
Scalable Many-Core Memory Systems
Topic 1: DRAM Basics and

DRAM Scaling

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu

onur@cmu.edu
HiPEAC ACACES Summer School 2013

July 15-19, 2013

The Main Memory System

n  Main memory is a critical component of all computing
systems: server, mobile, embedded, desktop, sensor

n  Main memory system must scale (in size, technology,
efficiency, cost, and management algorithms) to maintain
performance growth and technology scaling benefits

2

Processor
and caches

Main Memory Storage (SSD/HDD)

Memory System: A Shared Resource View

3

Storage

State of the Main Memory System
n  Recent technology, architecture, and application trends

q  lead to new requirements
q  exacerbate old requirements

n  DRAM and memory controllers, as we know them today,
are (will be) unlikely to satisfy all requirements

n  Some emerging non-volatile memory technologies (e.g.,
PCM) enable new opportunities: memory+storage merging

n  We need to rethink the main memory system
q  to fix DRAM issues and enable emerging technologies
q  to satisfy all requirements

4

Major Trends Affecting Main Memory (I)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

5

Major Trends Affecting Main Memory (II)
n  Need for main memory capacity, bandwidth, QoS increasing

q  Multi-core: increasing number of cores
q  Data-intensive applications: increasing demand/hunger for data
q  Consolidation: cloud computing, GPUs, mobile

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

6

Example Trend: Many Cores on Chip
n  Simpler and lower power than a single large core
n  Large scale parallelism on chip

7

IBM	
 Cell	
 BE	

8+1	
 cores	

Intel	
 Core	
 i7	

8	
 cores	

Tilera	
 TILE	
 Gx	

100	
 cores,	
 networked	

IBM	
 POWER7	

8	
 cores	

Intel	
 SCC	

48	
 cores,	
 networked	

Nvidia	
 Fermi	

448	
 “cores”	

AMD	
 Barcelona	

4	
 cores	

Sun	
 Niagara	
 II	

8	
 cores	

Consequence: The Memory Capacity Gap

n  Memory capacity per core expected to drop by 30% every two years
n  Trends worse for memory bandwidth per core!

8

Core count doubling ~ every 2 years
DRAM DIMM capacity doubling ~ every 3 years

Major Trends Affecting Main Memory (III)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

q  DRAM consumes power even when not used (periodic refresh)

n  DRAM technology scaling is ending

9

Major Trends Affecting Main Memory (IV)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

q  ITRS projects DRAM will not scale easily below X nm
q  Scaling has provided many benefits:

n  higher capacity (density), lower cost, lower energy

10

The DRAM Scaling Problem
n  DRAM stores charge in a capacitor (charge-based memory)

q  Capacitor must be large enough for reliable sensing
q  Access transistor should be large enough for low leakage and high

retention time
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n  DRAM capacity, cost, and energy/power hard to scale

11

Solutions to the DRAM Scaling Problem

n  Two potential solutions
q  Tolerate DRAM (by taking a fresh look at it)
q  Enable emerging memory technologies to eliminate/minimize

DRAM

n  Do both
q  Hybrid memory systems

12

Solution 1: Tolerate DRAM
n  Overcome DRAM shortcomings with

q  System-DRAM co-design
q  Novel DRAM architectures, interface, functions
q  Better waste management (efficient utilization)

n  Key issues to tackle
q  Reduce refresh energy
q  Improve bandwidth and latency
q  Reduce waste
q  Enable reliability at low cost

n  Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n  Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13.
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.

13

Solution 2: Emerging Memory Technologies
n  Some emerging resistive memory technologies seem more

scalable than DRAM (and they are non-volatile)
n  Example: Phase Change Memory

q  Expected to scale to 9nm (2022 [ITRS])
q  Expected to be denser than DRAM: can store multiple bits/cell

n  But, emerging technologies have shortcomings as well
q  Can they be enabled to replace/augment/surpass DRAM?

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

n  Meza, Chang, Yoon, Mutlu, Ranganathan, “Enabling Efficient and Scalable Hybrid
Memories,” IEEE Comp. Arch. Letters 2012.

n  Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,”
ICCD 2012 Best Paper Award.

14

Hybrid Memory Systems

Meza+, “Enabling Efficient and Scalable Hybrid Memories,” IEEE Comp. Arch. Letters, 2012.
Yoon, Meza et al., “Row Buffer Locality Aware Caching Policies for Hybrid Memories,” ICCD
2012 Best Paper Award.

CPU
DRAM
Ctrl

Fast, durable
Small,

leaky, volatile,
high-cost

Large, non-volatile, low-cost
Slow, wears out, high active energy

PCM
Ctrl DRAM Phase Change Memory (or Tech. X)

Hardware/software manage data allocation and movement
to achieve the best of multiple technologies

n  Problem: Memory interference is uncontrolled à
uncontrollable, unpredictable, vulnerable system

n  Goal: We need to control it à Design a QoS-aware system

n  Solution: Hardware/software cooperative memory QoS
q  Hardware designed to provide a configurable fairness substrate

n  Application-aware memory scheduling, partitioning, throttling

q  Software designed to configure the resources to satisfy different
QoS goals

q  E.g., fair, programmable memory controllers and on-chip
networks provide QoS and predictable performance

 [2007-2012, Top Picks’09,’11a,’11b,’12]

An Orthogonal Issue: Memory Interference

Agenda for Topic 1 (DRAM Scaling)

n  What Will You Learn in This Course
n  Main Memory Basics (with a Focus on DRAM)
n  Major Trends Affecting Main Memory
n  DRAM Scaling Problem and Solution Directions
n  Solution Direction 1: System-DRAM Co-Design
n  Ongoing Research
n  Summary

17

What Will You Learn in This Course?
n  Scalable Many-Core Memory Systems

q  July 15-19, 2013

n  Topic 1: Main memory basics, DRAM scaling
n  Topic 2: Emerging memory technologies and hybrid memories
n  Topic 3: Main memory interference and QoS
n  Topic 4 (unlikely): Cache management
n  Topic 5 (unlikely): Interconnects

n  Major Overview Reading:
q  Mutlu, “Memory Scaling: A Systems Architecture Perspective,”

IMW 2013.

18

This Course
n  Will cover many problems and potential solutions related to

the design of memory systems in the many core era

n  The design of the memory system poses many
q  Difficult research and engineering problems
q  Important fundamental problems
q  Industry-relevant problems

n  Many creative and insightful solutions are needed to solve
these problems

n  Goal: Acquire the basics to develop such solutions (by
covering fundamentals and cutting edge research)

19

Course Information

n  My Contact Information
q  Onur Mutlu
q  onur@cmu.edu
q  http://users.ece.cmu.edu/~omutlu
q  +1-512-658-0891 (my cell phone)
q  Find me during breaks and/or email any time.

n  Website for Course Slides and Papers
q  http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html
q  http://users.ece.cmu.edu/~omutlu

20

Readings and Videos

Overview Reading
n  Mutlu, “Memory Scaling: A Systems Architecture Perspective,”

IMW 2013.

n  Onur Mutlu,
"Memory Scaling: A Systems Architecture Perspective"
Proceedings of the 5th International Memory Workshop
(IMW), Monterey, CA, May 2013. Slides (pptx) (pdf)

22

Online Slides (Longer Versions)
n  Topic 1: DRAM Basics and DRAM Scaling

q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic1-
dram-basics-and-scaling.pptx

q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic1-
dram-basics-and-scaling.pdf

n  Topic 2: Emerging Technologies and Hybrid Memories
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic2-

emerging-and-hybrid-memory-technologies.pptx
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic2-

emerging-and-hybrid-memory-technologies.pdf

n  Topic 3: Memory Interference and QoS-Aware Memory Systems
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic3-

memory-qos.pptx
q  http://users.ece.cmu.edu/~omutlu/pub/onur-ACACES2013-Topic3-

memory-qos.pdf
23

Memory Lecture Videos
n  Memory Hierarchy (and Introduction to Caches)

q  http://www.youtube.com/watch?
v=JBdfZ5i21cs&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=22

n  Main Memory
q  http://www.youtube.com/watch?

v=ZLCy3pG7Rc0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=25

n  Memory Controllers, Memory Scheduling, Memory QoS
q  http://www.youtube.com/watch?

v=ZSotvL3WXmA&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=26
q  http://www.youtube.com/watch?

v=1xe2w3_NzmI&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=27

n  Emerging Memory Technologies
q  http://www.youtube.com/watch?

v=LzfOghMKyA0&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=35

n  Multiprocessor Correctness and Cache Coherence
q  http://www.youtube.com/watch?v=U-

VZKMgItDM&list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ&index=32
24

Readings for Topic 1 (DRAM Scaling)
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM

Architecture,” HPCA 2013.
n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA

2012.
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism in DRAM,”

ISCA 2012.
n  Liu et al., “An Experimental Study of Data Retention Behavior in Modern

DRAM Devices,” ISCA 2013.
n  Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and

Initialization of Bulk Data,” CMU CS Tech Report 2013.
n  David et al., “Memory Power Management via Dynamic Voltage/

Frequency Scaling,” ICAC 2011.
n  Ipek et al., “Self Optimizing Memory Controllers: A Reinforcement

Learning Approach,” ISCA 2008.

25

Readings for Topic 2 (Emerging Technologies)

n  Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a
Scalable DRAM Alternative,” ISCA 2009, CACM 2010, Top Picks 2010.

n  Qureshi et al., “Scalable high performance main memory system using
phase-change memory technology,” ISCA 2009.

n  Meza et al., “Enabling Efficient and Scalable Hybrid Memories,” IEEE
Comp. Arch. Letters 2012.

n  Yoon et al., “Row Buffer Locality Aware Caching Policies for Hybrid
Memories,” ICCD 2012 Best Paper Award.

n  Meza et al., “A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory,” WEED 2013.

n  Kultursay et al., “Evaluating STT-RAM as an Energy-Efficient Main
Memory Alternative,” ISPASS 2013.

n  Cai et al., “Error Analysis and Retention-Aware Error Management for
NAND Flash Memory,” ITJ 2013.

26

Readings for Topic 3 (Memory QoS)
n  Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX

Security 2007.
n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,”

MICRO 2007.
n  Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA

2008, IEEE Micro 2009.
n  Kim et al., “ATLAS: A Scalable and High-Performance Scheduling

Algorithm for Multiple Memory Controllers,” HPCA 2010.
n  Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE

Micro 2011.
n  Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011.
n  Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012.
n  Subramanian et al., “MISE: Providing Performance Predictability and

Improving Fairness in Shared Main Memory Systems,” HPCA 2013.
n  Das et al., “Application-to-Core Mapping Policies to Reduce Memory

System Interference in Multi-Core Systems,” HPCA 2013.
27

Readings for Topic 3 (Memory QoS)
n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM

TOCS 2012.
n  Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC

2011.
n  Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011.
n  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for

Multi-Core Systems,” ISCA 2011.

28

Readings in Flash Memory
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)

29

Online Lectures and More Information
n  Online Computer Architecture Lectures

q  http://www.youtube.com/playlist?
list=PL5PHm2jkkXmidJOd59REog9jDnPDTG6IJ

n  Online Computer Architecture Courses
q  Intro: http://www.ece.cmu.edu/~ece447/s13/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece740/f11/doku.php
q  Advanced: http://www.ece.cmu.edu/~ece742/doku.php

n  Recent Research Papers

q  http://users.ece.cmu.edu/~omutlu/projects.htm
q  http://scholar.google.com/citations?

user=7XyGUGkAAAAJ&hl=en

30

Agenda for Topic 1 (DRAM Scaling)

n  What Will You Learn in This Mini-Lecture Series
n  Main Memory Basics (with a Focus on DRAM)
n  Major Trends Affecting Main Memory
n  DRAM Scaling Problem and Solution Directions
n  Solution Direction 1: System-DRAM Co-Design
n  Ongoing Research
n  Summary

31

Main Memory

Main Memory in the System

33

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

DRAM MEMORY
CONTROLLER

Ideal Memory
n  Zero access time (latency)
n  Infinite capacity
n  Zero cost
n  Infinite bandwidth (to support multiple accesses in parallel)

34

The Problem
n  Ideal memory’s requirements oppose each other

n  Bigger is slower
q  Bigger à Takes longer to determine the location

n  Faster is more expensive
q  Memory technology: SRAM vs. DRAM

n  Higher bandwidth is more expensive
q  Need more banks, more ports, higher frequency, or faster

technology

35

Memory Technology: DRAM
n  Dynamic random access memory
n  Capacitor charge state indicates stored value

q  Whether the capacitor is charged or discharged indicates
storage of 1 or 0

q  1 capacitor
q  1 access transistor

n  Capacitor leaks through the RC path
q  DRAM cell loses charge over time
q  DRAM cell needs to be refreshed

q  Read Liu et al., “RAIDR: Retention-aware Intelligent DRAM

Refresh,” ISCA 2012.

36

row enable

_b
itl

in
e

n  Static random access memory
n  Two cross coupled inverters store a single bit

q  Feedback path enables the stored value to persist in the “cell”
q  4 transistors for storage
q  2 transistors for access

Memory Technology: SRAM

37

row select

bi
tli

ne

_b
itl

in
e

An Aside: Phase Change Memory
n  Phase change material (chalcogenide glass) exists in two states:

q  Amorphous: Low optical reflexivity and high electrical resistivity
q  Crystalline: High optical reflexivity and low electrical resistivity

38

PCM is resistive memory: High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009.

Memory Bank: A Fundamental Concept
n  Interleaving (banking)

q  Problem: a single monolithic memory array takes long to
access and does not enable multiple accesses in parallel

q  Goal: Reduce the latency of memory array access and enable
multiple accesses in parallel

q  Idea: Divide the array into multiple banks that can be
accessed independently (in the same cycle or in consecutive
cycles)
n  Each bank is smaller than the entire memory storage
n  Accesses to different banks can be overlapped

q  An issue: How do you map data to different banks? (i.e., how
do you interleave data across banks?)

39

Memory Bank Organization and Operation
n  Read access sequence:

 1. Decode row address
& drive word-lines

 2. Selected bits drive
bit-lines
 • Entire row read

 3. Amplify row data

 4. Decode column

address & select subset
of row

 • Send to output

 5. Precharge bit-lines
 • For next access

40

Why Memory Hierarchy?
n  We want both fast and large

n  But we cannot achieve both with a single level of memory

n  Idea: Have multiple levels of storage (progressively bigger
and slower as the levels are farther from the processor)
and ensure most of the data the processor needs is kept in
the fast(er) level(s)

41

Memory Hierarchy
n  Fundamental tradeoff

q  Fast memory: small
q  Large memory: slow

n  Idea: Memory hierarchy

n  Latency, cost, size,
 bandwidth

42

CPU
Main

Memory
(DRAM)

RF

Cache

Hard Disk

Caching Basics: Exploit Temporal Locality
n  Idea: Store recently accessed data in automatically

managed fast memory (called cache)
n  Anticipation: the data will be accessed again soon

n  Temporal locality principle
q  Recently accessed data will be again accessed in the near

future
q  This is what Maurice Wilkes had in mind:

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,” IEEE
Trans. On Electronic Computers, 1965.

n  “The use is discussed of a fast core memory of, say 32000 words
as a slave to a slower core memory of, say, one million words in
such a way that in practical cases the effective access time is
nearer that of the fast memory than that of the slow memory.”

43

Caching Basics: Exploit Spatial Locality
n  Idea: Store addresses adjacent to the recently accessed

one in automatically managed fast memory
q  Logically divide memory into equal size blocks
q  Fetch to cache the accessed block in its entirety

n  Anticipation: nearby data will be accessed soon

n  Spatial locality principle
q  Nearby data in memory will be accessed in the near future

n  E.g., sequential instruction access, array traversal

q  This is what IBM 360/85 implemented
n  16 Kbyte cache with 64 byte blocks
n  Liptay, “Structural aspects of the System/360 Model 85 II: the

cache,” IBM Systems Journal, 1968.

44

A Note on Manual vs. Automatic Management

n  Manual: Programmer manages data movement across levels
-- too painful for programmers on substantial programs
q  “core” vs “drum” memory in the 50’s
q  still done in some embedded processors (on-chip scratch pad

SRAM in lieu of a cache)

n  Automatic: Hardware manages data movement across levels,
transparently to the programmer
++ programmer’s life is easier
q  simple heuristic: keep most recently used items in cache
q  the average programmer doesn’t need to know about it

n  You don’t need to know how big the cache is and how it works to
write a “correct” program! (What if you want a “fast” program?)

45

Automatic Management in Memory Hierarchy

n  Wilkes, “Slave Memories and Dynamic Storage Allocation,”
IEEE Trans. On Electronic Computers, 1965.

n  “By a slave memory I mean one which automatically
accumulates to itself words that come from a slower main
memory, and keeps them available for subsequent use
without it being necessary for the penalty of main memory
access to be incurred again.”

46

A Modern Memory Hierarchy

47

Register	
 File	

32	
 words,	
 sub-­‐nsec	

	

	

L1	
 cache	

~32	
 KB,	
 ~nsec	

	

	

L2	
 cache	

512	
 KB	
 ~	
 1MB,	
 many	
 nsec	

	

	

L3	
 cache,	
 	

.....	

