

Neighbor-Cell Assisted Error Correction
for MLC NAND Flash Memories

Yu Cai1, Gulay Yalcin2, Onur Mutlu1, Erich F. Haratsch4,
Osman Unsal2, Adrian Cristal2,3, and Ken Mai1

1Electrical and Computer Engineering Department, Carnegie Mellon University
2Barcelona Supercomputing Center, Spain 3IIIA – CSIC – Spain National Research Council 4LSI Corporation

yucaicai@gmail.com, {omutlu, kenmai}@ece.cmu.edu, {gulay.yalcin, adrian.cristal, osman.unsal}@bsc.es

ABSTRACT
Continued scaling of NAND flash memory to smaller process
technology nodes decreases its reliability, necessitating more
sophisticated mechanisms to correctly read stored data values. To
distinguish between different potential stored values, conventional
techniques to read data from flash memory employ a single set of
reference voltage values, which are determined based on the
overall threshold voltage distribution of flash cells. Unfortunately,
the phenomenon of program interference, in which a cell's
threshold voltage unintentionally changes when a neighboring cell
is programmed, makes this conventional approach increasingly
inaccurate in determining the values of cells.
This paper makes the new empirical observation that identifying
the value stored in the immediate-neighbor cell makes it easier to
determine the data value stored in the cell that is being read. We
provide a detailed statistical and experimental characterization of
threshold voltage distribution of flash memory cells conditional
upon the immediate-neighbor cell values, and show that such
conditional distributions can be used to determine a set of read
reference voltages that lead to error rates much lower than when a
single set of reference voltage values based on the overall
distribution are used. Based on our analyses, we propose a new
method for correcting errors in a flash memory page, neighbor-
cell assisted correction (NAC). The key idea is to re-read a flash
memory page that fails error correction codes (ECC) with the set
of read reference voltage values corresponding to the conditional
threshold voltage distribution assuming a neighbor cell value and
use the re-read values to correct the cells that have neighbors with
that value. Our simulations show that NAC effectively improves
flash memory lifetime by 33% while having no (at nominal
lifetime) or very modest (less than 5% at extended lifetime)
performance overhead.

Categories and Subject Descriptors
B.3.4 [Memory	Structure]: Reliability, Testing, and Fault‐
Tolerance, C.4 [Performance of Systems]: Modeling techniques;
Reliability

General Terms
Algorithms, Measurement, Performance, Design, Reliability.

Keywords
NAND flash memory, Program Interference, Threshold Voltage
Distribution, Error Correction, ECC, Fault Tolerance.

1. INTRODUCTION
NAND flash memory is widely used in diverse applications,
ranging from mobile electronics to enterprise servers. Such a wide
application range is mainly driven by the ever-increasing, low-
cost, non-volatile storage capacity provided by NAND flash
memory due to aggressive transistor scaling. Unfortunately, as
flash cells scale down to smaller technology nodes, they become
increasingly vulnerable to circuit level noise, reducing the
probability that stored data will be read correctly (even if it were
stored correctly at the time it was written) even with the use of
aggressive error-correcting codes (ECC) [1][2][3]. As a result,
more accurate and sophisticated mechanisms to accurately read
and correct the data values stored in flash cells become
increasingly necessary. This paper introduces such a new
mechanism based on a rigorous experimental analysis of real
Multi-Level Cell (MLC) NAND flash memory chips and new
findings on how the threshold voltage distribution of flash
memory cells can be classified for more accurate identification of
the logical data values stored in cells.

In MLC NAND flash memory, the logical value stored in a
memory cell is determined by the threshold voltage range (or,
window) into which the cell’s actual threshold voltage falls [3][4].
As cell size is scaled down and more bits per cell are stored, the
threshold voltage range used to represent each logical value
becomes smaller, leading to increased error rates in determining a
cell's logical value. This is because process variations become
more prevalent when the amount of charge stored in a flash cell
reduces with feature size, causing the threshold voltages of
different cells storing the same value to become significantly
different. Hence, deciding what logical value a cell's threshold
voltage actually corresponds to is increasingly difficult.

The distribution of threshold voltages across different cells in
flash memory is called the "threshold voltage (probability)
distribution" [4]. A flash controller uses this distribution across all
cells (in a flash memory chip) to determine the "reference
threshold voltage values" to distinguish between cells that store
different logical values upon reading an address in flash memory.
For example, distinguishing between 11, 10, 00, and 01 in a 2-bit
flash cell requires three read reference voltages, each one used to
distinguish between the adjacent two logical values in terms of
threshold voltage ranges. Traditionally, the read reference voltage
used to distinguish between two adjacent logical values is a single
reference voltage, and this voltage is determined by the
manufacturer to minimize the probability that a cell's programmed
logical value is misread as another, incorrect value.

Unfortunately, using a single read reference voltage to determine
a cell's logical value becomes increasingly difficult due to the
phenomenon of program interference [3]. Program interference is
the phenomenon where the threshold voltage of a flash cell, called
the victim cell, unintentionally changes (that is, gets disturbed)
while another, neighboring, cell’s value is being programmed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMETRICS’14, June 16–20, 2014, Austin, TX, USA.
Copyright 2014 ACM 978-1-4503-2789-3/14/06…$15.00.

[1][2][3][5][6]. If the change in threshold voltage due to program
interference causes the victim cell’s voltage to shift to a different
threshold voltage range (based on a single read reference voltage),
then the victim cell’s logical value becomes incorrect, leading to
an error when the cell is read. As previous works have shown [3],
program interference is responsible for a large fraction of
difficult-to-correct errors in flash memory and therefore is a key
challenge against scaling flash memory to higher densities.

In this paper, we make the new observation that knowing (or,
more broadly, distinguishing) the value programmed in the
immediate-neighbor cell makes it easier to determine the value
stored in the flash cell that is being read. In other words, one can
classify the threshold voltage distribution of flash memory cells
into multiple threshold voltage distributions based on the logical
value of the immediate-neighbor flash cell and use the appropriate
"classified" (or, conditional) voltage distribution (and the
corresponding read reference voltage values associated with it,
called the "local optimum read reference voltages") to more
accurately determine the value of the cell that is being read. Doing
so leads to a more accurate identification of the logical value of
the flash cell being read because the classified voltage
distributions of the flash cells based on neighbor cell values have
smaller overlap between threshold voltage ranges of different
logical values than a single overall threshold voltage distribution
for all cells. We show both experimentally and analytically this is
the case.

Based upon this new observation, we introduce a new error
correction method, called neighbor-cell assisted error correction
(NAC). With this method, a flash memory page is first read using
the regular read reference voltages (and the read logical values are
buffered). If there are no errors uncorrectable by ECC, nothing
else is done. However, if there are errors uncorrectable by ECC,
the flash page is re-read with the read reference voltages
corresponding to the voltage distribution assuming a particular
immediate-neighbor value. The buffered values of the cells with
that particular immediate-neighbor cell value are replaced using
this reading, and ECC is applied again. If ECC is successful this
time, the buffered page is deemed to be corrected and is supplied
to the system. If ECC fails again, the process is repeated with
another set of read reference voltages corresponding to the voltage
distribution assuming another particular immediate-neighbor
value until either ECC passes or all different potential immediate-
neighbor values are exhausted. We evaluate NAC and show that it
can significantly improve flash memory lifetime with very modest
performance loss during the extended lifetime and no performance
loss during the nominal lifetime.

To our knowledge, this is the first paper that classifies threshold
voltage probability distributions of flash memory cells based on
neighboring cell values, analyzes these distributions both
statistically and experimentally, and makes use of these classified
threshold voltage distributions to improve error correction
capability for MLC NAND flash memory. Our major
contributions in this paper are as follows:

1. We provide a detailed statistical and experimental
characterization of threshold voltage distributions of flash
memory cells conditional upon the immediate-neighbor cell
values, and show that such conditional distributions can be
used to determine read reference voltages that can minimize
raw bit error rate (RBER) when the cells are read. We show
that RBER can be reduced by using information from
neighbor cell values. (Sections 4 and 5)

2. Based on our analyses, we propose a new method for
correcting errors in flash memory, neighbor-cell assisted

correction (NAC), which complements ECC (Section 6). The
key idea is to re-read a flash memory page that initially failed
ECC with a set of read reference voltages corresponding to
the conditional threshold voltage distribution assuming a
neighbor cell value and use the re-read values to correct the cells
that have neighbors with that value. We show that the error
correction capability of particular neighbor cell values is higher
than that of others because the threshold voltage changes
interference caused by some neighbor cell values are more likely
to lead to errors in the cells they interfere with. Based on this, we
propose the idea of prioritized NAC, which prioritizes reading
assuming such neighbor cell values (Section 6.2). We also show
that even if the reading of the neighbor cells fails ECC, the read
raw data from the neighbors is accurate enough to provide better
correction capability than ECC alone (Section 6.3).

3. We evaluate all our techniques using real I/O workload traces and
a high-fidelity simulation infrastructure that is driven by
measured data from real flash chips. Our evaluations show that
NAC increases flash memory lifetime by 33% without any
performance loss within the nominal lifetime and with less than
5% performance loss during the extended lifetime (Section 7).

2. BACKGROUND
We briefly provide background on relevant aspects of NAND flash
memory necessary to understand the rest of the paper. For more
detailed background on flash memory operation and characteristics,
please refer to Cai et al. [1][3][4][7][8].

2.1 Basics of NAND Flash Memory
As mentioned, the logical value stored in a flash memory cell is
determined by the threshold voltage range into which the cell’s actual
threshold voltage falls. The threshold voltage of a flash cell can be
modulated by the amount of electrons programmed on the floating
gates. For n-bit MLC NAND flash memory, the threshold voltage of a
cell is logically divided into 2n separate regions and each region
represents a unique n-bit value. For the specific case of 2-bit MLC
NAND flash memory, the bits stored in a cell can be classified into
the most significant bit (MSB) and the least significant bit (LSB),
depending on the location of the bit inside the flash bit-string [1][3].

