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ABSTRACT 
Continued scaling of NAND flash memory to smaller process 
technology nodes decreases its reliability, necessitating more 
sophisticated mechanisms to correctly read stored data values. To 
distinguish between different potential stored values, conventional 
techniques to read data from flash memory employ a single set of 
reference voltage values, which are determined based on the 
overall threshold voltage distribution of flash cells. Unfortunately, 
the phenomenon of program interference, in which a cell's 
threshold voltage unintentionally changes when a neighboring cell 
is programmed, makes this conventional approach increasingly 
inaccurate in determining the values of cells. 
This paper makes the new empirical observation that identifying 
the value stored in the immediate-neighbor cell makes it easier to 
determine the data value stored in the cell that is being read. We 
provide a detailed statistical and experimental characterization of 
threshold voltage distribution of flash memory cells conditional 
upon the immediate-neighbor cell values, and show that such 
conditional distributions can be used to determine a set of read 
reference voltages that lead to error rates much lower than when a 
single set of reference voltage values based on the overall 
distribution are used. Based on our analyses, we propose a new 
method for correcting errors in a flash memory page, neighbor-
cell assisted correction (NAC). The key idea is to re-read a flash 
memory page that fails error correction codes (ECC) with the set 
of read reference voltage values corresponding to the conditional 
threshold voltage distribution assuming a neighbor cell value and 
use the re-read values to correct the cells that have neighbors with 
that value. Our simulations show that NAC effectively improves 
flash memory lifetime by 33% while having no (at nominal 
lifetime) or very modest (less than 5% at extended lifetime) 
performance overhead. 

Categories and Subject Descriptors 
B.3.4 [Memory	Structure]: Reliability, Testing, and Fault‐
Tolerance, C.4 [Performance of Systems]: Modeling techniques; 
Reliability 

General Terms 
Algorithms, Measurement, Performance, Design, Reliability. 

Keywords 
NAND flash memory, Program Interference, Threshold Voltage 
Distribution, Error Correction, ECC, Fault Tolerance. 

1. INTRODUCTION 
NAND flash memory is widely used in diverse applications, 
ranging from mobile electronics to enterprise servers. Such a wide 
application range is mainly driven by the ever-increasing, low-
cost, non-volatile storage capacity provided by NAND flash 
memory due to aggressive transistor scaling.  Unfortunately, as 
flash cells scale down to smaller technology nodes, they become 
increasingly vulnerable to circuit level noise, reducing the 
probability that stored data will be read correctly (even if it were 
stored correctly at the time it was written) even with the use of 
aggressive error-correcting codes (ECC) [1][2][3]. As a result, 
more accurate and sophisticated mechanisms to accurately read 
and correct the data values stored in flash cells become 
increasingly necessary. This paper introduces such a new 
mechanism based on a rigorous experimental analysis of real 
Multi-Level Cell (MLC) NAND flash memory chips and new 
findings on how the threshold voltage distribution of flash 
memory cells can be classified for more accurate identification of 
the logical data values stored in cells. 

In MLC NAND flash memory, the logical value stored in a 
memory cell is determined by the threshold voltage range (or, 
window) into which the cell’s actual threshold voltage falls [3][4]. 
As cell size is scaled down and more bits per cell are stored, the 
threshold voltage range used to represent each logical value 
becomes smaller, leading to increased error rates in determining a 
cell's logical value.  This is because process variations become 
more prevalent when the amount of charge stored in a flash cell 
reduces with feature size, causing the threshold voltages of 
different cells storing the same value to become significantly 
different. Hence, deciding what logical value a cell's threshold 
voltage actually corresponds to is increasingly difficult. 

The distribution of threshold voltages across different cells in 
flash memory is called the "threshold voltage (probability) 
distribution" [4]. A flash controller uses this distribution across all 
cells (in a flash memory chip) to determine the "reference 
threshold voltage values" to distinguish between cells that store 
different logical values upon reading an address in flash memory. 
For example, distinguishing between 11, 10, 00, and 01 in a 2-bit 
flash cell requires three read reference voltages, each one used to 
distinguish between the adjacent two logical values in terms of 
threshold voltage ranges. Traditionally, the read reference voltage 
used to distinguish between two adjacent logical values is a single 
reference voltage, and this voltage is determined by the 
manufacturer to minimize the probability that a cell's programmed 
logical value is misread as another, incorrect value. 