	

	

Main	
 memory	
 (DRAM),	
 	

GB,	
 ~100	
 nsec	

	

	

Swap	
 Disk	

100	
 GB,	
 ~10	
 msec	

manual/compiler	

register	
 spilling	

automa\c	

demand	
 	

paging	

Automa\c	

HW	
 cache	

management	

Memory	

Abstrac\on	

The DRAM Subsystem

DRAM Subsystem Organization

n  Channel
n  DIMM
n  Rank
n  Chip
n  Bank
n  Row/Column

49

Page Mode DRAM
n  A DRAM bank is a 2D array of cells: rows x columns
n  A “DRAM row” is also called a “DRAM page”
n  “Sense amplifiers” also called “row buffer”

n  Each address is a <row,column> pair
n  Access to a “closed row”

q  Activate command opens row (placed into row buffer)
q  Read/write command reads/writes column in the row buffer
q  Precharge command closes the row and prepares the bank for

next access

n  Access to an “open row”
q  No need for activate command

50

DRAM Bank Operation

51

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0 Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HIT HIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:

The DRAM Chip
n  Consists of multiple banks (2-16 in Synchronous DRAM)
n  Banks share command/address/data buses
n  The chip itself has a narrow interface (4-16 bits per read)

52

128M x 8-bit DRAM Chip

53

DRAM Rank and Module
n  Rank: Multiple chips operated together to form a wide

interface
n  All chips comprising a rank are controlled at the same time

q  Respond to a single command
q  Share address and command buses, but provide different data

n  A DRAM module consists of one or more ranks
q  E.g., DIMM (dual inline memory module)
q  This is what you plug into your motherboard

n  If we have chips with 8-bit interface, to read 8 bytes in a
single access, use 8 chips in a DIMM

54

A 64-bit Wide DIMM (One Rank)

55

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

DRAM
Chip

Command Data

A 64-bit Wide DIMM (One Rank)
n  Advantages:

q  Acts like a high-
capacity DRAM chip
with a wide
interface

q  Flexibility: memory
controller does not
need to deal with
individual chips

n  Disadvantages:
q  Granularity:

Accesses cannot be
smaller than the
interface width

56

Multiple DIMMs

57

n  Advantages:
q  Enables even

higher capacity

n  Disadvantages:
q  Interconnect

complexity and
energy
consumption
can be high

DRAM Channels

n  2 Independent Channels: 2 Memory Controllers (Above)
n  2 Dependent/Lockstep Channels: 1 Memory Controller with

wide interface (Not shown above)

58

Generalized Memory Structure

59

Generalized Memory Structure

60

Kim+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.

The DRAM Subsystem
The Top Down View

DRAM Subsystem Organization

n  Channel
n  DIMM
n  Rank
n  Chip
n  Bank
n  Row/Column

62

The	
 DRAM	
 subsystem	

Memory	
 channel	
 Memory	
 channel	

DIMM	
 (Dual	
 in-­‐line	
 memory	
 module)	

Processor	

“Channel”	

Breaking	
 down	
 a	
 DIMM	

DIMM	
 (Dual	
 in-­‐line	
 memory	
 module)	

Side	
 view	

Front	
 of	
 DIMM	
 Back	
 of	
 DIMM	

Breaking	
 down	
 a	
 DIMM	

DIMM	
 (Dual	
 in-­‐line	
 memory	
 module)	

Side	
 view	

Front	
 of	
 DIMM	
 Back	
 of	
 DIMM	

Rank	
 0:	
 collec\on	
 of	
 8	
 chips	
 Rank	
 1	

Rank	

Rank	
 0	
 (Front)	
 Rank	
 1	
 (Back)	

Data	
 <0:63>	
 CS	
 <0:1>	
 Addr/Cmd	

<0:63>	
 <0:63>	

Memory	
 channel	

Breaking	
 down	
 a	
 Rank	

Rank	
 0	

<0:63>	

Ch
ip
	
 0
	

Ch
ip
	
 1
	

Ch
ip
	
 7
	
 .	
 .	
 .	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	
 <0:63>	

Breaking	
 down	
 a	
 Chip	

Ch
ip
	
 0
	

<0
:7
>	

Bank	
 0	

<0:7>	

<0:7>	

<0:7>	

...	

<0
:7
>	

Breaking	
 down	
 a	
 Bank	

Bank	
 0	

<0
:7
>	

row	
 0	

row	
 16k-­‐1	

...	

2kB	

1B	

1B	
 (column)	

1B	

Row-­‐buffer	

1B	

...	

<0
:7
>	

DRAM Subsystem Organization

n  Channel
n  DIMM
n  Rank
n  Chip
n  Bank
n  Row/Column

70

Example:	
 Transferring	
 a	
 cache	
 block	

0xFFFF…F	

0x00	

0x40	

...
	

64B	
 	

cache	
 block	

Physical	
 memory	
 space	

Channel	
 0	

DIMM	
 0	

Rank	
 0	

Mappe

d	
 to	

Example:	
 Transferring	
 a	
 cache	
 block	

0xFFFF…F	

0x00	

0x40	

...
	

64B	
 	

cache	
 block	

Physical	
 memory	
 space	

Rank	
 0	
 Chip	
 0	
 Chip	
 1	
 Chip	
 7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	
 <0:63>	

.	
 .	
 .	

Example:	
 Transferring	
 a	
 cache	
 block	

0xFFFF…F	

0x00	

0x40	

...
	

64B	
 	

cache	
 block	

Physical	
 memory	
 space	

Rank	
 0	
 Chip	
 0	
 Chip	
 1	
 Chip	
 7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	
 <0:63>	

Row	
 0	

Col	
 0	

.	
 .	
 .	

Example:	
 Transferring	
 a	
 cache	
 block	

0xFFFF…F	

0x00	

0x40	

...
	

64B	
 	

cache	
 block	

Physical	
 memory	
 space	

Rank	
 0	
 Chip	
 0	
 Chip	
 1	
 Chip	
 7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	
 <0:63>	

8B	

Row	
 0	

Col	
 0	

.	
 .	
 .	

8B	

Example:	
 Transferring	
 a	
 cache	
 block	

0xFFFF…F	

0x00	

0x40	

...
	

64B	
 	

cache	
 block	

Physical	
 memory	
 space	

Rank	
 0	
 Chip	
 0	
 Chip	
 1	
 Chip	
 7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	
 <0:63>	

8B	

Row	
 0	

Col	
 1	

.	
 .	
 .	

Example:	
 Transferring	
 a	
 cache	
 block	

0xFFFF…F	

0x00	

0x40	

...
	

64B	
 	

cache	
 block	

Physical	
 memory	
 space	

Rank	
 0	
 Chip	
 0	
 Chip	
 1	
 Chip	
 7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	
 <0:63>	

8B	

8B	

Row	
 0	

Col	
 1	

.	
 .	
 .	

8B	

Example:	
 Transferring	
 a	
 cache	
 block	

0xFFFF…F	

0x00	

0x40	

...
	

64B	
 	

cache	
 block	

Physical	
 memory	
 space	

Rank	
 0	
 Chip	
 0	
 Chip	
 1	
 Chip	
 7	

<0
:7
>	

<8
:1
5>
	

<5
6:
63
>	

Data	
 <0:63>	

8B	

8B	

Row	
 0	

Col	
 1	

A	
 64B	
 cache	
 block	
 takes	
 8	
 I/O	
 cycles	
 to	
 transfer.	

	

During	
 the	
 process,	
 8	
 columns	
 are	
 read	
 sequenUally.	

.	
 .	
 .	

Latency Components: Basic DRAM Operation

n  CPU → controller transfer time
n  Controller latency

q  Queuing & scheduling delay at the controller
q  Access converted to basic commands

n  Controller → DRAM transfer time
n  DRAM bank latency

q  Simple CAS (column address strobe) if row is “open” OR
q  RAS (row address strobe) + CAS if array precharged OR
q  PRE + RAS + CAS (worst case)

n  DRAM → Controller transfer time
q  Bus latency (BL)

n  Controller to CPU transfer time

78

Multiple Banks (Interleaving) and Channels
n  Multiple banks

q  Enable concurrent DRAM accesses
q  Bits in address determine which bank an address resides in

n  Multiple independent channels serve the same purpose
q  But they are even better because they have separate data buses
q  Increased bus bandwidth

n  Enabling more concurrency requires reducing
q  Bank conflicts
q  Channel conflicts

n  How to select/randomize bank/channel indices in address?
q  Lower order bits have more entropy
q  Randomizing hash functions (XOR of different address bits)

79

How Multiple Banks Help

80

Address Mapping (Single Channel)
n  Single-channel system with 8-byte memory bus

q  2GB memory, 8 banks, 16K rows & 2K columns per bank

n  Row interleaving
q  Consecutive rows of memory in consecutive banks

q  Accesses to consecutive cache blocks serviced in a pipelined manner

n  Cache block interleaving
n  Consecutive cache block addresses in consecutive banks
n  64 byte cache blocks

n  Accesses to consecutive cache blocks can be serviced in parallel

81

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits)

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)
3 bits 8 bits

Bank Mapping Randomization
n  DRAM controller can randomize the address mapping to

banks so that bank conflicts are less likely

82

Column (11 bits) 3 bits Byte in bus (3 bits)

XOR

Bank index
(3 bits)

Address Mapping (Multiple Channels)

n  Where are consecutive cache blocks?

83

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits) C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)
3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)
3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)
3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)
3 bits 8 bits

C

Low Col. High Column Row (14 bits) Byte in bus (3 bits) Bank (3 bits)
3 bits 8 bits

C

Interaction with VirtualàPhysical Mapping
n  Operating System influences where an address maps to in

DRAM

n  Operating system can influence which bank/channel/rank a
virtual page is mapped to.

n  It can perform page coloring to
q  Minimize bank conflicts
q  Minimize inter-application interference [Muralidhara+ MICRO’11]

84

Column (11 bits) Bank (3 bits) Row (14 bits) Byte in bus (3 bits)

Page offset (12 bits) Physical Frame number (19 bits)

Page offset (12 bits) Virtual Page number (52 bits) VA

PA
PA

DRAM Refresh (I)
n  DRAM capacitor charge leaks over time
n  The memory controller needs to read each row periodically

to restore the charge
q  Activate + precharge each row every N ms
q  Typical N = 64 ms

n  Implications on performance?
-- DRAM bank unavailable while refreshed
-- Long pause times: If we refresh all rows in burst, every 64ms

the DRAM will be unavailable until refresh ends
n  Burst refresh: All rows refreshed immediately after one

another
n  Distributed refresh: Each row refreshed at a different time,

at regular intervals

85

DRAM Refresh (II)

n  Distributed refresh eliminates long pause times
n  How else we can reduce the effect of refresh on

performance?
q  Can we reduce the number of refreshes?

86

-- Energy consumption: Each refresh consumes energy
-- Performance degradation: DRAM rank/bank unavailable while
refreshed
-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling

Downsides of DRAM Refresh

87

Liu et al., “RAIDR: Retention-aware Intelligent DRAM Refresh,” ISCA 2012.

Memory Controllers

DRAM versus Other Types of Memories

n  Long latency memories have similar characteristics that
need to be controlled.

n  The following discussion will use DRAM as an example, but
many issues are similar in the design of controllers for other
types of memories
q  Flash memory
q  Other emerging memory technologies

n  Phase Change Memory
n  Spin-Transfer Torque Magnetic Memory

89

DRAM Controller: Functions
n  Ensure correct operation of DRAM (refresh and timing)

n  Service DRAM requests while obeying timing constraints of
DRAM chips
q  Constraints: resource conflicts (bank, bus, channel), minimum

write-to-read delays
q  Translate requests to DRAM command sequences

n  Buffer and schedule requests to improve performance
q  Reordering, row-buffer, bank, rank, bus management

n  Manage power consumption and thermals in DRAM
q  Turn on/off DRAM chips, manage power modes

90

DRAM Controller: Where to Place
n  In chipset

+ More flexibility to plug different DRAM types into the system
 + Less power density in the CPU chip

n  On CPU chip

+ Reduced latency for main memory access
+ Higher bandwidth between cores and controller

n  More information can be communicated (e.g. request’s
importance in the processing core)

91

92

A Modern DRAM Controller

DRAM Scheduling Policies (I)
n  FCFS (first come first served)

q  Oldest request first

n  FR-FCFS (first ready, first come first served)
1. Row-hit first
2. Oldest first
Goal: Maximize row buffer hit rate à maximize DRAM throughput

q  Actually, scheduling is done at the command level

n  Column commands (read/write) prioritized over row commands
(activate/precharge)

n  Within each group, older commands prioritized over younger ones

93

DRAM Scheduling Policies (II)
n  A scheduling policy is essentially a prioritization order

n  Prioritization can be based on
q  Request age
q  Row buffer hit/miss status
q  Request type (prefetch, read, write)
q  Requestor type (load miss or store miss)
q  Request criticality

n  Oldest miss in the core?
n  How many instructions in core are dependent on it?

94

Row Buffer Management Policies
n  Open row

q  Keep the row open after an access
+ Next access might need the same row à row hit
-- Next access might need a different row à row conflict, wasted energy

n  Closed row
q  Close the row after an access (if no other requests already in the request

buffer need the same row)
+ Next access might need a different row à avoid a row conflict
-- Next access might need the same row à extra activate latency

n  Adaptive policies

q  Predict whether or not the next access to the bank will be to
the same row

95

Open vs. Closed Row Policies

Policy First access Next access Commands
needed for next
access

Open row Row 0 Row 0 (row hit) Read

Open row Row 0 Row 1 (row
conflict)

Precharge +
Activate Row 1 +
Read

Closed row Row 0 Row 0 – access in
request buffer
(row hit)

Read

Closed row Row 0 Row 0 – access not
in request buffer
(row closed)

Activate Row 0 +
Read + Precharge

Closed row Row 0 Row 1 (row closed) Activate Row 1 +
Read + Precharge

96

DRAM Power Management
n  DRAM chips have power modes
n  Idea: When not accessing a chip power it down

n  Power states
q  Active (highest power)
q  All banks idle
q  Power-down
q  Self-refresh (lowest power)

n  Tradeoff: State transitions incur latency during which the
chip cannot be accessed

97

Why are DRAM Controllers Difficult to Design?

n  Need to obey DRAM timing constraints for correctness
q  There are many (50+) timing constraints in DRAM
q  tWTR: Minimum number of cycles to wait before issuing a

read command after a write command is issued
q  tRC: Minimum number of cycles between the issuing of two

consecutive activate commands to the same bank
q  …

n  Need to keep track of many resources to prevent conflicts
q  Channels, banks, ranks, data bus, address bus, row buffers

n  Need to handle DRAM refresh
n  Need to optimize for performance (in the presence of constraints)

q  Reordering is not simple
q  Predicting the future?

98

Many DRAM Timing Constraints

n  From Lee et al., “DRAM-Aware Last-Level Cache Writeback: Reducing
Write-Caused Interference in Memory Systems,” HPS Technical Report,
April 2010.

99

More on DRAM Operation
n  Kim et al., “A Case for Exploiting Subarray-Level Parallelism

(SALP) in DRAM,” ISCA 2012.
n  Lee et al., “Tiered-Latency DRAM: A Low Latency and Low

Cost DRAM Architecture,” HPCA 2013.

100

Self-Optimizing DRAM Controllers
n  Problem: DRAM controllers difficult to design à It is difficult for

human designers to design a policy that can adapt itself very well
to different workloads and different system conditions

n  Idea: Design a memory controller that adapts its scheduling
policy decisions to workload behavior and system conditions
using machine learning.

n  Observation: Reinforcement learning maps nicely to memory
control.

n  Design: Memory controller is a reinforcement learning agent that
dynamically and continuously learns and employs the best
scheduling policy.

101 Ipek+, “Self Optimizing Memory Controllers: A Reinforcement Learning Approach,” ISCA 2008.

Self-Optimizing DRAM Controllers
n  Engin Ipek, Onur Mutlu, José F. Martínez, and Rich

Caruana,
"Self Optimizing Memory Controllers: A
Reinforcement Learning Approach"
Proceedings of the
35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

102

Goal: Learn to choose actions to maximize r0 + γr1 + γ2r2 + … (0 ≤ γ < 1)

Self-Optimizing DRAM Controllers
n  Dynamically adapt the memory scheduling policy via

interaction with the system at runtime
q  Associate system states and actions (commands) with long term

reward values
q  Schedule command with highest estimated long-term value in each

state
q  Continuously update state-action values based on feedback from

system

103

Self-Optimizing DRAM Controllers
n  Engin Ipek, Onur Mutlu, José F. Martínez, and Rich Caruana,

"Self Optimizing Memory Controllers: A Reinforcement Learning
Approach"
Proceedings of the 35th International Symposium on Computer Architecture
(ISCA), pages 39-50, Beijing, China, June 2008.

104

States, Actions, Rewards

105

❖  Reward function

•  +1 for scheduling
Read and Write
commands

•  0 at all other
times

❖  State attributes

•  Number of reads,
writes, and load
misses in
transaction queue

•  Number of pending
writes and ROB
heads waiting for
referenced row

•  Request’s relative
ROB order

❖  Actions

•  Activate

•  Write

•  Read - load miss

•  Read - store miss

•  Precharge - pending

•  Precharge - preemptive

•  NOP

Performance Results

106

Self Optimizing DRAM Controllers
n  Advantages

+ Adapts the scheduling policy dynamically to changing workload
behavior and to maximize a long-term target
+ Reduces the designer’s burden in finding a good scheduling
policy. Designer specifies:

 1) What system variables might be useful
 2) What target to optimize, but not how to optimize it

n  Disadvantages

-- Black box: designer much less likely to implement what she
cannot easily reason about
-- How to specify different reward functions that can achieve
different objectives? (e.g., fairness, QoS)

107

Trends Affecting Main Memory

Agenda for Today

n  What Will You Learn in This Mini-Lecture Series
n  Main Memory Basics (with a Focus on DRAM)
n  Major Trends Affecting Main Memory
n  DRAM Scaling Problem and Solution Directions
n  Solution Direction 1: System-DRAM Co-Design
n  Ongoing Research
n  Summary

109

Major Trends Affecting Main Memory (I)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

110

Major Trends Affecting Main Memory (II)
n  Need for main memory capacity, bandwidth, QoS increasing

q  Multi-core: increasing number of cores
q  Data-intensive applications: increasing demand/hunger for data
q  Consolidation: cloud computing, GPUs, mobile

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

111

Major Trends Affecting Main Memory (III)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

q  ~40-50% energy spent in off-chip memory hierarchy [Lefurgy,
IEEE Computer 2003]

q  DRAM consumes power even when not used (periodic refresh)

n  DRAM technology scaling is ending

112

Major Trends Affecting Main Memory (IV)
n  Need for main memory capacity, bandwidth, QoS increasing

n  Main memory energy/power is a key system design concern

n  DRAM technology scaling is ending

q  ITRS projects DRAM will not scale easily below X nm
q  Scaling has provided many benefits:

n  higher capacity (density), lower cost, lower energy

113

Agenda for Today

n  What Will You Learn in This Mini-Lecture Series
n  Main Memory Basics (with a Focus on DRAM)
n  Major Trends Affecting Main Memory
n  DRAM Scaling Problem and Solution Directions
n  Solution Direction 1: System-DRAM Co-Design
n  Ongoing Research
n  Summary

114

The DRAM Scaling Problem
n  DRAM stores charge in a capacitor (charge-based memory)

q  Capacitor must be large enough for reliable sensing
q  Access transistor should be large enough for low leakage and high

retention time
q  Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

n  DRAM capacity, cost, and energy/power hard to scale

115

Solutions to the DRAM Scaling Problem

n  Two potential solutions
q  Tolerate DRAM (by taking a fresh look at it)
q  Enable emerging memory technologies to eliminate/minimize

DRAM

n  Do both
q  Hybrid memory systems

116

Solution 1: Tolerate DRAM
n  Overcome DRAM shortcomings with

q  System-DRAM co-design
q  Novel DRAM architectures, interface, functions
q  Better waste management (efficient utilization)

n  Key issues to tackle
q  Reduce refresh energy
q  Improve bandwidth and latency
q  Reduce waste
q  Enable reliability at low cost

n  Liu, Jaiyen, Veras, Mutlu, “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.
n  Kim, Seshadri, Lee+, “A Case for Exploiting Subarray-Level Parallelism in DRAM,” ISCA 2012.
n  Lee+, “Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture,” HPCA 2013.
n  Liu+, “An Experimental Study of Data Retention Behavior in Modern DRAM Devices” ISCA’13.
n  Seshadri+, “RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data,” 2013.

