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ABSTRACT
In this paper, we present network-on-chip (NoC) design and con-
trast it to traditional network design, highlighting similarities and
differences between the two. As an initial case study, we examine
network congestion in bufferless NoCs. We show that congestion
manifests itself differently in a NoC than in traditional networks.
Network congestion reduces system throughput in congested work-
loads for smaller NoCs (16 and 64 nodes), and limits the scalability
of larger bufferless NoCs (256 to 4096 nodes) even when traffic has
locality (e.g., when an application’s required data is mapped nearby
to its core in the network). We propose a new source throttling-
based congestion control mechanism with application-level aware-
ness that reduces network congestion to improve system perfor-
mance. Our mechanism improves system performance by up to
28% (15% on average in congested workloads) in smaller NoCs,
achieves linear throughput scaling in NoCs up to 4096 cores (attain-
ing similar performance scalability to a NoC with large buffers),
and reduces power consumption by up to 20%. Thus, we show an
effective application of a network-level concept, congestion con-
trol, to a class of networks – bufferless on-chip networks – that has
not been studied before by the networking community.

Categories and Subject Descriptors
C.1.2 [Computer Systems Organization]: Multiprocessors – In-
terconnection architectures; C.2.1 [Network Architecture and De-
sign]: Packet-switching networks

Keywords On-chip networks, multi-core, congestion control

1. INTRODUCTION
One of the most important trends in computer architecture in the

past decade is the move towards multiple CPU cores on a single
chip. Common chip multiprocessor (CMP) sizes today range from
2 to 8 cores, and chips with hundreds or thousands of cores are
likely to be commonplace in the future [9, 55]. Real chips exist
already with 48 cores [34], 100 cores [66], and even a research
prototype with 1000 cores [68]. While increased core count has
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allowed processor chips to scale without experiencing complexity
and power dissipation problems inherent in larger individual cores,
new challenges also exist. One such challenge is to design an ef-
ficient and scalable interconnect between cores. Since the inter-
connect carries all inter-cache and memory traffic (i.e., all data ac-
cessed by the programs running on chip), it plays a critical role in
system performance and energy efficiency.

Unfortunately, the traditional bus-based, crossbar-based, and other
non-distributed designs used in small CMPs do not scale to the
medium- and large-scale CMPs in development. As a result, the
architecture research community is moving away from traditional
centralized interconnect structures, instead using interconnects with
distributed scheduling and routing. The resulting Networks on Chip
(NoCs) connect cores, caches and memory controllers using packet
switching routers [15], and have been arranged both in regular 2D
meshes and a variety of denser topologies [29, 41]. The resulting
designs are more network-like than conventional small-scale multi-
core designs. These NoCs must deal with many problems, such as
scalability [28], routing [31,50], congestion [10,27,53,65], and pri-
oritization [16, 17, 30], that have traditionally been studied by the
networking community rather than the architecture community.

While different from traditional processor interconnects, these
NoCs also differ from existing large-scale computer networks and
even from the traditional multi-chip interconnects used in large-
scale parallel computing machines [12, 45]. On-chip hardware im-
plementation constraints lead to a different tradeoff space for NoCs
compared to most traditional off-chip networks: chip area/space,
power consumption, and implementation complexity are first-class
considerations. These constraints make it hard to build energy-
efficient network buffers [50], make the cost of conventional rout-
ing and arbitration [14] a more significant concern, and reduce the
ability to over-provision the network for performance. These and
other characteristics give NoCs unique properties, and have impor-
tant ramifications on solutions to traditional networking problems
in a new context.

In this paper, we explore the adaptation of conventional network-
ing solutions to address two particular issues in next-generation
bufferless NoC design: congestion management and scalability.
Recent work in the architecture community considers bufferless
NoCs as a serious alternative to conventional buffered NoC designs
due to chip area and power constraints1 [10,20,21,25,31,49,50,67].
While bufferless NoCs have been shown to operate efficiently un-
der moderate workloads and limited network sizes (up to 64 cores),
we find that with higher-intensity workloads and larger network
sizes (e.g., 256 to 4096 cores), the network operates inefficiently

1Existing prototypes show that NoCs can consume a substantial portion of
system power (28% in the Intel 80-core Terascale chip [33], 36% in the MIT
RAW chip [63], and 10% in the Intel Single-Chip Cloud Computer [34]).



and does not scale effectively. As a consequence, application-level
system performance can suffer heavily.

Through evaluation, we find that congestion limits the efficiency
and scalability of bufferless NoCs, even when traffic has locality,
e.g., as a result of intelligent compiler, system software, and hard-
ware data mapping techniques. Unlike traditional large-scale com-
puter networks, NoCs experience congestion in a fundamentally
different way due to unique properties of both NoCs and bufferless
NoCs. While traditional networks suffer from congestion collapse
at high utilization, a NoC’s cores have a self-throttling property
which avoids this congestion collapse: slower responses to mem-
ory requests cause pipeline stalls, and so the cores send requests
less quickly in a congested system, hence loading the network less.
However, congestion does cause the system to operate at less than
its peak throughput, as we will show. In addition, congestion in the
network can lead to increasing inefficiency as the network is scaled
to more nodes. We will show that addressing congestion yields
better performance scalability with size, comparable to a more ex-
pensive NoC with buffers that reduce congestion.

We develop a new congestion-control mechanism suited to the
unique properties of NoCs and of bufferless routing. First, we
demonstrate how to detect impending congestion in the NoC by
monitoring injection starvation, or the inability to inject new pack-
ets. Second, we show that simply throttling all applications when
congestion occurs is not enough: since different applications re-
spond differently to congestion and increases/decreases in network
throughput, the network must be application-aware. We thus define
an application-level metric called Instructions-per-Flit which dis-
tinguishes between applications that should be throttled and those
that should be given network access to maximize system perfor-
mance. By dynamically throttling according to periodic measure-
ments of these metrics, we reduce congestion, improve system per-
formance, and allow the network to scale more effectively. In sum-
mary, we make the following contributions:
• We discuss key differences between NoCs (and bufferless NoCs

particularly) and traditional networks, to frame NoC design chal-
lenges and research goals from a networking perspective.

• From a study of scalability and congestion, we find that the
bufferless NoC’s scalability and efficiency are limited by con-
gestion. In small networks, congestion due to network-intensive
workloads limits throughput. In large networks, even with lo-
cality (placing application data nearby to its core in the net-
work), congestion still causes application throughput reductions.

• We propose a new low-complexity and high performance con-
gestion control mechanism in a bufferless NoC, motivated by
ideas from both networking and computer architecture. To our
knowledge, this is the first work that comprehensively exam-
ines congestion and scalability in bufferless NoCs and provides
an effective solution based on the properties of such a design.

• Using a large set of real-application workloads, we demon-
strate improved performance for small (4x4 and 8x8) bufferless
NoCs. Our mechanism improves system performance by up
to 28% (19%) in a 16-core (64-core) system with a 4x4 (8x8)
mesh NoC, and 15% on average in congested workloads.

• In large (256 – 4096 core) networks, we show that congestion
limits scalability, and hence that congestion control is required
to achieve linear performance scalability with core count, even
when most network traversals are local. At 4096 cores, conges-
tion control yields a 50% throughput improvement, and up to a
20% reduction in power consumption.

2. NOC BACKGROUND AND UNIQUE
CHARACTERISTICS

We first provide a brief background on on-chip NoC architec-
tures, bufferless NoCs, and their unique characteristics in com-
parison to traditional and historical networks. We refer the reader
to [8, 14] for an in-depth discussion.