NAND flash memory generally contains thousands of blocks. A block
consists of a 2-D array of flash cells. Each row of the array forms one
wordline and each column forms one bitline. A block has N wordlines
and the address of the wordline increases one by one from the bottom
to the top inside a block. Thus, a cell location can be uniquely
determined by its wordline and bitline address inside a block. In this
paper, we define C(x,y) to be the flash cell that is on the x-th wordline
and y-th bitline. For All-Bit-Line NAND flash memory, the MSBs of
all the cells on the same wordline are programmed and read
simultaneously: these set of MSBs on the same wordline are referred
to as an MSB page. Similarly, the LSBs of all the cells on a wordline
form one LSB page. Each page has its unique physical address inside
a block. Fig. 1(a) shows an example of the page address mapping
inside a flash block. We can see that the LSB page number on
wordline n is 2n-1, and the MSB page number on wordline n is 2n+2
for all-bit-line flash memory. The exceptions are the bottom wordline
(i.e., wordline 0) and top wordline (i.e., wordline N) of a block.

2.2 NAND Flash Operations
Program Operation: Programming the threshold voltage of flash
cells to the target threshold voltage region requires two steps for
2-bit MLC flash memory. These two steps are shown in Fig. 1(b):
1) LSB programming, which programs the threshold voltage of
the cell into either the erased state region (ER) or a temporary
state region (Temp) based on the value of LSB; and 2) MSB
programming, which programs the threshold voltage of the cell

into one of the four regions (ER, P1, P2, P3) determined by both
the LSB and MSB bit values.

Fig. 1 (a) All-bit-line flash block architecture with the victim cell circled

in red and aggressor cells circled in grey; (b) Two-bit MLC flash
programming scheme. Cell states are encoded in format (LSB, MSB)

Read Operation: The read operation determines the logical value
of a flash cell by determining the region its threshold voltage falls
in. To read the LSB of 2-bit MLC flash memory, a reference
voltage (REFb in Fig. 1(b)) is selected to compare with the
threshold voltage of the flash cell. If the threshold voltage of the
flash cell is larger than REFb, the LSB is read as 0, otherwise it is
read as 1. To read the MSB, the threshold voltage of a cell is
compared to two reference voltages (REFa and REFc in Fig. 1(b)).
If the cell’s threshold voltage is within the range of [REFa, REFc],
the MSB is read as 0, otherwise it is read as 1. Each of the
reference voltages is called a read reference voltage.

If the set of read reference voltages is set to a set of values that are
not optimal, a cell’s logical value may be incorrectly read (i.e., the
cell may be attributed to belong to a threshold voltage window
that is different from the window corresponding to the logical
value it was programmed with). This leads to errors in read
operation. There are at least two issues that complicate the
optimal determination of read reference voltage values: 1) the
threshold voltage distribution of flash cells gets distorted as the
cells wear out (i.e., as the number of P/E cycles increases) [4], 2)
the threshold voltages of cells get disturbed as neighboring cells
are programmed [3].

Recent flash memory devices [9] allow the read reference
voltages to be configurable online, which allows the flash
controller to try different reference voltages in order to find one
that leads to a lower error rate. This functionality is called read-
retry. Previous works [3][4] leverage the read-retry feature to
identify the exact threshold voltage of each flash cell and
experimentally characterize the threshold voltage distributions.

2.3 Cell-to-cell Program Interference
Due to coupling capacitance between flash cells, the threshold
voltage of a flash cell can change when its neighbor cells are
being programmed [3][5]. The former cell is called the victim cell,
while the latter are called aggressor cells, as shown in Fig. 1(a).
Generally, the pages inside a block are programmed in page
number order to reduce program interference [3]. The flash cells
on lower wordlines will finish programming before the MSB page
programming of the upper wordlines. Thus, the cells on a lower
wordline will not be the aggressor cells for those on an upper
wordline. For all-bit-line flash memory, the cells on the same
wordline are programmed simultaneously and finish programming
at the same time [3][5]. Therefore, program interference from
neighbor cells on the same wordline is negligible, as demonstrated
in [3][5]. The program interference on a victim flash cell C(n,j)
due to the aggressor cells on the wordline that is immediately
above the victim wordline and can be modeled as [3]:

Kj

Kjy

Mn

nx

before
victimneighborvictim jnVyxVyxjnV

1
0),(),(),(),(

Here before
victimV is the threshold voltage of the victim cell before

aggressor cells are programmed and ΔVneighbor(x, y) is the
threshold voltage change of the aggressor cell C(x,y). α(x,y) is a
positive coefficient, which represents the ratio of the coupling
capacitance between the aggressor cell C(x,y) and the victim cell
C(n,j) over the total capacitance of the victim cell C(n,j). α0 is a
negative coefficient, which models the fact that the victim cell
with more electrons programmed tends to suffer less from
program interference. The coupling coefficients decrease
exponentially with the distance between neighbor cells [3] and the
dominant interference to a victim cell in all-bit-line NAND flash
comes from the aggressor cell that is directly above the victim [3],
i.e. the direct or immediate neighbor (e.g., aggressor C(n+1, j) to
victim C(n, j)). Thus, equation (1) can be simplified to:

),1(),(jnVkjnV neighborvictim (2)

3. OUR GOALS AND RELATED WORK
Our goal in this work is threefold. First, we would like to
empirically and statistically analyze the threshold voltage
distributions of flash cells conditionally upon the values of
immediately neighboring cells. Second, we would like to find
better sets of read reference voltages that can minimize read error
rates by using information from neighboring cell values. Third, we
aim to devise new error correction mechanisms that can take
advantage of the values of neighboring cells to reduce error rates
after the application of conventional ECC.

To our knowledge, no previous work explored the effect of
neighboring cell values on flash memory threshold voltage
distributions and provided ways of taking advantage of
neighboring cell values to minimize flash memory error rates. We
briefly discuss the most relevant works below.

Cai et al. [4] was the first to characterize and propose an empirical
model for threshold voltage distributions in MLC NAND flash
memory. Cai et al. [3] also characterized the effect of
programming of neighboring cells (program interference) on
threshold voltage distributions of cells. Building upon the
empirical measurements in [3], they proposed a mechanism that
can predict and use a set of read reference voltages to minimize
bit error rate, taking into account the changes in the overall
threshold voltage distribution of cells due to program
interference. However, [3] did not characterize or take advantage
of the fact that the changes in threshold voltage distribution are
dependent on the values programmed in the neighboring aggressor
cells. This paper builds upon [3] and shows that knowing the
values stored in neighboring cells can lead to the determination of
a better set of read reference voltages that can further reduce bit
error rate and improve lifetime compared to the neighbor-cell-
value-unaware read reference voltage prediction mechanism of [3]
(Section 7.1).

Two other works [10][11] proposed signal processing techniques
to overcome program interference effects in flash memory.
However, these works face multiple implementation challenges
and are based on hypothesized (as opposed to experimentally
measured and validated) models for program interference, which
we briefly summarize. First, these works rely on accurate
measurement of 1) the threshold voltage changes of neighbor
aggressor cells and 2) threshold voltages of the victim cells. This
means that an n-bit representation (e.g. 4~6 bits to represent the
threshold voltage for 2-bit MLC flash) needs 2x2n read operations
to sense the threshold voltage of neighbor aggressor cells (LSB

and MSB pages) and 2n read operations for the victim cell to be
read. This will cause severe performance and energy overheads
during a read operation. Second, these works need to record the
threshold voltage changes of all the aggressor cells, which cannot
be accurately obtained as at the time of reading: only the current
threshold voltage of neighboring aggressor cells can be measured
while their past threshold voltages before they were fully
programmed are difficult to obtain. To circumvent this problem,
[11] uses the mean threshold voltage value of the erased (ER)
state to estimate the threshold voltages of all aggressor cells
before they are programmed, which is inaccurate (see Cai et al.
[4], which shows that the cells in the same state can have greatly
different threshold voltages) and difficult to implement (it is
difficult to apply negative read voltage on the control gate to
measure threshold voltages of cells in the erased state). In contrast
to these works, the mechanisms proposed in this paper to improve
bit error rates do not need to measure, record or estimate the
voltage of aggressor cells before they were fully programmed.

To our knowledge, this is the first work that uses information
stored in neighbor cells to correct errors in a victim cell with low-
overhead mechanisms that can be implemented practically. We
propose to still use conventional ECC, such as BCH codes [12], to
correct most of the errors (including those due to program
interference) upon reading a flash cell, but leverage information of
neighbor cells only when conventional ECC fails and minimize
the number of read operations on the neighbor cells by taking
advantage of our experimental observations from real flash chips.

4. Flash Voltage Distribution Measurement
We first describe our methodology to measure cell threshold
voltage distributions using real flash memory chips. As shown in
previous work [4], the threshold voltages of different flash cells
are different even when the cells are programmed with the same
value. This is due to manufacturing process variations within a
flash chip. The threshold voltage of flash cells can be represented
by a random variable x. The probability density function (PDF) of
x, p(x), is generally called the (threshold) voltage distribution. The
value programmed on a cell’s direct-neighbor aggressor cell is a
discrete bit value, which can be denoted as z. For n-bit MLC
NAND flash memory, z can take up to 2n values and can be
treated as a discrete random variable. As such, the voltage
distribution of flash cells can be expressed as:

n

m
mzxpmzpxp

2

1
)|()()((3)

where p(z=m) is the probability that the direct-neighbor aggressor
cell is programmed with the logical data value m. p(x|z=m) is the
conditional probability that the threshold voltage of a (victim) cell
equals x given that value m is programmed to its direct-neighbor
aggressor cell z. Equation (3) can be reformulated as:

n

m
mzxpxp

2

1
),()((4)

where p(x, z=m) is the joint probability density function of
random variable x (threshold voltage of the victim cell) and z
(value programmed in the direct-neighbor aggressor cell). For the
rest of this paper, we refer to p(x, z=m) as the conditional
distribution and p(x) as the overall distribution of threshold
voltages for all flash memory cells.