117

Tolerating DRAM:
System-DRAM Co-Design

New DRAM Architectures

n  RAIDR: Reducing Refresh Impact
n  TL-DRAM: Reducing DRAM Latency
n  SALP: Reducing Bank Conflict Impact
n  RowClone: Fast Bulk Data Copy and Initialization

119

RAIDR: Reducing
DRAM Refresh Impact

DRAM Refresh
n  DRAM capacitor charge leaks over time

n  The memory controller needs to refresh each row
periodically to restore charge
q  Activate + precharge each row every N ms
q  Typical N = 64 ms

n  Downsides of refresh
 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM density scaling
 121

Refresh Today: Auto Refresh

122

Columns

R
ow

s

Row Buffer

DRAM CONTROLLER

DRAM Bus

BANK 0 BANK 1 BANK 2 BANK 3

A batch of rows are
periodically refreshed
via the auto-refresh command

Refresh Overhead: Performance

123

8%	

46%	

Refresh Overhead: Energy

124

15%	

47%	

Problem with Conventional Refresh
n  Today: Every row is refreshed at the same rate

n  Observation: Most rows can be refreshed much less often
without losing data [Kim+, EDL’09]

n  Problem: No support in DRAM for different refresh rates per row

125

Retention Time of DRAM Rows
n  Observation: Only very few rows need to be refreshed at the

worst-case rate

n  Can we exploit this to reduce refresh operations at low cost?

126

Reducing DRAM Refresh Operations
n  Idea: Identify the retention time of different rows and

refresh each row at the frequency it needs to be refreshed

n  (Cost-conscious) Idea: Bin the rows according to their
minimum retention times and refresh rows in each bin at
the refresh rate specified for the bin
q  e.g., a bin for 64-128ms, another for 128-256ms, …

n  Observation: Only very few rows need to be refreshed very
frequently [64-128ms] à Have only a few bins à Low HW
overhead to achieve large reductions in refresh operations

n  Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

127

1. Profiling: Profile the retention time of all DRAM rows
 à can be done at DRAM design time or dynamically

2. Binning: Store rows into bins by retention time
 à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates
 à probe Bloom Filters to determine refresh rate of a row

RAIDR: Mechanism

128

1.25KB storage in controller for 32GB DRAM memory

1. Profiling

129

2. Binning

n  How to efficiently and scalably store rows into retention
time bins?

n  Use Hardware Bloom Filters [Bloom, CACM 1970]

130

Bloom Filter Operation Example

131

Bloom Filter Operation Example

132

Bloom Filter Operation Example

133

Bloom Filter Operation Example

134

Benefits of Bloom Filters as Bins
n  False positives: a row may be declared present in the

Bloom filter even if it was never inserted
q  Not a problem: Refresh some rows more frequently than

needed

n  No false negatives: rows are never refreshed less
frequently than needed (no correctness problems)

n  Scalable: a Bloom filter never overflows (unlike a fixed-size
table)

n  Efficient: No need to store info on a per-row basis; simple
hardware à 1.25 KB for 2 filters for 32 GB DRAM system

135

3. Refreshing (RAIDR Refresh Controller)

136

3. Refreshing (RAIDR Refresh Controller)

137

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Tolerating Temperature Changes

138

RAIDR: Baseline Design

139

Refresh control is in DRAM in today’s auto-refresh systems
RAIDR can be implemented in either the controller or DRAM

RAIDR in Memory Controller: Option 1

140

Overhead of RAIDR in DRAM controller:
1.25 KB Bloom Filters, 3 counters, additional commands
issued for per-row refresh (all accounted for in evaluations)

RAIDR in DRAM Chip: Option 2

141

Overhead of RAIDR in DRAM chip:
Per-chip overhead: 20B Bloom Filters, 1 counter (4 Gbit chip)

Total overhead: 1.25KB Bloom Filters, 64 counters (32 GB DRAM)

RAIDR Results
n  Baseline:

q  32 GB DDR3 DRAM system (8 cores, 512KB cache/core)
q  64ms refresh interval for all rows

n  RAIDR:
q  64–128ms retention range: 256 B Bloom filter, 10 hash functions
q  128–256ms retention range: 1 KB Bloom filter, 6 hash functions
q  Default refresh interval: 256 ms

n  Results on SPEC CPU2006, TPC-C, TPC-H benchmarks
q  74.6% refresh reduction
q  ~16%/20% DRAM dynamic/idle power reduction
q  ~9% performance improvement

142

RAIDR Refresh Reduction

143

32 GB DDR3 DRAM system

RAIDR: Performance

144

RAIDR performance benefits increase with workload’s memory intensity

RAIDR: DRAM Energy Efficiency

145

RAIDR energy benefits increase with memory idleness

DRAM Device Capacity Scaling: Performance

146

RAIDR performance benefits increase with DRAM chip capacity

DRAM Device Capacity Scaling: Energy

147

RAIDR energy benefits increase with DRAM chip capacity RAIDR slides

New DRAM Architectures

n  RAIDR: Reducing Refresh Impact
n  TL-DRAM: Reducing DRAM Latency
n  SALP: Reducing Bank Conflict Impact
n  RowClone: Fast Bulk Data Copy and Initialization

148

Tiered-Latency DRAM:
Reducing DRAM Latency

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, Jamie Liu, Lavanya Subramanian, and Onur Mutlu,
"Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architecture"
19th International Symposium on High-Performance Computer Architecture (HPCA),

Shenzhen, China, February 2013. Slides (pptx)

150	

	
 	
 	
 Historical	
 DRAM	
 Latency-­‐Capacity	
 Trend	

0	

20	

40	

60	

80	

100	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

2000	
 2003	
 2006	
 2008	
 2011	

La
te
nc
y	

(n
s)
	

Ca
pa

ci
ty
	
 (G

b)
	

Year	

Capacity	
 Latency	
 (tRC)	

16X	

-­‐20%	

DRAM	
 latency	
 con.nues	
 to	
 be	
 a	
 cri.cal	
 bo4leneck	

151	

	
 	
 	
 What	
 Causes	
 the	
 Long	
 Latency?	

DRAM	
 Chip	

channel	

I/O	

channel	

I/O	

cell	
 array	

cell	
 array	

banks	
 subarray	

subarray	

ro
w
	
 d
ec
od

er
	

sense	
 amplifier	

ca
pa
ci
to
r	

access	

transistor	

wordline	

bi
tli
ne

	

cell	

152	

DRAM	
 Chip	

channel	

I/O	

channel	

I/O	

cell	
 array	

cell	
 array	

banks	
 subarray	

subarray	

	
 	
 	
 What	
 Causes	
 the	
 Long	
 Latency?	

DRAM	
 Latency	
 =	
 Subarray	
 Latency	
 +	
 I/O	
 Latency	
 DRAM	
 Latency	
 =	
 Subarray	
 Latency	
 +	
 I/O	
 Latency	

Dominant	

Su
ba

rr
ay
	

I/
O
	

ro
w
	
 a
dd

r.	

row	
 decoder	

se
ns
e	

am

pl
ifi
er
	

mux	

column	

addr.	

153	

	
 	
 	
 Why	
 is	
 the	
 Subarray	
 So	
 Slow?	

Subarray	

ro
w
	
 d
ec
od

er
	

sense	
 amplifier	

ca
pa
ci
to
r	

access	

transistor	

wordline	

bi
tli
ne

	

Cell	

large	
 sense	
 amplifier	

bi
tli
ne

:	
 5
12
	
 c
el
ls
	
 cell	

•  Long	
 bitline	

– AmorUzes	
 sense	
 amplifier	
 cost	
 à	
 Small	
 area	

– Large	
 bitline	
 capacitance	
 à	
 High	
 latency	
 &	
 power	

se
ns
e	

am

pl
ifi
er
	

ro
w
	
 d
ec
od

er
	

154	

	
 	
 	
 Trade-­‐Off:	
 Area	
 (Die	
 Size)	
 vs.	
 Latency	

Faster	

Smaller	

Short	
 Bitline	

	

Long	
 Bitline	

	

Trade-­‐Off:	
 Area	
 vs.	
 Latency	

155	

	
 	
 	
 Trade-­‐Off:	
 Area	
 (Die	
 Size)	
 vs.	
 Latency	

0	

1	

2	

3	

4	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

N
or
m
al
iz
ed

	
 D
RA

M
	
 A
re
a	

Latency	
 (ns)	

64	

32	

128	

256	
 512	
 cells/bitline	

Commodity	

DRAM	

Long	
 Bitline	

Ch
ea
pe

r	

Faster	

Fancy	
 DRAM	

Short	
 Bitline	

156	

Short	
 Bitline	

Low	
 Latency	
 	

	
 	
 	
 ApproximaUng	
 the	
 Best	
 of	
 Both	
 Worlds	

Long	
 Bitline	

Small	
 Area	
 	

Long	
 Bitline	

Low	
 Latency	
 	

Short	
 Bitline	
 Our	
 Proposal	

Small	
 Area	
 	

Short	
 Bitline	
 è	
 Fast	

Need	

IsolaJon	

Add	
 IsolaJon	

Transistors	

High	
 Latency	

Large	
 Area	
 	

157	

	
 	
 	
 ApproximaUng	
 the	
 Best	
 of	
 Both	
 Worlds	

Low	
 Latency	
 	

Our	
 Proposal	

Small	
 Area	
 	

Long	
 Bitline	

Small	
 Area	
 	

Long	
 Bitline	

High	
 Latency	

Short	
 Bitline	

Low	
 Latency	
 	

Short	
 Bitline	

Large	
 Area	
 	

Tiered-­‐Latency	
 DRAM	

Low	
 Latency	

Small	
 area	

using	
 long	

bitline	

158	

	
 	
 	
 Tiered-­‐Latency	
 DRAM	

Near	
 Segment	

Far	
 Segment	

IsolaJon	
 Transistor	

•  Divide	
 a	
 bitline	
 into	
 two	
 segments	
 with	
 an	

isolaUon	
 transistor	

Sense	
 Amplifier	

159	

Far	
 Segment	
 Far	
 Segment	

	
 	
 	
 Near	
 Segment	
 Access	

Near	
 Segment	

IsolaJon	
 Transistor	

•  Turn	
 off	
 the	
 isolaUon	
 transistor	

IsolaJon	
 Transistor	
 (off)	

Sense	
 Amplifier	

Reduced	
 bitline	
 capacitance	

	
 	
 	
 	
 	
 è	
 Low	
 latency	
 &	
 low	
 power	

Reduced	
 bitline	
 length	

160	

Near	
 Segment	
 Near	
 Segment	

	
 	
 	
 Far	
 Segment	
 Access	

•  Turn	
 on	
 the	
 isolaUon	
 transistor	

Far	
 Segment	

IsolaJon	
 Transistor	
 IsolaJon	
 Transistor	
 (on)	

Sense	
 Amplifier	

Large	
 bitline	
 capacitance	

AddiUonal	
 resistance	
 of	
 isolaUon	
 transistor	

Long	
 bitline	
 length	

	
 	
 	
 	
 	
 è	
 High	
 latency	
 &	
 high	
 power	

161	

	
 	
 	
 Latency,	
 Power,	
 and	
 Area	
 EvaluaUon	

•  Commodity	
 DRAM:	
 512	
 cells/bitline	

•  TL-­‐DRAM:	
 512	
 cells/bitline	

–  Near	
 segment:	
 32	
 cells	

–  Far	
 segment:	
 480	
 cells	

•  Latency	
 EvaluaUon	

–  SPICE	
 simula\on	
 using	
 circuit-­‐level	
 DRAM	
 model	

•  Power	
 and	
 Area	
 EvaluaUon	

–  DRAM	
 area/power	
 simulator	
 from	
 Rambus	

–  DDR3	
 energy	
 calculator	
 from	
 Micron	

162	

0%	

50%	

100%	

150%	

0%	

50%	

100%	

150%	

	
 Commodity	
 DRAM	
 vs.	
 TL-­‐DRAM	
 	

La
te
nc
y	

Po
w
er
	

–56%	

+23%	

–51%	

+49%	

•  DRAM	
 Latency	
 (tRC)	
 •  DRAM	
 Power	

•  DRAM	
 Area	
 Overhead	

~3%:	
 mainly	
 due	
 to	
 the	
 isola\on	
 transistors	

TL-­‐DRAM	

Commodity	

DRAM	

Near	
 	
 	
 	
 	
 	
 	
 Far	
 Commodity	

DRAM	

Near	
 	
 	
 	
 	
 	
 	
 Far	

TL-­‐DRAM	

	
 (52.5ns)	

163	

	
 	
 	
 Latency	
 vs.	
 Near	
 Segment	
 Length	

0	

20	

40	

60	

80	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

Near	
 Segment	
 Length	
 (Cells)	
 Ref.	

Near	
 Segment	
 Far	
 Segment	

La
te
nc
y	

(n
s)
	

Longer	
 near	
 segment	
 length	
 leads	
 to	
 	

higher	
 near	
 segment	
 latency	
 	
 	

164	

	
 	
 	
 Latency	
 vs.	
 Near	
 Segment	
 Length	

0	

20	

40	

60	

80	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

Near	
 Segment	
 Length	
 (Cells)	
 Ref.	

Near	
 Segment	
 Far	
 Segment	

La
te
nc
y	

(n
s)
	

Far	
 segment	
 latency	
 is	
 higher	
 than	
 	

commodity	
 DRAM	
 latency	

Far	
 Segment	
 Length	
 =	
 512	
 –	
 Near	
 Segment	
 Length	

165	

	
 	
 	
 Trade-­‐Off:	
 Area	
 (Die-­‐Area)	
 vs.	
 Latency	

0	

1	

2	

3	

4	

0	
 10	
 20	
 30	
 40	
 50	
 60	
 70	

N
or
m
al
iz
ed

	
 D
RA

M
	
 A
re
a	

Latency	
 (ns)	

64	

32	

128	

256	
 	
 	
 	
 512	
 cells/bitline	
 	

	
 	
 	
 	

Ch
ea
pe

r	

Faster	

Near	
 Segment	
 Far	
 Segment	

166	

	
 	
 	
 Leveraging	
 Tiered-­‐Latency	
 DRAM	

•  TL-­‐DRAM	
 is	
 a	
 substrate	
 that	
 can	
 be	
 leveraged	

by	
 the	
 hardware	
 and/or	
 sodware	

•  Many	
 poten\al	
 uses	

1. Use	
 near	
 segment	
 as	
 hardware-­‐managed	
 inclusive	

cache	
 to	
 far	
 segment	

2. Use	
 near	
 segment	
 as	
 hardware-­‐managed	
 exclusive	

cache	
 to	
 far	
 segment	

3. Profile-­‐based	
 page	
 mapping	
 by	
 opera\ng	
 system	

4. Simply	
 replace	
 DRAM	
 with	
 TL-­‐DRAM	
 	

167	

subarray	

	
 	
 	
 Near	
 Segment	
 as	
 Hardware-­‐Managed	
 Cache	

TL-­‐DRAM	

I/O	

cache	

main	

memory	

•  Challenge	
 1:	
 How	
 to	
 efficiently	
 migrate	
 a	
 row	
 between	

segments?	

•  Challenge	
 2:	
 How	
 to	
 efficiently	
 manage	
 the	
 cache?	

	

far	
 segment	

near	
 segment	

sense	
 amplifier	

channel	

168	

	
 	
 	
 Inter-­‐Segment	
 MigraUon	

Near	
 Segment	

Far	
 Segment	

IsolaJon	
 Transistor	

Sense	
 Amplifier	

Source	

DesJnaJon	

•  Goal:	
 Migrate	
 source	
 row	
 into	
 des\na\on	
 row	

•  Naïve	
 way:	
 Memory	
 controller	
 reads	
 the	
 source	
 row	

byte	
 by	
 byte	
 and	
 writes	
 to	
 des\na\on	
 row	
 byte	
 by	
 byte	
 	

→	
 High	
 latency	

169	

	
 	
 	
 Inter-­‐Segment	
 MigraUon	

•  Our	
 way:	
 	

– Source	
 and	
 des\na\on	
 cells	
 share	
 bitlines	

– Transfer	
 data	
 from	
 source	
 to	
 des\na\on	
 across	

shared	
 bitlines	
 concurrently	

Near	
 Segment	

Far	
 Segment	

IsolaJon	
 Transistor	

Sense	
 Amplifier	

Source	

DesJnaJon	

170	

	
 	
 	
 Inter-­‐Segment	
 MigraUon	

Near	
 Segment	

Far	
 Segment	

IsolaJon	
 Transistor	

Sense	
 Amplifier	

•  Our	
 way:	
 	

– Source	
 and	
 des\na\on	
 cells	
 share	
 bitlines	

– Transfer	
 data	
 from	
 source	
 to	
 des\na\on	
 across	

shared	
 bitlines	
 concurrently	

Step	
 2:	
 Ac\vate	
 des\na\on	

row	
 to	
 connect	
 cell	
 and	
 bitline	

Step	
 1:	
 Ac\vate	
 source	
 row	

AddiUonal	
 ~4ns	
 over	
 row	
 access	
 latency	

MigraUon	
 is	
 overlapped	
 with	
 source	
 row	
 access	

171	

subarray	

	
 	
 	
 Near	
 Segment	
 as	
 Hardware-­‐Managed	
 Cache	

TL-­‐DRAM	

I/O	

cache	

main	

memory	

•  Challenge	
 1:	
 How	
 to	
 efficiently	
 migrate	
 a	
 row	
 between	

segments?	