Unfortunately, using a single read reference voltage to determine 
a cell's logical value becomes increasingly difficult due to the 
phenomenon of program interference [3]. Program interference is 
the phenomenon where the threshold voltage of a flash cell, called 
the victim cell, unintentionally changes (that is, gets disturbed) 
while another, neighboring, cell’s value is being programmed 
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[1][2][3][5][6]. If the change in threshold voltage due to program 
interference causes the victim cell’s voltage to shift to a different 
threshold voltage range (based on a single read reference voltage), 
then the victim cell’s logical value becomes incorrect, leading to 
an error when the cell is read. As previous works have shown [3], 
program interference is responsible for a large fraction of 
difficult-to-correct errors in flash memory and therefore is a key 
challenge against scaling flash memory to higher densities. 

In this paper, we make the new observation that knowing (or, 
more broadly, distinguishing) the value programmed in the 
immediate-neighbor cell makes it easier to determine the value 
stored in the flash cell that is being read. In other words, one can 
classify the threshold voltage distribution of flash memory cells 
into multiple threshold voltage distributions based on the logical 
value of the immediate-neighbor flash cell and use the appropriate 
"classified" (or, conditional) voltage distribution (and the 
corresponding read reference voltage values associated with it, 
called the "local optimum read reference voltages") to more 
accurately determine the value of the cell that is being read. Doing 
so leads to a more accurate identification of the logical value of 
the flash cell being read because the classified voltage 
distributions of the flash cells based on neighbor cell values have 
smaller overlap between threshold voltage ranges of different 
logical values than a single overall threshold voltage distribution 
for all cells. We show both experimentally and analytically this is 
the case. 

Based upon this new observation, we introduce a new error 
correction method, called neighbor-cell assisted error correction 
(NAC). With this method, a flash memory page is first read using 
the regular read reference voltages (and the read logical values are 
buffered). If there are no errors uncorrectable by ECC, nothing 
else is done. However, if there are errors uncorrectable by ECC, 
the flash page is re-read with the read reference voltages 
corresponding to the voltage distribution assuming a particular 
immediate-neighbor value. The buffered values of the cells with 
that particular immediate-neighbor cell value are replaced using 
this reading, and ECC is applied again. If ECC is successful this 
time, the buffered page is deemed to be corrected and is supplied 
to the system. If ECC fails again, the process is repeated with 
another set of read reference voltages corresponding to the voltage 
distribution assuming another particular immediate-neighbor 
value until either ECC passes or all different potential immediate-
neighbor values are exhausted. We evaluate NAC and show that it 
can significantly improve flash memory lifetime with very modest 
performance loss during the extended lifetime and no performance 
loss during the nominal lifetime. 

To our knowledge, this is the first paper that classifies threshold 
voltage probability distributions of flash memory cells based on 
neighboring cell values, analyzes these distributions both 
statistically and experimentally, and makes use of these classified 
threshold voltage distributions to improve error correction 
capability for MLC NAND flash memory. Our major 
contributions in this paper are as follows: 

1.  We provide a detailed statistical and experimental 
characterization of threshold voltage distributions of flash 
memory cells conditional upon the immediate-neighbor cell 
values, and show that such conditional distributions can be 
used to determine read reference voltages that can minimize 
raw bit error rate (RBER) when the cells are read. We show 
that RBER can be reduced by using information from 
neighbor cell values. (Sections 4 and 5) 

2.  Based on our analyses, we propose a new method for 
correcting errors in flash memory, neighbor-cell assisted 

correction (NAC), which complements ECC (Section 6). The 
key idea is to re-read a flash memory page that initially failed 
ECC with a set of read reference voltages corresponding to 
the conditional threshold voltage distribution assuming a 
neighbor cell value and use the re-read values to correct the cells 
that have neighbors with that value. We show that the error 
correction capability of particular neighbor cell values is higher 
than that of others because the threshold voltage changes 
interference caused by some neighbor cell values are more likely 
to lead to errors in the cells they interfere with. Based on this, we 
propose the idea of prioritized NAC, which prioritizes reading 
assuming such neighbor cell values (Section 6.2). We also show 
that even if the reading of the neighbor cells fails ECC, the read 
raw data from the neighbors is accurate enough to provide better 
correction capability than ECC alone (Section 6.3).  