Experimental Measurement Methodology: To measure the
threshold voltage distributions, we use an FPGA-based testing
platform [4][13] that can issue commands to raw flash chips. We
tested 2-bit MLC NAND flash memory devices manufactured in
2Y-nm technology. There are four conditional distributions p(x,

z=11), p(x, z=10), p(x, z=00) and p(x, z=01). Recall that p(x,
z=m) is equal to p(z=m)p(x|z=m). p(z=m) is measured by dividing
the number of direct-neighbor aggressor cells with value z=m by
the total number of direct-neighbor aggressor cells. Since random
(or pseudo-random) data is generally programmed into raw flash
chips due to data encryption and randomization techniques
employed before programming [14][15], we measure the
threshold voltage of cells with random data values programmed in
all cells. As a result, p(z=m) is approximately 25% for each
possible value of m. Each conditional distribution p(x|z=m) is
measured via the following steps: 1) program flash memory with
random data; 2) select all the cells whose direct neighbor
aggressor cell is programmed with value z=m and measure the
threshold voltage of these selected cells; 3) count the number of
cells with threshold voltage equal to x; 4) divide the count found
in step 3 by the total number of cells selected in step 2. The
overall distribution p(x) can be measured by dividing the number
of cells whose threshold voltage equals x over the total number of
flash cells.

Example Distribution and Initial Observations: Fig. 2 shows
the overall distribution (dotted line) and all four conditional
distributions (solid line) for a flash memory chip tested after 35k
P/E cycles (More details on threshold voltage distribution
measurement methodology can be found in our past works
[3][4].). We make several observations, which we will formally
back up in Section 5 with statistical analyses. We will also use
some of these observations to develop new error correction
methods in Section 6. First, and most importantly, two
neighboring states in each conditional distribution are farther
apart from each other than they are in the overall distribution, as
shown by the “large margin” and “small margin” arrows in the
figure between states P1 and P2. This indicates that accurately
distinguishing between the neighboring states (i.e., identifying the
logical values of flash cells) can be easier if the conditional
threshold voltage distribution is used instead of the overall
distribution, which in turn suggests that knowing the value of the
immediate-neighbor cell can enable more accurate identification
of the logical value of a cell when it is read. Second, for a given
state, each of the conditional distributions has a smaller variance
(informally, spread of the threshold voltage values belonging to
that state) than the overall distribution. Third, the overall
distribution is the sum of all the conditional distributions (as
expected). Fourth, the conditional distributions for direct-neighbor
cell values 10 and 01 are similar to each other and have the
highest average threshold voltage values for each state, whereas
the conditional distribution for the direct-neighbor cell value 11
(corresponding to the Erased state in the neighbor cell) has the
lowest average threshold voltage values for each state. This latter
observation is expected because programming a direct-neighbor
cell to 11 (the erased state) leads to the smallest amount of
injected charge into that cell (causing the smallest amount of
program interference to the victim cell) and programming a
direct-neighbor cell to 10 or 01 leads to the largest amount of
injected charge as can be seen in Fig. 1(b) (causing the largest
amount of program interference to the victim cell).

5. Flash Voltage Distribution Analysis
In this section, we first statistically analyze the threshold voltage
distribution characteristics of flash memory from a formal
standpoint and develop a model for both overall and conditional
threshold voltage distributions (Sections 5.1-5.3). We then
provide empirical measurement results that validate the statistical

Fig. 2 Threshold voltage distributions of cells when neighbor wordline is programmed with random data (after 35000 P/E cycles). The dotted curve shows

the overall distribution of all cells. Solid curves show the four conditional distributions corresponding to four possible direct-neighbor cell values.

model (Sections 5.4-5.5). In particular, our statistical analyses are
to show that: 1) there exists an optimum read reference voltage
between two neighboring logical states that minimizes the raw bit
error rate (Section 5.1), 2) raw bit error rate can be minimized by
either increasing the distance between the average threshold
voltage values of neighboring states or reducing the variance of
threshold voltage distributions of each logical state (Section 5.2),
and 3) the conditional distributions for each logical state have
smaller variances and larger signal-to-noise ratios than the overall
distribution and therefore using the conditional distribution to
determine the value of a cell that is being read leads to a smaller
bit error rate than using the overall distribution (Section 5.3).

5.1 Optimizing the Read Reference Voltage
We first show that there exists an optimum read reference voltage
to distinguish between two logical states in a threshold voltage
distribution. Fig 3(a) shows an illustration of the threshold voltage
distributions of two neighboring states of NAND flash memory.
Assume that the probability density functions (PDFs) of cells
programmed into state Pi and state Pi+1 are f(x) and g(x)
respectively. When voltage Vref is selected as the read reference
voltage to differentiate between these two neighboring states
during a read operation, the fraction of cells that are actually
programmed into the Pi state but misread as belonging to the Pi+1
state is shown in the blue area in Fig. 3(a). We call this fraction as
the error rate due to Pi misread as Pi+1 and formulate it as:

v

PP dxxfErrRate ii)(1 (5)

Similarly, the fraction of cells that are actually programmed into
the Pi+1 state but misread as belonging to the Pi state is shown in
the red area in Fig. 3(a) and can be formulated as:

vPP dxxgErrRate ii)(1 (6)

Assume that the probability of a cell to be programmed into the Pi
state is P0 and the probability of a cell to be programmed into the
Pi+1 state is P1. Then, the total error rate is the sum of equations
(5) and (6) weighted by these probabilities:

v

v

total dxxgPdxxfPErrRate)()(10
 (7)

The optimum read reference voltage, Vopt, which minimizes the
total error rate between these two states, is obtained by setting

vErrRatetotal / to zero. Vopt satisfies the following equation:

)()(10 optopt VgPVfP (8)

If the probabilities of programming a cell into the Pi state and Pi+1
state are equal (i.e., P0 equals to P1), the optimum read reference
voltage Vopt satisfies the criteria f(Vopt)=g(Vopt) and Vopt is at the
cross-point of neighboring distributions, as shown in [3].

Previous works [4][16] have shown that the threshold voltage
distributions of each state approximately follow the Gaussian
distribution. Due to the characteristics of the Gaussian
distribution, the distribution PDF can be completely defined by
the statistics of the mean and variance pair (e.g., (μ1, σ1) for the Pi
state and (μ2, σ2) for the Pi+1 state, as illustrated in Fig. 3(a)). We
replace the f(.) and g(.) functions in Equation (8) with Gaussian
PDFs. Thus, the optimum read reference voltage Vopt between two
neighboring states should satisfy:

)
2

)(
exp(

2

1
)

2

)(
exp(

2

1
2
2

2
2

2

12
1

2
1

1

0

 optopt v
P

v
P

(9)

By applying logarithmic operation to both sides of Equation (9)
and solving the quadratic equation, we can get the optimum read
reference voltage as 2/)4(2 CBBVopt . Here, B is (μ2σ1

2–

μ1σ2
2)/σ1

2σ2
2(σ2

2–σ1
2) and C is

)
1

log
1

0
(log

)(2
2

2
1

2
2

2
2

2
1

2
1

2
2

2
2

2
1

P

P . When

the variances of the two neighboring states are approximately
equal (σ1 and σ2 equal to value σ), the optimum read reference
voltage that achieves the minimum raw BER can be simplified as:

1

0
log

2 12

2
21

P

P
Vopt

 (10)

If the probabilities of programming a cell into the Pi state and Pi+1
state are equal (i.e., P0 equals to P1), which is the case for data
values that are random or pseudo-random (which was shown for
real flash memory chips due to the heavy use of data encryption
and randomization techniques employed before programming
[14][15]), the optimum read reference voltage is the average of
the mean threshold voltages of the neighboring states:

2/)(21 optv (11)

Fig. 3 (a) Read reference voltage Vref between neighboring states. The

area marked by blue lines correspond to Equation 5 and red lines
correspond to Equation 6; (b) Measured raw BER vs. read reference
voltage between P2 and P3 states at 35k P/E cycle endurance.

Measurement: To experimentally demonstrate how raw BER
changes with read reference voltage, we sweep the read reference
voltage between neighboring states and calculate the

corresponding raw BER on our testing platform. Fig. 3(b) shows
raw BER vs. read reference voltage when sweeping the latter from
the center of the P2 state to the center of the P3 state for flash
memory at 35k P/E cycles. We can see that raw BER first
decreases as read reference voltage increases but increases after a
certain point. There exists a point that can achieve minimum raw
BER, as these empirical results demonstrate.

5.2 Minimizing Raw Bit Error Rate
The minimum raw bit error rate can be obtained by setting the
variable v in Equation (7) to be the optimum read reference
voltage. To get a simple closed-form expression, we assume that
the threshold voltage distributions follow Gaussian distributions
with equal variance, as shown as an approximation in [3][16]. The
mean values of the neighboring states are μ1 and μ2 respectively.
We also assume that the probabilities for each state are equal
since random data are programmed to cells [14][15] and thus the
optimum read reference voltage is (μ1+μ2)/2 according to
Equation (11). Thus, the minimum raw BER can be expressed as:

dx
x

dx
x

))
2

)(
exp()

2

)(
exp((

2

1

2

1 2/)21(

2

2
2

2/)21(2

2
1

(12)

After a series of algebraic manipulation, this can be simplified to:

dxx

 2/)12(

2)2/exp(
2

1 (13)

To simplify the notation, we define the function Q(x) as:

dxxxQ
x

)2/exp(
2

1
)(2

 (14)

By setting x to be (μ2-μ1)/2σ in Q(x), we can obtain the minimum
raw BER. Fig. 4 plots the function Q(x). We can see that Q(x)
monotonically decreases as x increases. Thus, in order to decrease
the minimum raw BER, it is desirable to have distributions that
have a higher value of (μ2-μ1)/2σ. This is possible in two ways:

1. Have a larger threshold voltage distance (μ2-μ1) between
neighboring distributions. The farther apart from each other
the neighbor distributions, the larger the value of (μ2-μ1)/2σ.

2. Have a smaller variance σ2 for the threshold voltage
distributions. The narrower the distributions (i.e., their
standard deviation σ), the larger the value of (μ2-μ1)/2σ.

Fig. 4 Monotonic property of Q(x): Q(x) decreases as x increases

Signal to Noise Ratio (SNR): The half distance (μ2-μ1)/2 between
neighboring states can be thought of as the signal and the standard
deviation σ of the threshold voltage distribution can be thought of
as noise. The ratio (μ2-μ1)/2σ can therefore be defined as signal-to-
noise ratio (SNR) when reading flash memory. The larger the
SNR ((μ2-μ1)/2σ), the smaller the minimum raw BER, which is
equal to Q(SNR).