•  Challenge	
 2:	
 How	
 to	
 efficiently	
 manage	
 the	
 cache?	

	

far	
 segment	

near	
 segment	

sense	
 amplifier	

channel	

172	

	
 	
 	
 EvaluaUon	
 Methodology	

•  System	
 simulator	

– CPU:	
 Instruc\on-­‐trace-­‐based	
 x86	
 simulator	

– Memory:	
 Cycle-­‐accurate	
 DDR3	
 DRAM	
 simulator	

•  Workloads	

– 32	
 Benchmarks	
 from	
 TPC,	
 STREAM,	
 SPEC	
 CPU2006	

•  Performance	
 Metrics	

– Single-­‐core:	
 Instruc\ons-­‐Per-­‐Cycle	

– Mul\-­‐core:	
 Weighted	
 speedup	

	

173	

	
 	
 ConfiguraUons	

•  System	
 configuraUon	

– CPU:	
 5.3GHz	

– LLC:	
 512kB	
 private	
 per	
 core	

– Memory:	
 DDR3-­‐1066	

•  1-­‐2	
 channel,	
 1	
 rank/channel	

•  8	
 banks,	
 32	
 subarrays/bank,	
 512	
 cells/bitline	

•  Row-­‐interleaved	
 mapping	
 &	
 closed-­‐row	
 policy	

•  TL-­‐DRAM	
 configuraUon	

– Total	
 bitline	
 length:	
 512	
 cells/bitline	

– Near	
 segment	
 length:	
 1-­‐256	
 cells	

– Hardware-­‐managed	
 inclusive	
 cache:	
 near	
 segment	

174	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 (1-­‐ch)	
 2	
 (2-­‐ch)	
 4	
 (4-­‐ch)	

0%	

20%	

40%	

60%	

80%	

100%	

120%	

1	
 (1-­‐ch)	
 2	
 (2-­‐ch)	
 4	
 (4-­‐ch)	

	
 	
 	
 Performance	
 &	
 Power	
 ConsumpUon	
 	
 	

11.5%	

	

N
or
m
al
iz
ed

	
 P
er
fo
rm

an
ce
	

Core-­‐Count	
 (Channel)	

N
or
m
al
iz
ed

	
 P
ow

er
	

Core-­‐Count	
 (Channel)	

10.7%	

	

12.4%	

	
 –23%	

	

–24%	

	

–26%	

	

Using	
 near	
 segment	
 as	
 a	
 cache	
 improves	

performance	
 and	
 reduces	
 power	
 consumpJon	

175	

0%	

2%	

4%	

6%	

8%	

10%	

12%	

14%	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	

	
 Single-­‐Core:	
 Varying	
 Near	
 Segment	
 Length	

By	
 adjusJng	
 the	
 near	
 segment	
 length,	
 we	
 can	

trade	
 off	
 cache	
 capacity	
 for	
 cache	
 latency	
 	
 	

Larger	
 cache	
 capacity	

Higher	
 cache	
 access	
 latency	

Maximum	
 IPC	

Improvement	

	

	
 P
er
fo
rm

an
ce
	
 Im

pr
ov
em

en
t	

	

Near	
 Segment	
 Length	
 (cells)	

	

176	

	
 	
 	
 Other	
 Mechanisms	
 &	
 Results	

•  More	
 mechanisms	
 for	
 leveraging	
 TL-­‐DRAM	

– Hardware-­‐managed	
 exclusive	
 caching	
 mechanism	

–  Profile-­‐based	
 page	
 mapping	
 to	
 near	
 segment	

–  TL-­‐DRAM	
 improves	
 performance	
 and	
 reduces	
 power	

consump\on	
 with	
 other	
 mechanisms	

•  More	
 than	
 two	
 Uers	

–  Latency	
 evalua\on	
 for	
 three-­‐\er	
 TL-­‐DRAM	

•  Detailed	
 circuit	
 evaluaUon	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

for	
 DRAM	
 latency	
 and	
 power	
 consump\on	

–  Examina\on	
 of	
 tRC	
 and	
 tRCD	

•  ImplementaUon	
 details	
 and	
 storage	
 cost	
 analysis	
 	
 	
 	
 	
 	
 	

in	
 memory	
 controller	

	

177	

	
 	
 	
 Summary	
 of	
 TL-­‐DRAM	

•  Problem:	
 DRAM	
 latency	
 is	
 a	
 criUcal	
 performance	
 bonleneck	
 	

• Our	
 Goal:	
 Reduce	
 DRAM	
 latency	
 with	
 low	
 area	
 cost	

• ObservaUon:	
 Long	
 bitlines	
 in	
 DRAM	
 are	
 the	
 dominant	
 source	
 	
 	

of	
 DRAM	
 latency	

•  Key	
 Idea:	
 Divide	
 long	
 bitlines	
 into	
 two	
 shorter	
 segments	

– Fast	
 and	
 slow	
 segments	

•  Tiered-­‐latency	
 DRAM:	
 Enables	
 latency	
 heterogeneity	
 in	
 DRAM	

– Can	
 leverage	
 this	
 in	
 many	
 ways	
 to	
 improve	
 performance	

and	
 reduce	
 power	
 consumpUon	

•  Results:	
 When	
 the	
 fast	
 segment	
 is	
 used	
 as	
 a	
 cache	
 to	
 the	
 slow	

segment	
 à	
 Significant	
 performance	
 improvement	
 (>12%)	
 and	

power	
 reduc\on	
 (>23%)	
 at	
 low	
 area	
 cost	
 (3%)	

New DRAM Architectures

n  RAIDR: Reducing Refresh Impact
n  TL-DRAM: Reducing DRAM Latency
n  SALP: Reducing Bank Conflict Impact
n  RowClone: Fast Bulk Data Copy and Initialization

178

Subarray-Level Parallelism:
Reducing Bank Conflict Impact

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, Jamie Liu, and Onur Mutlu,
"A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM"

Proceedings of the 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012. Slides (pptx)

The Memory Bank Conflict Problem

n  Two requests to the same bank are serviced serially
n  Problem: Costly in terms of performance and power
n  Goal: We would like to reduce bank conflicts without

increasing the number of banks (at low cost)

n  Idea: Exploit the internal sub-array structure of a DRAM bank
to parallelize bank conflicts
q  By reducing global sharing of hardware between sub-arrays

n  Kim, Seshadri, Lee, Liu, Mutlu, “A Case for Exploiting
Subarray-Level Parallelism in DRAM,” ISCA 2012.

180

181	

.me	

Wr	
 Rd	

Wr	
 Rd	

.me	

Bank	

.me	

Bank	

Bank	

•  Two	
 Banks	

•  One	
 Bank	

1.	
 Serializa.on	

Wr	
 Wr	
 Rd	
 Rd	
 Wr	
 2	
 Wr	
 2	
 Rd	
 Rd	
 Wr	
 2	
 Wr	
 2	
 Rd	
 Rd	
 3	
 3	
 3	

2.	
 Write	
 Penalty	
 3.	
 Thrashing	
 Row-­‐Buffer	

Served	
 in	
 parallel	

Wasted	

The Problem with Memory Bank Conflicts	

Goal	

•  Goal:	
 Mi.gate	
 the	
 detrimental	
 effects	
 of	

bank	
 conflicts	
 in	
 a	
 cost-­‐effec.ve	
 manner	

	

•  Naïve	
 soluUon:	
 Add	
 more	
 banks	

–  Very	
 expensive	

•  Cost-­‐effecUve	
 soluUon:	
 Approximate	
 the	

benefits	
 of	
 more	
 banks	
 without	
 adding	

more	
 banks	

182	

A	
 DRAM	
 bank	
 is	
 divided	
 into	
 subarrays	

Key	
 ObservaUon	
 #1	

183	

Row	

Row-­‐Buffer	

Row	

Row	

Row	

32k	
 rows	

Logical	
 Bank	

A	
 single	
 row-­‐buffer	

cannot	
 drive	
 all	
 rows	

Global	
 Row-­‐Buf	

Physical	
 Bank	

Local	
 Row-­‐Buf	

Local	
 Row-­‐Buf	
 Subarray1	

Subarray64	

Many	
 local	
 row-­‐buffers,	

one	
 at	
 each	
 subarray	

Key	
 ObservaUon	
 #2	

Each	
 subarray	
 is	
 mostly	
 independent…	
 	

–  except	
 occasionally	
 sharing	
 global	
 structures	

184	

Global	
 Row-­‐Buf	

Gl
ob

al
	
 D
ec
od

er
	

Bank	

Local	
 Row-­‐Buf	

Local	
 Row-­‐Buf	
 Subarray1	

Subarray64	

·∙·∙·∙
	

Key	
 Idea:	
 Reduce	
 Sharing	
 of	
 Globals	

185	

Global	
 Row-­‐Buf	

Gl
ob

al
	
 D
ec
od

er
	

Bank	

Local	
 Row-­‐Buf	

Local	
 Row-­‐Buf	

·∙·∙·∙
	

1.	
 Parallel	
 access	
 to	
 subarrays	

2.	
 U\lize	
 mul\ple	
 local	
 row-­‐buffers	

Overview	
 of	
 Our	
 Mechanism	

186	

·∙·∙·∙
	

Req	
 Req	

Global	
 Row-­‐Buf	

Local	
 Row-­‐Buf	

Req	

Local	
 Row-­‐Buf	

Req	

1.	
 Parallelize	

	

2.	
 U.lize	
 mul.ple	

local	
 row-­‐buffers	

Subarray64	

Subarray1	

To	
 same	
 bank...	

but	
 diff.	
 subarrays	

Challenges:	
 Global	
 Structures	

1.	
 Global	
 Address	
 Latch	

2.	
 Global	
 Bitlines	

187	

Local	

row-­‐buffer	

Local	

row-­‐buffer	

Global	

row-­‐buffer	

Challenge	
 #1.	
 Global	
 Address	
 Latch	

188	

·∙·∙·∙
	
 addr	

VDD	

addr	

Gl
ob

al
	
 D
ec
od

er
	

VDD	

La
tc
h	

La
tc
h	

La
tc
h	
 PRECHAR

GED	

ACTIVATE
D	

ACTIVATE
D	

Local	

row-­‐buffer	

Local	

row-­‐buffer	

Global	

row-­‐buffer	

SoluUon	
 #1.	
 Subarray	
 Address	
 Latch	

189	

·∙·∙·∙
	

VDD	

Gl
ob

al
	
 D
ec
od

er
	

VDD	

La
tc
h	

La
tc
h	

La
tc
h	
 ACTIVATE

D	

ACTIVATE
D	

Global	
 latch	
 à	

local	
 latches	

Challenges:	
 Global	
 Structures	

1.	
 Global	
 Address	
 Latch	

•  Problem:	
 Only	
 one	
 raised	
 wordline	

•  Solu\on:	
 Subarray	
 Address	
 Latch	

2.	
 Global	
 Bitlines	

190	

Challenge	
 #2.	
 Global	
 Bitlines	

191	

Local	

row-­‐buffer	

Local	
 	

row-­‐buffer	

Switch	

Switch	

READ

Global	
 bitlines	

Global	
 	

row-­‐buffer	

Collision	

W
ire

	

SoluUon	
 #2.	
 Designated-­‐Bit	
 Latch	

192	

Global	
 bitlines	

Global	
 	

row-­‐buffer	

Local	

row-­‐buffer	

Local	
 	

row-­‐buffer	

Switch	

Switch	

READ READ

D	
 D	

D	
 D	

SelecJvely	
 connect	
 local	
 to	
 global	

Challenges:	
 Global	
 Structures	

1.	
 Global	
 Address	
 Latch	

•  Problem:	
 Only	
 one	
 raised	
 wordline	

•  Solu\on:	
 Subarray	
 Address	
 Latch	

2.	
 Global	
 Bitlines	

•  Problem:	
 Collision	
 during	
 access
•  Solu\on:	
 Designated-­‐Bit	
 Latch	

193	

MASA	
 (MulUtude	
 of	
 AcUvated	
 Subarrays)	

•  Baseline	
 (Subarray-­‐Oblivious)	

• MASA	

MASA:	
 Advantages	

194	

.me	
 Wr	
 2	
 Wr	
 2	
 Rd	
 Rd	
 3	
 3	
 3	

1.	
 Serializa.on	

2.	
 Write	

Penalty	
 3.	
 Thrashing	

.me	

Wr	

Wr	

Rd	

Rd	

Saved	

MASA:	
 Overhead	

•  DRAM	
 Die	
 Size:	
 Only	
 0.15%	
 increase	

–  Subarray	
 Address	
 Latches	

–  Designated-­‐Bit	
 Latches	
 &	
 Wire	

•  DRAM	
 StaUc	
 Energy:	
 Small	
 increase	

–  0.56mW	
 for	
 each	
 ac\vated	
 subarray	

–  But	
 saves	
 dynamic	
 energy	

•  Controller:	
 Small	
 addi\onal	
 storage	

–  Keep	
 track	
 of	
 subarray	
 status	
 (<	
 256B)	

–  Keep	
 track	
 of	
 new	
 \ming	
 constraints	

195	

Cheaper	
 Mechanisms	

196	

D	

D	

Latches	

1.
	
 S
er
ia
liz
a\

on
	

2.
	
 W

r-­‐
Pe

na
lty

	

3.
	
 T
hr
as
hi
ng
	

MASA	

SALP-­‐2	

SALP-­‐1	

System	
 ConfiguraUon	

•  System	
 ConfiguraUon	

–  CPU:	
 5.3GHz,	
 128	
 ROB,	
 8	
 MSHR	

–  LLC:	
 512kB	
 per-­‐core	
 slice	

•  Memory	
 ConfiguraUon	

–  DDR3-­‐1066	

–  (default)	
 1	
 channel,	
 1	
 rank,	
 8	
 banks,	
 8	
 subarrays-­‐per-­‐bank	

–  (sensi.vity)	
 1-­‐8	
 chans,	
 1-­‐8	
 ranks,	
 8-­‐64	
 banks,	
 1-­‐128	
 subarrays	

•  Mapping	
 &	
 Row-­‐Policy	

–  (default)	
 Line-­‐interleaved	
 &	
 Closed-­‐row	

–  (sensi.vity)	
 Row-­‐interleaved	
 &	
 Open-­‐row	

•  DRAM	
 Controller	
 ConfiguraUon	

–  64-­‐/64-­‐entry	
 read/write	
 queues	
 per-­‐channel	

–  FR-­‐FCFS,	
 batch	
 scheduling	
 for	
 writes	

197	

SALP:	
 Single-­‐core	
 Results	

198	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

IP
C	

Im

pr
ov
em

en
t	
 MASA	
 "Ideal"	

17
%
	

20
%
	

MASA	
 achieves	
 most	
 of	
 the	
 benefit	

of	
 having	
 more	
 banks	
 (“Ideal”)	

SALP:	
 Single-­‐Core	
 Results	

199	

0%	

10%	

20%	

30%	

IP
C	

In
cr
ea
se
	

SALP-­‐1	
 SALP-­‐2	
 MASA	
 "Ideal"	

SALP-­‐1,	
 SALP-­‐2,	
 MASA	
 improve	

performance	
 at	
 low	
 cost	

20%	
 17%	
 13%	

7%	

DRAM	

Die	
 Area	
 <	
 0.15%	
 0.15%	
 36.3%	

Subarray-­‐Level	
 Parallelism:	
 Results	

200	

0.0	

0.2	

0.4	

0.6	

0.8	

1.0	

1.2	

N
or
m
al
iz
ed

	
 	

Dy

na
m
ic
	
 E
ne

rg
y	

Baseline	
 MASA	

0%	

20%	

40%	

60%	

80%	

100%	

Ro
w
-­‐B
uff

er
	
 H
it-­‐
Ra

te
	

Baseline	
 MASA	

MASA	
 increases	
 energy-­‐efficiency	

-­‐1
9%

	

+1
3%

	

New DRAM Architectures

n  RAIDR: Reducing Refresh Impact
n  TL-DRAM: Reducing DRAM Latency
n  SALP: Reducing Bank Conflict Impact
n  RowClone: Fast Bulk Data Copy and Initialization

201

RowClone: Fast Bulk Data
Copy and Initialization

Vivek Seshadri, Yoongu Kim, Chris Fallin, Donghyuk Lee, Rachata Ausavarungnirun,
Gennady Pekhimenko, Yixin Luo, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd C. Mowry,

"RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data"
CMU Computer Science Technical Report, CMU-CS-13-108, Carnegie Mellon University, April 2013.

Today’s	
 Memory:	
 Bulk	
 Data	
 Copy	

Memory
	

	

	

MC L3 L2 L1 CPU

1)	
 High	
 latency	

2)	
 High	
 bandwidth	
 u\liza\on	

3)	
 Cache	
 pollu\on	

4)	
 Unwanted	
 data	
 movement	

203	

Future:	
 RowClone	
 (In-­‐Memory	
 Copy)	

Memory
	

	

	

MC L3 L2 L1 CPU

1)	
 Low	
 latency	

2)	
 Low	
 bandwidth	
 u\liza\on	

3)	
 No	
 cache	
 pollu\on	

4)	
 No	
 unwanted	
 data	
 movement	

204	

Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013.

