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Another Problem due to Memory Interference 

n  Processors try to tolerate the latency of DRAM requests by 
generating multiple outstanding requests 
q  Memory-Level Parallelism (MLP)  
q  Out-of-order execution, non-blocking caches, runahead execution 

 
n  Effective only if the DRAM controller actually services the 

multiple requests in parallel in DRAM banks 
 
n  Multiple threads share the DRAM controller 
n  DRAM controllers are not aware of a thread’s MLP 

q  Can service each thread’s outstanding requests serially, not in parallel 
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Bank Parallelism of a Thread 
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Bank Parallelism Interference in DRAM 
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Parallelism-Aware Batch Scheduling (PAR-BS) 

n  Principle 1: Parallelism-awareness 
q  Schedule requests from a thread (to 

different banks) back to back 
q  Preserves each thread’s bank parallelism 
q  But, this can cause starvation… 

n  Principle 2: Request Batching 
q  Group a fixed number of oldest requests 

from each thread into a “batch” 
q  Service the batch before all other requests 
q  Form a new batch when the current one is done 
q  Eliminates starvation, provides fairness 
q  Allows parallelism-awareness within a batch 
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Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 2008. 



PAR-BS Components 

n  Request batching 
 
 
 

n  Within-batch scheduling 
q  Parallelism aware 

8 



Request Batching 

n  Each memory request has a bit (marked) associated with it 

n  Batch formation: 
q  Mark up to Marking-Cap oldest requests per bank for each thread 
q  Marked requests constitute the batch 
q  Form a new batch when no marked requests are left 

n  Marked requests are prioritized over unmarked ones 
q  No reordering of requests across batches: no starvation, high fairness 

n  How to prioritize requests within a batch? 
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Within-Batch Scheduling 

n  Can use any existing DRAM scheduling policy 
q  FR-FCFS (row-hit first, then oldest-first) exploits row-buffer locality 

n  But, we also want to preserve intra-thread bank parallelism 
q  Service each thread’s requests back to back 

n  Scheduler computes a ranking of threads when the batch is 
formed 
q  Higher-ranked threads are prioritized over lower-ranked ones 
q  Improves the likelihood that requests from a thread are serviced in 

parallel by different banks 
n  Different threads prioritized in the same order across ALL banks 
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HOW? 



Thread Ranking	
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How to Rank Threads within a Batch 
n  Ranking scheme affects system throughput and fairness 

n  Maximize system throughput 
q  Minimize average stall-time of threads within the batch 

n  Minimize unfairness (Equalize the slowdown of threads) 
q  Service threads with inherently low stall-time early in the batch 
q  Insight: delaying memory non-intensive threads results in high 

slowdown 

n  Shortest stall-time first (shortest job first) ranking 
q  Provides optimal system throughput [Smith, 1956]* 

q  Controller estimates each thread’s stall-time within the batch 
q  Ranks threads with shorter stall-time higher 
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n  Maximum number of marked requests to any bank (max-bank-load) 
q  Rank thread with lower max-bank-load higher (~ low stall-time) 

n  Total number of marked requests (total-load) 
q  Breaks ties: rank thread with lower total-load higher 

Shortest Stall-Time First Ranking 
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Example Within-Batch Scheduling Order 

14 

T2 T3 T1 

T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 T1 T3 

T2 T2 T1 T2 

T1 T0 T2 T0 

T3 T2 T3 

T3 

T3 

T3 Baseline Scheduling  
Order (Arrival order) 

PAR-BS Scheduling 
Order 

T2 

T3 

T1 T0 

Bank 0 Bank 1 Bank 2 Bank 3 

T3 

T3 

T1 

T3 T2 T2 

T1 T2 T1 

T0 

T2 

T0 

T3 T2 

T3 

T3 

T3 

T3 

T0 T1 T2 T3 

4 4 5 7 

AVG: 5 bank access latencies AVG: 3.5 bank access latencies 

Stall times 

T0 T1 T2 T3 

1 2 4 7 Stall times 

Ti
m

e 

1 
2 

4 

6 

Ranking: T0 > T1 > T2 > T3 

1 
2 
3 
4 
5 
6 
7 

Ti
m

e 



Putting It Together: PAR-BS Scheduling Policy 
n  PAR-BS Scheduling Policy 

  (1) Marked requests first 
  (2) Row-hit requests first 
  (3) Higher-rank thread first (shortest stall-time first) 
  (4) Oldest first 

n  Three properties: 
q  Exploits row-buffer locality and intra-thread bank parallelism   
q  Work-conserving 

n  Services unmarked requests to banks without marked requests  

q  Marking-Cap is important 
n  Too small cap: destroys row-buffer locality 
n  Too large cap: penalizes memory non-intensive threads    

n  Many more trade-offs analyzed in the paper 
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Hardware Cost 

n  <1.5KB storage cost for 
q  8-core system with 128-entry memory request buffer 

n  No complex operations (e.g., divisions) 

n  Not on the critical path 
q  Scheduler makes a decision only every DRAM cycle 
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Unfairness on 4-, 8-, 16-core Systems 
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System Performance (Hmean-speedup) 
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PAR-BS Pros and Cons 

n  Upsides:  
q  Identifies the problem of bank parallelism destruction across 

multiple threads 
q  Simple mechanism 

n  Downsides: 
q  Does not always prioritize the latency-sensitive applications à 

lower overall throughput 
q  Implementation in multiple controllers needs coordination for 

best performance à too frequent coordination since batching 
is done frequently 
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ATLAS Memory Scheduler 
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ATLAS: Summary 

n  Goal: To maximize system performance 

n  Main idea: Prioritize the thread that has attained the least 
service from the memory controllers (Adaptive per-Thread 
Least Attained Service Scheduling) 
q  Rank threads based on attained service in the past time 

interval(s) 
q  Enforce thread ranking in the memory scheduler during the 

current interval 

n  Why it works: Prioritizes “light” (memory non-intensive) 
threads that are more likely to keep their cores busy 
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ATLAS Pros and Cons 
n  Upsides: 

q  Good at improving overall throughput (compute-intensive 
threads are prioritized)  

q  Low complexity 
q  Coordination among controllers happens infrequently 

n  Downsides: 
q  Lowest/medium ranked threads get delayed significantly à 

high unfairness 
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Achieving the Best of Both Worlds 
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Thread Cluster Memory Scheduling [Kim+ MICRO’10] 

1.   Group	
  threads	
  into	
  two	
  clusters	
  
2.   PrioriDze	
  non-­‐intensive	
  cluster	
  
3.   Different	
  policies	
  for	
  each	
  cluster	
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TCM Outline 
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TCM Outline 

32	
  

1.	
  Clustering	
  

2.	
  Between	
  	
  
Clusters	
  



Priori3ze	
  non-­‐intensive	
  cluster	
  

•  Increases	
  system	
  throughput	
  
– Non-­‐intensive	
  threads	
  have	
  greater	
  potenPal	
  for	
  
making	
  progress	
  

•  Does	
  not	
  degrade	
  fairness	
  
– Non-­‐intensive	
  threads	
  are	
  “light”	
  
– Rarely	
  interfere	
  with	
  intensive	
  threads	
  

Prioritization Between Clusters 

33	
  

>	
  
priority	
  



TCM Outline 
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TCM Outline 
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Why are Threads Different? 
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TCM Outline 
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TCM: Quantum-Based Operation 
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TCM: Scheduling Algorithm 
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TCM: Implementation Cost 
Required	
  storage	
  at	
  memory	
  controller	
  (24	
  cores)	
  
	
  
	
  
	
  
	
  
	
  
	
  
•  No	
  computaPon	
  is	
  on	
  the	
  criPcal	
  path	
  

44	
  

Thread	
  memory	
  behavior	
   Storage	
  

MPKI	
   ~0.2kb	
  

Bank-­‐level	
  parallelism	
   ~0.6kb	
  

Row-­‐buffer	
  locality	
   ~2.9kb	
  

Total	
   <	
  4kbits	
  



Previous Work 
FRFCFS	
  [Rixner	
  et	
  al.,	
  ISCA00]:	
  PrioriPzes	
  row-­‐buffer	
  hits	
  

–  Thread-­‐oblivious	
  è	
  Low	
  throughput	
  &	
  Low	
  fairness	
  

STFM	
  [Mutlu	
  et	
  al.,	
  MICRO07]:	
  Equalizes	
  thread	
  slowdowns	
  
–  Non-­‐intensive	
  threads	
  not	
  prioriPzed	
  è	
  Low	
  throughput	
  

PAR-­‐BS	
  [Mutlu	
  et	
  al.,	
  ISCA08]:	
  PrioriPzes	
  oldest	
  batch	
  of	
  requests	
  
while	
  preserving	
  bank-­‐level	
  parallelism	
  

–  Non-­‐intensive	
  threads	
  not	
  always	
  prioriPzed	
  è	
  Low	
  
throughput	
  

ATLAS	
  [Kim	
  et	
  al.,	
  HPCA10]:	
  PrioriPzes	
  threads	
  with	
  less	
  memory	
  
service	
  

– Most	
  intensive	
  thread	
  starves	
  è	
  Low	
  fairness	
  
45	
  



TCM: Throughput and Fairness 
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24	
  cores,	
  4	
  memory	
  controllers,	
  96	
  workloads	
  	
  