The next section shows that conditional distributions of flash
memory cells that distinguish between the values of the direct-
neighbor cell (as opposed to the overall distribution that does not)
lead to a larger SNR: two neighboring states in each conditional
distribution have a similar threshold voltage distance (μ2-μ1) as
the same two neighboring states in the overall distribution but
they have a significantly smaller variance σ2. As such, using

conditional distributions to determine the value of cells improves
SNR, thereby reducing the minimum raw BER.

5.3 SNR and Minimum Raw BER Analysis of
Conditional and Overall Distributions
Since a cell’s direct-neighbor aggressor cell can take up to N=2n
possible values for n-bit MLC flash memory, the threshold
voltage X of a cell can be one of the N conditional random
variables xm as },...,,,,{ 13210 NxxxxxX . Here, xm represents the

threshold voltage of a cell with direct neighbor aggressor cell
programmed to value m. The PDF of X is the overall threshold
voltage distribution. The PDF of xm is the conditional distribution.
We now statistically analyze the distance of neighboring
distributions, the variance of distributions, and their resulting SNR
and BER comparatively between the overall distribution and
conditional distributions. Our key finding is that the threshold
voltage distance between neighboring states is similar for both the
overall distribution and the conditional distributions, while the
variance of the overall distribution is much larger than those of
the conditional distributions, and thus using the conditional
distributions to determine the optimum set of read reference
voltages leads to larger SNR and smaller BER.
Distance of Neighboring Distributions: The mean of the overall
distribution is the average of the means of all the conditional
distributions (i.e., E(X)=∑E(xm)/N). Therefore, the distance of
neighboring states in the overall distribution is equal to:

))()((
1

)(
1

)(
1

)()(

)()1()()1(

)()1(

iP
m

iP
m

iP
m

iP
m

iPiP

xExE
N

xE
N

xE
N

XEXE

(15)

where E(XP(i+1)) and E(XP(i)) are the mean values of the threshold
voltage distributions of all the cells in state Pi+1 and state Pi
respectively.)()1(iP

mxE and)()(iP
mxE are the means of the

conditional distributions for cells in state Pi+1 and Pi respectively
with direct aggressor cell programmed to value m.

)()()()1(iP
m

iP
m xExE is the distance between neighboring states in

the same conditional distribution. We can see from Equation (15)
that the distance of two neighboring states in the overall
distribution is the average of the distances of the same two
neighboring states in all of the conditional distributions.

Variance of Distributions: The variance of the threshold voltage
of all the cells in a state is equal to 22))(()()(XEXEXVar .

By applying E(X2)=ΣE(xm
2)/N and E(X)=ΣE(xm)/N, we can get the

variance of the threshold voltage distribution after algebraic
manipulation:

2

2
))()((

1
)(

1
)(nmm xExE

N
xVar

N
XVar (16)

From Equation (16), we can see that the variance of the overall
distribution consists of two parts: 1) the average of the variances
of all of its conditional distributions, ∑Var(xm)/N and 2) the
average of the square of the differences between the mean values
of every pair of conditional distributions, ∑∑(E(xm)-E(xn))

2/N2.
Since the latter is non-negative, the variance of the overall
distribution is no less than the average of the variance of all of its
conditional distributions. We can consider two hypothetical
extreme cases:

1. The conditional distributions completely overlap with each
other. As a result, the variance of the overall distribution
would simply be the average of the variances of all of its
conditional distributions since E(xm)-E(xn) is zero for (m,n)
pairs (i.e., the second sum part of Equation (16) is zero).

2. The conditional distributions are completely separate (i.e., far
away) from each other. As a result, the variance of the
overall distribution would be much larger than the average
variance of all of its conditional distributions and would be
dominated by the second sum part of equation (16).

We next analyze the mean values of conditional distributions to
show that the latter hypothetical case is closer to empirical reality
and, as a result, the variance of the overall distribution is much
larger than the average variance of the conditional distributions.

Analysis of the Mean Values of Conditional Distributions:
Assume the threshold voltage of a cell before program
interference is a random variable Y, and the voltage change
caused by the program interference is ΔV. Then the threshold
voltage after program interference will be X=Y+ΔV. As in
equation (2), ΔV is mainly determined by the threshold voltage
change of the direct-neighbor aggressor cell [3]. Assuming the
threshold voltages of the direct-neighbor aggressor cell before and
after programming value m are)(mNb

beforeV and)(mNb
afterV respectively,

then ΔV approximately equals k ()(mNb
afterV -)(mNb

beforeV) according to

Equation (2), where k is the coefficient denoting the coupling
capacitance over the total capacitance of the victim cell. Then, the
mean value of the conditional distribution xm is

))()(()()()()()(mNb
before

mNb
afterm VEVEkEYExE (17)

As the LSB page number of an upper wordline is always smaller
than the MSB page number of a lower wordline in the same block
(see Fig. 1(a)) and the pages inside a block are programmed in
sequential page number order to minimize program interference
[3], only MSB page programming of the aggressor cell affects the
threshold voltage of the victim cell. For 2-bit MLC flash memory
(as in Fig. 1(b)), the starting state before MSB page programming
is either the ER state or the Temp state, and the ending state could
be the ER, P1, P2 or P3 state. When either P3 (value 01) or P1
(value 10) is programmed to the aggressor cell, the threshold
voltage of the aggressor cell changes either from TEMP to P3 or
from ER state to P2, respectively. Either of these cases leads to a
larger threshold voltage change)()()()(mNb

before
mNb

after VEVE , as

illustrated in Fig. 1(b) [3], compared to when ER (value 11) or P2
(value 00) is programmed to the aggressor cell. Thus, the mean
values of conditional distributions of x01 and x10 are larger than the
mean values of the conditional distributions of x11 and x00. When
value 11 is programmed on aggressor cell, the starting and ending
states are the same, i.e., the ER state, which corresponds to the
smallest threshold voltage change. Therefore, the mean of the
conditional distribution of x11 is the smallest [3]. Through similar
reasoning, the mean of the conditional distribution of x00 sits in-
between the mean of the conditional distribution of x11 and the
mean of the conditional distributions of x01 and x10. In summary,
the means of conditional distributions for 2-bit MLC satisfy the
following property:

)()()()(10010011 xExExExE (18)

Fig. 2 shows that this property empirically holds for different
conditional distributions; in Fig. 2, it is clear that the mean
threshold voltage value of the conditional distributions with direct
neighbor values 01 and 10 are similar and the highest for all
states, whereas the mean value of the conditional distribution with
direct neighbor value 11 is the smallest.

The result in Equation (18), empirically supported by Fig. 2,
shows that the second sum part of Equation (16) is clearly greater
than zero as the mean values of conditional distributions do not
completely overlap. As a result, the variance of the overall

distribution is larger than the average variance of the conditional
distributions.

Analysis of Variance of Conditional Distributions: The
variance of the conditional distribution xi can be expressed as:

))var()(var()var()var()()(2 mNb
before

mNb
afterm VVkYx (19)

Due to the accurate control of the distribution width of each
programmed state through incremental step pulse programming
(ISPP), the variances of threshold voltage distributions of
aggressor cells before and after programming are approximately
close for different programming values [4][16]. For example,
var(Vafter

Nb(m)) is close to var(Vafter
Nb(n)), even when the

programmed value m and n are not the same. Also, the model
coefficient k is around 0.06 [3] and the small value of k2 can
further reduce the value-dependent differences of variances of
different conditional distributions in Equation (19). Therefore, the
variances of conditional distributions of victim cells are close
when different values are programmed to their direct-neighbor
aggressor cells (e.g., var(xm) is close to var(xn) even if m is not
equal to n) and thus are approximately equal to the average
variance of all conditional distributions. Since the variance of the
overall distribution is larger than the average of the variances of
conditional distributions (as we have shown based on Equation
(18)), the variance of the overall distribution is larger than the
variance of each of the conditional distributions.

Analysis of the Distance of Distributions between Neighboring
States: Assume the threshold voltages of cells that are interfered
with by a direct-neighbor with value m in the Pi and Pi+1 states are
respectively xm

Pi and xm
Pi+1. The threshold voltages before

neighbor interference are respectively YPi and YPi+1, which are
independent of the value m programmed into the direct-neighbor
cells. The amounts of interference the victim cells receive are
respectively ∆m

Pi and ∆m
Pi+1. Thus, the distance of the conditional

distributions between the two neighboring states is E(xm
Pi+1)-

E(xm
Pi), which is equal to E(YPi+1+∆m

Pi+1)-E(YPi+∆m
Pi). Since

program interference is mainly determined by the threshold
voltage changes on the direct-neighbor aggressor cells, E(∆m

Pi+1)
and E(∆m

Pi) are close as the neighbors are programmed to the
same value m. Thus, E(xm

Pi+1)-E(xm
Pi) is similar to E(YPi+1)-

E(YPi), which is equal to the distance of the neighboring
distributions before neighbor cells are programmed and is
independent of the exact values programmed to the direct-
neighbor aggressor cells. Thus, the distance of the different
conditional distributions in neighboring states are equal (or close).
Therefore, the distance of the overall distributions between
neighboring states is also equal to or close to the distance of any
of the conditional distributions between neighboring states.
Final SNR and BER Analysis: So far, we have shown that: 1)
the variance of each of the conditional distributions is smaller than
the variance of the overall distribution, 2) the distance of the
conditional distributions of two neighboring states is similar to the
distance of the overall distributions of the same two neighboring
states. As a result, the signal-to-noise ratio (SNR), (μ2-μ1)/2σ, of
the overall distribution is smaller than that of the conditional
distribution, as σ of the overall distribution is larger. Therefore,
the minimum raw BER, i.e., Q(SNR) (see Equations (13) and
(14)), obtained with the set of read reference voltages,determined
based on the overall distribution would be larger than the
minimum raw BER obtained with the set of read reference
voltages determined based on the conditional distributions. We
will make use of this statistically-demonstrated conclusion to
devise our error correction mechanisms in Section 6.