DRAM operation (load one byte)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

1. Activate row

2. Transfer
row

3. Transfer
byte onto bus

RowClone: in-DRAM Row Copy (and Initialization)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

1. Activate row A

2. Transfer
row

3. Activate row B

4.
Transfer
row

Our	
 Approach:	
 Key	
 Idea	

•  DRAM	
 banks	
 contain	

1.  Mu\ple	
 rows	
 of	
 DRAM	
 cells	
 –	
 row	
 =	
 8KB	

2.  A	
 row	
 buffer	
 shared	
 by	
 the	
 DRAM	
 rows	

•  Large	
 scale	
 copy	

1.  Copy	
 data	
 from	
 source	
 row	
 to	
 row	
 buffer	

2.  Copy	
 data	
 from	
 row	
 buffer	
 to	
 des\na\on	
 row	

207	

DRAM	
 Subarray	
 Microarchitecture	

wordline	

DRAM	
 Cell	

DRAM	
 Row	

(share	
 wordline)	

(~8Kb)	

Sense	

Amplifiers	

(row	
 buffer)	

208	

DRAM	
 Opera\on	

0 1 0 0 1 1 0 0 0 1 1 0

Ac\vate	
 (src)	
 Precharge	

0 1 0 0 1 1 0 0 0 1 1 0

? ? ? ? ? ? ? ? ? ? ? ?

1 1 0 1 0 1 1 1 0 0 1 1

Raise	
 wordline	

Sense	

Amplifiers	

(row	
 buffer)	

src	

dst	

- + - - + + - - - + + -

209	

RowClone:	
 Intra-­‐subarray	
 Copy	

0 1 0 0 1 1 0 0 0 1 1 0

1 1 0 1 0 1 1 1 0 0 1 1

Ac\vate	
 (src)	
 Deac\vate	
 	

(our	
 proposal)	
 Ac\vate	
 (dst)	

0 1 0 0 1 1 0 0 0 1 1 0

? ? ? ? ? ? ? ? ? ? ? ? 0 1 0 0 1 1 0 0 0 1 1 0

Sense	

Amplifiers	

(row	
 buffer)	

src	

dst	

210	

RowClone:	
 Inter-­‐bank	
 Copy	

I/O	
 Bus	

Transfer	

(our	
 proposal)	

src	

dst	

Read	
 Write	

211	

RowClone:	
 Inter-­‐subarray	
 Copy	

I/O	
 Bus	

1.	
 Transfer	
 (src	
 to	
 temp)	

src	

dst	

temp	

2.	
 Transfer	
 (temp	
 to	
 dst)	

212	

Fast	
 Row	
 Ini\aliza\on	

0 0 0 0 0 0 0 0 0 0 0 0

Fix	
 a	
 row	
 at	
 Zero	

(0.5%	
 loss	
 in	
 capacity)	

213	

RowClone:	
 Latency	
 and	
 Energy	
 Savings	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

Latency	
 Energy	

N
or
m
al
iz
ed

	
 S
av
in
gs
	

Baseline	
 Intra-­‐Subarray	

Inter-­‐Bank	
 Inter-­‐Subarray	

11.5x	
 74x	

214	

Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy and
Initialization of Bulk Data,” CMU Tech Report 2013.

Agenda for Today

n  What Will You Learn in This Mini-Lecture Series
n  Main Memory Basics (with a Focus on DRAM)
n  Major Trends Affecting Main Memory
n  DRAM Scaling Problem and Solution Directions
n  Solution Direction 1: System-DRAM Co-Design
n  Ongoing Research
n  Summary

215

Sampling of Ongoing Research

n  Online retention time profiling
q  Preliminary work in ISCA 2013
q  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,

"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture (ISCA),
Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

n  More computation in memory and controllers

n  Refresh/demand parallelization

216

Summary
n  Major problems with DRAM scaling and design: high refresh

rate, high latency, low parallelism, bulk data movement

n  Four new DRAM designs
q  RAIDR: Reduces refresh impact
q  TL-DRAM: Reduces DRAM latency at low cost
q  SALP: Improves DRAM parallelism
q  RowClone: Reduces energy and performance impact of bulk data copy

n  All four designs
q  Improve both performance and energy consumption
q  Are low cost (low DRAM area overhead)
q  Enable new degrees of freedom to software & controllers

n  Rethinking DRAM interface and design essential for scaling
q  Co-design DRAM with the rest of the system

217

Thank you.

218

Scalable Many-Core Memory Systems
Topic 1: DRAM Basics and

DRAM Scaling

Prof. Onur Mutlu
http://www.ece.cmu.edu/~omutlu

onur@cmu.edu
HiPEAC ACACES Summer School 2013

July 15-19, 2013

Additional Material

220

Three Papers

n  Howard David, Chris Fallin, Eugene Gorbatov, Ulf R. Hanebutte, and Onur Mutlu,
"Memory Power Management via Dynamic Voltage/Frequency Scaling"
Proceedings of the 8th International Conference on Autonomic Computing
(ICAC), Karlsruhe, Germany, June 2011. Slides (pptx) (pdf)

n  Jamie Liu, Ben Jaiyen, Yoongu Kim, Chris Wilkerson, and Onur Mutlu,
"An Experimental Study of Data Retention Behavior in Modern DRAM
Devices: Implications for Retention Time Profiling Mechanisms"
Proceedings of the 40th International Symposium on Computer Architecture
(ISCA), Tel-Aviv, Israel, June 2013. Slides (pptx) Slides (pdf)

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal,
and Ken Mai,
"Error Analysis and Retention-Aware Error Management for NAND Flash
Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No.
1, May 2013.

221

Memory Power Management via
Dynamic Voltage/Frequency Scaling

Howard David (Intel)
Eugene Gorbatov (Intel)
Ulf R. Hanebutte (Intel)

Chris Fallin (CMU)
Onur Mutlu (CMU)

Memory Power is Significant
n  Power consumption is a primary concern in modern servers
n  Many works: CPU, whole-system or cluster-level approach
n  But memory power is largely unaddressed
n  Our server system*: memory is 19% of system power (avg)

q  Some work notes up to 40% of total system power

n  Goal: Can we reduce this figure?

223

0	

100	

200	

300	

400	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

Po
w
er
	
 (W

)	

System	
 Power	

Memory	
 Power	

*Dual 4-core Intel Xeon®, 48GB DDR3 (12 DIMMs), SPEC CPU2006, all cores active.
Measured AC power, analytically modeled memory power.

Existing Solution: Memory Sleep States?
n  Most memory energy-efficiency work uses sleep states

q  Shut down DRAM devices when no memory requests active

n  But, even low-memory-bandwidth workloads keep memory
awake
q  Idle periods between requests diminish in multicore workloads
q  CPU-bound workloads/phases rarely completely cache-resident

224

0%	

2%	

4%	

6%	

8%	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje
ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	
 Ti
m
e	

Sp
en

t	
 i
n	

Sl
ee
p	

	

St
at
es
	

Sleep	
 State	
 Residency	

Memory Bandwidth Varies Widely
n  Workload memory bandwidth requirements vary widely

n  Memory system is provisioned for peak capacity

 à often underutilized

225

0	

2	

4	

6	

8	

Ba
nd

w
id
th
/c
ha

nn
el
	
 (G

B/
s)
	

Memory	
 Bandwidth	
 for	
 SPEC	
 CPU2006	

Memory Power can be Scaled Down
n  DDR can operate at multiple frequencies à reduce power

q  Lower frequency directly reduces switching power
q  Lower frequency allows for lower voltage
q  Comparable to CPU DVFS

n  Frequency scaling increases latency à reduce performance
q  Memory storage array is asynchronous
q  But, bus transfer depends on frequency
q  When bus bandwidth is bottleneck, performance suffers

226

CPU	
 Voltage/
Freq.	

System	

Power	

Memory	

Freq.	

System	

Power	

↓	
 15%	
 ↓	
 9.9%	
 ↓	
 40%	
 ↓	
 7.6%	

Observations So Far
n  Memory power is a significant portion of total power

q  19% (avg) in our system, up to 40% noted in other works

n  Sleep state residency is low in many workloads
q  Multicore workloads reduce idle periods
q  CPU-bound applications send requests frequently enough

to keep memory devices awake

n  Memory bandwidth demand is very low in some workloads

n  Memory power is reduced by frequency scaling
q  And voltage scaling can give further reductions

227

DVFS for Memory
n  Key Idea: observe memory bandwidth utilization, then

adjust memory frequency/voltage, to reduce power with
minimal performance loss

 à Dynamic Voltage/Frequency Scaling (DVFS)
 for memory

n  Goal in this work:
q  Implement DVFS in the memory system, by:
q  Developing a simple control algorithm to exploit opportunity

for reduced memory frequency/voltage by observing behavior
q  Evaluating the proposed algorithm on a real system

228

Outline
n  Motivation

n  Background and Characterization
q  DRAM Operation
q  DRAM Power
q  Frequency and Voltage Scaling

n  Performance Effects of Frequency Scaling

n  Frequency Control Algorithm

n  Evaluation and Conclusions

229

Outline
n  Motivation

n  Background and Characterization
q  DRAM Operation
q  DRAM Power
q  Frequency and Voltage Scaling

n  Performance Effects of Frequency Scaling

n  Frequency Control Algorithm

n  Evaluation and Conclusions

230

DRAM Operation
n  Main memory consists of DIMMs of DRAM devices
n  Each DIMM is attached to a memory bus (channel)
n  Multiple DIMMs can connect to one channel

231

Memory Bus (64 bits)

/8 /8 /8 /8 /8 /8 /8 /8

to Memory Controller

Inside a DRAM Device

232

Bank 0

Sense Amps
Column Decoder

Ro
w

 D
ec

od
er

 ODT

Re
ci

ev
er

s
D

riv
er

s

Re
gi

st
er

s

W
rit

e
FI

FO

Banks
•  Independent arrays
•  Asynchronous:

independent of
memory bus speed

I/O Circuitry
•  Runs at bus speed
•  Clock sync/distribution
•  Bus drivers and receivers
•  Buffering/queueing

On-Die Termination
•  Required by bus electrical characteristics

for reliable operation
•  Resistive element that dissipates power

when bus is active

Effect of Frequency Scaling on Power
n  Reduced memory bus frequency:
n  Does not affect bank power:

q  Constant energy per operation
q  Depends only on utilized memory bandwidth

n  Decreases I/O power:
q  Dynamic power in bus interface and clock circuitry

reduces due to less frequent switching
n  Increases termination power:

q  Same data takes longer to transfer
q  Hence, bus utilization increases

n  Tradeoff between I/O and termination results in a net
power reduction at lower frequencies

233

Effects of Voltage Scaling on Power
n  Voltage scaling further reduces power because all parts of

memory devices will draw less current (at less voltage)
n  Voltage reduction is possible because stable operation

requires lower voltage at lower frequency:

234

1	

1.1	

1.2	

1.3	

1.4	

1.5	

1.6	

1333MHz	
 1066MHz	
 800MHz	

DI
M
M
	
 V
ol
ta
ge
	
 (V

)	

Minimum	
 Stable	
 Voltage	
 for	
 8	
 DIMMs	
 in	
 a	
 Real	
 System	

Vdd	
 for	
 Power	
 Model	

Outline
n  Motivation

n  Background and Characterization
q  DRAM Operation
q  DRAM Power
q  Frequency and Voltage Scaling

n  Performance Effects of Frequency Scaling

n  Frequency Control Algorithm

n  Evaluation and Conclusions

235

How Much Memory Bandwidth is Needed?

236

0	

1	

2	

3	

4	

5	

6	

7	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	
 Ba
nd

w
id
th
/c
ha

nn
el
	
 (G

B/
s)
	

Memory	
 Bandwidth	
 for	
 SPEC	
 CPU2006	

Performance Impact of Static Frequency Scaling

237

n  Performance impact is proportional to bandwidth demand
n  Many workloads tolerate lower frequency with minimal

performance drop

0	

10	

20	

30	

40	

50	

60	

70	

80	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

Pe
rf
or
m
an

ce
	
 D
ro
p	

(%

)	

Performance	
 Loss,	
 StaUc	
 Frequency	
 Scaling	

1333-­‐>800	

1333-­‐>1066	

0	

2	

4	

6	

8	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

Pe
rf
or
m
an

ce
	
 	
 D

ro
p	

(%

)	

Performance	
 Loss,	
 StaUc	
 Frequency	
 Scaling	

1333-­‐>800	

1333-­‐>1066	

:: :: :: :: :: :: :: :: :: :: : : : : : :

Outline
n  Motivation

n  Background and Characterization
q  DRAM Operation
q  DRAM Power
q  Frequency and Voltage Scaling

n  Performance Effects of Frequency Scaling

n  Frequency Control Algorithm

n  Evaluation and Conclusions

238

Memory Latency Under Load
n  At low load, most time is in array access and bus transfer

 à small constant offset between bus-frequency latency curves

n  As load increases, queueing delay begins to dominate
 à bus frequency significantly affects latency

239

60	

90	

120	

150	

180	

0	
 2000	
 4000	
 6000	
 8000	

La
te
nc
y	

(n
s)
	

UUlized	
 Channel	
 Bandwidth	
 (MB/s)	

Memory	
 Latency	
 as	
 a	
 FuncUon	
 of	
 Bandwidth	
 and	
 Mem	
 Frequency	

800MHz	
 1067MHz	
 1333MHz	

Control Algorithm: Demand-Based Switching

After each epoch of length Tepoch:
 Measure per-channel bandwidth BW
 if BW < T800 : switch to 800MHz
 else if BW < T1066 : switch to 1066MHz
 else : switch to 1333MHz

240

60	

90	

120	

150	

180	

0	
 2000	
 4000	
 6000	
 8000	

La
te
nc
y	

(n
s)
	

UUlized	
 Channel	
 Bandwidth	
 (MB/s)	

Memory	
 Latency	
 as	
 a	
 FuncUon	
 of	
 Bandwidth	
 and	
 Mem	
 Frequency	

800MHz	
 1067MHz	
 1333MHz	

T1066 T800

Implementing V/F Switching
n  Halt Memory Operations

q  Pause requests
q  Put DRAM in Self-Refresh
q  Stop the DIMM clock

n  Transition Voltage/Frequency
q  Begin voltage ramp
q  Relock memory controller PLL at new frequency
q  Restart DIMM clock
q  Wait for DIMM PLLs to relock

n  Begin Memory Operations
q  Take DRAM out of Self-Refresh
q  Resume requests

241

C Memory frequency already adjustable statically

C Voltage regulators for CPU DVFS can work for
 memory DVFS

C Full transition takes ~20µs

Outline
n  Motivation

n  Background and Characterization
q  DRAM Operation
q  DRAM Power
q  Frequency and Voltage Scaling

n  Performance Effects of Frequency Scaling

n  Frequency Control Algorithm

n  Evaluation and Conclusions

242

Evaluation Methodology
n  Real-system evaluation

q  Dual 4-core Intel Xeon®, 3 memory channels/socket

q  48 GB of DDR3 (12 DIMMs, 4GB dual-rank, 1333MHz)

n  Emulating memory frequency for performance
q  Altered memory controller timing registers (tRC, tB2BCAS)
q  Gives performance equivalent to slower memory frequencies

n  Modeling power reduction
q  Measure baseline system (AC power meter, 1s samples)
q  Compute reductions with an analytical model (see paper)

243

Evaluation Methodology

n  Workloads
q  SPEC CPU2006: CPU-intensive workloads
q  All cores run a copy of the benchmark

n  Parameters
q  Tepoch = 10ms
q  Two variants of algorithm with different switching thresholds:
q  BW(0.5, 1): T800 = 0.5GB/s, T1066 = 1GB/s
q  BW(0.5, 2): T800 = 0.5GB/s, T1066 = 2GB/s

à More aggressive frequency/voltage scaling

244

Performance Impact of Memory DVFS
n  Minimal performance degradation: 0.2% (avg), 1.7% (max)
n  Experimental error ~1%

245

-­‐1	

0	

1	

2	

3	

4	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

AV
G	

Pe
rf
or
m
an

ce
	
 D
eg
ra
da

Uo
n	

(%

)	

BW(0.5,1)	

BW(0.5,2)	

Memory Frequency Distribution
n  Frequency distribution shifts toward higher memory
 frequencies with more memory-intensive benchmarks

246

0%	

20%	

40%	

60%	

80%	

100%	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

1333	

1066	

800	

Memory Power Reduction
n  Memory power reduces by 10.4% (avg), 20.5% (max)

247

0	

5	

10	

15	

20	

25	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

AV
G	
 M
em

or
y	

Po

w
er
	
 R
ed

uc
Uo

n	

(%

)	

BW(0.5,1)	

BW(0.5,2)	

System Power Reduction

248

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

4	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

AV
G	
 Sy

st
em

	
 P
ow

er
	
 R
ed

uc
Uo

n	

(%

)	

BW(0.5,1)	

BW(0.5,2)	

n  As a result, system power reduces by 1.9% (avg), 3.5% (max)

n  System energy reduces by 2.4% (avg), 5.1% (max)

System Energy Reduction

249

-­‐1	

0	

1	

2	

3	

4	

5	

6	

lb
m
	

Ge
m
sF
DT

D	

m
ilc
	

le
sli
e3
d	

lib
qu

an
tu
m
	

so
pl
ex
	

sp
hi
nx
3	

m
cf
	

ca
ct
us
AD

M
	

gc
c	

de
al
II	

to
nt
o	

bz
ip
2	

go
bm

k	

sje

ng
	

ca
lc
ul
ix
	

pe
rlb

en
ch
	

h2
64
re
f	

na
m
d	

gr
om

ac
s	

ga
m
es
s	

po
vr
ay
	

hm
m
er
	

AV
G	

Sy
st
em

	
 E
ne

rg
y	

Re

du
cU
on

	
 (%
)	

BW(0.5,1)	

BW(0.5,2)	

Related Work
n  MemScale [Deng11], concurrent work (ASPLOS 2011)

q  Also proposes Memory DVFS
q  Application performance impact model to decide voltage and

frequency: requires specific modeling for a given system; our
bandwidth-based approach avoids this complexity

q  Simulation-based evaluation; our work is a real-system proof
of concept

n  Memory Sleep States (Creating opportunity with data placement

[Lebeck00,Pandey06], OS scheduling [Delaluz02], VM subsystem [Huang05];
Making better decisions with better models [Hur08,Fan01])

n  Power Limiting/Shifting (RAPL [David10] uses memory throttling for
thermal limits; CPU throttling for memory traffic [Lin07,08]; Power shifting
across system [Felter05])

250

Conclusions
n  Memory power is a significant component of system power

q  19% average in our evaluation system, 40% in other work

n  Workloads often keep memory active but underutilized
q  Channel bandwidth demands are highly variable
q  Use of memory sleep states is often limited

n  Scaling memory frequency/voltage can reduce memory
power with minimal system performance impact
q  10.4% average memory power reduction
q  Yields 2.4% average system energy reduction

n  Greater reductions are possible with wider frequency/
voltage range and better control algorithms

251

Memory Power Management via
Dynamic Voltage/Frequency Scaling

Howard David (Intel)
Eugene Gorbatov (Intel)
Ulf R. Hanebutte (Intel)

Chris Fallin (CMU)
Onur Mutlu (CMU)

1 Carnegie Mellon University
2 Intel Corporation

Jamie Liu1 Ben Jaiyen1 Yoongu Kim1
Chris Wilkerson2 Onur Mutlu1

An Experimental Study of
Data Retention Behavior

in Modern DRAM Devices

Implications for Retention Time Profiling Mechanisms

Summary (I)
n  DRAM requires periodic refresh to avoid data loss

q  Refresh wastes energy, reduces performance, limits DRAM density scaling
n  Many past works observed that different DRAM cells can retain data for

different times without being refreshed; proposed reducing refresh rate
for strong DRAM cells
q  Problem: These techniques require an accurate profile of the retention time of

all DRAM cells

n  Our goal: To analyze the retention time behavior of DRAM cells in modern
DRAM devices to aid the collection of accurate profile information

n  Our experiments: We characterize 248 modern commodity DDR3 DRAM
chips from 5 manufacturers using an FPGA based testing platform

n  Two Key Issues:
1. Data Pattern Dependence: A cell’s retention time is heavily dependent on data
values stored in itself and nearby cells, which cannot easily be controlled.
2. Variable Retention Time: Retention time of some cells change unpredictably
from high to low at large timescales.