2.1 General NoC Design and Characteristics
In a chip multiprocessor (CMP) architecture that is built on a

NoC substrate, the NoC typically connects the processor nodes and
their private caches with the shared cache banks and memory con-
trollers (Figure 1). A NoC might also carry other control traffic,
such as interrupt and I/O requests, but it primarily exists to service
cache miss requests. On a cache miss, a core will inject a mem-
ory request packet into the NoC addressed to the core whose cache
contains the needed data, or the memory controller connected to
the memory bank with the needed data (for example). This be-
gins a data exchange over the NoC according to a cache coherence
protocol (which is specific to the implementation). Eventually, the
requested data is transmitted over the NoC to the original requester.

Design Considerations: A NoC must service such cache miss
requests quickly, as these requests are typically on the user pro-
gram’s critical path. There are several first-order considerations in
NoC design to achieve the necessary throughput and latency for this
task: chip area/space, implementation complexity, and power. As
we provide background, we will describe how these considerations
drive the NoC’s design and endow it with unique properties.

Network Architecture / Topology: A high-speed router at each
node connects the core to its neighbors by links. These links may
form a variety of topologies (e.g., [29, 40, 41, 43]). Unlike tradi-
tional off-chip networks, an on-chip network’s topology is stati-
cally known and usually very regular (e.g., a mesh). The most
typical topology is the two-dimensional (2D) Mesh [14], shown
in Figure 1. The 2D Mesh is implemented in several commercial
processors [66, 70] and research prototypes [33, 34, 63]. In this
topology, each router has 5 input and 5 output channels/ports: one
from each of its four neighbors and one from the network interface
(NI). Depending on the router architecture and the arbitration and
routing policies (which impact the number of pipelined arbitration
stages), each packet spends between 1 cycle (in a highly optimized
best case [50]) and 4 cycles at each router before being forwarded.

Because the network size is relatively small and the topology
is statically known, global coordination and coarse-grain network-
wide optimizations are possible and often less expensive than dis-
tributed mechanisms. For example, our proposed congestion con-
trol mechanism demonstrates the effectiveness of such global co-
ordination and is very cheap (§6.5). Note that fine-grained control
(e.g., packet routing) must be based on local decisions, because a
router processes a packet in only a few cycles. At a scale of thou-
sands of processor clock cycles or more, however, a central con-
troller can feasibly observe the network state and adjust the system.

Data Unit and Provisioning: A NoC conveys packets, which
are typically either request/control messages or data messages. These
packets are partitioned into flits: a unit of data conveyed by one link
in one cycle; the smallest independently-routed unit of traffic.2 The
width of a link and flit varies, but 128 bits is typical. For NoC per-
formance reasons, links typically have a latency of only one or two
cycles, and are pipelined to accept a new flit every cycle.

2In many virtual-channel buffered routers [13], the smallest inde-
pendent routing unit is the packet, and flits serve only as the unit for
link and buffer allocation (i.e., flow control). We follow the design
used by other bufferless NoCs [20, 22, 36, 50] in which flits carry
routing information due to possible deflections.



Unlike conventional networks, NoCs cannot as easily overpro-
vision bandwidth (either through wide links or multiple links), be-
cause they are limited by power and on-chip area constraints. The
tradeoff between bandwidth and latency is different in NoCs. Low
latency is critical for efficient operation (because delays in packets
cause core pipeline stalls), and the allowable window of in-flight
data is much smaller than in a large-scale network because buffer-
ing structures are smaller. NoCs also lack a direct correlation be-
tween network throughput and overall system throughput. As we
will show (§4), for the same network throughput, choosing differ-
ently which L1 cache misses are serviced in the network can affect
system throughput (instructions per cycle per node) by up to 18%.

Routing: Because router complexity is a critical design con-
sideration in on-chip networks, current implementations tend to
use much more simplistic routing mechanisms than traditional net-
works. The most common routing paradigm is x-y routing. A flit is
first routed along the x-direction until the destination’s y-coordinate
is reached; then routed to the destination in the y-direction.

Packet Loss: Because links are on-chip and the entire system
is considered part of one failure domain, NoCs are typically de-
signed as lossless networks, with negligible bit-error rates and no
provision for retransmissions. In a network without losses or ex-
plicit drops, ACKs or NACKs are not necessary, and would only
waste on-chip bandwidth. However, particular NoC router designs
can choose to explicitly drop packets when no resources are avail-
able (although the bufferless NoC architecture upon which we build
does not drop packets, others do drop packets when router out-
puts [31] or receiver buffers [20] are contended).

Network Flows & Traffic Patterns: Many architectures split
the shared cache across several or all nodes in the system. In these
systems, a program will typically send traffic to many nodes, of-
ten in parallel (when multiple memory requests are parallelized).
Multithreaded programs also exhibit complex communication pat-
terns where the concept of a “network flow” is removed or greatly
diminished. Traffic patterns are driven by several factors: pri-
vate cache miss behavior of applications, the data’s locality-of-
reference, phase behavior with local and temporal bursts, and im-
portantly, self-throttling [14]. Fig. 6 (where the Y-axis can be viewed
as traffic intensity and the X-axis is time) shows temporal variation
in injected traffic intensity due to application phase behavior.

2.2 Bufferless NoCs and Characteristics
The question of buffer size is central to networking, and there

has recently been great effort in the community to determine the
right amount of buffering in new types of networks, e.g. in data
center networks [2, 3]. The same discussions are also ongoing in
on-chip networks. Larger buffers provide additional bandwidth in
the network; however, they also can significantly increase power
consumption and the required chip area.

Recent work has shown that it is possible to completely eliminate
buffers from NoC routers. In such bufferless NoCs, power con-
sumption is reduced by 20-40%, router area on die is reduced by
40-75%, and implementation complexity also decreases [20, 50].3

Despite these reductions in power, area and complexity, applica-
tion performance degrades minimally for low-to-moderate network
intensity workloads. The general system architecture does not dif-

3Another evaluation [49] showed a slight energy advantage for buffered
routing, because control logic in bufferless routing can be complex and be-
cause buffers can have less power and area cost if custom-designed and
heavily optimized. A later work on bufferless design [20] addresses control
logic complexity. Chip designers may or may not be able to use custom
optimized circuitry for router buffers, and bufferless routing is appealing
whenever buffers have high cost.
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Figure 1: A 9-core CMP with BLESS routing example.

fer from traditional buffered NoCs. However, the lack of buffers
requires different injection and routing algorithms.

Bufferless Routing & Arbitration: Figure 1 gives an example
of injection, routing and arbitration. As in a buffered NoC, in-
jection and routing in a bufferless NoC (e.g., BLESS [50]) happen
synchronously across all cores in a clock cycle. When a core must
send a packet to another core, (e.g., S1 to D at T0 in Figure 1), the
core is able to inject each flit of the packet into the network as long
as one of its output links is free. Injection requires a free output
link since there is no buffer to hold the packet in the router. If no
output link is free, the flit remains queued at the processor level.

An age field is initialized to 0 in the header and incremented
at each hop as the flit is routed through the network. The rout-
ing algorithm (e.g, XY-Routing) and arbitration policy determine
to which neighbor the flit is routed. Because there are no buffers,
flits must pass through the router pipeline without waiting. When
multiple flits request the same output port, deflection is used to re-
solve contention. Deflection arbitration can be performed in many
ways. In the Oldest-First policy, which our baseline network im-
plements [50], if flits contend for the same output port (in our ex-
ample, the two contending for the link to D at time T2), ages are
compared, and the oldest flit obtains the port. The other contending
flit(s) are deflected (misrouted [14]) – e.g., the flit from S2 in our
example. Ties in age are broken by other header fields to form a
total order among all flits in the network. Because a node in a 2D
mesh network has as many output ports as input ports, routers never
block. Though some designs drop packets under contention [31],
the bufferless design that we consider does not drop packets, and
therefore ACKs are not needed. Despite the simplicity of the net-
work’s operation, it operates efficiently, and is livelock-free [50].