TCM,	
  a	
  heterogeneous	
  scheduling	
  policy,	
  
provides	
  best	
  fairness	
  and	
  system	
  throughput	
  



TCM: Fairness-Throughput Tradeoff 
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Operating System Support 
•  ClusterThreshold	
  is	
  a	
  tunable	
  knob	
  

– OS	
  can	
  trade	
  off	
  between	
  fairness	
  and	
  throughput	
  

•  Enforcing	
  thread	
  weights	
  
– OS	
  assigns	
  weights	
  to	
  threads	
  
– TCM	
  enforces	
  thread	
  weights	
  within	
  each	
  cluster	
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Conclusion 
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•  No	
  previous	
  memory	
  scheduling	
  algorithm	
  provides	
  
both	
  high	
  system	
  throughput	
  and	
  fairness	
  
– Problem:	
  They	
  use	
  a	
  single	
  policy	
  for	
  all	
  threads	
  

•  TCM	
  groups	
  threads	
  into	
  two	
  clusters	
  
1.  PrioriPze	
  non-­‐intensive	
  cluster	
  è	
  throughput	
  
2.  Shuffle	
  prioriPes	
  in	
  intensive	
  cluster	
  è	
  fairness	
  
3.  Shuffling	
  should	
  favor	
  nice	
  threads	
  è	
  fairness	
  

•  TCM	
  provides	
  the	
  best	
  system	
  throughput	
  and	
  fairness	
  



TCM Pros and Cons 
n  Upsides: 

q  Provides both high fairness and high performance 

n  Downsides: 
q  Scalability to large buffer sizes? 
q  Effectiveness in a heterogeneous system? 
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Staged Memory Scheduling 

 
 
 
 

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu, 
"Staged Memory Scheduling: Achieving High Performance  

and Scalability in Heterogeneous Systems” 
39th International Symposium on Computer Architecture (ISCA),  

Portland, OR, June 2012.  

SMS ISCA 2012 Talk 



SMS: Executive Summary 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 
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SMS: Staged Memory Scheduling 
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SMS: Staged Memory Scheduling 
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Putting Everything Together 
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Complexity 
n  Compared to a row hit first scheduler, SMS consumes* 

q  66% less area 
q  46% less static power 

n  Reduction comes from: 
q  Monolithic scheduler à stages of simpler schedulers 
q  Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision) 
q  Each stage has simpler buffers (FIFO instead of out-of-order) 
q  Each stage has a portion of the total buffer size (buffering is 

distributed across stages) 

56 * Based on a Verilog model using 180nm library 



Performance at Different GPU Weights 
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n  At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

Performance at Different GPU Weights 
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Strong Memory Service Guarantees 
n  Goal: Satisfy performance bounds/requirements in the 

presence of shared main memory, prefetchers, 
heterogeneous agents, and hybrid memory 

n  Approach:  
q  Develop techniques/models to accurately estimate the 

performance of an application/agent in the presence of 
resource sharing 

q  Develop mechanisms (hardware and software) to enable the 
resource partitioning/prioritization needed to achieve the 
required performance levels for all applications 

q  All the while providing high system performance  
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MISE:  
Providing Performance Predictability  

in Shared Main Memory Systems 

Lavanya Subramanian, Vivek Seshadri,  
Yoongu Kim, Ben Jaiyen, Onur Mutlu 
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Unpredictable Application Slowdowns 
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Need for Predictable Performance 
n  There is a need for predictable performance 

q  When multiple applications share resources  
q  Especially if some applications require performance 

guarantees 

n  Example 1: In mobile systems 
q  Interactive applications run with non-interactive applications 
q  Need to guarantee performance for interactive applications 
 

n  Example 2: In server systems 
q  Different users’ jobs consolidated onto the same server 
q  Need to provide bounded slowdowns to critical jobs  
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Our Goal: Predictable performance  

in the presence of memory interference 
 



Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
 

 



Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Slowdown: Definition 

65 

Shared

Alone

 ePerformanc
 ePerformanc Slowdown =



Key Observation 1 
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Shared

Alone

 Rate ServiceRequest 
 Rate ServiceRequest Slowdown =

Shared

Alone

 ePerformanc
 ePerformanc Slowdown =

Easy 

Harder 

Intel Core i7, 4 cores 
Mem. Bandwidth: 8.5 GB/s 



Key Observation 2 
Request Service Rate Alone (RSRAlone) of an application can be 

estimated by giving the application highest priority in 
accessing memory  

 
Highest priority à Little interference 

(almost as if the application were run alone) 
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Key Observation 2 
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Memory Interference-induced Slowdown Estimation 
(MISE) model for memory bound applications 
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Key Observation 3 
n  Memory-bound application 
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Key Observation 3 
n  Non-memory-bound application 
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Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Interval Based Operation 

73 

time 

Interval 

α

Estimate  
slowdown 

Interval 

Estimate  
slowdown 

n  Measure RSRShared,  
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αn  Measure RSRShared,  
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Measuring RSRShared and α 
n  Request Service Rate Shared (RSRShared) 

q  Per-core counter to track number of requests serviced 
q  At the end of each interval, measure 

n  Memory Phase Fraction (  ) 
q  Count number of stall cycles at the core 
q  Compute fraction of cycles stalled for memory 
 

Length Interval
Serviced Requests ofNumber   RSRShared =

α
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Estimating Request Service Rate Alone (RSRAlone) 

n  Divide each interval into shorter epochs 
 
n  At the beginning of each epoch 

q  Memory controller randomly picks an application as the 
highest priority application 

 
n  At the end of an interval, for each application, estimate  

PriorityHigh Given n Applicatio Cycles ofNumber 
EpochsPriority High  During Requests ofNumber RSR

           

Alone =
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Goal: Estimate RSRAlone 

How: Periodically give each application 
highest priority in accessing memory  



Inaccuracy in Estimating RSRAlone 
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Accounting for Interference in RSRAlone Estimation 

n  Solution: Determine and remove interference cycles from 
RSRAlone calculation 

 
 
n  A cycle is an interference cycle if 

q  a request from the highest priority application is 
waiting in the request buffer and 

q  another application’s request was issued previously 
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Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



MISE Model: Putting it All Together  
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Previous Work on Slowdown Estimation 
n  Previous work on slowdown estimation 

q  STFM (Stall Time Fair Memory) Scheduling [Mutlu+, MICRO ‘07]  

q  FST (Fairness via Source Throttling) [Ebrahimi+, ASPLOS ‘10] 

q  Per-thread Cycle Accounting [Du Bois+, HiPEAC ‘13] 

n  Basic Idea: 
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Hard 
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Two Major Advantages of MISE Over STFM 

n  Advantage 1: 
q  STFM estimates alone performance while an 

application is receiving interference à Hard 
q  MISE estimates alone performance while giving an 

application the highest priority à Easier 
 

n  Advantage 2: 
q  STFM does not take into account compute phase for 

non-memory-bound applications  
q  MISE accounts for compute phase à Better accuracy 
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Methodology 
n  Configuration of our simulated system 

q  4 cores 
q  1 channel, 8 banks/channel 
q  DDR3 1066 DRAM  
q  512 KB private cache/core 

 
n  Workloads 

q  SPEC CPU2006  
q  300 multi programmed workloads 
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Quantitative Comparison 
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Comparison to STFM 
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Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Providing “Soft” Slowdown Guarantees 
n  Goal 

1. Ensure QoS-critical applications meet a prescribed 
slowdown bound 

2. Maximize system performance for other applications 
 

n  Basic Idea 
q  Allocate just enough bandwidth to QoS-critical 

application 
q  Assign remaining bandwidth to other applications 
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MISE-QoS: Mechanism to Provide Soft QoS 

n  Assign an initial bandwidth allocation to QoS-critical application 

n  Estimate slowdown of QoS-critical application using the MISE 
model 

n  After every N intervals 

q  If slowdown > bound B +/- ε, increase bandwidth allocation 

q  If slowdown < bound B +/- ε, decrease bandwidth allocation 

n  When slowdown bound not met for N intervals 
q  Notify the OS so it can migrate/de-schedule jobs 
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Methodology 
n  Each application (25 applications in total) considered the 

QoS-critical application 
n  Run with 12 sets of co-runners of different memory 

intensities 
n  Total of 300 multiprogrammed workloads 
n  Each workload run with 10 slowdown bound values 
n  Baseline memory scheduling mechanism 

q  Always prioritize QoS-critical application  
 [Iyer+, SIGMETRICS 2007] 

q  Other applications’ requests scheduled in FRFCFS order 
 [Zuravleff +, US Patent 1997, Rixner+, ISCA 2000] 
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A Look at One Workload 

90 

0 

0.5 

1 

1.5 

2 

2.5 

3 

leslie3d hmmer lbm omnetpp 

Sl
ow

do
w

n AlwaysPrioritize 
MISE-QoS-10/1 
MISE-QoS-10/3 
MISE-QoS-10/5 
MISE-QoS-10/7 
MISE-QoS-10/9 

QoS-critical non-QoS-critical 

MISE is effective in  
1.  meeting the slowdown bound for the QoS-

critical application  
2.  improving performance of non-QoS-critical 

applications 

Slowdown Bound = 10  Slowdown Bound = 3.33  Slowdown Bound = 2  



Effectiveness of MISE in Enforcing QoS 
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Performance of Non-QoS-Critical Applications 
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Higher performance when bound is loose 
 

When slowdown bound is 10/3  
MISE-QoS improves system performance by 10%    



Outline 
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1. Estimate Slowdown 
q Key Observations 
q  Implementation 
q MISE Model: Putting it All Together 
q Evaluating the Model 

