enterprise data storage requirements demand very high 
endurance 
q  >50K P/E cycles (10 full disk writes per day for 3-5 years) 

n  Continued process scaling and more bits per cell will reduce 
flash endurance 

n  One potential solution: stronger error correction codes (ECC) 
q  Stronger ECC not effective enough and inefficient 
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UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction. 

Decreasing Endurance with Flash Scaling 

n  Endurance of flash memory decreasing with scaling and multi-level cells 
n  Error correction capability required to guarantee storage-class reliability  

(UBER < 10-15) is increasing exponentially to reach less endurance 
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The Problem with Stronger Error Correction 

n  Stronger ECC detects and corrects more raw bit errors à 
increases P/E cycles endured 

n  Two shortcomings of stronger ECC: 
 
1. High implementation complexity 
    à Power and area overheads increase super-linearly, but     

   correction capability increases sub-linearly with ECC strength 
  

2. Diminishing returns on flash lifetime improvement 
    à Raw bit error rate increases exponentially with P/E cycles, but 

   correction capability increases sub-linearly with ECC strength 
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Methodology: Error and ECC Analysis 
n  Characterized errors and error rates of 3x-nm MLC NAND 

flash using an experimental FPGA-based flash platform 
q  Cai et al., “Error Patterns in MLC NAND Flash Memory: 

Measurement, Characterization, and Analysis,” DATE 2012. 

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction 

n  Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 
q  Identified how much RBER each code can tolerate  

    à how many P/E cycles (flash lifetime) each code can sustain  
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NAND Flash Error Types 

n  Four types of errors [Cai+, DATE 2012] 

n  Caused by common flash operations 
q  Read errors 
q  Erase errors 
q  Program (interference) errors 

n  Caused by flash cell losing charge over time 
q  Retention errors 

n  Whether an error happens depends on required retention time 
n  Especially problematic in MLC flash because voltage threshold 

window to determine stored value is smaller 
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retention errors 

n  Raw bit error rate increases exponentially with P/E cycles 
n  Retention errors are dominant (>99% for 1-year ret. time) 
n  Retention errors increase with retention time requirement 

Observations: Flash Error Analysis 
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Methodology: Error and ECC Analysis 
n  Characterized errors and error rates of 3x-nm MLC NAND 

flash using an experimental FPGA-based flash platform 
q  Cai et al., “Error Patterns in MLC NAND Flash Memory: 

Measurement, Characterization, and Analysis,” DATE 2012. 

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle 
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction 

n  Quantified error correction capability (and area and power 
consumption) of various BCH-code implementations 
q  Identified how much RBER each code can tolerate  

    à how many P/E cycles (flash lifetime) each code can sustain  
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ECC Strength Analysis 
n  Examined characteristics of various-strength BCH codes 

with the following criteria 
q  Storage efficiency: >89% coding rate (user data/total storage) 
q  Reliability: <10-15 uncorrectable bit error rate 
q  Code length: segment of one flash page (e.g., 4kB) 
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Code length 
(n)

Correctable 
Errors (t)

Acceptable 
Raw BER

Norm. 
Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1
1024 12 4.0x10-4 (4x) 2 2.1
2048 22 1.0x10-3 (10x) 4.1 3.9
4096 40 1.7x10-3 (17x) 8.6 10.3
8192 74 2.2x10-3 (22x) 17.8 21.3
32768 259 2.6x10-3 (26x) 71 85

Error	
  correc\on	
  capability	
  increases	
  sub-­‐linearly	
  

Power	
  and	
  area	
  overheads	
  increase	
  super-­‐linearly	
  



n  Lifetime improvement comparison of various BCH codes 

Resulting Flash Lifetime with Strong ECC 
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Our Goal 

     

 
    Develop new techniques  
    to improve flash lifetime   
    without relying on stronger ECC 
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Flash Correct-and-Refresh (FCR) 
n  Key Observations: 

q  Retention errors are the dominant source of errors in flash 
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011] 

    à limit flash lifetime as they increase over time 
q  Retention errors can be corrected by “refreshing” each flash 

page periodically  

n  Key Idea: 
q  Periodically read each flash page, 
q  Correct its errors using “weak” ECC, and  
q  Either remap it to a new physical page or reprogram it in-place, 
q  Before the page accumulates more errors than ECC-correctable 
q  Optimization: Adapt refresh rate to endured P/E cycles 
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FCR Intuition 
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× 
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FCR: Two Key Questions 

n  How to refresh?  
q  Remap a page to another one 
q  Reprogram a page (in-place) 
q  Hybrid of remap and reprogram 

n  When to refresh?  
q  Fixed period 
q  Adapt the period to retention error severity 
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Remapping Based FCR 

n  Idea: Periodically remap each page to a different physical 
page (after correcting errors) 

q  Also [Pan et al., HPCA 2012] 

q  FTL already has support for 
    changing logical à physical 
    flash block/page mappings 
q  Deallocated block is 
    erased by garbage collector 