Summary (II)
n  Key findings on Data Pattern Dependence

q  There is no observed single data pattern that elicits the lowest
retention times for a DRAM device à very hard to find this pattern

q  DPD varies between devices due to variation in DRAM array circuit
design between manufacturers

q  DPD of retention time gets worse as DRAM scales to smaller feature
sizes

n  Key findings on Variable Retention Time
q  VRT is common in modern DRAM cells that are weak
q  The timescale at which VRT occurs is very large (e.g., a cell can stay

in high retention time state for a day or longer) à finding minimum
retention time can take very long

n  Future work on retention time profiling must address these
issues

255

Talk Agenda
n  DRAM Refresh: Background and Motivation
n  Challenges and Our Goal
n  DRAM Characterization Methodology
n  Foundational Results

q  Temperature Dependence
q  Retention Time Distribution

n  Data Pattern Dependence: Analysis and Implications
n  Variable Retention Time: Analysis and Implications
n  Conclusions

256

A DRAM Cell

n  A DRAM cell consists of a capacitor and an access transistor
n  It stores data in terms of charge in the capacitor
n  A DRAM chip consists of (10s of 1000s of) rows of such cells

wordline

bi
tli

ne

bi
tli

ne

bi
tli

ne

bi
tli

ne

bi
tli

ne

(row enable)

DRAM Refresh

n  DRAM capacitor charge leaks over time

n  Each DRAM row is periodically refreshed to restore charge
q  Activate each row every N ms
q  Typical N = 64 ms

n  Downsides of refresh
 -- Energy consumption: Each refresh consumes energy

-- Performance degradation: DRAM rank/bank unavailable while
refreshed

-- QoS/predictability impact: (Long) pause times during refresh
-- Refresh rate limits DRAM capacity scaling

258

Refresh Overhead: Performance

259

8%	

46%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Refresh Overhead: Energy

260

15%	

47%	

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Previous Work on Reducing Refreshes
n  Observed significant variation in data retention times of

DRAM cells (due to manufacturing process variation)
q  Retention time: maximum time a cell can go without being

refreshed while maintaining its stored data

n  Proposed methods to take advantage of widely varying
retention times among DRAM rows
q  Reduce refresh rate for rows that can retain data for longer

than 64 ms, e.g., [Liu+ ISCA 2012]

q  Disable rows that have low retention times, e.g., [Venkatesan+
HPCA 2006]

n  Showed large benefits in energy and performance

261

1. Profiling: Profile the retention time of all DRAM rows

2. Binning: Store rows into bins by retention time
 à use Bloom Filters for efficient and scalable storage

3. Refreshing: Memory controller refreshes rows in different
bins at different rates
 à probe Bloom Filters to determine refresh rate of a row

An Example: RAIDR [Liu+, ISCA 2012]

262

1.25KB storage in controller for 32GB DRAM memory

Can reduce refreshes by ~75%
à reduces energy consumption and improves performance

Problem: Requires accurate profiling of DRAM row retention times

Liu et al., “RAIDR: Retention-Aware Intelligent DRAM Refresh,” ISCA 2012.

Motivation
n  Past works require accurate and reliable measurement of

retention time of each DRAM row
q  To maintain data integrity while reducing refreshes

n  Assumption: worst-case retention time of each row can be
determined and stays the same at a given temperature
q  Some works propose writing all 1’s and 0’s to a row, and

measuring the time before data corruption

n  Question:
q  Can we reliably and accurately determine retention times of all

DRAM rows?

263

Talk Agenda
n  DRAM Refresh: Background and Motivation
n  Challenges and Our Goal
n  DRAM Characterization Methodology
n  Foundational Results

q  Temperature Dependence
q  Retention Time Distribution

n  Data Pattern Dependence: Analysis and Implications
n  Variable Retention Time: Analysis and Implications
n  Conclusions

264

Two Challenges to Retention Time Profiling
n  Data Pattern Dependence (DPD) of retention time

n  Variable Retention Time (VRT) phenomenon

265

Two Challenges to Retention Time Profiling
n  Challenge 1: Data Pattern Dependence (DPD)

q  Retention time of a DRAM cell depends on its value and the
values of cells nearby it

q  When a row is activated, all bitlines are perturbed simultaneously

266

n  Electrical noise on the bitline affects reliable sensing of a DRAM cell
n  The magnitude of this noise is affected by values of nearby cells via

q  Bitline-bitline coupling à electrical coupling between adjacent bitlines
q  Bitline-wordline coupling à electrical coupling between each bitline and

the activated wordline

n  Retention time of a cell depends on data patterns stored in
nearby cells

 à need to find the worst data pattern to find worst-case retention time

Data Pattern Dependence

267

Two Challenges to Retention Time Profiling
n  Challenge 2: Variable Retention Time (VRT)

q  Retention time of a DRAM cell changes randomly over time
n  a cell alternates between multiple retention time states

q  Leakage current of a cell changes sporadically due to a charge
trap in the gate oxide of the DRAM cell access transistor

q  When the trap becomes occupied, charge leaks more readily from
the transistor’s drain, leading to a short retention time
n  Called Trap-Assisted Gate-Induced Drain Leakage

q  This process appears to be a random process [Kim+ IEEE TED’11]

q  Worst-case retention time depends on a random process
à need to find the worst case despite this

268

Our Goal
n  Analyze the retention time behavior of DRAM cells in

modern commodity DRAM devices
q  to aid the collection of accurate profile information

n  Provide a comprehensive empirical investigation of two key
challenges to retention time profiling
q  Data Pattern Dependence (DPD)
q  Variable Retention Time (VRT)

269

Talk Agenda
n  DRAM Refresh: Background and Motivation
n  Challenges and Our Goal
n  DRAM Characterization Methodology
n  Foundational Results

q  Temperature Dependence
q  Retention Time Distribution

n  Data Pattern Dependence: Analysis and Implications
n  Variable Retention Time: Analysis and Implications
n  Conclusions

270

DRAM Testing Platform and Method
n  Test platform: Developed a DDR3 DRAM testing platform

using the Xilinx ML605 FPGA development board
q  Temperature controlled

n  Tested DRAM chips: 248 commodity DRAM chips from five
manufacturers (A,B,C,D,E)

n  Seven families based on equal capacity per device:
q  A 1Gb, A 2Gb
q  B 2Gb
q  C 2Gb
q  D 1Gb, D 2Gb
q  E 2Gb

271

Experiment Design
n  Each module tested for multiple rounds of tests.

n  Each test searches for the set of cells with a retention time
less than a threshold value for a particular data pattern

n  High-level structure of a test:
q  Write data pattern to rows in a DRAM bank
q  Prevent refresh for a period of time tWAIT, leave DRAM idle
q  Read stored data pattern, compare to written pattern and

record corrupt cells as those with retention time < tWAIT

n  Test details and important issues to pay attention to are
discussed in paper

272

Experiment Structure

273

Round 1

Data Pattern X
tWAIT = 1.5s

Data Pattern Y
tWAIT = 1.5s

Data Pattern Z
tWAIT = 1.5s

Data Pattern X
tWAIT = 1.6s

Data Pattern Y
tWAIT = 1.6s

Data Pattern Z
tWAIT = 1.6s

Data Pattern X
tWAIT = 6.0s

Data Pattern Y
tWAIT = 6.0s

Data Pattern Z
tWAIT = 6.0s

Data Pattern X
tWAIT = 1.5s

Data Pattern Y
tWAIT = 1.5s

Data Pattern Z
tWAIT = 1.5s

Round 2

Test Round Tests both the data pattern
and its complement

Experiment Parameters
n  Most tests conducted at 45 degrees Celsius

n  No cells observed to have a retention time less than 1.5
second at 45oC

n  Tested tWAIT in increments of 128ms from 1.5 to 6.1
seconds

274

Tested Data Patterns
n  All 0s/1s: Value 0/1 is written to all bits

q  Previous work suggested this is sufficient

n  Checkerboard: Consecutive bits alternate between 0 and 1
q  Coupling noise increases with voltage difference between the

neighboring bitlines à May induce worst case data pattern (if adjacent
bits mapped to adjacent cells)

n  Walk: Attempts to ensure a single cell storing 1 is
surrounded by cells storing 0
q  This may lead to even worse coupling noise and retention time due to

coupling between nearby bitlines [Li+ IEEE TCSI 2011]
q  Walk pattern is permuted in each round to exercise different cells

n  Random: Randomly generated data is written to each row
q  A new set of random data is generated for each round

275

Fixed patterns

Talk Agenda
n  DRAM Refresh: Background and Motivation
n  Challenges and Our Goal
n  DRAM Characterization Methodology
n  Foundational Results

q  Temperature Dependence
q  Retention Time Distribution

n  Data Pattern Dependence: Analysis and Implications
n  Variable Retention Time: Analysis and Implications
n  Conclusions

276

Temperature Stability

277

0 1 2 3 4 5 6 7
Time (Hours)

45

50

55

60

65

70

75

Te
m

pe
ra

tu
re

 (C
)

50C 55C 60C 65C 70C

Tested	
 chips	
 at	
 five	
 different	
 stable	
 temperatures	

Dependence of Retention Time on Temperature

278

50 55 60 65 70
Temperature (C)

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
et

en
tio

n
Ti

m
e

Exponential fit, peak
Exponential fit, tail

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
ac

tio
n

of
 W

ea
k

Ce
lls

Fraction of cells that
exhibited retention

time failure
at any tWAIT

for any data pattern
at 50oC

Normalized retention
times of the same cells

at 55oC

Normalized retention
times of the same cells

At 70oC

Best-fit exponential curves
for retention time change

with temperature

Dependence of Retention Time on Temperature

279

50 55 60 65 70
Temperature (C)

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 R
et

en
tio

n
Ti

m
e

Exponential fit, peak
Exponential fit, tail

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fr
ac

tio
n

of
 W

ea
k

Ce
lls

RelaUonship	
 between	
 retenUon	
 Ume	
 and	
 temperature	
 is	

consistently	
 bounded	
 (predictable)	
 within	
 a	
 device	

Every	
 10oC	
 temperature	
 increase	
 	

à 46.5%	
 reducUon	
 in	
 retenUon	
 Ume	
 in	
 the	
 worst	
 case	

Retention Time Distribution

280

0 1 2 3 4 5 6 7
Retention Time (s)

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008
Fr

ac
tio

n
of

 C
el

ls
w

ith
 R

et
en

tio
n

Ti
m

e
<

X-
Ax

is
Va

lu
e

C 2Gb

D 1Gb

D 2Gb

A 2Gb

A 1Gb

E 2Gb

B 2Gb

Minimum	
 tested	
 retenUon	
 Ume	
 ~1.5s	
 at	
 45C	
 à	
 ~126ms	
 at	
 85C	
 	
 Very	
 few	
 cells	
 exhibit	
 the	
 lowest	
 retenUon	
 Umes	
 Shape	
 of	
 the	
 curve	
 consistent	
 with	
 previous	
 works	
 Newer	
 device	
 families	
 have	
 more	
 weak	
 cells	
 than	
 older	
 ones	

Likely	
 a	
 result	
 of	
 technology	
 scaling	

OLDER

NEWER

OLDER

NEWER

Talk Agenda
n  DRAM Refresh: Background and Motivation
n  Challenges and Our Goal
n  DRAM Characterization Methodology
n  Foundational Results

q  Temperature Dependence
q  Retention Time Distribution

n  Data Pattern Dependence: Analysis and Implications
n  Variable Retention Time: Analysis and Implications
n  Conclusions

281

Some Terminology
n  Failure population of cells with Retention Time X: The set of

all cells that exhibit retention failure in any test with any
data pattern at that retention time (tWAIT)

n  Retention Failure Coverage of a Data Pattern DP: Fraction
of cells with retention time X that exhibit retention failure
with that particular data pattern DP

n  If retention times are not dependent on data pattern stored
in cells, we would expect
q  Coverage of any data pattern to be 100%
q  In other words, if one data pattern causes a retention failure,

any other data pattern also would

282

Recall the Tested Data Patterns
n  All 0s/1s: Value 0/1 is written to all bits

n  Checkerboard: Consecutive bits alternate between 0 and 1

n  Walk: Attempts to ensure a single cell storing 1 is
surrounded by cells storing 0

n  Random: Randomly generated data is written to each row

283

Fixed patterns

Retention Failure Coverage of Data Patterns

284

0 2 4 6 8 10 12 14 16
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

All 0s/1s

Checkerboard

Random

Walk

All 0s/1s Checkerboard Walk Random

A 2Gb chip family
6.1s retention time

Walk	
 is	
 the	
 most	
 effecUve	
 data	
 panern	
 for	
 this	
 device	

Coverage	
 of	
 fixed	
 panerns	
 is	
 low:	
 ~30%	
 for	
 All	
 0s/1s	

No	
 data	
 panern	
 achieves	
 100%	
 coverage	

Different	
 data	
 panerns	
 have	
 widely	
 different	
 coverage:	

Data	
 panern	
 dependence	
 exists	
 and	
 is	
 severe	

Retention Failure Coverage of Data Patterns

285

0 2 4 6 8 10 12 14 16
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

All 0s/1s
Checkerboard

Random

Walk

All 0s/1s Checkerboard Walk Random

B 2Gb chip family
6.1s retention time

Random	
 is	
 the	
 most	
 effecUve	
 data	
 panern	
 for	
 this	
 device	

No	
 data	
 panern	
 achieves	
 100%	
 coverage	

Retention Failure Coverage of Data Patterns

286

0 2 4 6 8 10 12 14 16
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

All 0s/1s

Checkerboard

Random

Walk

All 0s/1s Checkerboard Walk Random

Random	
 is	
 the	
 most	
 effecUve	
 data	
 panern	
 for	
 this	
 device	

No	
 data	
 panern	
 achieves	
 100%	
 coverage	

C 2Gb chip family
6.1s retention time

Data Pattern Dependence: Observations (I)
n  A cell’s retention time is heavily influenced by data pattern

stored in other cells
q  Pattern affects the coupling noise, which affects cell leakage

n  No tested data pattern exercises the worst case retention
time for all cells (no pattern has 100% coverage)
q  No pattern is able to induce the worst-case coupling noise for

every cell
q  Problem: Underlying DRAM circuit organization is not known to

the memory controller à very hard to construct a pattern that
exercises the worst-case cell leakage
 à Opaque mapping of addresses to physical DRAM geometry
 à Internal remapping of addresses within DRAM to tolerate faults
 à Second order coupling effects are very hard to determine

 287

Data Pattern Dependence: Observations (II)
n  Fixed, simple data patterns have low coverage

q  They do not exercise the worst-case coupling noise

n  The effectiveness of each data pattern varies significantly
between DRAM devices (of the same or different vendors)
q  Underlying DRAM circuit organization likely differs between

different devices à patterns leading to worst coupling are
different in different devices

n  Technology scaling appears to increase the impact of data
pattern dependence
q  Scaling reduces the physical distance between circuit elements,

increasing the magnitude of coupling effects

288

Effect of Technology Scaling on DPD

289

0 2 4 6 8 10 12 14 16
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

All 0s/1s

Checkerboard

Walk

All 0s/1s Checkerboard Walk

0 2 4 6 8 10 12 14 16
Number of Rounds

0.0

0.2

0.4

0.6

0.8

1.0

Co
ve

ra
ge

All 0s/1s

Checkerboard

Random

Walk

All 0s/1s Checkerboard Walk Random

A 1Gb chip family A 2Gb chip family

The	
 lowest-­‐coverage	
 data	
 panern	
 achieves	
 much	
 lower	
 coverage	

for	
 the	
 smaller	
 technology	
 node	

DPD: Implications on Profiling Mechanisms
n  Any retention time profiling mechanism must handle data pattern

dependence of retention time
n  Intuitive approach: Identify the data pattern that induces the

worst-case retention time for a particular cell or device

n  Problem 1: Very hard to know at the memory controller which
bits actually interfere with each other due to
q  Opaque mapping of addresses to physical DRAM geometry à

logically consecutive bits may not be physically consecutive
q  Remapping of faulty bitlines/wordlines to redundant ones internally

within DRAM

n  Problem 2: Worst-case coupling noise is affected by non-obvious
second order bitline coupling effects

290

DPD: Suggestions (for Future Work)
n  A mechanism for identifying worst-case data pattern(s)

likely requires support from DRAM device
q  DRAM manufacturers might be in a better position to do this
q  But, the ability of the manufacturer to identify and expose the

entire retention time profile is limited due to VRT

n  An alternative approach: Use random data patterns to
increase coverage as much as possible; handle incorrect
retention time estimates with ECC
q  Need to keep profiling time in check
q  Need to keep ECC overhead in check