5.4 Experimental Measurement Results
We now show experimental results that empirically validate the
major conclusions of the statistical model we have developed so
far in Sections 5.1-5.3. We program random data into 2Y-nm 2-bit
MLC NAND flash devices after 10K P/E cycles and leverage the
methodology discussed in Section 4 to measure the overall and the
conditional distributions. Table 1 shows the results: the average
distance of different distributions between neighboring states
(signal), along with the average variance (noise), the signal-to-
noise ratio (SNR) and the resulting minimum raw BER of the
overall distribution and all four conditional distributions. The
empirical data supports the main conclusions we have drawn from
statistical analyses: 1) average distance between neighboring
states is similar regardless of whether we use the overall
distribution or any of the conditional distributions, 2) the variance,
the SNR, and the resulting BER of each of the conditional
distributions is smaller than those of the overall distribution. As
such, experimental data also favors using conditional distributions
to maximize SNR and therefore minimize BER. Section 5.5
explains the BER evaluations in more detail.

Table 1. Measurement Results of Different Distributions

5.5 Minimizing BER using Conditional
Distributions – Mechanism and Measurements
To measure the minimum BER of reading with the overall
distribution, we set the read reference voltage between two
neighboring states to REFx=(μP(i)+μP(i+1))/2, which is the average
of the mean values of the overall distribution in neighboring states
Pi and Pi+1. We define this set of read reference voltages as the
global optimum read reference voltage. The read data is compared
with the originally programmed data to count the number of
errors. The BER is measured by dividing the error count with the
total number of bits read.
To measure the minimum BER of reading with each conditional
distribution (e.g., x10), we first set the read reference voltage
between states Pi and Pi+1 to be REFx10=(μx10

P(i)+ μx10
P(i+1))/2.

Here, μx10
P(i) and μx10

P(i+1) are the mean values of the conditional
distribution of x10 in the Pi state and the Pi+1 state respectively.
Then, we read flash memory using this read reference voltage. We
only compare the data read out from the cells that have direct-
neighbor aggressors with value 10 to the data originally
programmed to those cells to get the raw BER of reading with the
conditional distribution of x10. We repeat the same procedure three
more times by setting the read reference voltages between two
neighboring states to REFx11=(μx11

P(i)+ μx11
P(i+1))/2,

REFx00=(μx00
P(i)+ μx00

P(i+1))/2 and REFx01=(μx01
P(i)+ μx01

P(i+1))/2 to
get the raw BER of reading with conditional distributions of x11,
x00 and x01 respectively. The final raw BER of reading with
conditional distributions is the equally weighted sum of the raw
BER obtained after reading with each of the conditional
distributions (with a weight of 0.25 for each BER as direct-
neighbor cells have equal probabilities of being programmed to
00, 01, 10, 11). We define these four sets of read reference
voltages as the local optimum read reference voltages. Based on
Equation (18) and our empirical measurements, the read reference
voltages obey the following property:

10010011 REFxREFxREFxREFxREFx (20)

The threshold voltage distributions before and after random data
are programmed in neighbor cells are illustrated in Figure 5(a) and
5(b) respectively. The relative location of the global and local
optimum read reference voltages are illustrated in Fig. 5(b). N11,
N00, N01 and N10 illustrate the conditional distributions of those
cells with direct-neighbor aggressor cell programed to 11, 00, 01
and 10 respectively. The optimum BERs of reading with the
overall distribution and the conditional distributions are shown on
the fourth row of Table 1. Reading the flash memory cells using
the set of the local optimum read reference voltages for each
conditional distribution leads to a raw BER of 4.25x10-5 (equal to
0.25 times the sum of the raw BER values for each state in Table
1) whereas reading the same cells with the global optimum set of
read reference voltages based on only the overall distribution
leads to a raw BER of 3x10-4. As such, using the conditional
distributions to determine read reference voltages to read flash
memory leads to an 86% reduction in minimum raw bit error rate.

Fig. 5 (a) Threshold voltage distributions of two neighboring states before

direct-neighbor cells are programmed; (b) Overall and conditional
threshold voltage distributions, the global optimum read reference
voltage of the overall distribution (REFx), and local optimum read
reference voltage of each conditional distribution (REFx11, REFx00,

REFx10, REFx01) after neighbor pages are fully programmed.

5.6 Summary
Our experimental results (Sec. 5.4-5.5) validate our statistical analyses
(Sec. 5.1-5.3) in that: 1) there exists an optimum read reference that
can achieve the minimum raw BER; 2) the minimum raw BER
decreases as signal-to-noise ratio increases; 3) the distance (signal) of
the overall distribution between neighboring states is close to that of
each of the conditional distributions; 4) the variance (noise) of each
conditional distribution is smaller than that of the overall distribution;
5) the variances of different conditional distributions are close; 6) the
signal-to-noise ratio of the conditional distribution is larger than that
of the overall distribution; 7) the minimum raw BER obtained after
reading with the conditional distribution is much smaller than that
obtained after reading with the overall distribution.

6. Neighbor-cell Assisted Error Correction
In Section 5, we have established that the bit error rate obtained by
reading flash memory with the set of local optimum read reference
voltages for each conditional threshold voltage distribution dependent
on the direct-neighbor cell value is significantly lower than the bit
error rate obtained by reading flash memory with the conventional set
of global optimum read reference voltages determined based on the
overall threshold voltage distribution of all flash cells. In this section,
we build upon this observation to introduce two mechanisms that both
aim to minimize bit error rate: Neighbor-cell Assisted Reading
(NAR) and Neighbor-cell Assisted Error Correction (NAC).

 Overall x11 (ER) x10 (P1) x00 (P2) X01 (P3)
Distance 65.4 65.4 64.7 66.4 65.8
Variance 385.9 286.2 256.7 242.8 252.1
SNR 3.4 3.8 3.9 4.2 4.1
BER 3x10-4 7x10-5 5x10-5 2x10-5 3x10-5

We have actually already described the key idea of Neighbor-cell
Assisted Reading (NAR) in Sec. 5.5. NAR classifies the cells to be
read in a wordline into N types based on the values stored in the
corresponding direct-neighbor aggressor cells (N is equal to 4 in 2-bit
MLC flash because the direct-neighbor can take 4 possible values).
To read the cells of each type, a different set of local optimum read
reference voltages (that minimizes the bit error rate) is used (i.e.,
REFx11, REFx00, REFx10, REFx01 in Sec. 5.5). Thus, determining the values
of cells in an entire flash page is an iterative operation that takes N
reading steps: in every step, the values of those cells with the same
common direct-neighbor value are determined, which corresponds to
approximately 1/N-th of the entire page’s contents. For example, first
the page is read to determine the values of cells that have direct
neighbor values 11 using the set of local optimum read reference
voltages corresponding to the conditional distribution assuming
neighbor values of 11. Afterwards, the step is repeated for cells with
neighbor values 00, 10, 01, respectively. At the end of all steps, the
cell values determined in each step are combined to get the complete
page. This reduces the bit error rate because each type of cell is read
more accurately using its corresponding local optimum read reference
voltage.

Unfortunately, NAR significantly degrades read latency because
determining the contents of a page requires N+2 read operations
(whereas using the global optimum read reference voltage requires
only one read operation): NAR first needs to read the LSB page and
the MSB page of the direct-neighbor cells to determine the contents of
direct-neighbors, which requires two read operations. After that, NAR
needs to read the selected page N times to determine the contents of
the cells classified into N types based on direct-neighbor cell values.
The increase in the number of read operations from 1 to N+2 (i.e., 6 in
the case of 2-bit MLC flash memory) degrades read latency to by N+2
times and thus can severely degrade system performance.

To mitigate such performance degradation with NAR, we propose
Neighbor-cell Assisted Error Correction (NAC). The idea is to first
read the page with the global optimum read reference voltage (which
requires only one read operation) and trigger NAR only if ECC fails
to correct the page data. Doing so requires a total of (1+Pfail (N+2))
read operations, where Pfail is ECC failure rate when reading with the
global optimum reference voltage. If the ECC failure rate is low,
average read latency would still be low. Extending this reasoning, we
further optimize NAC by checking whether or not ECC can correct
the current set of data after each step that reads 1/N-th of the page.
After a set of local optimum read reference voltages is used to read
1/N-th of the page more accurately, ECC is applied to the entire page.
If ECC can correct the entire page, then there is no need to go to the
next step, i.e., apply the next set of local optimum read reference
voltages to correct the next 1/N-th of the page. The next step is
triggered only if ECC fails in the previous step. Thus, number of read
operations is further reduced.

6.1 NAC Flow and System Operation
We briefly describe how NAC fits into the flash-based SSD controller
architecture (shown in Fig. 6). The SSD controller usually contains an
internal buffer to store requests and the data to be programmed and
recently read. To correct raw bit errors in flash media, binary BCH
codes [12], which can correct multiple bit errors, are widely deployed.
The data is encoded before programming and decoded after reading.
To increase error correction capability, we add two NAC-specific
blocks to the controller: 1) the engine that performs NAC, 2) we
reserve a small portion of the controller’s internal buffer as the NAC-
buffer, which stores the current page and neighbor pages (Fig. 6).

Fig. 6 Flash controller with Neighbor Assisted Error Correction.

Fig. 7 shows the flow of a page read request with NAC. When the
controller starts a read operation, it first checks whether the
requested page is already in the NAC-buffer (or in the internal
flash buffer, as done in a state-of-the-art controller) before
requesting the page from the flash memory. If so and if error-free,
the page is returned to the requestor (e.g., the host machine). If
not, the NAND flash interface fetches the requested page from
flash memory and sends it to the ECC engine. If ECC successfully
corrects all errors, flash controller sends the corrected page to the
requestor, and also stores it in the NAC-buffer. If ECC fails, NAC
is triggered for further correction. When NAC is triggered, it
requires the direct-neighbor LSB and MSB pages above the
requested page in order to classify the cells of the requested page.
If these direct-neighbor pages are not in the NAC-buffer, the flash
controller reads the neighbor pages out from flash memory. After
ECC attempts to correct these neighbor pages, they are saved into
the NAC-buffer, either error-free or erroneously (which is
indicated by a bit for each page). When both neighbor pages are in
the NAC-buffer, NAC is ready to correct the requested page.
NAC iteratively applies a set of local optimum read reference
voltages to correct 1/N-th of the requested page. ECC attempts to
correct the page after every step and when ECC passes, NAC
iterations stop and the requested page data is sent to the requestor.
If ECC fails after all NAC iterations, the page cannot be corrected
even with NAC and an exception is raised.