Many past systems have used this type of deflection routing (also
known as hot-potato routing [6]) due to its simplicity and energy/area
efficiency. However, it is particularly well-suited for NoCs, and
presents a set of challenges distinct from traditional networks.

Bufferless Network Latency: Unlike traditional networks, the
injection latency (time from head-of-queue to entering the network)
can be significant (§3.1). In the worst case, this can lead to starva-
tion, which is a fairness issue (addressed by our mechanism - §6).
In-network latency in a bufferless NoC is relatively low, even under
high congestion (§3.1). Flits are quickly routed once in the network
without incurring buffer delays, but may incur more deflections.

3. LIMITATIONS OF BUFFERLESS NOCS
In this section, we will show how the distinctive traits of NoCs

place traditional networking problems in new contexts, resulting in
new challenges. While prior work [20,50] has shown significant re-
ductions in power and chip-area from eliminating buffers in the net-
work, that work has focused primarily on low-to-medium network
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Figure 2: The effect of congestion at the network and application level.

load in conventionally sized (4x4 and 8x8) NoCs. Higher levels
of network load remain a challenge in purely bufferless networks;
achieving efficiency under the additional load without buffers. As
the size of the CMP increases (e.g., to 64x64), these efficiency
gains from bufferless NoCs will become increasingly important,
but as we will show, new scalability challenges arise in these larger
networks. Congestion in such a network must be managed in an in-
telligent way in order to ensure scalability, even in workloads that
have high traffic locality (e.g., due to intelligent data mapping).

We explore limitations of bufferless NoCs in terms of network
load and network size with the goal of understanding efficiency
and scalability. In §3.1, we show that as network load increases,
application-level throughput reduces due to congestion in the net-
work. This congestion manifests differently than in traditional
buffered networks (where in-network latency increases). In a buffer-
less NoC, network admission becomes the bottleneck with conges-
tion and cores become “starved,” unable to access the network. In
§3.2, we monitor the effect of the congestion on application-level
throughput as we scale the size of the network from 16 to 4096
cores. Even when traffic has locality (due to intelligent data map-
ping to cache slices), we find that congestion significantly reduces
the scalability of the bufferless NoC to larger sizes. These two fun-
damental issues motivate congestion control for bufferless NoCs.

3.1 Network Congestion at High Load
First, we study the effects of high workload intensity in the buffer-

less NoC. We simulate 700 real-application workloads in a 4x4
NoC (methodology in §6.1). Our workloads span a range of net-
work utilizations exhibited by real applications.

Effect of Congestion at the Network Level: Starting at the
network layer, we evaluate the effects of workload intensity on
network-level metrics in the small-scale (4x4 mesh) NoC. Figure 2(a)
shows average network latency for each of the 700 workloads. No-
tice how per-flit network latency generally remains stable (within
2x from baseline to maximum load), even when the network is un-
der heavy load. This is in stark contrast to traditional buffered net-
works, in which the per-packet network latency increases signifi-
cantly as the load in the network increases. However, as we will
show in §3.2, network latency increases more with load in larger
NoCs as other scalability bottlenecks come into consideration.

Deflection routing shifts many effects of congestion from within
the network to network admission. In a highly-congested network,
it may no longer be possible to efficiently inject packets into the
network, because the router encounters free slots less often. Such
a situation is known as starvation. We define starvation rate (σ )
as the fraction of cycles in a window of W , in which a node tries to
inject a flit but cannot: σ = 1

W ∑
W
i starved(i) ∈ [0,1]. Figure 2(b)

shows that starvation rate grows superlinearly with network utiliza-
tion. Starvation rates at higher network utilizations are significant.
Near 80% utilization, the average core is blocked from injecting
into the network 30% of the time.

These two trends – relatively stable in-network latency, and high
queueing latency at network admission – lead to the conclusion
that network congestion is better measured in terms of starvation
than in terms of latency. When we introduce our congestion-control
mechanism in §5, we will use this metric to drive decisions.

Effect of Congestion on Application-level Throughput: As a
NoC is part of a complete multicore system, it is important to evalu-
ate the effect of congestion at the application layer. In other words,
network-layer effects only matter when they affect the performance
of CPU cores. We define system throughput as the application-
level instruction throughput: for N cores, System Throughput =
∑

N
i IPCi, where IPCi gives instructions per cycle at core i.
To show the effect of congestion on application-level throughput,

we take a network-heavy sample workload and throttle all applica-
tions at a throttling rate swept from 0. This throttling rate controls
how often all routers that desire to inject a flit are blocked from
doing so (e.g., a throttling rate of 50% indicates that half of all in-
jections are blocked). If an injection is blocked, the router must
try again in the next cycle. By controlling the injection rate of new
traffic, we are able to vary the network utilization over a contin-
uum and observe a full range of congestion. Figure 2(c) plots the
resulting system throughput as a function of average net utilization.

This static-throttling experiment yields two key insights. First,
network utilization does not reach 1, i.e., the network is never fully
saturated even when unthrottled. The reason is that applications are
naturally self-throttling due to the nature of out-of-order execution:
a thread running on a core can only inject a relatively small num-
ber of requests into the network before stalling to wait for replies.
This limit on outstanding requests occurs because the core’s in-
struction window (which manages in-progress instructions) cannot
retire (complete) an instruction until a network reply containing its
requested data arrives. Once this window is stalled, a thread cannot
start to execute any more instructions, hence cannot inject further
requests. This self-throttling nature of applications helps to prevent
congestion collapse, even at the highest possible network load.

Second, this experiment shows that injection throttling (i.e., a
form of congestion control) can yield increased application-level
throughput, even though it explicitly blocks injection some fraction
of the time, because it reduces network congestion significantly. In
Figure 2(c), a gain of 14% is achieved with simple static throttling.

However, static and homogeneous throttling across all cores does
not yield the best possible improvement. In fact, as we will show
in §4, throttling the wrong applications can significantly reduce
system performance. This will motivate the need for application-
awareness. Dynamically throttling the proper applications based
on their relative benefit from injection yields significant system
throughput improvements (e.g., up to 28% as seen in §6.2).

Key Findings: Congestion contributes to high starvation rates
and increased network latency. Starvation rate is a more accu-
rate indicator of the level of congestion than network latency in a
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Figure 3: Scaling behavior: even with data locality, as network size increases, effects of congestion become more severe and scalability is limited.

bufferless network. Although collapse does not occur at high load,
injection throttling can yield a more efficient operating point.

3.2 Scalability to Large Network Size
As we motivated in the prior section, scalability of on-chip net-

works will become critical as core counts continue to rise. In this
section, we evaluate the network at sizes much larger than common
4x4 and 8x8 design points [20,50] to understand the scalability bot-
tlenecks. However, the simple assumption of uniform data striping
across all nodes no longer makes sense at large scales. With sim-
ple uniform striping, we find per-node throughput degrades by 73%
from a 4x4 to 64x64 network. Therefore, we model increased data
locality (i.e., intelligent data mapping) in the shared cache slices.

In order to model locality reasonably, independent of particu-
lar cache or memory system implementation details, we assume an
exponential distribution of data-request destinations around each
node. The private-cache misses from a given CPU core access
shared-cache slices to service their data requests with an exponen-
tial distribution in distance, so most cache misses are serviced by
nodes within a few hops, and some small fraction of requests go
further. This approximation also effectively models a small amount
of global or long-distance traffic, which can be expected due to
global coordination in a CMP (e.g., OS functionality, application
synchronization) or access to memory controllers or other global
resources (e.g., accelerators). For this initial exploration, we set
the distribution’s parameter λ = 1.0, i.e., the average hop distance
is 1/λ = 1.0. This places 95% of requests within 3 hops and 99%
within 5 hops. (We also performed experiments with a power-law
distribution of traffic distance, which behaved similarly. For the
remainder of this paper, we assume an exponential locality model.)