 

n  Problem: Causes additional erase operations à more wearout 
q  Bad for read-intensive workloads (few erases really needed) 
q  Lifetime degrades for such workloads (see paper) 
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In-Place Reprogramming Based FCR 

n  Idea: Periodically reprogram (in-place) each physical page 
(after correcting errors) 

q  Flash programming techniques 
    (ISPP) can correct retention  
    errors in-place by recharging 
    flash cells 
 

n  Problem: Program errors accumulate on the same page à 
may not be correctable by ECC after some time 
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n  Pro: No remapping needed à no additional erase operations 
n  Con: Increases the occurrence of program errors 

In-Place Reprogramming of Flash Cells 
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Retention errors are 
caused by cell voltage 
shifting to the left 
 

ISPP moves cell 
voltage to the right; 
fixes retention errors 
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Program Errors in Flash Memory 

n  When a cell is being programmed, voltage level of a 
neighboring cell changes (unintentionally) due to parasitic 
capacitance coupling  

   à can change the data value stored 

n  Also called program interference error 

n  Program interference causes neighboring cell voltage to 
shift to the right 
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Problem with In-Place Reprogramming 
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Hybrid Reprogramming/Remapping Based FCR 

n  Idea: 
q  Monitor the count of right-shift errors (after error correction) 
q  If count < threshold, in-place reprogram the page 
q  Else, remap the page to a new page 

n  Observation: 
q  Program errors much less frequent than retention errors à 

Remapping happens only infrequently  

n  Benefit:  
q  Hybrid FCR greatly reduces erase operations due to remapping 
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Adaptive-Rate FCR 

n  Observation: 
q  Retention error rate strongly depends on the P/E cycles a flash 

page endured so far 
q  No need to refresh frequently (at all) early in flash lifetime 

n  Idea: 
q  Adapt the refresh rate to the P/E cycles endured by each page 
q  Increase refresh rate gradually with increasing P/E cycles 

n  Benefits: 
q  Reduces overhead of refresh operations 
q  Can use existing FTL mechanisms that keep track of P/E cycles 
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Adaptive-Rate FCR (Example) 
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FCR: Other Considerations 

n  Implementation cost 
q  No hardware changes 
q  FTL software/firmware needs modification 
 

n  Response time impact 
q  FCR not as frequent as DRAM refresh; low impact 

n  Adaptation to variations in retention error rate 
q  Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012] 

n  FCR requires power 
q  Enterprise storage systems typically powered on 
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Evaluation Methodology 
n  Experimental flash platform to obtain error rates at 

different P/E cycles [Cai+ DATE 2012] 

n  Simulation framework to obtain P/E cycles of real 
workloads: DiskSim with SSD extensions 

n  Simulated system: 256GB flash, 4 channels, 8 chips/
channel, 8K blocks/chip, 128 pages/block, 8KB pages 

n  Workloads  
q  File system applications, databases, web search 
q  Categories: Write-heavy, read-heavy, balanced 
 

n  Evaluation metrics 
q  Lifetime (extrapolated) 
q  Energy overhead, P/E cycle overhead 
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Extrapolated Lifetime 
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Maximum full disk P/E Cycles for a Technique 

Total full disk P/E Cycles for a Workload 
× # of Days of Given Application 

Obtained from Experimental Platform Data 

Obtained from Workload Simulation 
Real length (in time) of  
each workload trace 



Normalized Flash Memory Lifetime  
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Lifetime Evaluation Takeaways 
n  Significant average lifetime improvement over no refresh 

q  Adaptive-rate FCR: 46X 
q  Hybrid reprogramming/remapping based FCR: 31X 
q  Remapping based FCR: 9X 

n  FCR lifetime improvement larger than that of stronger ECC 
q  46X vs. 4X with 32-kbit ECC (over 512-bit ECC) 
q  FCR is less complex and less costly than stronger ECC 

n  Lifetime on all workloads improves with Hybrid FCR 
q  Remapping based FCR can degrade lifetime on read-heavy WL 
q  Lifetime improvement highest in write-heavy workloads 
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Energy Overhead 