Fig. 7 Flow of the Neighbor Assisted Error Correction (NAC) mechanism

The size of the NAC-buffer is an important parameter. In order to
determine the optimum size, we assume the worst-case scenario in
which every read page requires NAC correction. It is common
that pages are read from the flash memory in page number order
due to common sequential access patterns and access to large data
chunks. For instance, as in Fig. 1(a), when Page 3 fails and needs
to be corrected by NAC, Pages 5 and 8 are saved to NAC-buffer.
Pages 5 and 8 are also the neighbors of Page 6, hence, we prefer
buffering those pages in anticipation that Page 6 will also be read
due to sequential access. However, when Page 5 is read between
Pages 3 and 6, two more neighbor pages are added to the NAC-
buffer (i.e., Pages 7 and 10). Therefore, we set the size of the
NAC-buffer to 5 pages to be able to buffer Pages 5, 6, 7, 8, 10 at
the same time. When the buffer is full and a new page needs to be
added, we evict the one with the lowest page number. We have

investigated performance sensitivity to NAC buffer size,
management policies, and prefetching mechanisms; space limits
prevent us from presenting these detailed evaluations. Our
empirical results (not shown in this paper) indicate that a NAC-
buffer size of 5 pages leads to minimal read latency.

6.2 Prioritized NAC
In this section, we make several observations that improve the
effectiveness of NAC by allowing us to apply the N sets of local
optimum read reference voltages in an order that minimizes the
latency overhead of NAC. In other words, we observe that some
sets of local optimum read reference voltages provide better error
correction capability (as they are associated with neighbor cell
values that are more likely to lead to errors) and we prioritize their
use when NAC is triggered such that we can reduce the number of
steps in NAC correction. We call this Prioritized NAC.

Error Type Analysis: When a page is read with a single global
optimum read reference voltage, REFx (see Fig. 5), the resulting
errors can be classified into eight types. The errors for cells
programmed to a lower-voltage state (Pi state) with direct-
neighbor cell value 11, 10, 00 and 01, but misread as belonging to
a higher-voltage state (Pi+1 state) are denoted as Pi(11)→Pi+1,
Pi(10)→Pi+1, Pi(00)→Pi+1, Pi(01)→Pi+1. The errors for cells
programmed to a higher-voltage state (Pi+1 state) with direct-
neighbor cell value 11, 10, 00 and 01, but misread as belonging to
a lower-voltage state (Pi state) are denoted as Pi+1(11)→Pi,
Pi+1(10)→Pi, Pi+1(00)→Pi and Pi+1(01)→Pi. The relative
percentages of all eight types of errors are shown in Fig. 8 for 2Y-
nm flash under various P/E cycles. We can see that Pi+1(11)→Pi,
Pi(10)→Pi+1 and Pi(01)→Pi+1 are the three dominant errors.

Fig. 8 Error type percentage for all eight types of read errors at (a) 3k (b)

10k and (c) 30k P/E cycles for 2Y-nm flash.

Some types of errors are more dominant because cells with
threshold voltage near the border of the neighboring state’s
threshold voltage distribution tend to have errors as they are the
most likely ones to be misclassified using a single reference
voltage. To understand this, let us examine Fig. 5(a) and 5(b) that
respectively plot threshold voltage distributions of victim cells
before and after neighbor cells are programmed. Let us focus on
two cells, each of which has an initial threshold voltage that is
close to the border of the neighbor state’s threshold voltage
distribution: P(i+1)

low and P(i)
high in Fig. 5(a). If P(i+1)

low’s direct-
neighbor cell is programmed to 11, the resulting threshold voltage
for this cell, P’(i+1)

low, will be at the bottom end of the conditional
distribution N11 for state P(i+1) (see Fig. 5(b)) because
programming the neighbor cell with 11 (ER state) leads to the
smallest amount of program interference. Unfortunately, using
REFx as the read reference voltage might cause the value of this
cell to be misread as belonging to state Pi, leading to the
Pi+1(11)→Pi error type, the most common error type according to
Fig. 8. Similarly, if P(i)

high’s direct-neighbor cell is programmed to
01, the resulting threshold voltage for this cell, will be at the
highest end of the conditional distribution N01 for state P(i) (see
Fig. 5(b)) because programming the neighbor cell with 01 leads to
the highest amount of program interference. Unfortunately, using

REFx as the read reference voltage might cause the value of this
cell to be misread as belonging to state Pi+1, leading to the
Pi(01)→Pi+1 error type, second most common error type according
to Fig. 8. This example shows that two types of cells are more
vulnerable to errors: 1) those that are at the bottom of the
distribution of a higher-voltage state and receive the least amount
of interference from their direct-neighbor, 2) those that are at the
top of the distribution of a lower-voltage state and receive the
highest amount of interference from their direct-neighbor. This
leads to the dominance of corresponding error types.

Note that the Pi+1(11)→Pi type error is the most dominant one.
This is because the program interference of aggressor cells with
values 10 and 01 are close (N01 and N10 almost overlap in Fig.
5(b)). Thus, more cells are located at the top region of the overall
distribution of each state. The global optimum read reference
voltage therefore deviates toward the higher-voltage state. As a
result, more cells of N11 in the higher-voltage state tend to be
misread as belonging to the lower-voltage state.
Prioritized NAC: We take advantage of the above analysis to
prioritize the selection of the set of local optimum read reference
voltages during NAC. After a page that is read using the set of
global optimum read reference voltages fails ECC, we select
REFx11 as the first set of local optimum read reference voltages to
read the failed page to fix the dominant Pi+1(11)→Pi errors. At this
step of NAC, the read data of the cells with direct-neighbor values
11 will be replaced with the new reading performed with REFx11.
This leads to three cases: 1) The read data of a cell remains
unchanged upon the NAC reading. This is the case for cells of
type-N11 with threshold voltage larger than REFx or smaller than
REFx11. 2) The new data read using REFx11 is correct and the old
data read using REFx was incorrect. This is the case for cells of
type-N11 in Pi+1 state with threshold voltage in the window
[REFx11, REFx]. 3) The new data read using REFx11 is incorrect
and the old data read using REFx was correct. This is the case for
cells of type-N11 in the Pi state with threshold voltage in the
window [REFx11, REFx]. Since REFx11 is the optimum read
reference voltage for cells of type-N11, the number of corrected
cells (case 2) is larger than that of mis-corrected cells (case 3).
Fig. 9 demonstrates this empirically: the net number of corrected
cells (number of corrected minus the number of mis-corrected
cells) of type-N11 can reduce the total errors by 58%, 44% and
22% for flash memory at 3k, 10k and 30k P/E cycles respectively.
Since the read data of types N00, N01, and N10 are unchanged,
the total number of errors is significantly reduced after applying
NAC with REFx11. ECC may be able to correct the remaining
errors without requiring another NAC step. In such a case, system
performance is improved due to Prioritized NAC. If ECC still
fails after applying REFx11, our mechanism tries REFx10 next, and
if ECC still fails again it applies REFx01 as the error correction
capability of these are the second and third highest, as Fig. 9 also
demonstrates empirically.

Fig. 9 Percentage of corrected errors, mis-corrected errors and net-

corrected errors over total errors for flash memory when local
optimum read reference voltages corresponding to N01, N10, N00
and N11 distributions are used at (a) 3k (b) 10k (c) 30k P/E cycles.

6.3 Policy When Neighbor Cells Have Errors
So far, we assumed that the neighbor cell values can be obtained
correctly for NAC. However, the neighbor page may fail ECC and
may not be correctly read. If the neighbor page fails ECC, we
propose to use the uncorrected raw data from the neighbor page to
classify cells for NAC. This section analyzes the effect of
neighbor failure on the error correction capability of NAC.

Neighbor Page Failure Analysis: First, the neighbor page failure
rate is low. Assume Pfail is the ECC failure rate. The probability of
one of the two neighbor pages failing when the victim page fails is
approximately 2(Pfail)

2, which is much smaller than Pfail. Even
when neighbor pages fail ECC, most of the raw values read from
neighbor pages are still correct because the raw BER is less than a
few percent even at very high P/E cycles [1][2]. As a result, most
cells in the page can be correctly classified using correct neighbor
values, enabling NAC to correct errors in the victim page. For the
neighbor cells that are misread, NAC may still be able fix the
errors on the corresponding victim cells although it could also
inject additional errors. We demonstrate this with an example.
Consider a victim cell of type-N11 with its direct-neighbor cell
programmed as 11 but misread as 10. The threshold voltage of
this victim cell will be compared to the wrongly-selected local
read reference voltage REFx10 instead of REFx11 during NAC. If
the threshold voltage of this victim cell is less than REFx11 or
larger than REFx10, the read value using the wrong reference
voltage REFx10 is the same as the value if read with the correct
reference voltage REFx11. Thus, there is no additional error
introduced. Only when the threshold voltage of the victim cell is
smaller than REFx10 or larger than REFx11, the read value could
be different. For a cell like this, there are still two cases:

1. Cell is actually in state Pi: The correct local read reference
voltage REFx11 would have misread the cell as belonging to
state Pi+1 while the wrongly-selected REFx10 correctly reads
it as belonging to state Pi. Hence, the error in the neighbor
cell eliminates a potential error when reading the victim cell.

2. Cell is actually in state Pi+1: The correct local read reference
voltage REFx11 would have correctly read the cell as
belonging to state Pi+1. However, REFx10 misreads it as
belonging to state Pi. Hence, the error in the neighbor cell
introduces a new error when reading the victim cell.

Since the threshold voltages of flash cells in different locations are
independent of each other [4], the event that a neighbor cell has an
error is independent from the event that its victim cell’s threshold
voltage falls in the range of [REFx11, REFx10]. Thus, the
additional error rate caused by neighbor failure is equal to:

))()((
10

11 11

10

11

1
11

1011 REFx

REFx

PiREFx

REFx

Pi
neighbor dxxfdxxfP (21)

1011
neighborP is the probability that the cell on the neighbor wordline

was programmed as 11 but misread as 10.)(11 xf Pi and)(1
11 xf Pi

are the PDF functions of the threshold voltages of type-N11 cells
programmed in states Pi and Pi+1 respectively. 1011

neighborP is less than

a few percent at high P/E cycles. 10

11 11

10

11

1
11)()(

REFx

REFx

PiREFx

REFx

Pi dxxfdxxf

is much smaller than 1 since the region of [REFx11, REFx10] is far
away from the center of the distribution)(1

11 xf Pi and)(11 xf Pi (see

Fig. 5(b)). Similarly to the case of neighbor 11 being misread as
10, the additionally injected errors caused by the other types of
neighbor cell failures are also very small.