2. Control Slowdown 
q Providing Soft Slowdown Guarantees 
q Minimizing Maximum Slowdown 

 



Other Results in the Paper 
n  Sensitivity to model parameters 

q  Robust across different values of model parameters 

n  Comparison of STFM and MISE models in enforcing soft 
slowdown guarantees 
q  MISE significantly more effective in enforcing guarantees 

 
n  Minimizing maximum slowdown 

q  MISE improves fairness across several system configurations 
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Summary 
n  Uncontrolled memory interference slows down  

applications unpredictably 
n  Goal: Estimate and control slowdowns 
n  Key contribution 

q  MISE: An accurate slowdown estimation model  
q  Average error of MISE: 8.2% 

n  Key Idea 
q  Request Service Rate is a proxy for performance 
q  Request Service Rate Alone estimated by giving an application highest 

priority in accessing memory 

n  Leverage slowdown estimates to control slowdowns 
q  Providing soft slowdown guarantees 
q  Minimizing maximum slowdown 
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Memory Scheduling  
for Parallel Applications 

 
 
 
 

Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,  
Chang Joo Lee, Onur Mutlu, and Yale N. Patt,  

"Parallel Application Memory Scheduling" 
Proceedings of the 44th International Symposium on Microarchitecture (MICRO),  

Porto Alegre, Brazil, December 2011. Slides (pptx)  



Handling Interference in Parallel Applications 

n  Threads in a multithreaded application are inter-dependent 
n  Some threads can be on the critical path of execution due 

to synchronization; some threads are not 
n  How do we schedule requests of inter-dependent threads to 

maximize multithreaded application performance? 

n  Idea: Estimate limiter threads likely to be on the critical path and 
prioritize their requests; shuffle priorities of non-limiter threads 
to reduce memory interference among them [Ebrahimi+, MICRO’11] 

n  Hardware/software cooperative limiter thread estimation: 
n  Thread executing the most contended critical section 
n  Thread that is falling behind the most in a parallel for loop 
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QoS-Aware Memory Systems: 
The Dumb Resources Approach 

 
 
 
 



Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA’13] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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Fairness via Source Throttling 
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"Fairness via Source Throttling: A Configurable and High-Performance  

Fairness Substrate for Multi-Core Memory Systems"  
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),  

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)  
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The Problem with “Smart Resources” 

n  Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other 

n  Explicitly coordinating mechanisms for different 
resources requires complex implementation 

n  How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner? 
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An Alternative Approach: Source Throttling 

n  Manage inter-thread interference at the cores, not at the 
shared resources 

n  Dynamically estimate unfairness in the memory system  
n  Feed back this information into a controller 
n  Throttle cores’ memory access rates accordingly 

q  Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

q  E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12. 
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Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
interference for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
    (limit injection rate and parallelism) 
 2-Throttle up App-slowest 
} 

FST 
Unfairness Estimate 

App-slowest 
App-interfering 

｜
 
⎨

 
｜

 
⎧

 

⎩
 Slowdown 

Estimation 

Time 
Interval 1 Interval 2 Interval 3 

Runtime 
Unfairness 
Evaluation 

Dynamic 
Request Throttling 

Fairness via Source Throttling (FST) [ASPLOS’10] 



System Software Support 
 
n  Different fairness objectives can be configured by       

system software 
q  Keep maximum slowdown in check 

n  Estimated Max Slowdown < Target Max Slowdown 

q  Keep slowdown of particular applications in check to achieve a 
particular performance target 
n  Estimated Slowdown(i) < Target Slowdown(i) 

n  Support for thread priorities 
q  Weighted Slowdown(i) =  

        Estimated Slowdown(i) x Weight(i) 
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Source Throttling Results: Takeaways 

n  Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching 
q  Decisions made at the memory scheduler and the cache 

sometimes contradict each other 

n  Neither source throttling alone nor “smart resources” alone 
provides the best performance 

n  Combined approaches are even more powerful  
q  Source throttling and resource-based interference control 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA’13] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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Memory Channel Partitioning 

 
 
 
 

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,  
"Reducing Memory Interference in Multicore Systems via  

Application-Aware Memory Channel Partitioning” 
 44th International Symposium on Microarchitecture (MICRO),  

Porto Alegre, Brazil, December 2011. Slides (pptx)  

MCP Micro 2011 Talk 



n  Memory Channel Partitioning 
q  Idea: System software maps badly-interfering applications’ pages 

to different channels [Muralidhara+, MICRO’11] 

 
n  Separate data of low/high intensity and low/high row-locality applications 
n  Especially effective in reducing interference of threads with “medium” and 

“heavy” memory intensity  
q  11% higher performance over existing systems (200 workloads) 

Another Way to Reduce Memory Interference 
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Memory Channel Partitioning (MCP) Mechanism 

1. Profile applications 
2. Classify applications into groups 
3. Partition channels between application groups 
4. Assign a preferred channel to each application 
5. Allocate application pages to preferred channel 
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Hardware 

System 
Software 



1. Profile Applications 
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n  Hardware counters collect application memory 
access characteristics 

n  Memory access characteristics 
q  Memory intensity: 
 Last level cache Misses Per Kilo Instruction (MPKI) 

q  Row-buffer locality: 
 Row-buffer Hit Rate (RBH) - percentage of 
accesses that hit in the row buffer 



2. Classify Applications 
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Test MPKI 
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High Low 

Low Intensity 

Test RBH 
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Integrated Memory Partitioning and Scheduling (IMPS) 

n  Always prioritize very low memory-intensity 
applications in the memory scheduler 

 
 
n  Use memory channel partitioning to mitigate 

interference between other applications 
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Hardware Cost 
n  Memory Channel Partitioning (MCP) 

q  Only profiling counters in hardware 
q  No modifications to memory scheduling logic 
q  1.5 KB storage cost for a 24-core, 4-channel system 
 

n  Integrated Memory Partitioning and Scheduling (IMPS) 
q  A single bit per request 
q  Scheduler prioritizes based on this single bit 
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Comparison to Previous Scheduling Policies 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA’13] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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Application-to-Core Mapping to Reduce Interference 

n  Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh 
Kumar, and Mani Azimi, 
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"  
Proceedings of the 
19th International Symposium on High-Performance Computer 
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx) 

n  Key ideas: 
q  Cluster threads to memory controllers (to reduce across chip interference) 
q  Isolate interference-sensitive (low-intensity) applications in a separate 

cluster (to reduce interference from high-intensity applications) 
q  Place applications that benefit from memory bandwidth closer to the 

controller 
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Application-to-Core Mapping 
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System Performance 
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System performance improves by 17% 



Network Power 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] [Subramanian+, HPCA’13] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] [Nychis+ SIGCOMM’12] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores [Das+ HPCA’13] 
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Summary: Memory QoS Approaches and Techniques 

n  Approaches: Smart vs. dumb resources 
q  Smart resources: QoS-aware memory scheduling 
q  Dumb resources: Source throttling; channel partitioning 
q  Both approaches are effective in reducing interference 
q  No single best approach for all workloads 

n  Techniques: Request/thread scheduling, source throttling, 
memory partitioning 
q  All approaches are effective in reducing interference 
q  Can be applied at different levels: hardware vs. software 
q  No single best technique for all workloads 

n  Combined approaches and techniques are the most powerful 
q  Integrated Memory Channel Partitioning and Scheduling [MICRO’11] 

123 MCP Micro 2011 Talk 



Summary: Memory Interference and QoS 

n  QoS-unaware memory à  
    uncontrollable and unpredictable system 
 
n  Providing QoS awareness improves performance, 

predictability, fairness, and utilization of the memory system 

n  Discussed many new techniques to: 
q  Minimize memory interference 
q  Provide predictable performance 

n  Many new research ideas needed for integrated techniques 
and closing the interaction with software 
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Course Agenda 
n  Scalable Many-Core Memory Systems  

q  July 15-19, 2013 

n  Topic 1: Main memory basics, DRAM scaling 
n  Topic 2: Emerging memory technologies and hybrid memories 
n  Topic 3: Main memory interference and QoS  
n  Topic 4 (unlikely): Cache management  
n  Topic 5 (unlikely): Interconnects 

n  Major Overview Reading: 
q  Mutlu, “Memory Scaling: A Systems Architecture Perspective,” 

IMW 2013. 
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Readings for Topic 3 (Memory QoS) 
n  Moscibroda and Mutlu, “Memory Performance Attacks,” USENIX 

Security 2007. 
n  Mutlu and Moscibroda, “Stall-Time Fair Memory Access Scheduling,” 

MICRO 2007. 
n  Mutlu and Moscibroda, “Parallelism-Aware Batch Scheduling,” ISCA 

2008, IEEE Micro 2009. 
n  Kim et al., “ATLAS: A Scalable and High-Performance Scheduling 

Algorithm for Multiple Memory Controllers,” HPCA 2010. 
n  Kim et al., “Thread Cluster Memory Scheduling,” MICRO 2010, IEEE 

Micro 2011. 
n  Muralidhara et al., “Memory Channel Partitioning,” MICRO 2011. 
n  Ausavarungnirun et al., “Staged Memory Scheduling,” ISCA 2012. 
n  Subramanian et al., “MISE: Providing Performance Predictability and 