Effect of Scaling on Network Performance: By increasing the
size of the CMP and bufferless NoC, we find that the impact of con-
gestion on network performance increases with size. In the previ-
ous section, we showed that despite increased network utilization,
the network latency remained relatively stable in a 4x4 network.
However, as shown in Figure 3(a), as the size of the CMP increases,
average latency increases significantly. While the 16-core CMP
shows an average latency delta of 10 cycles between congested and
non-congested workloads, congestion in a 4096-core CMP yields
nearly 60 cycles of additional latency per flit on average. This
trend occurs despite a fixed data distribution (λ parameter) – in
other words, despite the same average destination distance. Like-
wise, shown in Figure 3(b), starvation in the network increases with
CMP size due to congestion. Starvation rate increases to nearly
40% in a 4096-core system, more than twice as much as in a 16-
core system, for the same per-node demand. This indicates that the
network becomes increasingly inefficient under congestion, despite
locality in network traffic destinations, as CMP size increases.

Effect of Scaling on System Performance: Figure 3(c) shows
that the decreased efficiency at the network layer due to congestion
degrades the entire system’s performance, measured as IPC/node,
as the size of the network increases. This shows that congestion is
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Figure 4: Sensitivity of per-node throughput to degree of locality.

limiting the effective scaling of the bufferless NoC and system un-
der higher intensity workloads. As shown in §3.1 and Figure 2(c),
reducing congestion in the network improves system performance.
As we will show in §6.3, reducing the congestion in the network
significantly improves scalability with high-intensity workloads.

Sensitivity to degree of locality: Finally, Figure 4 shows the
sensitivity of system throughput, as measured by IPC per node, to
the degree of locality in a 64x64 network. This evaluation varies the
λ parameter of the simple exponential distribution for each node’s
destinations such that 1/λ , or the average hop distance, varies from
1 to 16 hops. As expected, performance is highly sensitive to the
degree of locality. For the remainder of this paper, we assume that
λ = 1 (i.e., average hop distance of 1) in locality-based evaluations.

Key Findings: We find that even with data locality (e.g., intro-
duced by compiler and hardware techniques), as NoCs scale into
hundreds and thousands of nodes, congestion becomes an increas-
ingly significant concern for system performance. We show that
per-node throughput drops considerably as network size increases,
even when per-node demand (workload intensity) is held constant,
motivating the need for congestion control for efficient scaling.

4. THE NEED FOR APPLICATION-LEVEL
AWARENESS IN THE NOC

Application-level throughput decreases as network congestion
increases. The approach taken in traditional networks – to throttle
applications in order to reduce congestion – will enhance perfor-
mance, as we already showed in §3.1. However, we will show in
this section that which applications are throttled can significantly
impact per-application and overall system performance. To illus-
trate this, we have constructed a 4×4-mesh NoC that consists of 8
instances each of mcf and gromacs, which are memory-intensive
and non-intensive applications, respectively [61]. We run the appli-
cations with no throttling, and then statically throttle each applica-
tion in turn by 90% (injection blocked 90% of time), examining
application and system throughput.

The results provide key insights (Fig. 5). First, which application
is throttled has a significant impact on overall system throughput.
When gromacs is throttled, overall system throughput drops by
9%. However, when mcf is throttled by the same rate, the overall
system throughput increases by 18%. Second, instruction through-
put is not an accurate indicator for whom to throttle. Although mcf
has lower instruction throughput than gromacs, system through-
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Figure 5: Throughput after selectively throttling applications.

put increases when mcf is throttled, with little effect on mcf
(-3%). Third, applications respond differently to network through-
put variations. When mcf is throttled, its instruction throughput
decreases by 3%; however, when gromacs is throttled by the same
rate, its throughput decreases by 14%. Likewise, mcf benefits lit-
tle from increased network throughput when gromacs is throttled,
but gromacs benefits greatly (25%) when mcf is throttled.

The reason for this behavior is that each application has a varying
L1 cache miss rate, requiring a certain volume of traffic to complete
a given instruction sequence; this measure depends wholly on the
behavior of the program’s memory accesses. Extra latency for a
single flit from an application with a high L1 cache miss rate will
not impede as much forward progress as the same delay of a flit
in an application with a small number of L1 misses, since that flit
represents a greater fraction of forward progress in the latter.

Key Finding: Bufferless NoC congestion control mechanisms
need application awareness to choose whom to throttle.

Instructions-per-Flit: The above discussion implies that not all
flits are created equal – i.e., that flits injected by some applica-
tions lead to greater forward progress when serviced. We define
Instructions-per-Flit (IPF) as the ratio of instructions retired in a
given period by an application I to flits of traffic F associated with
the application during that period: IPF = I/F . IPF is only de-
pendent on the L1 cache miss rate, and is thus independent of the
congestion in the network and the rate of execution of the applica-
tion. Thus, it is a stable measure of an application’s current net-
work intensity. Table 1 shows the average IPF values for a set of
real applications. As shown, IPF can vary considerably: mcf, a
memory-intensive application produces approximately 1 flit on av-
erage for every instruction retired (IPF=1.00), whereas povray
yields an IPF four orders of magnitude greater: 20708.

Application Mean Var. Application Mean Var.
matlab 0.4 0.4 cactus 14.6 4.0
health 0.9 0.1 gromacs 19.4 12.2
mcf 1.0 0.3 bzip2 65.5 238.1
art.ref.train 1.3 1.3 xml_trace 108.9 339.1
lbm 1.6 0.3 gobmk 140.8 1092.8
soplex 1.7 0.9 sjeng 141.8 51.5
libquantum 2.1 0.6 wrf 151.6 357.1
GemsFDTD 2.2 1.4 crafty 157.2 119.0
leslie3d 3.1 1.3 gcc 285.8 81.5
milc 3.8 1.1 h264ref 310.0 1937.4
mcf2 5.5 17.4 namd 684.3 942.2
tpcc 6.0 7.1 omnetpp 804.4 3702.0
xalancbmk 6.2 6.1 dealII 2804.8 4267.8
vpr 6.4 0.3 calculix 3106.5 4100.6
astar 8.0 0.8 tonto 3823.5 4863.9
hmmer 9.6 1.1 perlbench 9803.8 8856.1
sphinx3 11.8 95.2 povray 20708.5 1501.8

Table 1: Average IPF values and variance for evaluated applications.

Fig. 5 illustrates this difference: mcf’s low IPF value (1.0) indi-
cates that it can be heavily throttled with little impact on its through-
put (-3% @ 90% throttling). It also gains relatively less when other
applications are throttled (e.g., <+1% when gromacs is throt-

 0.1

 1

 10

 100

 1000

 10000

 0  10  20  30  40  50  60  70  80

IP
F

Execution Cycle (million)

xml

 0

 5000

 10000

 15000

 20000

 25000

 0  10  20  30  40  50  60  70  80

IP
F

deal.ii

Figure 6: IPF is dynamic and varies with application phases.
tled). However, gromacs’ higher IPF value implies that its per-
formance will suffer if it is throttled (-10%), but can gain from
additional network throughput (+25%).

Need for Dynamic Throttling: Until now, we have illustrated
throttling as a static mechanism. In Figure 5, we throttled one ap-
plication or the other throughout its entire execution. While ap-
plications can exhibit “average” behavior (e.g., an average IPF)
by which they could be throttled, performing only static throttling
based on average behavior can degrade performance and reduce
efficiency relative to what could be possible because application
behavior is dynamic over time (thus, IPF is also dynamic – also
shown by the variance in Table 1). Throttling one application un-
der congestion may help improve system throughput at one point
in time, but hurt system performance at another point in time.