Measurement of Effect on NAC Error Correction Rate: Fig.
10 plots the fraction of additional errors caused by neighbor
failure over the errors that are corrected by NAC under various

P/E cycles as measured for 2Y-nm flash devices. We can see that
the number of errors corrected by NAC is much larger than the
additionally injected errors caused by neighbor failure. The
fraction of injected errors due to neighbor failure increases with
P/E cycles because the raw error rate of neighbor pages increases
with P/E cycles and therefore the probability of errors due to
misclassification of victim cells increases. However, we can see
that even at 35k P/E cycles, the number of additional errors due to
neighbor failures is less than 10% of the errors that are corrected
by NAC. We conclude that neighbor cell errors do not
significantly reduce the error correction capability of NAC.

Fig. 10 The fraction of errors due to neighbor cell read failure over total

errors that are corrected by NAC.

6.4 Implementation of NAC
Optimum Read Reference Voltage Learning: NAC needs to
read the page multiple times using the global optimum and up to
N local optimum read reference voltages. The optimum reference
voltage is the average of the mean values of the threshold voltage
distributions of neighboring states. To learn the mean values of
state voltage distributions, we propose to periodically (e.g., every
100 P/E cycles) measure the overall and conditional threshold
voltage distribution statistics for a set of sampled wordlines. The
details of this periodic sampling based learning mechanism are
straightforward and omitted for brevity. The learning overhead is
kept low: even for write-intensive applications (e.g., 10 full disk
writes per day) [7], 100 P/E cycles will be consumed after at least
10 days. The learning task runs in background with low priority so
that it does not interfere with normal operation.

NAC Microarchitecture: Fig. 11 shows the microarchitecture of
NAC. It contains four buffers, one comparator (Comp) vector and
one pass circuit vector. The neighbor LSB page buffer and MSB
page buffer store the neighbor LSB/MSB page data of the current
failed page respectively. The Page-to-be-Corrected buffer
initially contains the data of the page that was read with the global
optimum read reference voltage and failed ECC. The Local-
Optimum-Read buffer is loaded with the page data that is read
using the local optimum read reference voltage at each step of
NAC. Two bits, Bit1/Bit2, indicate which of the four local
optimum read reference voltages (corresponding to four possible
values in the neighbor cells) is used to read the current data in the
Local-Optimum-Read buffer. In each step of NAC, after the page
is read using the local optimum read reference voltage, each
comparator circuit compares Bit1/Bit2 to the corresponding
MSB/LSB neighbor bits. If there is a match (indicating that the
neighbor cell value is the same as the value for which the local
optimum read reference voltage is selected), the corresponding
pass circuit is enabled, which causes the corresponding data in the
Local-Optimum-Read buffer to overwrite the corresponding cell
in the Page-to-be-Corrected buffer, thereby enabling the NAC
correction of the cell that has a neighbor value that matches
Bit1/Bit2. All other circuitry supporting the NAC flow in Fig. 7 is
not shown.

Fig. 11 Microarchitecture of Neighbor Assisted Error Correction.

7. EVALUATION RESULTS

7.1 P/E Cycle Lifetime Evaluation
Since ECCs that can correct 40 bit errors per 1k-Byte data are
recommended for 20nm MLC flash memory [17], we chose such
ECC as baseline in our evaluations. Following the methodology of
[2], the probability of ECC failure can be calculated as:

 nNn
N

En

N
nCW RBERRBERP

)1(
1

(22)

Here, N is the number of bits protected by ECC and E is the
maximum number of errors that can be corrected. RBER is the
raw bit error rate before error correction. Raw BER and ECC
failure rate are listed in Table 2. When RBER is larger than 10-2.64,
ECC almost always fails. Also, to guarantee ECC failure rate to
be below 10-15, the acceptable RBER should be less than 10-3.

Table 2. Correlation of raw BER and ECC failure

P/E Cycle Lifetime Evaluation: We program random data into
2Y-nm 2-bit MLC flash memory for up to 50k P/E cycles.
Assuming that retention errors can be fixed by using flash refresh
techniques [6][7], the programmed data are read out after one-
week retention at room temperature. The raw BER values
resulting from reading with the global optimum read reference
voltage without NAC and reading with different strengths of NAC
using respectively one, two, three or four potential sets of local
optimum read reference voltages are shown in Fig. 12 over
different P/E cycles. To guarantee system reliability, the raw BER
must be less than the acceptable raw BER (i.e., 10-3) of the
baseline ECC. Thus, the maximum P/E cycle lifetime of the
baseline flash memory without NAC is only 18k P/E cycles, as
shown in Fig. 12. NAC increases the P/E cycle lifetime by 22%
(22k P/E cycles), 33% (24k P/E cycles) and 39% (25k P/E cycles)
respectively for different strengths. Since the fourth set of local
optimum read reference voltages mainly corrects errors for the
conditional distribution that is in the middle of the overall
distribution where there are fewer errors (see Fig. 8), its raw BER
curve almost overlaps with that of using three sets of local
optimum read reference voltages. We conclude that NAC is
effective in improving flash memory lifetime and as NAC
strength is increased lifetime improvement increases.
NAC Frequency Analysis: As Fig. 12 shows, the extended
lifetime due to NAC is divided into three regions based on NAC
strength: stage 1, stage 2, and stage 3. At the beginning of the
extended lifetime, the raw BER is about 10-3 and the ECC failure

rate before NAC is 10-14. NAC is seldom triggered. As P/E cycles
increase, the raw BER after reading with global optimum read
reference voltage increases. Raw BERs without NAC at the end of
stage-1, stage-2 and stage-3 are 1.6x10-3, 2x10-3 and 2.2x10-3

respectively. These cause the ECC failure rates without NAC to
be 10-5, 10-2 and 33% respectively. This means that ECC does not
always fail during the extended lifetime and hence NAC is not
triggered for all requested pages. We use the ECC failure rate
without NAC at the end of each stage to estimate the worst-case
NAC trigger frequency in that stage. Note that the ECC failure
rate within a stage is generally lower than this worst-case value as
it increases with P/E cycles. In stage-1, NAC trigger frequency is
very low (<10-5). However, the ECC failure rate would not satisfy
modern storage systems’ requirement (less than 10-15 failure rate)
without NAC protection. In stage-2, NAC is triggered at a rate
<1%. Only in the third region, NAC is triggered often (<33%).
However, if NAC is applied, the raw BER of all these stages can
be reduced to lower than 10-3. Hence, using NAC guarantees the
uncorrectable failure rate to be below 10-15, which is the error rate
requirement for storage.

Fig. 12 Raw bit error rate of experimental 2Y-nm NAND flash memory

with and without NAC of varying levels of strength.
Reducing the Cost of ECC using NAC: If P/E-cycle lifetime that
is desired is the same as that of the baseline without NAC, the
employed ECC mechanism can be simplified in the presence of
NAC. We explore how much NAC can help reduce ECC cost to
achieve the same P/E-cycle lifetime as the baseline ECC
mechanism. The maximum P/E cycle lifetime of the employed
baseline ECC is 18K P/E cycles, as seen in Fig. 12 (at this
lifetime, the raw BER of the baseline reaches 10-3, which is the
maximum acceptable raw BER that leads to an ECC failure rate of
10-15, as shown in Table 2). At 18K P/E cycles, using NAC
reduces the acceptable raw BER for ECC by 65% from 10-3 to
3.5x10-4. To satisfy this raw BER, simpler ECC that can correct
only 24 bit errors (as opposed to 40 in the baseline) for 1k-Byte
data can be used. Since ECC complexity increases linearly with
the number of errors that ECC can correct [12], the ECC design
cost can be reduced by approximately 40% when NAC is
employed. This can lead to significant power and area savings in
the system.

P/E Cycle Analysis: NAC provides diminishing returns on raw
BER rate as the number of P/E cycles increases. The raw BER
reduction with NAC can be more than 90% at the beginning of
flash lifetime. However, at high P/E cycles (e.g., 35k P/E cycles),
NAC reduces raw BER by only 30%. This is mainly due to two
reasons. First, at low P/E cycles program interference related

Raw BER 10-3 10-2.9 10-2.8 10-2.7 10-2.65 10-2.64

ECC FER 10-15 10-10 10-6 10-2 0.07 100%

errors, which are the errors that can be fixed by NAC, constitute a
higher fraction of all flash errors, whereas at higher P/E cycles
they constitute a smaller fraction [3] and other errors, e.g., those
due to P/E cycling noise, which cannot be fixed by NAC, become
dominant [1][4]. Note that this is because program interference is
due to cell-to-cell coupling and is mainly determined by the
geometry of flash cells (e.g., the distance between neighboring
flash cells) instead of P/E cycles whereas many other flash error
types increase with P/E cycles [3]. Second, the ECC failure rate
of, and correspondingly the number of, erroneously read cells on
the neighbor pages, which are needed by NAC for error
correction, increases over P/E cycles. Neighbor page ECC failure
causes misclassification of cells and can partly counteract the
errors corrected by NAC (Sec. 5.3). When flash memory scales to
smaller geometries and program interference becomes more
dominant, we would expect NAC to have even higher benefits in
error reduction and relative lifetime improvement.

7.2 Performance Evaluation
We evaluate the performance of NAC by using Disksim [18][19]
with SSD extensions [19]. We use I/O traces from various
workloads: cello99 [20], postmark [21], MS-Cambridge [22],
Financial OLTP [23] and Web Search Engine [23]. Details of
these traces can be found in [7]. We configure the simulated flash
based SSD with four channels. Each channel has eight flash chips.
Each flash chip has 8096 blocks containing 256 pages per block.
Each page is 8KB unless specified otherwise.