Improving Fairness in Shared Main Memory Systems,” HPCA 2013. 
n  Das et al., “Application-to-Core Mapping Policies to Reduce Memory 

System Interference in Multi-Core Systems,” HPCA 2013. 
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Readings for Topic 3 (Memory QoS) 
n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS 2010, ACM 

TOCS 2012. 
n  Lee et al., “Prefetch-Aware DRAM Controllers,” MICRO 2008, IEEE TC 

2011. 
n  Ebrahimi et al., “Parallel Application Memory Scheduling,” MICRO 2011. 
n  Ebrahimi et al., “Prefetch-Aware Shared Resource Management for 

Multi-Core Systems,” ISCA 2011. 
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Course Materials and Beyond 

n  Website for Course Slides and Papers 
q  http://users.ece.cmu.edu/~omutlu/acaces2013-memory.html 
q  http://users.ece.cmu.edu/~omutlu  
q  Lecture notes and readings (for all 5 topics) 
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You Can Contact Me Any Time 

n  My Contact Information 
q  Onur Mutlu 
q  onur@cmu.edu 
q  http://users.ece.cmu.edu/~omutlu  
q  +1-512-658-0891 (my cell phone) 
q  You can contact me any time. 
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Thank You! 
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Scalable Many-Core Memory Systems 
Topic 3: Memory Interference and  

QoS-Aware Memory Systems 

Prof. Onur Mutlu 
http://www.ece.cmu.edu/~omutlu 

onur@cmu.edu 
HiPEAC ACACES Summer School 2013 

July 19, 2013 

 
 



Additional Material 
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Two Works 

n  Reetuparna Das, Rachata Ausavarungnirun, Onur Mutlu, Akhilesh 
Kumar, and Mani Azimi, 
"Application-to-Core Mapping Policies to Reduce Memory 
System Interference in Multi-Core Systems"  
Proceedings of the 
19th International Symposium on High-Performance Computer 
Architecture (HPCA), Shenzhen, China, February 2013. Slides (pptx) 

n  Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin, Chang Joo Lee, 
Onur Mutlu, and Yale N. Patt,  
"Parallel Application Memory Scheduling" 
Proceedings of the 44th International Symposium on Microarchitecture 
(MICRO), Porto Alegre, Brazil, December 2011. Slides (pptx)  
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Application-to-Core Mapping Policies  
to Reduce Memory System Interference 

Reetuparna Das*  Rachata Ausavarungnirun$  Onur Mutlu$   
Akhilesh Kumar§    Mani Azimi§ 

 

*University of Michigan    $Carnegie Mellon University        §Intel 



Multi-Core to Many-Core 

Multi-Core Many-Core 
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Many-Core On-Chip Communication 
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Task Scheduling 
n  Traditional 

    When to schedule a task? – Temporal 
 

n  Many-Core 
    When to schedule a task? – Temporal 
+ Where to schedule a task? – Spatial 
 

n   Spatial scheduling impacts performance of memory 
hierarchy 
q  Latency and interference in interconnect, memory, caches 
 

137 



Problem: Spatial Task Scheduling 

Applications Cores 

How to map applications to cores? 
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Challenges in Spatial Task Scheduling 

Applications Cores 

How to reduce destructive interference between applications?  

How to reduce communication distance?  

139 

How to prioritize applications to improve throughput?  



Application-to-Core Mapping 
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Step 1 — Clustering 
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Inefficient data mapping to memory and caches 

Memory  
Controller 



Step 1 — Clustering 

Improved Locality 
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Reduced Interference 

Cluster 0 Cluster 2 

Cluster 1 Cluster 3 



Step 1 — Clustering 
n  Clustering memory accesses 

q  Locality aware page replacement policy (cluster-CLOCK) 
n  When allocating free page, give preference to pages 

belonging to the cluster’s memory controllers (MCs) 
n  Look ahead “N” pages beyond the default replacement 

candidate to find page belonging to cluster’s MC 

n  Clustering cache accesses 
q  Private caches automatically enforce clustering  
q  Shared caches can use Dynamic Spill Receive* mechanism 

143 *Qureshi et al, HPCA 2009 



Step 2 — Balancing 

Heavy 

Light 

Applications Cores 

144 

Too much load in clusters with heavy applications 



Step 2 — Balancing 

Is this the best we can do? Let’s take a look at application characteristics 

Heavy 

Light 

Applications Cores 

145 

Better bandwidth utilization 



Application Types 

146 （c） PHD Comics 



Application Types 

Identify and isolate sensitive applications while ensuring load balance  
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Step 3 — Isolation 

Heavy 

Light 

Applications Cores 

Sensitive 

Medium 

Isolate sensitive applications to a cluster 
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Balance load for remaining applications across clusters 



Step 3 — Isolation 
n  How to estimate sensitivity? 

q  High Miss— high misses per kilo instruction (MPKI) 
q  Low MLP— high relative stall cycles per miss (STPM) 
q  Sensitive if MPKI > Threshold and relative STPM is high 

n  Whether to or not to allocate cluster to sensitive 
applications? 

n  How to map sensitive applications to their own 
cluster? 
q  Knap-sack algorithm 
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Step 4 — Radial Mapping 

Heavy 

Light 

Applications Cores 

Sensitive 

Medium 

Map applications that benefit most from  
being close to memory controllers close to these resources 
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Step 4 — Radial Mapping 
n  What applications benefit most from being close to the 

memory controller?  
q  High memory bandwidth demand 
q  Also affected by network performance 
q  Metric => Stall time per thousand instructions 
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Putting It All Together 
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Balancing Radial Mapping Isolation Clustering 

Inter-Cluster  
Mapping 
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Improve Locality 
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Evaluation Methodology 
n  60-core system 

q  x86 processor model based on Intel Pentium M 
q  2 GHz processor, 128-entry instruction window 
q  32KB private L1 and 256KB per core private L2 caches 
q  4GB DRAM, 160 cycle access latency, 4 on-chip DRAM controllers 
q  CLOCK page replacement algorithm 

n  Detailed Network-on-Chip model  
q  2-stage routers (with speculation  and look ahead routing) 
q  Wormhole switching (4 flit data packets) 
q  Virtual channel flow control (4 VCs, 4 flit buffer depth) 
q  8x8 Mesh (128 bit bi-directional channels) 

153 



Configurations 
n  Evaluated configurations 

q  BASE—Random core mapping 
q  BASE+CLS—Baseline with clustering 
q  A2C 

n  Benchmarks 
q  Scientific, server, desktop benchmarks (35 applications) 
q  128 multi-programmed workloads 
q  4 categories based on aggregate workload MPKI 

n  MPKI500, MPKI1000, MPKI1500, MPKI2000  
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System Performance 
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System performance improves by 17% 



Network Power 
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Average network power consumption reduces by 52% 



Summary of Other Results 
n  A2C can reduce page fault rate 
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Summary of Other Results 
n  A2C can reduce page faults 
n  Dynamic A2C also improves system performance 

q  Continuous “Profiling” + “Enforcement” intervals 
q  Retains clustering benefits 
q  Migration overheads are minimal 

n  A2C complements application-aware packet 
prioritization* in NoCs 

n  A2C is effective for a variety of system parameters 
q  Number of and placement of memory controllers 
q  Size and organization of last level cache  

 

158 *Das et al, MICRO 2009 



Conclusion 
n  Problem: Spatial scheduling for Many-Core processors 

q  Develop fundamental insights for core mapping policies 

n  Solution: Application-to-Core (A2C) mapping policies 

n  A2C improves system performance, system fairness 
and network power significantly 
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Background 

n  Memory requests from different 
cores interfere in shared memory 
resources 

n  Multi-programmed workloads 
o  System Performance and Fairness 

n  A single multi-threaded 
application? 
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Memory System Interference in  
A Single Multi-Threaded Application 

n  Inter-dependent threads from the same 
application slow each other down 

n  Most importantly the critical path of execution  
can be significantly slowed down 

n  Problem and goal are very different from 
interference between independent applications 
o  Interdependence between threads 
o  Goal: Reduce execution time of a single application 
o  No notion of fairness among the threads  

of the same application 
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Potential in 
A Single Multi-Threaded Application 
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 If all main-memory related interference is ideally 
eliminated, execution time is reduced by 45% on average 
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Outline 

n  Problem Statement 
n  Parallel Application Memory Scheduling 
n  Evaluation 
n  Conclusion 
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Outline 

n  Problem Statement 
n  Parallel Application Memory Scheduling 
n  Evaluation 
n  Conclusion 
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Parallel Application Memory Scheduler 

n  Identify the set of threads likely to be on the 
critical path as limiter threads 
o  Prioritize requests from limiter threads  
 

n  Among limiter threads: 
o  Prioritize requests from latency-sensitive threads 

(those with lower MPKI) 

n  Among non-limiter threads: 
o  Shuffle priorities of non-limiter threads to reduce 

inter-thread memory interference  
o  Prioritize requests from threads falling behind 

others in a parallel for-loop 
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Runtime System Limiter Identification 

n  Contended critical sections are often on the critical path of 
execution 
 

n  Extend runtime system to identify thread executing  
the most contended critical section as the limiter thread 
o  Track total amount of time all threads wait on  

each lock in a given interval 
o  Identify the lock with largest waiting time as  

the most contended 
o  Thread holding the most contended lock is a limiter and 

this information is exposed to the memory controller 
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Prioritizing Requests from  
Limiter Threads 
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n  Among limiter threads: 
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Time-based classification of threads 
as latency- vs. BW-sensitive 