To illustrate this, we plot two applications’ IPF values over time
in Figure 6: deal.II (a finite element analysis application) and xml
(an XML parser). As shown, application behavior changes over
time, and in fact, applications can have “phases” through which
they cycle (e.g., in the case of deal.II). Throttling either application
during congestion in the periods where IPF is low (non-shaded)
will improve system performance without significantly degrading
the application’s performance. However, throttling either in high-
IPF phases will significantly degrade the application’s performance
(and thus the overall system’s performance). Therefore, a suc-
cessful throttling mechanism must continually monitor application
intensity and the level of congestion, dynamically adjusting over
time. IPF is a dynamic metric that enables this.

Key Findings: IPF (Instructions-per-Flit) quanitifies applica-
tion intensity and service requirements, enabling application-aware
throttling mechanisms. Applications have phases that vary widely
in network intensity. A dynamic throttling mechanism is thus needed,
and this mechanism must monitor IPF dynamically.

5. CONTROLLING CONGESTION
Section 4 defined a metric that determines an application’s net-

work intensity and its response to throttling. As shown in §4, when
the network is congested, we must consider application-layer infor-
mation to throttle effectively. We improve instruction throughput
by throttling applications when they have low IPF. This works for
three reasons: 1) applications with low IPF are relatively insensitive
to throttling compared to applications with high IPF, 2) applications
with high IPF benefit more at the application-level from increased
network throughput than those with low IPF, and 3) throttling ap-
plications when they have low IPF is more effective at reducing
congestion, because these applications are more network-intensive.

Basic Idea: We propose an interval-based congestion control al-
gorithm that periodically (every 100,000 cycles, at least 10x shorter
than typical application phases – see Fig. 6): 1) detects conges-



tion based on starvation rates, 2) determines IPF of applications,
3) if the network is congested, throttles only the nodes on which
certain applications are running (chosen based on their IPF). Our
algorithm, described here, is summarized in Algos. 1, 2, and 3.

Mechanism: A key difference of this mechanism to the majority
of currently existing congestion control mechanisms in traditional
networks [35, 38] is that it is a centrally-coordinated algorithm.
This is possible in an on-chip network, and in fact is cheaper in our
case (Central vs. Distributed Comparison: §6.6).

Since the on-chip network exists within a CMP that usually runs
a single operating system (i.e., there is no hardware partitioning),
the system software can be aware of all hardware in the system and
communicate with each router in some hardware-specific way. As
our algorithm requires some computation that would be impractical
to embed in dedicated hardware in the NoC, we find that a hard-
ware/software combination is likely the most efficient approach.
Because the mechanism is periodic with a relatively long period,
this does not place burden on the system’s CPUs. As described in
detail in §6.5, the pieces that integrate tightly with the router are
implemented in hardware for practicality and speed.

There are several components of the mechanism’s periodic up-
date: first, it must determine when to throttle, maintaining appro-
priate responsiveness without becoming too aggressive; second, it
must determine whom to throttle, by estimating the IPF of each
node; and third, it must determine how much to throttle in order
to optimize system throughput without hurting individual applica-
tions. We address these elements and present a complete algorithm.

When to Throttle: As described in §3, starvation rate is a su-
perlinear function of network congestion (Fig. 2(b)). We use star-
vation rate (σ ) as a per-node indicator of congestion in the network.
Node i is congested if:

σi > min(βstarve +αstarve/IPFi,γstarve) (1)
where α is a scale factor, and β and γ are lower and upper bounds,
respectively, on the threshold (we use αstarve = 0.4, βstarve = 0.0
and γstarve = 0.7 in our evaluation, determined empirically; sensi-
tivity results and discussion can be found in §6.4). It is important
to factor in IPF since network-intensive applications will naturally
have higher starvation due to higher injection rates. Throttling is
active if at least one node is congested.

Whom to Throttle: When throttling is active, a node is throt-
tled if its intensity is above average (not all nodes are throttled). In
most cases, the congested cores are not the ones throttled; only the
heavily-injecting cores are throttled. The cores to throttle are cho-
sen by observing IPF: lower IPF indicates greater network intensity,
and so nodes with IPF below average are throttled. Since we use
central coordination, computing the mean IPF is possible without
distributed averaging or estimation. The Throttling Criterion is:

If throttling is active AND IPFi < mean(IPF).
The simplicity of this rule can be justified by our observation that
IPF in most workloads tend to be widely distributed: there are
memory-intensive applications and CPU-bound applications. We
find the separation between application classes is clean for our
workloads, so a more intelligent and complex rule is not justified.

Finally, we observe that this throttling rule results in relatively
stable behavior: the decision to throttle depends only on the in-
structions per flit (IPF), which is independent of the network ser-
vice provided to a given node and depends only on that node’s pro-
gram characteristics (e.g., cache miss rate). Hence, this throttling
criterion makes a throttling decision that is robust and stable.

Determining Throttling Rate: We throttle the chosen applica-
tions proportional to their application intensity. We compute throt-
tling rate, the fraction of cycles in which a node cannot inject, as:

R⇐min(βthrot +αthrot/IPF,γthrot) (2)

Algorithm 1 Main Control Algorithm (in software)
Every T cycles:
collect IPF [i], σ [i] from each node i
/* determine congestion state */
congested⇐ f alse
for i = 0 to Nnodes−1 do

starve_thresh = min(βstarve +αstarve/IPF [i],γstarve)
if σ [i]> starve_thresh then

congested⇐ true
end if

end for
/* set throttling rates */
throt_thresh = mean(IPF)
for i = 0 to Nnodes−1 do

if congested AND IPF [i]< throt_thresh then
throttle_rate[i] = min(βthrot +αthrot/IPF [i],γthrot)

else
throttle_rate[i]⇐ 0

end if
end for

Algorithm 2 Computing Starvation Rate (in hardware)
At node i:
σ [i]⇐ ∑

W
k=0 starved(current_cycle− k)/W

Algorithm 3 Simple Injection Throttling (in hardware)
At node i:
if trying to inject in this cycle and an output link is free then

in j_count[i]⇐ (in j_count[i]+1) mod MAX_COUNT
if in j_count[i]≥ throttle_rate[i]∗MAX_COUNT then

allow injection
starved(current_cycle)⇐ f alse

else
block injection
starved(current_cycle)⇐ true

end if
end if
Note: this is one possible way to implement throttling with simple, deter-
ministic hardware. Randomized algorithms can also be used.

where IPF is used as a measure of application intensity, and α , β

and γ set the scaling factor, lower bound and upper bound respec-
tively, as in the starvation threshold formula. Empirically, we find
αthrot = 0.90, βthrot = 0.20 and γthrot = 0.75 to work well. Sensi-
tivity results and discussion of these parameters are in §6.4.

How to Throttle: When throttling a node, only its data requests
are throttled. Responses to service requests from other nodes are
not throttled; this could further impede a starved node’s progress.

6. EVALUATION
In this section, we present an evaluation of the effectiveness of

our congestion-control mechanism to address high load in small
NoCs (4x4 and 8x8) and scalability in large NoCs (up to 64x64).

6.1 Methodology
We obtain results using a cycle-level simulator that models the

target system. This simulator models the network routers and links,
the full cache hierarchy, and the processor cores at a sufficient level
of detail. For each application, we capture an instruction trace of a
representative execution slice (chosen using PinPoints [56]) and re-
play each trace in its respective CPU core model during simulation.
Importantly, the simulator is a closed-loop model: the backpressure
of the NoC and its effect on presented load are accurately captured.
Results obtained using this simulator have been published in past
NoC studies [20, 22, 50]. Full parameters for the simulated system
are given in Table 2). The simulation is run for 10 million cycles,
meaning that our control algorithm runs 100 times per-workload.