7.2.1 Workload NAC-Buffer Locality Analysis
To help explain the performance impact of NAC in Sec. 7.2.2, we
first analyze the locality behavior of read operations in the
workloads in the NAC-buffer. NAC presents time overhead for
reading the neighbor LSB and MSB pages of a requested page
(called the victim page) that fails ECC. NAC keeps these pages in
a 5-entry NAC-buffer, as described in Sec. 6.1. If the victim and
neighbor pages are needed while they are in the NAC-buffer,
these requests are served from the NAC-buffer instead of flash
memory.
We first explore hit rates in a 5-entry NAC-buffer. We study a
system that always keeps the 5 last accessed pages in the NAC-
buffer (but the system is error-free for the purposes of this study).
In Fig. 13, we show the hit rate of different types of pages in the
NAC-buffer. The victim page hit rate shows the caching effect of
the NAC-buffer: this is the fraction of all flash requests that hit in
the 5-entry NAC-buffer. The higher this fraction, the more
effective the NAC-buffer as a latency reduction mechanism for all
requests in the system. The LSB/MSB neighbor page hit rate
specifies the fraction of all flash requests for which the LSB/MSB
neighbor is also in the NAC buffer when the request is received.
The higher this fraction, the less the overhead of a potential NAC
correction as there is no need to fetch the LSB/MSB neighbor
from flash memory to perform NAC correction when these
neighbors are already in the NAC-buffer. For workloads with
heavily sequential access patterns, we expect the hit rates of the
neighbor pages to be higher since the program may have already
fetched neighbor pages before it requests a (victim) page.
We make several observations from Fig. 13. First, the NAC-buffer
hit rate is in general low (i.e., less than 5%), which indicates that
only a small fraction of pages are accessed repeatedly from the
small NAC buffer. This is because, in order to reduce disk
accesses, the operating system keeps the recently used pages in
main memory and it is unlikely that a page that is recently
accessed will be evicted from main memory to be accessed again
soon after. However, Financial has a remarkably high hit rate in

the small NAC-buffer, which affects its performance positively
with NAC (see Sec. 7.2.2). Second, we find that the LSB/MSB
Neighbor Page hit rates are high for Cello, MS-Cambridge and
Web-Search workloads, as these have more than 30% of their read
operations as sequential requests. In contrast, Financial and
Postmark workloads have relatively small request sizes; therefore,
they feature less sequential read requests, leading to lower hit
rates. We expect the overhead of NAC correction to be low for the
former type of (sequential-access) workloads. Third, the hit rate of
the LSB neighbors is higher than that of the MSB neighbors. This
is because the number of pages between the victim page and its
MSB neighbor is higher than the number of pages between the
victim page and its LSB neighbor. As a result, workloads that
only have higher levels of spatial locality, of which there are
fewer, can take advantage of the MSB neighbors.

Fig. 13 The hit rate of different page types in the NAC-Buffer during

error-free Execution (i.e., when ECC fail rate is zero). Victim Page
indicates the overall hit rate of the NAC-buffer for all flash accesses.

7.2.2 NAC Performance Overhead Analysis
Fig. 14 shows the increase in read latency due to NAC at distinct
P/E cycles. We activate the NAC mechanism when the first ECC
failure is experienced in flash memory. After that, each requested
page is first searched in the NAC-buffer before accessing the flash
disk. Note that the time spent for this search operation is around
1% of the latency of flash disk access latency. We make three
major observations.

First, NAC does not present any performance impact when the
flash memory is within the same lifetime as the baseline (<18K
P/E cycles).

Second, at relatively low P/E cycles after the extended lifetime,
NAC presents either only negligible performance degradation or
slight performance improvement. This is because, for especially
the workloads with good locality, the 5-entry NAC-buffer behaves
as an effective small cache in front of the flash memory, as
indicated by the hit ratio of different types of pages in Fig. 13.
Even when NAC incurs overhead by fetching the neighbor pages
upon an ECC failure from flash, the later requests to these pages
made by the workload can hit in the NAC-buffer, thereby
potentially hiding the NAC overhead for these neighbor pages.

Third, NAC incurs less than 5% performance degradation while
providing a 33% lifetime improvement (i.e., from 18k to 24k P/E
cycles). Moreover, this performance degradation is only
introduced for the higher P/E cycles during which a normal flash
memory without NAC is considered to be non-functional.

Finally, there is a sharp increase in read latency overhead between
24k P/E cycles and 25k P/E cycles. The main reason of this
increase is the drastic increase in ECC failure rate from 10-2 to
33% between these two points. At 25k P/E cycles, one out of
every 3 read operations requires NAC correction with its
associated overhead. However, using NAC still enables a high
lifetime of 25K P/E cycles, which cannot be achieved by the
baseline ECC.

We conclude that NAC is effective at improving flash memory
lifetime beyond ECC without significantly degrading system
performance (up until the point where ECC failure rate increases
drastically).

Fig. 14 The read latency overhead of NAC at different P/E cycles with

different ECC failure rates in each P/E cycle.

Effect on a System with Prefetching: Fig. 15 shows the read
latency overhead of NAC on a system that prefetches 2 or 4
consecutive pages for every read request. We increase the
bandwidth between the flash controller and the flash disk so that
the prefetched pages can be read to the flash controller in parallel
with the requested pages. When the number of pages prefetched is
increased, NAC presents less performance degradation at high
ECC failure rate, i.e., when p(ECCfail)=33%. This is because a
more aggressive prefetcher increases the probability of finding the
neighbor pages in the NAC-buffer when NAC needs them.
However, at low ECC failure rate, NAC presents more
performance degradation when number of pages prefetched is
higher. This is because prefetching aggressively consumes NAC-
buffer entries and reduces the overall hit rate of the victim pages.
We conclude that NAC has even less performance overhead in a
state-of-the-art system that employs aggressive prefetching.

Fig. 15 The performance overhead of NAC in a system with prefetching.

Each bar is normalized to the baseline, error-free system that does
not employ prefetching.

8. CONCLUSION
We comprehensively analyzed threshold voltage distributions in
state-of-the-art 2Y-nm MLC NAND flash memory and both
statistically and experimentally demonstrated that bit error rate
when reading flash memory can be decreased by classifying flash
cells based on their immediately-neighboring cells’ values.
Building on these analyses, we introduced the first low-overhead
and high-accuracy neighbor-cell assisted error correction methods
that leverage information from neighbor cells to correct errors in
cells that are being read from flash memory. Our experimental
evaluations using I/O traces from real workloads and error data
obtained from real flash memory chips show that our new error
correction methods can significantly reduce the raw bit error rate
and improve flash memory lifetime at zero or very modest
performance overheads. As flash memory scales down to smaller
technology nodes and cell-to-cell interference therefore becomes

an even more dominant cause of errors, we expect that the error
correction techniques proposed in this paper will become even
more important for reliable operation. We also hope that the
statistical and experimental analyses provided in this paper can
enable the development of even more sophisticated and effective
error tolerance mechanisms.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for helpful feedback. This
work was partially supported by the Intel Science and Technology
Center for Cloud Computing, Data Storage Systems Center
(DSSC) at Carnegie Mellon University, NSF Award CCF
12122962, the FP7 ParaDIME Project, grant agreement no.
318693 and by the Ministry of Science and Technology of Spain
and the European Union (FEDER funds) under contracts
TIN2008-02055-E and TIN2012-34557.

REFERENCES
[1] Y. Cai et al., “Error Patterns in MLC NAND Flash Memory:

Measurement, Characterization and Analysis”, DATE 2012.
[2] N. Mielke et al., “Bit Error Rate in NAND Flash Memories”, IRPS

2008.
[3] Y. Cai et al., “Program Interference in MLC NAND Flash Memory:

Characterization, Modeling, and Mitigation”, ICCD 2013.
[4] Y. Cai et al. “Threshold Voltage Distribution in MLC NAND Flash

Memory: Characterization, Analysis, and Modeling”, DATE 2013.
[5] K. Park et al., “A Zeroing Cell-to-cell Interference Page Architecture

with Temporary LSB Storing and Parallel MSB Program Scheme for
MLC NAND Flash Memories”, JSSC 2008.

[6] R. Liu et al., “Optimizing NAND Flash-Based SSDs via Retention
Relaxation”, FAST 2012.

[7] Y. Cai et al. “Flash Correct-and-Refresh: Retention-Aware Error
Management for Increased Flash Memory Lifetime”, ICCD 2012.

[8] Y. Cai et al., “Error Analysis and Retention-Aware Error
Management for NAND flash memory,” Intel Technology Journal
2013.

[9] H. Shim et al., “Highly Reliable 26nm 64Gb MLC E2NAND Flash
Memory with MSP Controller”, VLSIT, 2011.

[10] T. Kim et al., “Cell-to-cell Interference Compensation Schemes
Using Reduced Symbol Pattern of Interfering Cells for MLC NAND
Flash Memory”, IEEE Transactions on Magnetics 2013.

[11] G. Dong et al., “Using Data Postcompensation and Predistortion to
Tolerate Cell-to-cell Interference in MLC NAND Flash Memory”,
IEEE Transactions on Circuits and Systems I, 2010.

[12] S. Lin et al., “Error Control Coding (2nd Edition)”, Prentice Hall
2004.

[13] Y. Cai et al. "FPGA-Based Solid-State Drive Prototyping Platform",
FCCM 2011.

[14] J. Cha et al., “Data Randomization Scheme for Endurance
Enhancement and Interference Mitigation of Multilevel Flash
Memory Devices”, ETRI Journal, 2013.

[15] C. Kim et al., “A 21 nm High Performance 64 Gb MLC NAND
Flash Memory with 400 MB/s Asynchronous Toggle DDR
Interface”, JSSC 2012.

[16] D. Lee et al., “Estimation of NAND Flash Memory Threshold
Voltage Distribution for Optimum Soft-Decision Error Correction”,
IEEE Transactions on Signal Processing 2013.

[17] S. Yasarapu, “Architectural Requirements for MLC based SSDs”,
FMS 2011.

[18] J. Bucy et al., “The DiskSim Simulation Environment Version 4.0
Reference Manual”, Technical Report 2008.

[19] N. Agrawal et al., “Design Tradeoffs for SSD Performance”,
USENIX 2008.

[20] Open Source at HP Labs, http://tesla.hpl.hp.com/opensource
[21] J. Katcher, “Postmark: a New File System Benchmark”, Technical

Report, 1997.
[22] SNIA: IOTTA Repository, http://iotta.snia.org/tracetypes/3.
[23] UMass Trace: http://traces.cs.umass.edu/index.php/Storage/Storage