173	



Critical Section	



Barrier	



Non-Critical Section	



Waiting for Sync	



Thread D	



Thread C	



Thread B	



Thread A	



Time	



Barrier	

Time	


 Interval 1	



Time 	


Interval 2	



Thread Cluster Memory Scheduling (TCM) [Kim et. al., MICRO’10]	





Terminology 

n  A code-segment is defined as: 
o  A program region between two consecutive 

synchronization operations 
o  Identified with a 2-tuple: 

<beginning IP, lock address> 

n  Important for classifying threads as  
latency- vs. bandwidth-sensitive 
o  Time-based vs. code-segment based 

classification 
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Code-segment based classification of 
threads as latency- vs. BW-sensitive 
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Parallel Application Memory Scheduler 

n  Identify the set of threads likely to be on the 
critical path as limiter threads 
o  Prioritize requests from limiter threads  
 

n  Among limiter threads: 
o  Prioritize requests from latency-sensitive threads 

(those with lower MPKI) 

n  Among non-limiter threads: 
o  Shuffle priorities of non-limiter threads to reduce 

inter-thread memory interference  
o  Prioritize requests from threads falling behind 

others in a parallel for-loop 
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Shuffling Priorities of  
Non-Limiter Threads 

n  Goal:  
o  Reduce inter-thread interference among a set of threads 

with the same importance in terms of our estimation of 
the critical path 

o  Prevent any of these threads from becoming  
new bottlenecks 

n  Basic Idea:  
o  Give each thread a chance to be high priority in the memory 

system and exploit intra-thread bank parallelism and  
row-buffer locality 

o  Every interval assign a set of random priorities to the 
threads and shuffle priorities at the end of the interval 
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Shuffling Priorities of  
Non-Limiter Threads 
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Outline 

n  Problem Statement 
n  Parallel Application Memory Scheduling 
n  Evaluation 
n  Conclusion 
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Evaluation Methodology 
n  x86 cycle accurate simulator 

n  Baseline processor configuration 
o  Per-core 

-  4-wide issue, out-of-order, 64 entry ROB 

o  Shared (16-core system) 
-  128 MSHRs 
-  4MB, 16-way L2 cache 

o  Main Memory 
-  DDR3 1333 MHz 
-  Latency of 15ns per command (tRP, tRCD, CL) 
-  8B wide core to memory bus 
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PAMS Evaluation 
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7%	



Thread criticality predictors (TCP) [Bhattacherjee+, ISCA’09]	
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Sensitivity to system parameters 
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Conclusion 
n  Inter-thread main memory interference within a  

multi-threaded application increases execution time 
 
n  Parallel Application Memory Scheduling (PAMS) improves a 

single multi-threaded application’s performance by 
o  Identifying a set of threads likely to be on the critical path and 

prioritizing requests from them 
o  Periodically shuffling priorities of non-likely critical threads to 

reduce inter-thread interference among them 
 

n  PAMS significantly outperforms  
o  Best previous memory scheduler designed for  

multi-programmed workloads 
o  A memory scheduler that uses a state-of-the-art  

thread criticality predictor (TCP)  
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Related Works 



Some Related Past Work 
n  That I could not cover… 

n  How to handle prefetch requests in a QoS-aware multi-core 
memory system? 
q  Prefetch-aware shared resource management, ISCA’11. 
q  Prefetch-aware memory controllers, MICRO’08, IEEE-TC’11. 
q  Coordinated control of multiple prefetchers, MICRO’09. 

n  How to design QoS mechanisms in the interconnect? 
q  Topology-aware, scalable QoS, ISCA’11, IEEE Micro’12. 
q  Slack-based packet scheduling, ISCA’10, IEEE Micro’11. 
q  Efficient bandwidth guarantees, MICRO’09. 
q  Application-aware request prioritization, MICRO’09. 
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Some Issues in Cache Design 

 
 
 
 



DRAM-Aware LLC Writeback 
n  Problem 1: Writebacks to DRAM interfere with reads and 

cause additional performance penalty 
q  Write-to-read turnaround time in DRAM bus 
q  Write-recovery latency in DRAM bank 
q  Change of row buffer à reduced row-buffer locality for read requests 

n  Problem 2: Writebacks that occur once in a while have low 
row buffer locality 

n  Idea: When evicting a dirty cache block to a row, 
proactively search the cache for other dirty blocks to the 
same row à evict them à write to DRAM in a batch 
q  Improves row buffer locality 
q  Reduces write-to-read switching penalties on DRAM bus 
q  Improves performance on both single-core and multi-core systems 
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More Information 
n  Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. 

Patt,  
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-Caused 
Interference in Memory Systems" 
HPS Technical Report, TR-HPS-2010-002, April 2010.  
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DRAM-Aware Cache Design: 
An Example of Resource Coordination 

 
 
 
 



DRAM-Aware Cache Design 

n  Coordination of cache policies with memory controllers 

n  Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and 
Yale N. Patt,  
"DRAM-Aware Last-Level Cache Writeback: Reducing Write-
Caused Interference in Memory Systems" 
HPS Technical Report, TR-HPS-2010-002, April 2010.  

n  Chang Joo Lee, Eiman Ebrahimi, Veynu Narasiman, Onur Mutlu, and 
Yale N. Patt,  
"DRAM-Aware Last-Level Cache Replacement" 
HPS Technical Report, TR-HPS-2010-007, December 2010.  
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Write-Caused Interference:  
Read-Write Switching 

•  Read-write switching penalty for requests to any bank   

Data bus: 

Idle (~10 processor cycles) 

Data A 

Idle (~85 processor cycles) 

Data C 

Frequent read-write switching incurs many idle cycles 

Data B 

Command: 
Read A Write C Read B 

Data bus: 

Data A 

Data B Command: 
Read A Read B 

•  Row-hit read-to-read (write-to-write) to any bank:  
back-to-back data transfer   
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No precharge  
(~60 processor cycles) 

Write-Caused Interference: 
Write-to-Row-Conflict 

•  Row-conflict after read (in the same bank)  

Row-conflict after a write causes more idle cycles 

Command: 
Read A Precharge 

Data bus: 
Data A 

Idle (~120 processor cycles) 
Data B 

Activate B  Read or write B 

Command: 
Write A Precharge 

Data bus: 
Data A Data B 

Activate B Read or write B 

•  Row-conflict after write (in the same bank)  

Idle (~225 processor cycles) 

Row-conflict 

Row-conflict 



 
7/19/13 
 

 
194 

Write-Caused Interference 

•  Read-Write Switching 
– Frequent read-write switching incurs many

 idle cycles 

•  Write-to-Row-Conflict 
– A row-conflict after a write causes more idl

e cycles 

Generating many row-hit writes rather than  
row-conflict writes is preferred 
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LRU vs. Interference-Aware  
Replacement 

Read A Write B 

Row B 
Row Buffer in Bank 0 

DRAM 

All requests are to the same cache set 

DRAM 
Controller 

Read 
buffer 

Write 
buffer 

Dirty C Set X 

Ø  Conventional LRU:   
 

Reading A 
Row-conflict after write penalty 

Writing B Writing C 
Servicing 

Write B (row-hit), Write C (row-conflict) 

Clean  

Clean A  

Clean  Dirty B  

Write C 

Last-level cache 

Less recently used 



 
7/19/13 
 

 
196 

LRU vs. Interference-Aware  
Replacement 

Read A Write B 

Row B 
Row Buffer for writes 

DRAM 

All requests are to the same cache set 

DRAM 
Controller 

Read 
buffer 

Write 
buffer 

Dirty C 

Last-level cache 

Set X 

Ø  Conventional LRU:   
 

Less recently used 

Ø  Interference-aware:  

Reading A 
Row-conflict after write penalty 

Writing B Writing C 

Writing B 

Reading A 
Writing B 

Reduced idle cycles 

Servicing 
Write B (row-hit), Write C (row-conflict) 

Clean  

Clean A  

Clean  Dirty B  

Write B 

Write B (row-hit), Write B (row-hit) 

A simple policy can reduce write service time 
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Performance of  
DRAM-Aware Replacement 
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Outline 
•  Problem 
•  Solutions 

–  Prefetch-Aware DRAM Controller  
–  BLP-Aware Request Issue Policies 
–  DRAM-Aware Cache Replacement 
–  DRAM-Aware Writeback  

•  Combination of Solutions 
•  Related Work 
•  Conclusion 
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DRAM-Aware Writeback 

•  Write-caused interference-aware replacem
ent is not enough 
–   Row-hit writebacks are sent only when a repl

acement occurs 
•  Lose opportunities to service more writes quickly 

•  To minimize write-caused interference, 
proactively clean row-hit dirty lines 
→ Reads are serviced without write-caused inter
ference for a longer period 
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DRAM-Aware Writeback 

1. When a dirty line is evicted for the last-level       
cache, store its address  

2. Using the stored address, search all possible     
sets for row-hit dirty lines and clean them           
whenever the cache bank is idle 
 

•  Many row-hit writes (up to the row size) are m    
serviced quickly 
–  Reads can be serviced for a longer time without being

 interfered with by writes 
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Performance of  
DRAM-Aware Writeback 
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ATLAS Memory Scheduler 

 
 
 
 

Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-Balter, 
"ATLAS: A Scalable and High-Performance  

Scheduling Algorithm for Multiple Memory Controllers"  
16th International Symposium on High-Performance Computer Architecture (HPCA),  

Bangalore, India, January 2010. Slides (pptx)  

ATLAS HPCA 2010 Talk 



Rethinking Memory Scheduling 
A thread alternates between two states (episodes) 

§ Compute episode: Zero outstanding memory requests è High IPC 
§ Memory episode: Non-zero outstanding memory requests è Low IPC 
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Goal: Minimize time spent in memory episodes 
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How to Minimize Memory Episode Time 

§   Minimizes time spent in memory episodes across all threads 
§   Supported by queueing theory: 

§  Shortest-Remaining-Processing-Time scheduling is optimal in 
single-server queue 

Remaining length of a memory episode? 