Network topology 2D mesh, 4x4 or 8x8 size
Routing algorithm FLIT-BLESS [50] (example in §2)
Router (Link) latency 2 (1) cycles
Core model Out-of-order
Issue width 3 insns/cycle, 1 mem insn/cycle
Instruction window size 128 instructions
Cache block 32 bytes
L1 cache private 128KB, 4-way
L2 cache shared, distributed, perfect cache
L2 address mapping Per-block interleaving, XOR mapping; ran-

domized exponential for locality evaluations

Table 2: System parameters for evaluation.

Workloads and Their Characteristics: We evaluate 875 multi-
programmed workloads (700 16-core, 175 64-core). Each consists
of independent applications executing on each core. The applica-
tions do not coordinate with each other (i.e., each makes progress
independently and has its own working set), and each application is
fixed to one core. Such a configuration is expected to be a common
use-case for large CMPs, for example in cloud computing systems
which aggregate many workloads onto one substrate [34].

Our workloads consist of applications from SPEC CPU2006 [61],
a standard benchmark suite in the architecture community, as well
as various desktop, workstation, and server applications. Together,
these applications are representative of a wide variety of network
access intensities and patterns that are present in many realistic sce-
narios. We classify the applications (Table 1) into three intensity
levels based on their average instructions per flit (IPF), i.e., network
intensity: H (Heavy) for less than 2 IPF, M (Medium) for 2 – 100
IPF, and L (Light) for > 100 IPF. We construct balanced workloads
by selecting applications in seven different workload categories,
each of which draws applications from the specified intensity lev-
els: {H,M,L,HML,HM,HL,ML}. For a given workload category,
the application at each node is chosen randomly from all appli-
cations in the given intensity levels. For example, an H-category
workload is constructed by choosing the application at each node
from among the high-network-intensity applications, while an HL-
category workload is constructed by choosing the application at
each node from among all high- and low-intensity applications.

Congestion Control Parameters: We set the following algo-
rithm parameters based on empirical parameter optimization: the
update period T = 100K cycles and the starvation computation
window W = 128. The minimum and maximum starvation rate
thresholds are βstarve = 0.0 and γstarve = 0.70 with a scaling fac-
tor of αstarve = 0.40. We set the throttling minimum and max-
imum to βthrottle = 0.20 and γthrottle = 0.75 with scaling factor
αthrottle = 0.9. Sensitivity to these parameters is evaluated in §6.4.

6.2 Application Throughput in Small NoCs
System Throughput Results: We first present the effect of our

mechanism on overall system/instruction throughput (average IPC,
or instructions per cycle, per node, as defined in §3.1) for both 4x4
and 8x8 systems. To present a clear view of the improvements at
various levels of network load, we evaluate gains in overall system
throughput plotted against the average network utilization (mea-
sured without throttling enabled). Fig. 7 presents a scatter plot that
shows the percentage gain in overall system throughput with our
mechanism in each of the 875 workloads on the 4x4 and 8x8 sys-
tem. The maximum performance improvement under congestion
(e.g., load >0.7) is 27.6% with an average improvement of 14.7%.

Fig. 8 shows the maximum, average, and minimum system through-
put gains on each of the workload categories. The highest average
and maximum improvements are seen when all applications in the
workload have High or High/Medium intensity. As expected, our
mechanism provides little improvement when all applications in the
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Figure 7: Improvements in overall system throughput (4x4 and 8x8).

workload have Low or Medium/Low intensity, because the network
is adequately provisioned for the demanded load.

Improvement in Network-level Admission: Fig. 9 shows the
CDF of the 4x4 workloads’ average starvation rate when the base-
line average network utilization is greater than 60%, to provide in-
sight into the effect of our mechanism on starvation when the net-
work is likely to be congested. Using our mechanism, only 36% of
the congested 4x4 workloads have an average starvation rate greater
than 30% (0.3), whereas without our mechanism 61% have a star-
vation rate greater than 30%.

Effect on Weighted Speedup (Fairness): In addition to instruc-
tion throughput, a common metric for evaluation is weighted speedup
[19,59], defined as WS=∑

N
i

IPCi,shared
IPCi,alone

, where IPCi,shared and IPCi,alone

are the instructions per cycle measurements for application i when
run together with other applications and when run alone, respec-
tively. WS is N in an ideal N-node system with no interference, and
drops as application performance is degraded due to network con-
tention. This metric takes into account that different applications
have different “natural” execution speeds; maximizing it requires
maximizing the rate of progress – compared to this natural execu-
tion speed – across all applications in the entire workload. In con-
trast, a mechanism can maximize instruction throughput by unfairly
slowing down low-IPC applications. We evaluate with weighted
speedup to ensure our mechanism does not penalize in this manner.

Figure 10 shows weighted speedup improvements by up to 17.2%
(18.2%) in the 4x4 and 8x8 workloads respectively.

Fairness In Throttling: We further illustrate that our mecha-
nism does not unfairly throttle applications (i.e., that the mecha-
nism is not biased toward high-IPF applications at the expense of
low-IPF applications). To do so, we evaluate the performance of
applications in pairs with IPF values IPF1 and IPF2 when put to-
gether in a 4x4 mesh (8 instances of each application) in a checker-
board layout. We then calculate the percentage change in through-
put for both applications when congestion control is applied.

Figure 11 shows the resulting performance improvement for the
applications, given the IPF values of both applications. Accom-
panying the graph is the average baseline (un-throttled) network
utilization shown in Figure 12. Clearly, when both IPF values are
high, there is no change in performance since both applications are
CPU bound (network utilization is low). When application 2’s IPF
value (IPF2) is high and application 1’s IPF value (IPF1) is low
(right corner of both figures), throttling shows performance im-
provements to application 2 since the network is congested. Im-
portantly, however, application 1 is not unfairly throttled (left cor-
ner), and in fact shows some improvements using our mechanism.
For example, when IPF1 = 1000 and IPF2 < 1, application 1 still
shows benefits (e.g., 5-10%) by reducing overall congestion.

Key Findings: When evaluated in 4x4 and 8x8 networks, our
mechanism improves performance up to 27.6%, reduces starvation,
improves weighted speedup, and does not unfairly throttle.
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Figure 8: Improvement breakdown by category.
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Figure 12: Average baseline network utilization when shared.

6.3 Scalability in Large NoCs
In §3.2, we showed that even with fixed data locality, increases in

network sizes lead to increased congestion and decreased per-node
throughput. We evaluate congestion control’s ability to restore scal-
ability. Ideally, per-node throughput remains fixed with scale.

We model network scalability with data locality using fixed ex-
ponential distributions for each node’s request destinations, as in
§3.2.4 This introduces a degree of locality achieved by compiler
and hardware optimizations for data mapping. Real application
traces are still executing in the processor/cache model to generate
the request timing; the destinations for each data request are simply
mapped according to the distribution. This allows us to study scal-
ability independent of the effects and interactions of more complex
data distributions. Mechanisms to distribute data among multiple
private caches in a multicore chip have been proposed [46, 57], in-
cluding one which is aware of interconnect distance/cost [46].

Note that we also include a NoC based on virtual-channel buffered
routers [14] in our scalability comparison.5 A buffered router can
attain higher performance, but as we motivated in §1, buffers carry
an area and power penalty as well. We run the same workloads on
the buffered network for direct comparison with a baseline buffer-
less network (BLESS), and with our mechanism (BLESS-Throttling).

Figures 13, 14, 15, and 16 show the trends in network latency,
network utilization, system throughput, and NoC power as network
size increases with all three architectures for comparison. The base-
line case mirrors what is shown in §3.2: congestion becomes a scal-
ability bottleneck as size increases. However, congestion control
successfully throttles the network back to a more efficient operat-
ing point, achieving essentially flat lines. We observed the same
scalability trends in a torus topology (however, note that the torus
topology yields a 10% throughput improvement for all networks).