291

Talk Agenda
n  DRAM Refresh: Background and Motivation
n  Challenges and Our Goal
n  DRAM Characterization Methodology
n  Foundational Results

q  Temperature Dependence
q  Retention Time Distribution

n  Data Pattern Dependence: Analysis and Implications
n  Variable Retention Time: Analysis and Implications
n  Conclusions

292

Variable Retention Time
n  Retention time of a cell can vary over time

n  A cell can randomly switch between multiple leakage
current states due to Trap-Assisted Gate-Induced Drain
Leakage, which appears to be a random process

 [Yaney+ IEDM 1987, Restle+ IEDM 1992]

293

An Example VRT Cell

294

0 2 4 6 8 10
Time (Hours)

0

1

2

3

4

5

6

7
Re

te
nt

io
n

Ti
m

e
(s

)

A cell from E 2Gb chip family

VRT: Questions and Methodology
n  Key Questions

q  How prevalent is VRT in modern DRAM devices?
q  What is the timescale of observation of the lowest retention

time state?
q  What are the implications on retention time profiling?

n  Test Methodology
q  Each device was tested for at least 1024 rounds over 24 hours
q  Temperature fixed at 45oC
q  Data pattern used is the most effective data pattern for each

device
q  For each cell that fails at any retention time, we record the

minimum and the maximum retention time observed

295

Variable Retention Time

296

0 1 2 3 4 5 6 7
Minimum Retention Time (s)

0

1

2

3

4

5

6

7
M

ax
im

um
 R

et
en

tio
n

Ti
m

e
(s

)

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g1

0(
Fr

ac
tio

n
of

 C
el

ls
)

A 2Gb chip family

Min ret time = Max ret time
Expected if no VRT

Most failing cells
exhibit VRT

Many failing cells jump from
very high retention time to very low

Variable Retention Time

297

0 1 2 3 4 5 6 7
Minimum Retention Time (s)

0

1

2

3

4

5

6

7
M

ax
im

um
 R

et
en

tio
n

Ti
m

e
(s

)

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g1

0(
Fr

ac
tio

n
of

 C
el

ls
)

B 2Gb chip family

Variable Retention Time

298

0 1 2 3 4 5 6 7
Minimum Retention Time (s)

0

1

2

3

4

5

6

7
M

ax
im

um
 R

et
en

tio
n

Ti
m

e
(s

)

6.0

5.4

4.8

4.2

3.6

3.0

2.4

1.8

1.2

0.6

0.0

lo
g1

0(
Fr

ac
tio

n
of

 C
el

ls
)

C 2Gb chip family

VRT: Observations So Far
n  VRT is common among weak cells (i.e., those cells that

experience low retention times)

n  VRT can result in significant retention time changes
q  Difference between minimum and maximum retention times of

a cell can be more than 4x, and may not be bounded
q  Implication: Finding a retention time for a cell and using a

guardband to ensure minimum retention time is “covered”
requires a large guardband or may not work

n  Retention time profiling mechanisms must identify lowest
retention time in the presence of VRT
q  Question: How long to profile a cell to find its lowest retention

time state?
299

Time Between Retention Time State Changes

n  How much time does a cell spend in a high retention state
before switching to the minimum observed retention time
state?

300

Time Spent in High Retention Time State

301

0 20000 40000 60000 80000
Time Spent in High Retention Time State (s)

Re
la

tiv
e

Fr
eq

ue
nc

y

A 2Gb chip family

~4 hours
~1 day

Time	
 scale	
 at	
 which	
 a	
 cell	
 switches	
 to	
 the	
 low	
 retenUon	
 Ume	
 state	

can	
 be	
 very	
 long	
 (~	
 1	
 day	
 or	
 longer)	

Need	
 to	
 profile	
 for	
 a	
 long	
 Ume	
 to	
 	

get	
 to	
 the	
 minimum	
 retenUon	
 Ume	
 state	

Time Spent in High Retention Time State

302

0 20000 40000 60000 80000
Time Spent in High Retention Time State (s)

Re
la

tiv
e

Fr
eq

ue
nc

y

B 2Gb chip family

Time Spent in High Retention Time State

303

0 20000 40000 60000 80000
Time Spent in High Retention Time State (s)

Re
la

tiv
e

Fr
eq

ue
nc

y

C 2Gb chip family

VRT: Implications on Profiling Mechanisms
n  Problem 1: There does not seem to be a way of

determining if a cell exhibits VRT without actually observing
a cell exhibiting VRT
q  VRT is a memoryless random process [Kim+ JJAP 2010]

n  Problem 2: VRT complicates retention time profiling by
DRAM manufacturers
q  Exposure to very high temperatures can induce VRT in cells that

were not previously susceptible
 à can happen during soldering of DRAM chips
 à manufacturer’s retention time profile may not be accurate

n  One option for future work: Use ECC to continuously profile
DRAM online while aggressively reducing refresh rate
q  Need to keep ECC overhead in check

304

Talk Agenda
n  DRAM Refresh: Background and Motivation
n  Challenges and Our Goal
n  DRAM Characterization Methodology
n  Foundational Results

q  Temperature Dependence
q  Retention Time Distribution

n  Data Pattern Dependence: Analysis and Implications
n  Variable Retention Time: Analysis and Implications
n  Conclusions

305

Summary and Conclusions
n  DRAM refresh is a critical challenge in scaling DRAM technology

efficiently to higher capacities and smaller feature sizes
n  Understanding the retention time of modern DRAM devices can

enable old or new methods to reduce the impact of refresh
q  Many mechanisms require accurate and reliable retention time profiles

n  We presented the first work that comprehensively examines data
retention behavior in modern commodity DRAM devices
q  Characterized 248 devices from five manufacturers

n  Key findings: Retention time of a cell significantly depends on data
pattern stored in other cells (data pattern dependence) and
changes over time via a random process (variable retention time)
q  Discussed the underlying reasons and provided suggestions

n  Future research on retention time profiling should solve the
challenges posed by the DPD and VRT phenomena

306

1 Carnegie Mellon University
2 Intel Corporation

Jamie Liu1 Ben Jaiyen1 Yoongu Kim1
Chris Wilkerson2 Onur Mutlu1

An Experimental Study of
Data Retention Behavior

in Modern DRAM Devices

Implications for Retention Time Profiling Mechanisms

Flash Memory Scaling

Aside: Scaling Flash Memory [Cai+, ICCD’12]

309

n  NAND flash memory has low endurance: a flash cell dies after 3k P/E
cycles vs. 50k desired à Major scaling challenge for flash memory

n  Flash error rate increases exponentially over flash lifetime
n  Problem: Stronger error correction codes (ECC) are ineffective and

undesirable for improving flash lifetime due to
q  diminishing returns on lifetime with increased correction strength
q  prohibitively high power, area, latency overheads

n  Our Goal: Develop techniques to tolerate high error rates w/o strong ECC
n  Observation: Retention errors are the dominant errors in MLC NAND flash

q  flash cell loses charge over time; retention errors increase as cell gets worn out
n  Solution: Flash Correct-and-Refresh (FCR)

q  Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

q  Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

n  Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs

Readings in Flash Memory
n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken Mai,

"Error Analysis and Retention-Aware Error Management for NAND Flash Memory"
Intel Technology Journal (ITJ) Special Issue on Memory Resiliency, Vol. 17, No. 1, May 2013.

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash Memory: Characterization,
Analysis and Modeling"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Grenoble,
France, March 2013. Slides (ppt)

n  Yu Cai, Gulay Yalcin, Onur Mutlu, Erich F. Haratsch, Adrian Cristal, Osman Unsal, and Ken
Mai,
"Flash Correct-and-Refresh: Retention-Aware Error Management for Increased
Flash Memory Lifetime"
Proceedings of the 30th IEEE International Conference on Computer Design (ICCD),
Montreal, Quebec, Canada, September 2012. Slides (ppt) (pdf)

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory: Measurement, Characterization,
and Analysis"
Proceedings of the Design, Automation, and Test in Europe Conference (DATE), Dresden,
Germany, March 2012. Slides (ppt)

310

Evolution of NAND Flash Memory

n  Flash memory widening its range of applications
q  Portable consumer devices, laptop PCs and enterprise servers

Seaung Suk Lee, “Emerging Challenges in NAND Flash Technology”, Flash Summit 2011 (Hynix)

CMOS scaling
More bits per Cell

UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

Decreasing Endurance with Flash Scaling

n  Endurance of flash memory decreasing with scaling and multi-level cells
n  Error correction capability required to guarantee storage-class reliability

(UBER < 10-15) is increasing exponentially to reach less endurance

312

Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

SLC 5x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC

P
/E

 C
yc

le
 E

nd
ur

an
ce

100k

10k
5k 3k 1k

4-bit ECC

8-bit ECC

15-bit ECC

24-bit ECC

Error Correction Capability
(per 1 kB of data)

Future NAND Flash Storage Architecture

Memory
Signal

Processing

Error
Correction

Raw Bit
Error Rate

•  Hamming codes
•  BCH codes
•  Reed-Solomon codes
•  LDPC codes
•  Other Flash friendly codes

BER < 10-15

Need to understand NAND flash error patterns

•  Read voltage adjusting
•  Data scrambler
•  Data recovery
•  Soft-information estimation

Noisy

Test System Infrastructure

Host USB PHY

USB Driver

Software Platform

USB
PHYChip

Control
Firmware

FPGA
USB controller

NAND
Controller

Signal Processing

Wear Leveling
Address Mapping
Garbage Collection

Algorithms

ECC
(BCH, RS, LDPC)

Flash
Memories

Host Computer USB Daughter Board Mother Board Flash Board

1.  Reset
2.  Erase block
3.  Program page
4.  Read page

NAND Flash Testing Platform

USB Jack

Virtex-II Pro
(USB controller)

Virtex-V FPGA
(NAND Controller)

HAPS-52 Mother Board

USB Daughter Board

NAND Daughter Board

3x-nm
NAND Flash

NAND Flash Usage and Error Model

…

(Page0 - Page128)
Program

Page
Erase
Block

Retention1
(t1 days)

Read
Page

Retention j
(tj days)

Read
Page

P/E cycle 0

P/E cycle i

Start

…

P/E cycle n

…

End of life

Erase Errors Program Errors

Retention Errors Read Errors

Read Errors Retention Errors

Error Types and Testing Methodology
n  Erase errors

q  Count the number of cells that fail to be erased to “11” state

n  Program interference errors
q  Compare the data immediately after page programming and the data

after the whole block being programmed

n  Read errors
q  Continuously read a given block and compare the data between

consecutive read sequences

n  Retention errors
q  Compare the data read after an amount of time to data written

n  Characterize short term retention errors under room temperature
n  Characterize long term retention errors by baking in the oven

under 125℃

retention errors

n  Raw bit error rate increases exponentially with P/E cycles
n  Retention errors are dominant (>99% for 1-year ret. time)
n  Retention errors increase with retention time requirement

Observations: Flash Error Analysis

318

P/E Cycles

Retention Error Mechanism
LSB/MSB

n  Electron loss from the floating gate causes retention errors
q  Cells with more programmed electrons suffer more from

retention errors
q  Threshold voltage is more likely to shift by one window than by

multiple

11 10 01 00
Vth

REF1 REF2 REF3

Erased Fully programmed

Stress Induced Leakage Current (SILC)

Floating
Gate

Retention Error Value Dependency

00 à01
01 à10

n  Cells with more programmed electrons tend to suffer more
from retention noise (i.e. 00 and 01)

More Details on Flash Error Analysis

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization, and Analysis"
Proceedings of the
Design, Automation, and Test in Europe Conference
(DATE), Dresden, Germany, March 2012. Slides (ppt)

321

Threshold Voltage Distribution Shifts

As P/E cycles increase ...
n Distribution shifts to the right
n Distribution becomes wider

P1	
 State P2	
 State P3	
 State

More Detail

n  Yu Cai, Erich F. Haratsch, Onur Mutlu, and Ken Mai,
"Threshold Voltage Distribution in MLC NAND Flash
Memory: Characterization, Analysis and Modeling"
Proceedings of the
Design, Automation, and Test in Europe Conference
(DATE), Grenoble, France, March 2013. Slides (ppt)

323

Flash Correct-and-Refresh

Retention-Aware Error Management
for Increased Flash Memory Lifetime

Yu Cai1 Gulay Yalcin2 Onur Mutlu1 Erich F. Haratsch3
Adrian Cristal2 Osman S. Unsal2 Ken Mai1

1 Carnegie Mellon University
2 Barcelona Supercomputing Center
3 LSI Corporation

Executive Summary
n  NAND flash memory has low endurance: a flash cell dies after 3k P/E

cycles vs. 50k desired à Major scaling challenge for flash memory
n  Flash error rate increases exponentially over flash lifetime
n  Problem: Stronger error correction codes (ECC) are ineffective and

undesirable for improving flash lifetime due to
q  diminishing returns on lifetime with increased correction strength
q  prohibitively high power, area, latency overheads

n  Our Goal: Develop techniques to tolerate high error rates w/o strong ECC
n  Observation: Retention errors are the dominant errors in MLC NAND flash

q  flash cell loses charge over time; retention errors increase as cell gets worn out
n  Solution: Flash Correct-and-Refresh (FCR)

q  Periodically read, correct, and reprogram (in place) or remap each flash page
before it accumulates more errors than can be corrected by simple ECC

q  Adapt “refresh” rate to the severity of retention errors (i.e., # of P/E cycles)

n  Results: FCR improves flash memory lifetime by 46X with no hardware
changes and low energy overhead; outperforms strong ECCs

325

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

326

Problem: Limited Endurance of Flash Memory
n  NAND flash has limited endurance

q  A cell can tolerate a small number of Program/Erase (P/E) cycles
q  3x-nm flash with 2 bits/cell à 3K P/E cycles

n  Enterprise data storage requirements demand very high
endurance
q  >50K P/E cycles (10 full disk writes per day for 3-5 years)

n  Continued process scaling and more bits per cell will reduce
flash endurance

n  One potential solution: stronger error correction codes (ECC)
q  Stronger ECC not effective enough and inefficient

327

UBER: Uncorrectable bit error rate. Fraction of erroneous bits after error correction.

Decreasing Endurance with Flash Scaling

n  Endurance of flash memory decreasing with scaling and multi-level cells
n  Error correction capability required to guarantee storage-class reliability

(UBER < 10-15) is increasing exponentially to reach less endurance

328

Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

100,000

SLC 5x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC

P
/E

 C
yc

le
 E

nd
ur

an
ce

100k

10k
5k 3k 1k

4-bit ECC

8-bit ECC

15-bit ECC

24-bit ECC

Error Correction Capability
(per 1 kB of data)

The Problem with Stronger Error Correction

n  Stronger ECC detects and corrects more raw bit errors à
increases P/E cycles endured

n  Two shortcomings of stronger ECC:

1. High implementation complexity
 à Power and area overheads increase super-linearly, but

 correction capability increases sub-linearly with ECC strength

2. Diminishing returns on flash lifetime improvement
 à Raw bit error rate increases exponentially with P/E cycles, but

 correction capability increases sub-linearly with ECC strength

329

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

330

Methodology: Error and ECC Analysis
n  Characterized errors and error rates of 3x-nm MLC NAND

flash using an experimental FPGA-based flash platform
q  Cai et al., “Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization, and Analysis,” DATE 2012.

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction

n  Quantified error correction capability (and area and power
consumption) of various BCH-code implementations
q  Identified how much RBER each code can tolerate

 à how many P/E cycles (flash lifetime) each code can sustain

331

NAND Flash Error Types

n  Four types of errors [Cai+, DATE 2012]

n  Caused by common flash operations
q  Read errors
q  Erase errors
q  Program (interference) errors

n  Caused by flash cell losing charge over time
q  Retention errors

n  Whether an error happens depends on required retention time
n  Especially problematic in MLC flash because voltage threshold

window to determine stored value is smaller

332

retention errors

n  Raw bit error rate increases exponentially with P/E cycles
n  Retention errors are dominant (>99% for 1-year ret. time)
n  Retention errors increase with retention time requirement

Observations: Flash Error Analysis

333

P/E Cycles

Methodology: Error and ECC Analysis
n  Characterized errors and error rates of 3x-nm MLC NAND

flash using an experimental FPGA-based flash platform
q  Cai et al., “Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization, and Analysis,” DATE 2012.

n  Quantified Raw Bit Error Rate (RBER) at a given P/E cycle
q  Raw Bit Error Rate: Fraction of erroneous bits without any correction

n  Quantified error correction capability (and area and power
consumption) of various BCH-code implementations
q  Identified how much RBER each code can tolerate

 à how many P/E cycles (flash lifetime) each code can sustain

334

ECC Strength Analysis
n  Examined characteristics of various-strength BCH codes

with the following criteria
q  Storage efficiency: >89% coding rate (user data/total storage)
q  Reliability: <10-15 uncorrectable bit error rate
q  Code length: segment of one flash page (e.g., 4kB)

335

Code length
(n)

Correctable
Errors (t)

Acceptable
Raw BER

Norm.
Power

Norm. Area

512 7 1.0x10-4 (1x) 1 1
1024 12 4.0x10-4 (4x) 2 2.1
2048 22 1.0x10-3 (10x) 4.1 3.9
4096 40 1.7x10-3 (17x) 8.6 10.3
8192 74 2.2x10-3 (22x) 17.8 21.3
32768 259 2.6x10-3 (26x) 71 85

Error	
 correc\on	
 capability	
 increases	
 sub-­‐linearly	

Power	
 and	
 area	
 overheads	
 increase	
 super-­‐linearly	

n  Lifetime improvement comparison of various BCH codes

Resulting Flash Lifetime with Strong ECC

336

0

2000

4000

6000

8000

10000

12000

14000

512b-BCH 1k-BCH 2k-BCH 4k-BCH 8k-BCH 32k-BCH

P
/E

 C
yc

le
 E

nd
ur

an
ce

 4X Lifetime
Improvement

71X Power Consumption
85X Area Consumption

Strong	
 ECC	
 is	
 very	
 inefficient	
 at	
 improving	
 life\me	

Our Goal

 Develop new techniques
 to improve flash lifetime
 without relying on stronger ECC

337

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

338

Flash Correct-and-Refresh (FCR)
n  Key Observations:

q  Retention errors are the dominant source of errors in flash
memory [Cai+ DATE 2012][Tanakamaru+ ISSCC 2011]