 Prioritize thread whose memory episode will end the soonest  

Time 

O
ut

st
an

di
ng

  
m

em
or

y 
re

qu
es

ts
 

How much longer? 
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Predicting Memory Episode Lengths 

Large attained service è Large expected remaining service 
 

Q: Why? 
A: Memory episode lengths are Pareto distributed… 
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We discovered: past is excellent predictor for future 
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Pareto Distribution of Memory Episode Lengths 
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401.bzip2 

Favoring least-attained-service memory episode  
 = Favoring memory episode which will end the soonest 
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Memory episode lengths of  
SPEC benchmarks 

Pareto distribution 

Attained service correlates with 
remaining service 

The longer an episode has lasted 
è The longer it will last further 



Prioritize the job with  
shortest-remaining-processing-time 

 
Provably optimal 

§  Remaining service: Correlates with attained service 

§  Attained service: Tracked by per-thread counter 

Least Attained Service (LAS) Memory Scheduling 
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Prioritize the memory episode with 
least-remaining-service 

Our Approach Queueing Theory 

Least-attained-service (LAS) scheduling: 

Minimize memory episode time 

However, LAS does not consider  
long-term thread behavior 

Prioritize the memory episode with 
least-attained-service 



Long-Term Thread Behavior 
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Mem. 
episode 

Thread 1 Thread 2 

Short-term 
thread behavior 

Mem. 
episode 

Long-term 
thread behavior 

Compute  
episode 

Compute 
episode 

> 
priority 

< 
priority 

Prioritizing Thread 2 is more beneficial:  
results in very long stretches of compute episodes 

Short memory episode Long memory episode 



Quantum-Based Attained Service of a Thread 
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We divide time into large, fixed-length intervals:  
quanta (millions of cycles)  
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LAS Thread Ranking 

Each thread’s attained service (AS) is tracked by MCs 
 

ASi = A thread’s AS during only the i-th quantum 

Each thread’s TotalAS computed as: 
 

TotalASi = α · TotalASi-1 + (1- α) · ASi 
High α è More bias towards history 

 
Threads are ranked, favoring threads with lower TotalAS 

Threads are serviced according to their ranking 

During a quantum 

End of a quantum 

Next quantum 
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ATLAS Scheduling Algorithm 

ATLAS 
§  Adaptive per-Thread Least Attained Service 
 
§  Request prioritization order 
 1. Prevent starvation: Over threshold request 
 2. Maximize performance: Higher LAS rank 
 3. Exploit locality: Row-hit request 
 4. Tie-breaker: Oldest request 
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How to coordinate MCs to agree upon a consistent ranking? 
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System throughput = ∑ Speedup 

ATLAS consistently provides higher system throughput than 
all previous scheduling algorithms 
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Properties of ATLAS 

§  LAS-ranking 
§  Bank-level parallelism 
§  Row-buffer locality 
 
§  Very infrequent coordination 

§  Scale attained service with 
thread weight (in paper) 

 
§  Low complexity: Attained 

service requires a single 
counter per thread in each MC 
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§  Maximize system performance 
 
 
 
§  Scalable to large number of controllers 
 
 
 

§  Configurable by system software 

Goals Properties of ATLAS 



Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-­‐Robin	
  shuffling	
  
2.  Niceness-­‐Aware	
  shuffling	
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Shuffling: Round-Robin vs. Niceness-Aware 
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Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-­‐Robin	
  shuffling	
  
2.  Niceness-­‐Aware	
  shuffling	
  

217	
  

Most	
  priori3zed	
  

ShuffleInterval	
  

Priority	
  

Time	
  

Nice	
  thread	
  

Least	
  nice	
  thread	
  

GOOD:	
  Each	
  thread	
  
priori+zed	
  once	
  

A	
  
B	
  
C	
  
D	
  

D	
   C	
   B	
   A	
   D	
  



Shuffling: Round-Robin vs. Niceness-Aware 
1.  Round-­‐Robin	
  shuffling	
  
2.  Niceness-­‐Aware	
  shuffling	
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TCM Outline 
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Staged Memory Scheduling 

 
 
 
 

Rachata Ausavarungnirun, Kevin Chang, Lavanya Subramanian, Gabriel Loh, and Onur Mutlu, 
"Staged Memory Scheduling: Achieving High Performance  

and Scalability in Heterogeneous Systems” 
39th International Symposium on Computer Architecture (ISCA),  
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Executive Summary 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer sizes 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 
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n  All cores contend for limited off-chip bandwidth 
q  Inter-application interference degrades system performance 
q  The memory scheduler can help mitigate the problem 

n  How does the memory scheduler deliver good performance 
and fairness? 

Main Memory is a Bottleneck 
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n  Prioritize row-buffer-hit requests [Rixner+, ISCA’00] 

q  To maximize memory bandwidth 

n  Prioritize latency-sensitive applications [Kim+, HPCA’10] 

q  To maximize system throughput 

n  Ensure that no application is starved [Mutlu and Moscibroda, 
MICRO’07] 

q  To minimize unfairness 

Three Principles of Memory Scheduling 
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Memory Scheduling for CPU-GPU Systems 
n  Current and future systems integrate a GPU along with 

multiple cores 

n  GPU shares the main memory with the CPU cores 

n  GPU is much more (4x-20x) memory-intensive than CPU 

n  How should memory scheduling be done when GPU is 
integrated on-chip? 
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n  GPU occupies a significant portion of the request buffers 

q  Limits the MC’s visibility of the CPU applications’ differing 
memory behavior à can lead to a poor scheduling decision 

Introducing the GPU into the System 
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Naïve Solution: Large Monolithic Buffer 
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n  A large buffer requires more complicated logic to: 
q  Analyze memory requests (e.g., determine row buffer hits) 
q  Analyze application characteristics 
q  Assign and enforce priorities  

n  This leads to high complexity, high power, large die area 

Problems with Large Monolithic Buffer 
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More Complex Memory Scheduler 
 
 



n  Design a new memory scheduler that is: 
q  Scalable to accommodate a large number of requests 
q  Easy to implement 
q  Application-aware 
q  Able to provide high performance and fairness, especially in 

heterogeneous CPU-GPU systems 

Our Goal 
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Key Functions of a Memory Controller 
n  Memory controller must consider three different things 

concurrently when choosing the next request: 
 
1) Maximize row buffer hits 

q  Maximize memory bandwidth 

2) Manage contention between applications 
q  Maximize system throughput and fairness 

3) Satisfy DRAM timing constraints 
 
n  Current systems use a centralized memory controller 

design to accomplish these functions  
q  Complex, especially with large request buffers 
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Key Idea: Decouple Tasks into Stages 
n  Idea: Decouple the functional tasks of the memory controller 

q  Partition tasks across several simpler HW structures (stages) 

1) Maximize row buffer hits 
q  Stage 1: Batch formation  
q  Within each application, groups requests to the same row into 

batches 

2) Manage contention between applications 
q  Stage 2: Batch scheduler  
q  Schedules batches from different applications 

3) Satisfy DRAM timing constraints 
q  Stage 3: DRAM command scheduler 
q  Issues requests from the already-scheduled order to each bank 
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SMS: Staged Memory Scheduling 
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SMS: Staged Memory Scheduling 
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Stage 1: Batch Formation 
n  Goal: Maximize row buffer hits 
 
n  At each core, we want to batch requests that access the 

same row within a limited time window 

n  A batch is ready to be scheduled under two conditions 
1) When the next request accesses a different row  
2) When the time window for batch formation expires 

n  Keep this stage simple by using per-core FIFOs 
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Stage 1: Batch Formation Example 
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SMS: Staged Memory Scheduling 
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Stage 2: Batch Scheduler 
n  Goal: Minimize interference between applications 

n  Stage 1 forms batches within each application 
n  Stage 2 schedules batches from different applications 

q  Schedules the oldest batch from each application 

n  Question: Which application’s batch should be scheduled 
next? 

n  Goal: Maximize system performance and fairness 
q  To achieve this goal, the batch scheduler chooses between 

two different policies 
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Stage 2: Two Batch Scheduling Algorithms 
n  Shortest Job First (SJF) 

q  Prioritize the applications with the fewest outstanding memory 
requests because they make fast forward progress 

q  Pro: Good system performance and fairness 
q  Con: GPU and memory-intensive applications get deprioritized 
 