4We also performed experiments with powerlaw distributions, not shown
here, which resulted in similar conclusions.
5The network has the same topology as the baseline bufferless network, and
routers have 4 VCs/input and 4 flits of buffering per VC.
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We particularly note the NoC power results in Figure 16. This
data comes from the BLESS router power model [20], and includes
router and link power. As described in §2, a unique property of
on-chip networks is a global power budget. Reducing power con-
sumption as much as possible is therefore desirable. As our results
show, through congestion control, we reduce power consumption in
the bufferless network by up to 15%, and improve upon the power
consumption of a buffered network by up to 19%.

6.4 Sensitivity to Algorithm Parameters
Starvation Parameters: The αstarve ∈ (0,∞) parameter scales

the congestion detection threshold with application network inten-
sity, so that network-intensive applications are allowed to experi-
ence more starvation before they are considered congested. In our
evaluations, αstarve = 0.4; when αstarve > 0.6 (which increases the
threshold and hence under-throttles the network), performance de-
creases 25% relative to αstarve = 0.4. When αstarve < 0.3 (which
decreases the threshold and hence over-throttles the network), per-
formance decreases by 12% on average.

βstarve ∈ (0,1) controls the minimum starvation rate required for
a node to be considered as starved. We find that βstarve = 0.0
performs best. Values ranging from 0.05 to 0.2 degrade perfor-
mance by 10% to 15% on average (24% maximum) with respect to
βstarve = 0.0 because throttling is not activated as frequently.

The upper bound on the detection threshold, γstarve ∈ (0,1), en-
sures that even network-intensive applications can still trigger throt-
tling when congested. We found that performance was not sensitive
to γstarve because throttling will be triggered anyway by the less
network-intensive applications in a workload. We use γstarve = 0.7.

Throttling Rate Parameters: αthrot ∈ (0,∞) scales throttling
rate with network intensity. Performance is sensitive to this pa-
rameter, with an optimal in our workloads at αthrot = 0.9. When
αthrot > 1.0, lower-intensity applications are over throttled: more
than three times as many workloads experience performance loss
with our mechanism (relative to not throttling) than with αthrot =
0.9. Values below 0.7 under-throttles congested workloads.

The βthrot ∈ (0,1) parameter ensures that throttling has some ef-
fect when it is active for a given node by providing a minimum
throttling rate value. We find, however, that performance is not
sensitive to this value when it is small because network-intensive
applications will already have high throttling rates because of their
network intensity. However, a large βthrot , e.g. 0.25, over-throttles
sensitive applications. We use βthrot = 0.20.

The γthrot ∈ (0,1) parameter provides an upper bound on the
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Figure 14: Network latency with scale.
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Figure 15: Network utilization with scale.
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Figure 16: Reduction in power with scale.

throttling rate, ensuring that network-intensive applications will not
be completely starved. Performance suffers for this reason if γthrot
is too large. We find γthrot = 0.75 provides the best performance;
if increased to 0.85, performance suffers by 30%. Reducing γthrot
below 0.65 hinders throttling from effectively reducing congestion.

Throttling Epoch: Throttling is re-evaluated once every 100k
cycles. A shorter epoch (e.g., 1k cycles) yields a small gain (3–
5%) but has significantly higher overhead. A longer epoch (e.g.,
1M cycles) reduces performance dramatically because throttling is
no longer sufficiently responsive to application phase changes.

6.5 Hardware Cost
Hardware is required to measure the starvation rate σ at each

node, and to throttle injection. Our windowed-average starvation
rate over W cycles requires a W -bit shift register and an up-down
counter: in our configuration, W = 128. To throttle a node with
a rate of r, we disallow injection for N cycles every M, such that
N/M = r. This requires a free-running 7-bit counter and a com-
parator. In total, only 149 bits of storage, two counters, and one
comparator are required. This is a minimal cost compared to (for
example) the 128KB L1 cache.

6.6 Centralized vs. Distributed Coordination
Congestion control has historically been distributed (e.g., TCP),

because centralized coordination in large networks (e.g., the Inter-
net) is not feasible. As described in §2, NoC global coordination is
often less expensive because the NoC topology and size are stati-
cally known. Here we will compare and contrast these approaches.

Centralized Coordination: To implement centrally-coordinated
throttling, each node measures its own IPF and starvation rate,
reports these rates to a central controller by sending small con-
trol packets, and receives a throttling rate setting for the following
epoch. The central coordinator recomputes throttling rates only
once every 100k cycles, and the algorithm consists only of de-
termining average IPF and evaluating the starvation threshold and
throttling-rate formulae for each node, hence has negligible over-
head (can be run on a single core). Only 2n packets are required
for n nodes every 100k cycles.

Distributed Coordination: To implement a distributed algo-
rithm, a node must send a notification when congested (as before),
but must decide on its own when and by how much to throttle.
In a separate evaluation, we designed a simple distributed algo-
rithm which (i) sets a “congested” bit on every packet that passes
through a node when that node’s starvation rate exceeds a thresh-
old; and (ii) self-throttles at any node when that node sees a packet
with a “congested” bit. This is a “TCP-like” congestion response
mechanism: a congestion notification (e.g., a dropped packet in
TCP) can be caused by congestion at any node along the path,
and forces the receiver to back off. We found that because this
mechanism is not selective in its throttling (i.e., it does not include
application-awareness), it is far less effective at reducing NoC con-
gestion. Alternatively, nodes could approximate the central ap-
proach by periodically broadcasting their IPF and starvation rate

to other nodes. However, every node would then require storage to
hold other nodes’ statistics, and broadcasts would waste bandwidth.

Summary: Centralized coordination allows better throttling be-
cause the throttling algorithm has explicit knowledge of every node’s
state. Distributed coordination can serve as the basis for throttling
in a NoC, but was found to be less effective.

7. DISCUSSION
We have provided an initial case study showing that core net-

working problems with novel solutions appear when designing NoCs.
However, congestion control is just one avenue of networking re-
search in this area, with many other synergies.

Traffic Engineering: Although we did not study multi-threaded
applications in our work, they have been shown to have heavily lo-
cal/regional communication patterns, which can create “hot-spots”
of high utilization in the network. In fact, we observed similar be-
havior after introducing locality (§3.2) in low/medium congested
workloads. Although our mechanism can provide small gains by
throttling applications in the congested area, traffic engineering
around the hot-spot is likely to provide even greater gains.

Due to application-phase behavior (Fig. 6), hot-spots are likely to
be dynamic over run-time execution, requiring a dynamic scheme
such as TeXCP [37]. The challenge will be efficiently collecting
information about the network, adapting in a non-complex way,
and keeping routing simple in the constrained environment. Our
hope is that prior work can be leveraged, showing robust traffic
engineering can be performed with fairly limited knowledge [4]. A
focus could be put on a certain subset of traffic that exhibits “long-
lived behavior” to make NoC traffic engineering feasible [58].

Fairness: While we have shown in §6.2 that our congestion
control mechanism does not unfairly throttle applications to benefit
system performance, our controller has no explicit fairness target.
As described in §4, however, different applications have different
rates of progress for a given network bandwidth; thus, explicitly
managing fairness is a challenge. Achieving network-level fairness
may not provide application level fairness. We believe the buffer-
less NoC provides an interesting opportunity to develop a novel
application-aware fairness controller (e.g., as targeted by [10]).

Metrics: While there have been many metrics adopted by the
architecture community for evaluating system performance (e.g.,
weighted speedup and IPC), more comprehensive metrics are needed
for evaluating NoC performance. The challenge, similar to what
has been discussed above, is that network performance may not
accurately reflect system performance due to application-layer ef-
fects. This makes it challenging to know where and how to opti-
mize the network. Developing a set of metrics which can reflect the
coupling of network and system performance will be beneficial.