 
n  Adaptive-rate refresh: <1.8% energy increase until daily 

refresh is triggered 
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Overhead of Additional Erases 

n  Additional erases happen due to remapping of pages 

n  Low (2%-20%) for write intensive workloads 
n  High (up to 10X) for read-intensive workloads 

n  Improved P/E cycle lifetime of all workloads largely 
outweighs the additional P/E cycles due to remapping 
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More Results in the Paper 

n  Detailed workload analysis 

n  Effect of refresh rate 
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Outline 
n  Executive Summary 
n  The Problem: Limited Flash Memory Endurance/Lifetime 
n  Error and ECC Analysis for Flash Memory 
n  Flash Correct and Refresh Techniques (FCR) 
n  Evaluation 
n  Conclusions 
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Conclusion 
n  NAND flash memory lifetime is limited due to uncorrectable 

errors, which increase over lifetime (P/E cycles) 

n  Observation: Dominant source of errors in flash memory is 
retention errors à retention error rate limits lifetime 

n  Flash Correct-and-Refresh (FCR) techniques reduce 
retention error rate to improve flash lifetime 
q  Periodically read, correct, and remap or reprogram each page 

before it accumulates more errors than can be corrected 
q  Adapt refresh period to the severity of errors 

n  FCR improves flash lifetime by 46X at no hardware cost 
q  More effective and efficient than stronger ECC  
q  Can enable better flash memory scaling 
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Unused Slides  
(from Longer Version) 
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An Example Problem: Shared Main Memory 
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Unexpected Slowdowns in Multi-Core 
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Memory Performance Hog 
Low priority 

High priority 

(Core 0) (Core 1) 

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service  
in multi-core systems,” USENIX Security 2007. 



A Question or Two 
n  Can you figure out why there is a disparity in slowdowns if 

you do not know how the processor executes the 
programs? 

n  Can you fix the problem without knowing what is 
happening “underneath”? 
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DRAM Bank Operation 
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DRAM Controllers 

n  A row-conflict memory access takes significantly longer 
than a row-hit access 

n  Current controllers take advantage of the row buffer 

n  Commonly used scheduling policy (FR-FCFS) [Rixner 2000]* 

(1) Row-hit first: Service row-hit memory accesses first 
(2) Oldest-first: Then service older accesses first 

n  This scheduling policy aims to maximize DRAM throughput 

*Rixner et al., “Memory Access Scheduling,” ISCA 2000. 
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997. 
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The Problem 
n  Multiple threads share the DRAM controller 
n  DRAM controllers designed to maximize DRAM throughput 

n  DRAM scheduling policies are thread-unfair 
q  Row-hit first: unfairly prioritizes threads with high row buffer locality 

n  Threads that keep on accessing the same row 

q  Oldest-first: unfairly prioritizes memory-intensive threads 

n  DRAM controller vulnerable to denial of service attacks 
q  Can write programs to exploit unfairness 



Now That We Know What Happens Underneath 

n  How would you solve the problem? 
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Some Solution Examples (To Be Covered) 
n  We will cover some solutions later in this accelerated course 
n  Example recent solutions (part of your reading list) 

q  Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter, 
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access 
Behavior"  
Proceedings of the 43rd International Symposium on Microarchitecture (MICRO), pages 
65-76, Atlanta, GA, December 2010. 

q  Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and 
Thomas Moscibroda,  
"Reducing Memory Interference in Multicore Systems via Application-Aware 
Memory Channel Partitioning" 
Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto 
Alegre, Brazil, December 2011. Slides (pptx)  

q  Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur 
Mutlu, 
"Staged Memory Scheduling: Achieving High Performance and Scalability in 
Heterogeneous Systems" 
Proceedings of the 39th International Symposium on Computer Architecture (ISCA), 
Portland, OR, June 2012. 
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SRAM (Static Random Access Memory) 
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3. selected bit-cells drive bitlines 
   (entire row is read together) 
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     (data is ready) 
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 Access latency dominated by steps 2 and 3 
 Cycling time dominated by steps 2, 3 and 5 

-  step 2 proportional to 2m 

-  step 3 and 5 proportional to 2n 



DRAM (Dynamic Random Access Memory) 
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DRAM vs. SRAM 
n  DRAM 

q  Slower access (capacitor) 
q  Higher density (1T 1C cell) 
q  Lower cost 
q  Requires refresh (power, performance, circuitry) 
q  Manufacturing requires putting capacitor and logic together 

n  SRAM 
q  Faster access (no capacitor) 
q  Lower density (6T cell) 
q  Higher cost 
q  No need for refresh 
q  Manufacturing compatible with logic process (no capacitor) 

379 



An Aside: Phase Change Memory 
n  Phase change material (chalcogenide glass) exists in two states: 

q  Amorphous: Low optical reflexivity and high electrical resistivity 
q  Crystalline: High optical reflexivity and low electrical resistivity 
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PCM is resistive memory:  High resistance (0), Low resistance (1) 

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM 
Alternative,” ISCA 2009. 