 

n  Round-Robin (RR) 
q  Prioritize the applications in a round-robin manner to ensure 

that memory-intensive applications can make progress 
q  Pro: GPU and memory-intensive applications are treated fairly 
q  Con: GPU and memory-intensive applications significantly 

slow down others 
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Stage 2: Batch Scheduling Policy 
n  The importance of the GPU varies between systems and 

over time à Scheduling policy needs to adapt to this 

n  Solution: Hybrid Policy 
n  At every cycle: 

q  With probability p : Shortest Job First à Benefits the CPU 
q  With probability 1-p : Round-Robin à Benefits the GPU 

n  System software can configure p based on the importance/
weight of the GPU 
q  Higher GPU importance à Lower p value 
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SMS: Staged Memory Scheduling 
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Stage 3: DRAM Command Scheduler 
n  High level policy decisions have already been made by: 

q  Stage 1: Maintains row buffer locality 
q  Stage 2: Minimizes inter-application interference 

n  Stage 3: No need for further scheduling 
n  Only goal: service requests while satisfying DRAM 

timing constraints 

n  Implemented as simple per-bank FIFO queues 
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Complexity 
n  Compared to a row hit first scheduler, SMS consumes* 

q  66% less area 
q  46% less static power 

n  Reduction comes from: 
q  Monolithic scheduler à stages of simpler schedulers 
q  Each stage has a simpler scheduler (considers fewer 

properties at a time to make the scheduling decision) 
q  Each stage has simpler buffers (FIFO instead of out-of-order) 
q  Each stage has a portion of the total buffer size (buffering is 

distributed across stages) 
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Methodology 
n  Simulation parameters 

q  16 OoO CPU cores, 1 GPU modeling AMD Radeon™ 5870 
q  DDR3-1600 DRAM 4 channels, 1 rank/channel, 8 banks/channel 

n  Workloads 
q  CPU: SPEC CPU 2006 
q  GPU: Recent games and GPU benchmarks 
q  7 workload categories based on the memory-intensity of CPU 

applications 
à Low memory-intensity (L) 
à Medium memory-intensity (M)  
à High memory-intensity (H) 
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Comparison to Previous Scheduling Algorithms 
n  FR-FCFS [Rixner+, ISCA’00] 

q  Prioritizes row buffer hits 
q  Maximizes DRAM throughput 
q  Low multi-core performance ç Application unaware 

n  ATLAS [Kim+, HPCA’10] 
q  Prioritizes latency-sensitive applications 
q  Good multi-core performance 
q  Low fairness ç Deprioritizes memory-intensive applications 

n  TCM [Kim+, MICRO’10] 
q  Clusters low and high-intensity applications and treats each 

separately 
q  Good multi-core performance and fairness 
q  Not robust ç Misclassifies latency-sensitive applications 
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Evaluation Metrics 
n  CPU performance metric: Weighted speedup 

 

n  GPU performance metric: Frame rate speedup 

n  CPU-GPU system performance: CPU-GPU weighted speedup 
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Evaluated System Scenarios 
n  CPU-focused system 

n  GPU-focused system 
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Evaluated System Scenario: CPU Focused 
n  GPU has low weight (weight = 1) 

n  Configure SMS such that p, SJF probability, is set to 0.9 
q  Mostly uses SJF batch scheduling à prioritizes latency-

sensitive applications (mainly CPU) 
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n  SJF batch scheduling policy allows latency-sensitive 
applications to get serviced as fast as possible 
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Evaluated System Scenario: GPU Focused 
n  GPU has high weight (weight = 1000) 

n  Configure SMS such that p, SJF probability, is set to 0 
q  Always uses round-robin batch scheduling à prioritizes 

memory-intensive applications (GPU) 
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n  Round-robin batch scheduling policy schedules GPU 
requests more frequently  
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Performance at Different GPU Weights 

256 

0 

0.2 

0.4 

0.6 

0.8 

1 

0.001 0.1 10 1000 

Sy
st

em
 P

er
fo

rm
an

ce
 

GPUweight 

Previous Best 
Best Previous  
Scheduler 

ATLAS TCM FR-FCFS 



n  At every GPU weight, SMS outperforms the best previous 
scheduling algorithm for that weight 

Performance at Different GPU Weights 
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Additional Results in the Paper 
n  Fairness evaluation 

q  47.6% improvement over the best previous algorithms 

n  Individual CPU and GPU performance breakdowns 

n  CPU-only scenarios 
q  Competitive performance with previous algorithms 

n  Scalability results 
q  SMS’ performance and fairness scales better than previous 

algorithms as the number of cores and memory channels 
increases 

n  Analysis of SMS design parameters 
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Conclusion 
n  Observation: Heterogeneous CPU-GPU systems require 

memory schedulers with large request buffers 

n  Problem: Existing monolithic application-aware memory 
scheduler designs are hard to scale to large request buffer size 

n  Solution: Staged Memory Scheduling (SMS)  
decomposes the memory controller into three simple stages: 
1) Batch formation: maintains row buffer locality 
2) Batch scheduler: reduces interference between applications 
3) DRAM command scheduler: issues requests to DRAM 

n  Compared to state-of-the-art memory schedulers: 
q  SMS is significantly simpler and more scalable 
q  SMS provides higher performance and fairness 
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Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 

261 



Fairness via Source Throttling 

 
 
 
 

Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N. Patt, 
"Fairness via Source Throttling: A Configurable and High-Performance  

Fairness Substrate for Multi-Core Memory Systems"  
15th Intl. Conf. on Architectural Support for Programming Languages and Operating Systems (ASPLOS),  

pages 335-346, Pittsburgh, PA, March 2010. Slides (pdf)  
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The Problem with “Smart Resources” 

n  Independent interference control mechanisms in 
caches, interconnect, and memory can contradict 
each other 

n  Explicitly coordinating mechanisms for different 
resources requires complex implementation 

n  How do we enable fair sharing of the entire 
memory system by controlling interference in a 
coordinated manner? 

264 



An Alternative Approach: Source Throttling 

n  Manage inter-thread interference at the cores, not at the 
shared resources 

n  Dynamically estimate unfairness in the memory system  
n  Feed back this information into a controller 
n  Throttle cores’ memory access rates accordingly 

q  Whom to throttle and by how much depends on performance 
target (throughput, fairness, per-thread QoS, etc) 

q  E.g., if unfairness > system-software-specified target then 
throttle down core causing unfairness &  
throttle up core that was unfairly treated 

n  Ebrahimi et al., “Fairness via Source Throttling,” ASPLOS’10, TOCS’12. 
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Fairness via Source Throttling (FST) 

n  Two components (interval-based) 

n  Run-time unfairness evaluation (in hardware) 
q  Dynamically estimates the unfairness in the memory system 
q  Estimates which application is slowing down which other 

n  Dynamic request throttling (hardware or software) 
q  Adjusts how aggressively each core makes requests to the 

shared resources 
q  Throttles down request rates of cores causing unfairness 

n  Limit miss buffers, limit injection rate 
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Estimating System Unfairness 
 
n  Unfairness =  

n  Slowdown of application i =  

n  How can            be estimated in shared mode? 

n              is the number of extra cycles it takes  
application i to execute due to interference 

n    

270 

Max{Slowdown i} over all applications i 

Min{Slowdown i} over all applications i 

Shared 
Ti 

Ti 
Alone 

Ti 
Alone 

Ti 
Excess 

Ti 
Shared 

= Ti 
Alone 

- Ti 
Excess 



Tracking Inter-Core Interference 
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Tracking Inter-Core Interference 
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Runtime 
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Dynamic 
Request Throttling 

1- Estimating system unfairness  
2- Find app. with the highest 
slowdown (App-slowest) 
3- Find app. causing most 
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if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
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} 
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Tracking Inter-Core Interference 

n  To identify App-interfering, for each core i 
q  FST separately tracks interference caused by each core j 

( j ≠ i ) 
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Fairness via Source Throttling (FST) 
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Runtime Unfairness	


Evaluation	



Dynamic	


Request Throttling	



1- Estimating system unfairness  
2- Find app. with the highest slowdown 
(App-slowest) 
3- Find app. causing most interference 
for App-slowest  
(App-interfering) 

if (Unfairness Estimate >Target)  
{ 
 1-Throttle down App-interfering 
 2-Throttle up App-slowest 
} 

FST	


Unfairness Estimate	



App-slowest	


App-interfering	





Dynamic Request Throttling 
 
n  Goal: Adjust how aggressively each core makes requests to 

the shared memory system  

n  Mechanisms: 
q  Miss Status Holding Register (MSHR) quota 

n  Controls the number of concurrent requests accessing shared 
resources from each application 

q  Request injection frequency 
n  Controls how often memory requests are issued to the last level 

cache from the MSHRs 
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Dynamic Request Throttling 
 
n  Throttling level assigned to each core determines both 

MSHR quota and request injection rate 
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Throttling level	

 MSHR quota	

 Request Injection Rate	



100%	

 128	

 Every cycle	



50%	

 64	

 Every other cycle	



25%	

 32	

 Once every 4 cycles	



10%	

 12	

 Once every 10 cycles	



5%	

 6	

 Once every 20 cycles	



4%	

 5	

 Once every 25 cycles	



3%	

 3	

 Once every 30 cycles	



2%	

 2	

 Once every 50 cycles	


Total # of 
MSHRs: 128 



FST at Work 
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Time	
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Runtime Unfairness	