Topology: Although our study focused on the 2D mesh, a variety
of on-chip topologies exist [11,29,40,41,43] and have been shown
to greatly impact traffic behavior, routing, and network efficiency.
Designing novel and efficient topologies is an on-going challenge,
and resulting topologies found to be efficient in on-chip networks
can impact off-chip topologies e.g., Data Center Networks (DCNs).
NoCs and DCNs have static and known topologies, and are attempt-



ing to route large amounts of information multiple hops. Showing
benefits of topology in one network may imply benefits in the other.
Additionally, augmentations to network topology have gained at-
tention, such as express channels [5] between separated routers.

Buffers: Both the networking and architecture communities con-
tinue to explore bufferless architectures. As optical networks [69,
71] become more widely deployed, bufferless architectures are go-
ing to become more important to the network community due to
challenges of buffering in optical networks. While some constraints
will likely be different (e.g., bandwidth), there will likely be strong
parallels in topology, routing techniques, and congestion control.
Research in this area is likely to benefit both communities.

Distributed Solutions: Like our congestion control mechanism,
many NoC solutions use centralized controllers [16,18,27,65]. The
benefit is a reduction in complexity and lower hardware cost. How-
ever, designing distributed network controllers with low-overhead
and low-hardware cost is becoming increasingly important with
scale. This can enable new techniques, utilizing distributed infor-
mation to make fine-grained decisions and network adaptations.

8. RELATED WORK
Internet Congestion Control: Traditional mechanisms look to

prevent congestion collapse and provide fairness, first addressed
by TCP [35] (subsequently in other work). Given that delay in-
creases significantly under congestion, it has been a core metric for
detecting congestion in the Internet [35, 51]. In contrast, we have
shown that in NoCs, network latencies remain relatively stable in
the congested state. Furthermore, there is no packet loss in on-chip
networks, and hence no explicit ACK/NACK feedback. More ex-
plicit congestion notification techniques have been proposed that
use coordination or feedback from the network core [23,38,62]. In
doing so, the network as a whole can quickly converge to optimal
efficiency and avoid constant fluctuation [38]. However, our work
uses application rather than network information.

NoC Congestion Control: The majority of congestion control
work in NoCs has focused on buffered NoCs, and work with pack-
ets that have already entered the network, rather than control traffic
at the injection point. The problems they solve are thus different in
nature. Regional Congestion Awareness [27] implements a mecha-
nism to detect congested regions in buffered NoCs and inform the
routing algorithm to avoid them if possible. Some mechanisms are
designed for particular types of networks or problems that arise
with certain NoC designs: e.g., Baydal et al. propose techniques
to optimize wormhole routing in [7]. Duato et al. give a mecha-
nism in [18] to avoid head-of-line (HOL) blocking in buffered NoC
queues by using separate queues. Throttle and Preempt [60], solves
priority inversion in buffer space allocation by allowing preemption
by higher-priority packets and using throttling.

Several techniques avoid congestion by deflecting traffic selec-
tively (BLAM [64]), re-routing traffic to random intermediate loca-
tions (the Chaos router [44]), or creating path diversity to maintain
more uniform latencies (Duato et al. in [24]). Proximity Conges-
tion Awareness [52] extends a bufferless network to avoid routing
toward congested regions. However, we cannot make a detailed
comparison to [52] as the paper does not provide enough algorith-
mic detail for this purpose.

Throttling-based NoC Congestion Control: Prediction-based
Flow Control [54] builds a state-space model for a buffered router
in order to predict its free buffer space, and then uses this model
to refrain from sending traffic when there would be no downstream
space. Self-Tuned Congestion Control [65] includes a feedback-
based mechanism that attempts to find the optimum throughput
point dynamically. The solution is not directly applicable to our

bufferless NoC problem, however, since the congestion behavior is
different in a bufferless network. Furthermore, both of these prior
works are application-unaware, in contrast to ours.

Adaptive Cluster Throttling [10], a recent source-throttling mech-
anism developed concurrently to our mechanism, is also targeted
for bufferless NoCs. Unlike our mechanism, ACT operates by
measuring application cache miss rates (MPKI) and performing
a clustering algorithm to group applications into “clusters” which
are alternately throttled in short timeslices. ACT is shown to per-
form well on small (4x4 and 8x8) mesh networks; we evaluate our
mechanism on small networks as well as large (up to 4096-node)
networks in order to address the scalability problem.

Application Awareness: Some work handles packets in an ap-
plication aware manner in order to provide certain QoS guaran-
tees or perform other traffic shaping. Several proposals, e.g., Glob-
ally Synchronized Frames [47] and Preemptive Virtual Clocks [30],
explicitly address quality-of-service with in-network prioritization.
Das et al. [16] propose ranking applications by their intensities and
prioritizing packets in the network accordingly, defining the notion
of “stall time criticality” to understand the sensitivity of each ap-
plication to network behavior. Our use of the IPF metric is similar
to L1 miss rate ranking. However, this work does not attempt to
solve the congestion problem, instead simply scheduling packets to
improve performance. In a later work, Aérgia [17] defines packet
“slack” and prioritizes requests differently based on criticality.

Scalability Studies: We are aware of relatively few existing
studies of large-scale 2D mesh NoCs: most NoC work in the ar-
chitecture community focuses on smaller design points, e.g., 16 to
100 nodes, and the BLESS architecture in particular has been eval-
uated up to 64 nodes [50]. Kim et al. [42] examine scalability of
ring and 2D mesh networks up to 128 nodes. Grot et al. [28] eval-
uate 1000-core meshes, but in a buffered network. That proposal,
Kilo-NoC, addresses scalability of QoS mechanisms in particular.
In contrast, our study examines congestion in a deflection network,
and finds that reducing this congestion is a key enabler to scaling.

Off-Chip Similarities: The Manhattan Street Network (MSN)
[48], an off-chip mesh network designed for packet communica-
tion in local and metropolitan areas, resembles the bufferless NoC
in some of its properties and challenges. MSN uses drop-less de-
flection routing in a small-buffer design. Due to the routing and in-
jection similarities, the MSN also suffers from starvation. Although
similar in these ways, routing in the NoC is still designed for min-
imal complexity whereas the authors in [48] suggested more com-
plex routing techniques which are undesirable for the NoC. Global
coordination in MSNs were not feasible, yet often less complex and
more efficient in the NoC (§2). Finally, link failure in the MSN was
a major concern whereas in the NoC links are considered reliable.

Bufferless NoCs: In this study, we focus on bufferless NoCs,
which have been the subject of significant recent work [10, 20–22,
26,31,49,50,67]. We describe some of these works in detail in §2.

9. CONCLUSIONS & FUTURE WORK
This paper studies congestion control in on-chip bufferless net-

works and has shown such congestion to be fundamentally differ-
ent from that of other networks, for several reasons (e.g., lack of
congestion collapse). We examine both network performance in
moderately-sized networks and scalability in very large (4K-node)
networks, and we find congestion to be a fundamental bottleneck.
We develop an application-aware congestion control algorithm and
show significant improvement in application-level system through-
put on a wide variety of real workloads for NoCs.

More generally, NoCs are bound to become a critical system
resource in many-core processors, shared by diverse applications.



Techniques from the networking research community can play a
critical role to address research issues in NoCs. While we focus
on congestion, we are already seeing other ties between these two
fields. For example, data-center networks in which machines route
packets, aggregate data, and can perform computation while for-
warding (e.g., CamCube [1]) can be seen as similar to CMP NoCs.
XORs as a packet coding technique, used in wireless meshes [39],
are also being applied to the NoC for performance improvements [32].
We believe the proposed techniques in this paper are a starting point
that can catalyze more research cross-over from the networking
community to solve important NoC problems.
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