An Aside: How Does PCM Work? 
n  Write: change phase via current injection 

q  SET: sustained current to heat cell above Tcryst  
q  RESET: cell heated above Tmelt and quenched 

n  Read: detect phase via material resistance  
q  amorphous/crystalline 
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The Problem 
n  Bigger is slower 

q  SRAM, 512 Bytes, sub-nanosec 
q  SRAM,  KByte~MByte, ~nanosec 
q  DRAM, Gigabyte, ~50 nanosec 
q  Hard Disk, Terabyte, ~10 millisec 

n  Faster is more expensive (dollars and chip area) 
q  SRAM, < 10$ per Megabyte 
q  DRAM, < 1$ per Megabyte 
q  Hard Disk < 1$ per Gigabyte 
q  These sample values scale with time 

n  Other technologies have their place as well  
q  Flash memory, Phase-change memory (not mature yet) 
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Technology Trends 
n  DRAM does not scale well beyond N nm [ITRS 2009, 2010] 

q  Memory scaling benefits: density, capacity, cost 

 
n  Energy/power already key design limiters 

q  Memory hierarchy responsible for a large fraction of power 
n  IBM servers: ~50% energy spent in off-chip memory hierarchy 

[Lefurgy+, IEEE Computer 2003] 
n  DRAM consumes power when idle and needs periodic refresh 

 

n  More transistors (cores) on chip  
n  Pin bandwidth not increasing as fast as number of transistors 

q  Memory is the major shared resource among cores 
q  More pressure on the memory hierarchy 
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Application Trends 
n  Many different threads/applications/virtual-machines (will) 

concurrently share the memory system 

q  Cloud computing/servers: Many workloads consolidated on-chip to 
improve efficiency 

q  GP-GPU, CPU+GPU, accelerators: Many threads from multiple 
applications 

q  Mobile: Interactive + non-interactive consolidation 

n  Different applications with different requirements (SLAs) 
q  Some applications/threads require performance guarantees 
q  Modern hierarchies do not distinguish between applications 

n  Applications are increasingly data intensive 
q  More demand for memory capacity and bandwidth 
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Architecture/System Trends 
n  Sharing of memory hierarchy 

n  More cores and components 
q  More capacity and bandwidth demand from memory hierarchy 

n  Asymmetric cores: Performance asymmetry, CPU+GPUs, 
accelerators, … 
q  Motivated by energy efficiency and Amdahl’s Law 

n  Different cores have different performance requirements 
q  Memory hierarchies do not distinguish between cores 

n  Different goals for different systems/users 
q  System throughput, fairness, per-application performance 
q  Modern hierarchies are not flexible/configurable 
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Summary: Major Trends Affecting Memory 

n  Need for memory capacity and bandwidth increasing 

n  New need for handling inter-core interference; providing 
fairness, QoS, predictability 

n  Need for memory system flexibility increasing  
 
n  Memory energy/power is a key system design concern 
 
n  DRAM capacity, cost, energy are not scaling well 
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Requirements from an Ideal Memory System 

n  Traditional 
q  High system performance 
q  Enough capacity 
q  Low cost 

n  New 
q  Technology scalability 
q  QoS and predictable performance 
q  Energy (and power, bandwidth) efficiency 
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n  Traditional 
q  High system performance: More parallelism, less interference 
q  Enough capacity: New technologies and waste management  
q  Low cost: New technologies and scaling DRAM 

n  New 
q  Technology scalability 

n  New memory technologies can help? DRAM can scale? 

q  QoS and predictable performance 
n  Hardware mechanisms to control interference and build QoS policies 

q  Energy (and power, bandwidth) efficiency 
n  Need to reduce waste and enable configurability  
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Goal: Ultra-efficient heterogeneous architectures  
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Enabling Ultra-efficient (Visual) Search 

 
▪  What is the right partitioning of computation capability? 
▪  What is the right low-cost memory substrate? 
▪  What memory technologies are the best enablers? 
▪  How do we rethink/ease (visual) search algorithms/applications? 
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