Evaluation	
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System Software Support 
 
n  Different fairness objectives can be configured by       

system software 
q  Keep maximum slowdown in check 

n  Estimated Max Slowdown < Target Max Slowdown 

q  Keep slowdown of particular applications in check to achieve a 
particular performance target 
n  Estimated Slowdown(i) < Target Slowdown(i) 

n  Support for thread priorities 
q  Weighted Slowdown(i) =  

        Estimated Slowdown(i) x Weight(i) 
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FST Hardware Cost 

n  Total storage cost required for 4 cores is ~12KB 

n  FST does not require any structures or logic that are on the 
processor’s critical path 
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FST Evaluation Methodology 

n  x86 cycle accurate simulator 
n  Baseline processor configuration 

q  Per-core 
n  4-wide issue, out-of-order, 256 entry ROB 

q  Shared (4-core system) 
n  128 MSHRs  
n  2 MB, 16-way L2 cache 

q  Main Memory 
n  DDR3 1333 MHz 
n  Latency of 15ns per command (tRP, tRCD, CL) 
n  8B wide core to memory bus 

282 



FST: System Unfairness Results 
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44.4%	



36%	





FST: System Performance Results 
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284 

25.6%	



14%	
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Source Throttling Results: Takeaways 

n  Source throttling alone provides better performance than a 
combination of “smart” memory scheduling and fair caching 
q  Decisions made at the memory scheduler and the cache 

sometimes contradict each other 

n  Neither source throttling alone nor “smart resources” alone 
provides the best performance 

n  Combined approaches are even more powerful  
q  Source throttling and resource-based interference control 
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FST ASPLOS 2010 Talk 



Designing QoS-Aware Memory Systems: Approaches 

n  Smart resources: Design each shared resource to have a 
configurable interference control/reduction mechanism 
q  QoS-aware memory controllers [Mutlu+ MICRO’07] [Moscibroda+, Usenix Security’07] 

[Mutlu+ ISCA’08, Top Picks’09] [Kim+ HPCA’10] [Kim+ MICRO’10, Top Picks’11] [Ebrahimi+ ISCA’11, 
MICRO’11] [Ausavarungnirun+, ISCA’12] 

q  QoS-aware interconnects [Das+ MICRO’09, ISCA’10, Top Picks ’11] [Grot+ MICRO’09, 
ISCA’11, Top Picks ’12] 

q  QoS-aware caches 

n  Dumb resources: Keep each resource free-for-all, but reduce/
control interference by injection control or data mapping 
q  Source throttling to control access to memory system [Ebrahimi+ ASPLOS’10, 

ISCA’11, TOCS’12] [Ebrahimi+ MICRO’09] [Nychis+ HotNets’10] 

q  QoS-aware data mapping to memory controllers [Muralidhara+ MICRO’11] 

q  QoS-aware thread scheduling to cores 
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Memory Channel Partitioning 

 
 
 
 

Sai Prashanth Muralidhara, Lavanya Subramanian, Onur Mutlu, Mahmut Kandemir, and Thomas Moscibroda,  
"Reducing Memory Interference in Multicore Systems via  

Application-Aware Memory Channel Partitioning” 
 44th International Symposium on Microarchitecture (MICRO),  

Porto Alegre, Brazil, December 2011. Slides (pptx)  

MCP Micro 2011 Talk 



Outline 
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Goal:  
Mitigate  

Inter-Application Interference  

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 



Previous Approach 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Goal:  
Mitigate  

Inter-Application Interference  



Application-Aware Memory Request Scheduling 

n  Monitor application memory access 
characteristics 

 
n  Rank applications based on memory access 

characteristics 
 
n  Prioritize requests at the memory controller, 

based on ranking 
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thread	
  

Threads in the 
system 

thread	
  

thread	
  

thread	
  

thread	
  

thread	
  

thread	
  

Non-
intensive  
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Intensive 
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thread	
  

thread	
  

thread	
  

Memory-non-intensive  

Memory-intensive  

Prioritized 

higher 
priority 

higher 
priority 

Throughput	
  

Fairness	
  

An Example: Thread Cluster Memory Scheduling 

Figure: Kim et al., MICRO 2010 
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Application-Aware Memory Request Scheduling 
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Advantages 
n  Reduces interference between applications by  

 request reordering 
n  Improves system performance 

Disadvantages 
n  Requires modifications to memory scheduling logic for 

q  Ranking 
q  Prioritization 

n  Cannot completely eliminate interference by request 
reordering  



Our Approach 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Goal:  
Mitigate  

Inter-Application Interference  



Observation: Modern Systems Have Multiple Channels 

A new degree of freedom 
Mapping data across multiple channels 
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Data Mapping in Current Systems 
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Partitioning Channels Between Applications 
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Overview: Memory Channel Partitioning (MCP)  

n  Goal 
q  Eliminate harmful interference between applications 

 
n  Basic Idea 

q  Map the data of badly-interfering applications to different 
channels 

 
n  Key Principles 

q  Separate low and high memory-intensity applications 
q  Separate low and high row-buffer locality applications 
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Key Insight 1: Separate by Memory Intensity 
High memory-intensity applications interfere with low 

memory-intensity applications in shared memory channels 
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Key Insight 2: Separate by Row-Buffer Locality 
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High row-buffer locality applications interfere with low  
row-buffer locality applications in shared memory channels 
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Memory Channel Partitioning (MCP) Mechanism 

1. Profile applications 
2. Classify applications into groups 
3. Partition channels between application groups 
4. Assign a preferred channel to each application 
5. Allocate application pages to preferred channel 
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Software 



1. Profile Applications 
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n  Hardware counters collect application memory 
access characteristics 

n  Memory access characteristics 
q  Memory intensity: 
 Last level cache Misses Per Kilo Instruction (MPKI) 

q  Row-buffer locality: 
 Row-buffer Hit Rate (RBH) - percentage of 
accesses that hit in the row buffer 



2. Classify Applications 
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3. Partition Channels Among Groups: Step 1 
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3. Partition Channels Among Groups: Step 2 
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4. Assign Preferred Channel to Application 
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Channel 1 

Low Intensity 

Channel 2 

MPKI: 1 

MPKI: 3 

MPKI: 4 

MPKI: 1 

MPKI: 3 

MPKI: 4 

n  Assign each application a preferred channel from 
its group’s allocated channels 

n  Distribute applications to channels such that 
group’s bandwidth demand is balanced across its 
channels 

 
 



5. Allocate Page to Preferred Channel 

n  Enforce channel preferences                    
computed in the previous step 

 
n  On a page fault, the operating system 

q  allocates page to preferred channel if free page 
available in preferred channel 

q  if free page not available, replacement policy tries to 
allocate page to preferred channel 

q  if it fails, allocate page to another channel 
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Interval Based Operation 
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time 

Current Interval Next Interval 

1. Profile applications 

2. Classify applications into groups 
3. Partition channels between groups 
4. Assign preferred channel to applications 

5. Enforce channel preferences 



Integrating Partitioning and Scheduling 
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Previous Approach: 
Application-Aware Memory 

Request Scheduling 

Our First Approach: 
Application-Aware Memory 

Channel Partitioning 

Our Second Approach: 
Integrated Memory 

Partitioning and Scheduling 

Goal:  
Mitigate  

Inter-Application Interference  



Observations 
 
n  Applications with very low memory-intensity rarely 

access memory                                                         
à Dedicating channels to them results in precious 
memory bandwidth waste 

n  They have the most potential to keep their cores busy  
à We would really like to prioritize them 

n  They interfere minimally with other applications            
à Prioritizing them does not hurt others 
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Integrated Memory Partitioning and Scheduling (IMPS) 

n  Always prioritize very low memory-intensity 
applications in the memory scheduler 

 
 
n  Use memory channel partitioning to mitigate 

interference between other applications 
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Hardware Cost 
n  Memory Channel Partitioning (MCP) 

q  Only profiling counters in hardware 
q  No modifications to memory scheduling logic 
q  1.5 KB storage cost for a 24-core, 4-channel system 
 

n  Integrated Memory Partitioning and Scheduling (IMPS) 
q  A single bit per request 
q  Scheduler prioritizes based on this single bit 
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Methodology 
n  Simulation Model 

q  24 cores, 4 channels, 4 banks/channel 
q  Core Model 

n  Out-of-order, 128-entry instruction window 
n  512 KB L2 cache/core 

q  Memory Model – DDR2 
 

n  Workloads 
q  240 SPEC CPU 2006 multiprogrammed workloads  

(categorized based on memory intensity) 
 

n  Metrics 
q  System Performance 
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Previous Work on Memory Scheduling 
n  FR-FCFS [Zuravleff et al., US Patent 1997, Rixner et al., ISCA 2000] 

q  Prioritizes row-buffer hits and older requests 
q  Application-unaware 
 
 

n  ATLAS [Kim et al., HPCA 2010] 

q  Prioritizes applications  with low memory-intensity 
 
 

n  TCM [Kim et al., MICRO 2010] 

q  Always prioritizes low memory-intensity applications 
q  Shuffles request priorities of high memory-intensity applications 
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Comparison to Previous Scheduling Policies 
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IMPS improves performance regardless of scheduling policy 
Highest improvement over FRFCFS as IMPS designed for FRFCFS  

Interaction with Memory Scheduling 
Averaged over 240 workloads 



MCP Summary 
n  Uncontrolled inter-application interference in main memory 

degrades system performance 

n  Application-aware memory channel partitioning (MCP) 
q  Separates the data of badly-interfering applications              

to different channels, eliminating interference  
 

n  Integrated memory partitioning and scheduling (IMPS) 
q  Prioritizes very low memory-intensity applications in scheduler 
q  Handles other applications’ interference by partitioning 
 

n  MCP/IMPS provide better performance than application-
aware memory request scheduling at lower hardware cost 
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