 à limit flash lifetime as they increase over time
q  Retention errors can be corrected by “refreshing” each flash

page periodically

n  Key Idea:
q  Periodically read each flash page,
q  Correct its errors using “weak” ECC, and
q  Either remap it to a new physical page or reprogram it in-place,
q  Before the page accumulates more errors than ECC-correctable
q  Optimization: Adapt refresh rate to endured P/E cycles

339

FCR Intuition

340

Errors with
No refresh

Program
Page ×

After
time T × × ×

After
time 2T × × × × ×

After
time 3T × × × × × × ×

×

× × ×

× × ×

× × ×

×

×

Errors with
Periodic refresh

×

× Retention Error × Program Error

FCR: Two Key Questions

n  How to refresh?
q  Remap a page to another one
q  Reprogram a page (in-place)
q  Hybrid of remap and reprogram

n  When to refresh?
q  Fixed period
q  Adapt the period to retention error severity

341

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

342

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

343

Remapping Based FCR

n  Idea: Periodically remap each page to a different physical
page (after correcting errors)

q  Also [Pan et al., HPCA 2012]

q  FTL already has support for
 changing logical à physical
 flash block/page mappings
q  Deallocated block is
 erased by garbage collector

n  Problem: Causes additional erase operations à more wearout
q  Bad for read-intensive workloads (few erases really needed)
q  Lifetime degrades for such workloads (see paper)

344

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

345

In-Place Reprogramming Based FCR

n  Idea: Periodically reprogram (in-place) each physical page
(after correcting errors)

q  Flash programming techniques
 (ISPP) can correct retention
 errors in-place by recharging
 flash cells

n  Problem: Program errors accumulate on the same page à
may not be correctable by ECC after some time

346

Reprogram	
 corrected	
 data	

n  Pro: No remapping needed à no additional erase operations
n  Con: Increases the occurrence of program errors

In-Place Reprogramming of Flash Cells

347

Retention errors are
caused by cell voltage
shifting to the left

ISPP moves cell
voltage to the right;
fixes retention errors

Floating Gate
Voltage Distribution

for each Stored Value

Floating Gate

Program Errors in Flash Memory

n  When a cell is being programmed, voltage level of a
neighboring cell changes (unintentionally) due to parasitic
capacitance coupling

 à can change the data value stored

n  Also called program interference error

n  Program interference causes neighboring cell voltage to
shift to the right

348

Problem with In-Place Reprogramming

349

11 10 01 00
VT

REF1 REF2 REF3

Floating
Gate

Additional
Electrons Injected

… … 11 01 00 10 11 00 00 Original data
to be programmed

… … 10 01 00 10 11 00 00 Program errors after
initial programming

… … Retention errors
after some time 10 10 00 11 11 01 01

… … Errors after in-place
reprogramming 10 01 00 10 10 00 00

1. Read data
2. Correct errors
3. Reprogram back

Problem: Program errors can accumulate over time

Floating Gate
Voltage Distribution

Hybrid Reprogramming/Remapping Based FCR

n  Idea:
q  Monitor the count of right-shift errors (after error correction)
q  If count < threshold, in-place reprogram the page
q  Else, remap the page to a new page

n  Observation:
q  Program errors much less frequent than retention errors à

Remapping happens only infrequently

n  Benefit:
q  Hybrid FCR greatly reduces erase operations due to remapping

350

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

351

Adaptive-Rate FCR

n  Observation:
q  Retention error rate strongly depends on the P/E cycles a flash

page endured so far
q  No need to refresh frequently (at all) early in flash lifetime

n  Idea:
q  Adapt the refresh rate to the P/E cycles endured by each page
q  Increase refresh rate gradually with increasing P/E cycles

n  Benefits:
q  Reduces overhead of refresh operations
q  Can use existing FTL mechanisms that keep track of P/E cycles

352

Adaptive-Rate FCR (Example)

353

Acceptable raw BER for 512b-BCH

3-year
FCR

3-month
FCR

3-week
FCR

3-day
FCR

P/E Cycles

Select refresh frequency such that error rate is below acceptable rate

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)

1. Remapping based FCR
2. Hybrid Reprogramming and Remapping based FCR
3. Adaptive-Rate FCR

n  Evaluation
n  Conclusions

354

FCR: Other Considerations

n  Implementation cost
q  No hardware changes
q  FTL software/firmware needs modification

n  Response time impact
q  FCR not as frequent as DRAM refresh; low impact

n  Adaptation to variations in retention error rate
q  Adapt refresh rate based on, e.g., temperature [Liu+ ISCA 2012]

n  FCR requires power
q  Enterprise storage systems typically powered on

355

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

356

Evaluation Methodology
n  Experimental flash platform to obtain error rates at

different P/E cycles [Cai+ DATE 2012]

n  Simulation framework to obtain P/E cycles of real
workloads: DiskSim with SSD extensions

n  Simulated system: 256GB flash, 4 channels, 8 chips/
channel, 8K blocks/chip, 128 pages/block, 8KB pages

n  Workloads
q  File system applications, databases, web search
q  Categories: Write-heavy, read-heavy, balanced

n  Evaluation metrics
q  Lifetime (extrapolated)
q  Energy overhead, P/E cycle overhead

357

Extrapolated Lifetime

358

Maximum full disk P/E Cycles for a Technique

Total full disk P/E Cycles for a Workload
× # of Days of Given Application

Obtained from Experimental Platform Data

Obtained from Workload Simulation
Real length (in time) of
each workload trace

Normalized Flash Memory Lifetime

359

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

200	

512b-­‐BCH	
 1k-­‐BCH	
 2k-­‐BCH	
 4k-­‐BCH	
 8k-­‐BCH	
 32k-­‐BCH	

N
or
m
al
iz
ed

	
 L
ife

Um
e	

Base	
 (No-­‐Refresh)	

Remapping-­‐Based	
 FCR	

Hybrid	
 FCR	

Adap\ve	
 FCR	

46x

AdapUve-­‐rate	
 FCR	
 provides	
 the	
 highest	
 lifeUme	
 LifeUme	
 of	
 FCR	
 much	
 higher	
 than	
 lifeUme	
 of	
 stronger	
 ECC	

4x

Lifetime Evaluation Takeaways
n  Significant average lifetime improvement over no refresh

q  Adaptive-rate FCR: 46X
q  Hybrid reprogramming/remapping based FCR: 31X
q  Remapping based FCR: 9X

n  FCR lifetime improvement larger than that of stronger ECC
q  46X vs. 4X with 32-kbit ECC (over 512-bit ECC)
q  FCR is less complex and less costly than stronger ECC

n  Lifetime on all workloads improves with Hybrid FCR
q  Remapping based FCR can degrade lifetime on read-heavy WL
q  Lifetime improvement highest in write-heavy workloads

360

Energy Overhead

n  Adaptive-rate refresh: <1.8% energy increase until daily

refresh is triggered

361

0%

2%

4%

6%

8%

10%

1 Year 3 Months 3 Weeks 3 Days 1 Day

En
er

gy
 O

ve
rh

ea
d

Remapping-based Refresh Hybrid Refresh

7.8%

5.5%

2.6%
1.8%

0.4% 0.3%

Refresh Interval

Overhead of Additional Erases

n  Additional erases happen due to remapping of pages

n  Low (2%-20%) for write intensive workloads
n  High (up to 10X) for read-intensive workloads

n  Improved P/E cycle lifetime of all workloads largely
outweighs the additional P/E cycles due to remapping

362

More Results in the Paper

n  Detailed workload analysis

n  Effect of refresh rate

363

Outline
n  Executive Summary
n  The Problem: Limited Flash Memory Endurance/Lifetime
n  Error and ECC Analysis for Flash Memory
n  Flash Correct and Refresh Techniques (FCR)
n  Evaluation
n  Conclusions

364

Conclusion
n  NAND flash memory lifetime is limited due to uncorrectable

errors, which increase over lifetime (P/E cycles)

n  Observation: Dominant source of errors in flash memory is
retention errors à retention error rate limits lifetime

n  Flash Correct-and-Refresh (FCR) techniques reduce
retention error rate to improve flash lifetime
q  Periodically read, correct, and remap or reprogram each page

before it accumulates more errors than can be corrected
q  Adapt refresh period to the severity of errors

n  FCR improves flash lifetime by 46X at no hardware cost
q  More effective and efficient than stronger ECC
q  Can enable better flash memory scaling

365

Flash Correct-and-Refresh

Retention-Aware Error Management
for Increased Flash Memory Lifetime

Yu Cai1 Gulay Yalcin2 Onur Mutlu1 Erich F. Haratsch3
Adrian Cristal2 Osman S. Unsal2 Ken Mai1

1 Carnegie Mellon University
2 Barcelona Supercomputing Center
3 LSI Corporation

Unused Slides
(from Longer Version)

367

An Example Problem: Shared Main Memory

368

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 B
A

N
K

S

Multi-Core
Chip

*Die photo credit: AMD Barcelona

DRAM MEMORY
CONTROLLER

Unexpected Slowdowns in Multi-Core

369

Memory Performance Hog
Low priority

High priority

(Core 0) (Core 1)

Moscibroda and Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” USENIX Security 2007.

A Question or Two
n  Can you figure out why there is a disparity in slowdowns if

you do not know how the processor executes the
programs?

n  Can you fix the problem without knowing what is
happening “underneath”?

370

371

Why the Disparity in Slowdowns?

CORE 1 CORE 2

 L2
CACHE

 L2
CACHE

DRAM MEMORY CONTROLLER

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

Shared DRAM
Memory System

Multi-Core
Chip

unfairness
INTERCONNECT

matlab gcc

DRAM
Bank 3

DRAM Bank Operation

372

Row Buffer

(Row 0, Column 0)

R
ow

 d
ec

od
er

Column mux

Row address 0

Column address 0

Data

Row 0 Empty

 (Row 0, Column 1)

Column address 1

(Row 0, Column 85)

Column address 85

(Row 1, Column 0)

HIT HIT

Row address 1

Row 1

Column address 0

CONFLICT !

Columns

R
ow

s

 Access Address:

373

DRAM Controllers

n  A row-conflict memory access takes significantly longer
than a row-hit access

n  Current controllers take advantage of the row buffer

n  Commonly used scheduling policy (FR-FCFS) [Rixner 2000]*

(1) Row-hit first: Service row-hit memory accesses first
(2) Oldest-first: Then service older accesses first

n  This scheduling policy aims to maximize DRAM throughput

*Rixner et al., “Memory Access Scheduling,” ISCA 2000.
*Zuravleff and Robinson, “Controller for a synchronous DRAM …,” US Patent 5,630,096, May 1997.

374

The Problem
n  Multiple threads share the DRAM controller
n  DRAM controllers designed to maximize DRAM throughput

n  DRAM scheduling policies are thread-unfair
q  Row-hit first: unfairly prioritizes threads with high row buffer locality

n  Threads that keep on accessing the same row

q  Oldest-first: unfairly prioritizes memory-intensive threads

n  DRAM controller vulnerable to denial of service attacks
q  Can write programs to exploit unfairness

Now That We Know What Happens Underneath

n  How would you solve the problem?

375

Some Solution Examples (To Be Covered)
n  We will cover some solutions later in this accelerated course
n  Example recent solutions (part of your reading list)

q  Yoongu Kim, Michael Papamichael, Onur Mutlu, and Mor Harchol-Balter,
"Thread Cluster Memory Scheduling: Exploiting Differences in Memory Access
Behavior"
Proceedings of the 43rd International Symposium on Microarchitecture (MICRO), pages
65-76, Atlanta, GA, December 2010.

q  Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and
Thomas Moscibroda,
"Reducing Memory Interference in Multicore Systems via Application-Aware
Memory Channel Partitioning"
Proceedings of the 44th International Symposium on Microarchitecture (MICRO), Porto
Alegre, Brazil, December 2011. Slides (pptx)

q  Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur
Mutlu,
"Staged Memory Scheduling: Achieving High Performance and Scalability in
Heterogeneous Systems"
Proceedings of the 39th International Symposium on Computer Architecture (ISCA),
Portland, OR, June 2012.

376

SRAM (Static Random Access Memory)

377

bit-cell array

2n row x 2m-col

(n≈m to minimize
overall latency)

sense amp and mux
2m diff pairs

2n n

m

1

row select

bi
tli

ne

_b
itl

in
e

n+m

 Read Sequence
1. address decode
2. drive row select
3. selected bit-cells drive bitlines
 (entire row is read together)

4. differential sensing and column select
 (data is ready)
5. precharge all bitlines
 (for next read or write)

 Access latency dominated by steps 2 and 3
 Cycling time dominated by steps 2, 3 and 5

-  step 2 proportional to 2m

-  step 3 and 5 proportional to 2n

DRAM (Dynamic Random Access Memory)

378

row enable
_b

itl
in

e

bit-cell array

2n row x 2m-col

(n≈m to minimize
overall latency)

sense amp and mux
2m

2n n

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

Bits stored as charges on node
capacitance (non-restorative)

-  bit cell loses charge when read
-  bit cell loses charge over time

Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp

amplifies and regenerates the
bitline, data bit is mux’ed out

5. precharge all bitlines

Refresh: A DRAM controller must
periodically read all rows within the
allowed refresh time (10s of ms)
such that charge is restored in cells

DRAM vs. SRAM
n  DRAM

q  Slower access (capacitor)
q  Higher density (1T 1C cell)
q  Lower cost
q  Requires refresh (power, performance, circuitry)
q  Manufacturing requires putting capacitor and logic together

n  SRAM
q  Faster access (no capacitor)
q  Lower density (6T cell)
q  Higher cost
q  No need for refresh
q  Manufacturing compatible with logic process (no capacitor)

379

An Aside: Phase Change Memory
n  Phase change material (chalcogenide glass) exists in two states:

q  Amorphous: Low optical reflexivity and high electrical resistivity
q  Crystalline: High optical reflexivity and low electrical resistivity

380

PCM is resistive memory: High resistance (0), Low resistance (1)

Lee, Ipek, Mutlu, Burger, “Architecting Phase Change Memory as a Scalable DRAM
Alternative,” ISCA 2009.

An Aside: How Does PCM Work?
n  Write: change phase via current injection

q  SET: sustained current to heat cell above Tcryst
q  RESET: cell heated above Tmelt and quenched

n  Read: detect phase via material resistance
q  amorphous/crystalline

381

Large
Current

SET (cryst)
Low resistance

103-104 Ω	

Small
Current

RESET (amorph)
High resistance

Access
Device

Memory
Element

106-107 Ω	

Photo Courtesy: Bipin Rajendran, IBM Slide Courtesy: Moinuddin Qureshi, IBM

The Problem
n  Bigger is slower

q  SRAM, 512 Bytes, sub-nanosec
q  SRAM, KByte~MByte, ~nanosec
q  DRAM, Gigabyte, ~50 nanosec
q  Hard Disk, Terabyte, ~10 millisec

n  Faster is more expensive (dollars and chip area)
q  SRAM, < 10$ per Megabyte
q  DRAM, < 1$ per Megabyte
q  Hard Disk < 1$ per Gigabyte
q  These sample values scale with time

n  Other technologies have their place as well
q  Flash memory, Phase-change memory (not mature yet)

382

Technology Trends
n  DRAM does not scale well beyond N nm [ITRS 2009, 2010]

q  Memory scaling benefits: density, capacity, cost

n  Energy/power already key design limiters

q  Memory hierarchy responsible for a large fraction of power
n  IBM servers: ~50% energy spent in off-chip memory hierarchy

[Lefurgy+, IEEE Computer 2003]
n  DRAM consumes power when idle and needs periodic refresh

n  More transistors (cores) on chip
n  Pin bandwidth not increasing as fast as number of transistors

q  Memory is the major shared resource among cores
q  More pressure on the memory hierarchy

383

Application Trends
n  Many different threads/applications/virtual-machines (will)

concurrently share the memory system

q  Cloud computing/servers: Many workloads consolidated on-chip to
improve efficiency

q  GP-GPU, CPU+GPU, accelerators: Many threads from multiple
applications

q  Mobile: Interactive + non-interactive consolidation

n  Different applications with different requirements (SLAs)
q  Some applications/threads require performance guarantees
q  Modern hierarchies do not distinguish between applications

n  Applications are increasingly data intensive
q  More demand for memory capacity and bandwidth

384

Architecture/System Trends
n  Sharing of memory hierarchy

n  More cores and components
q  More capacity and bandwidth demand from memory hierarchy

n  Asymmetric cores: Performance asymmetry, CPU+GPUs,
accelerators, …
q  Motivated by energy efficiency and Amdahl’s Law

n  Different cores have different performance requirements
q  Memory hierarchies do not distinguish between cores

n  Different goals for different systems/users
q  System throughput, fairness, per-application performance
q  Modern hierarchies are not flexible/configurable

385

Summary: Major Trends Affecting Memory

n  Need for memory capacity and bandwidth increasing

n  New need for handling inter-core interference; providing
fairness, QoS, predictability

n  Need for memory system flexibility increasing

n  Memory energy/power is a key system design concern

n  DRAM capacity, cost, energy are not scaling well

386

Requirements from an Ideal Memory System

n  Traditional
q  High system performance
q  Enough capacity
q  Low cost

n  New
q  Technology scalability
q  QoS and predictable performance
q  Energy (and power, bandwidth) efficiency

387

n  Traditional
q  High system performance: More parallelism, less interference
q  Enough capacity: New technologies and waste management
q  Low cost: New technologies and scaling DRAM

n  New
q  Technology scalability

n  New memory technologies can help? DRAM can scale?

q  QoS and predictable performance
n  Hardware mechanisms to control interference and build QoS policies

q  Energy (and power, bandwidth) efficiency
n  Need to reduce waste and enable configurability

388

Requirements from an Ideal Memory System

Goal: Ultra-efficient heterogeneous architectures

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memory imaging
core

Memory Bus

Slide credit: Prof. Kayvon Fatahalian, CMU

Enabling Ultra-efficient (Visual) Search

▪  What is the right partitioning of computation capability?
▪  What is the right low-cost memory substrate?
▪  What memory technologies are the best enablers?
▪  How do we rethink/ease (visual) search algorithms/applications?

Cache

Processor
Core

Memory Bus

Main Memory

Database
(of images)

Query vector

Results

Picture credit: Prof. Kayvon Fatahalian, CMU