3. We evaluate all our techniques using real I/O workload traces and 
a high-fidelity simulation infrastructure that is driven by 
measured data from real flash chips. Our evaluations show that 
NAC increases flash memory lifetime by 33% without any 
performance loss within the nominal lifetime and with less than 
5% performance loss during the extended lifetime (Section 7). 

2. BACKGROUND  
We briefly provide background on relevant aspects of NAND flash 
memory necessary to understand the rest of the paper. For more 
detailed background on flash memory operation and characteristics, 
please refer to Cai et al. [1][3][4][7][8]. 

2.1 Basics of NAND Flash Memory 
As mentioned, the logical value stored in a flash memory cell is 
determined by the threshold voltage range into which the cell’s actual 
threshold voltage falls. The threshold voltage of a flash cell can be 
modulated by the amount of electrons programmed on the floating 
gates. For n-bit MLC NAND flash memory, the threshold voltage of a 
cell is logically divided into 2n separate regions and each region 
represents a unique n-bit value. For the specific case of 2-bit MLC 
NAND flash memory, the bits stored in a cell can be classified into 
the most significant bit (MSB) and the least significant bit (LSB), 
depending on the location of the bit inside the flash bit-string [1][3].  

NAND flash memory generally contains thousands of blocks. A block 
consists of a 2-D array of flash cells. Each row of the array forms one 
wordline and each column forms one bitline. A block has N wordlines 
and the address of the wordline increases one by one from the bottom 
to the top inside a block. Thus, a cell location can be uniquely 
determined by its wordline and bitline address inside a block. In this 
paper, we define C(x,y) to be the flash cell that is on the x-th wordline 
and y-th bitline. For All-Bit-Line NAND flash memory, the MSBs of 
all the cells on the same wordline are programmed and read 
simultaneously: these set of MSBs on the same wordline are referred 
to as an MSB page. Similarly, the LSBs of all the cells on a wordline 
form one LSB page. Each page has its unique physical address inside 
a block. Fig. 1(a) shows an example of the page address mapping 
inside a flash block. We can see that the LSB page number on 
wordline n is 2n-1, and the MSB page number on wordline n is 2n+2 
for all-bit-line flash memory. The exceptions are the bottom wordline 
(i.e., wordline 0) and top wordline (i.e., wordline N) of a block.  

2.2 NAND Flash Operations 
Program Operation: Programming the threshold voltage of flash 
cells to the target threshold voltage region requires two steps for 
2-bit MLC flash memory. These two steps are shown in Fig. 1(b): 
1) LSB programming, which programs the threshold voltage of 
the cell into either the erased state region (ER) or a temporary 
state region (Temp) based on the value of LSB; and 2) MSB 
programming, which programs the threshold voltage of the cell 



  

 

into one of the four regions (ER, P1, P2, P3) determined by both 
the LSB and MSB bit values. 

 
Fig. 1 (a) All-bit-line flash block architecture with the victim cell circled 

in red and aggressor cells circled in grey; (b) Two-bit MLC flash 
programming scheme. Cell states are encoded in format (LSB, MSB) 

Read Operation: The read operation determines the logical value 
of a flash cell by determining the region its threshold voltage falls 
in. To read the LSB of 2-bit MLC flash memory, a reference 
voltage (REFb in Fig. 1(b)) is selected to compare with the 
threshold voltage of the flash cell. If the threshold voltage of the 
flash cell is larger than REFb, the LSB is read as 0, otherwise it is 
read as 1. To read the MSB, the threshold voltage of a cell is 
compared to two reference voltages (REFa and REFc in Fig. 1(b)). 
If the cell’s threshold voltage is within the range of [REFa, REFc], 
the MSB is read as 0, otherwise it is read as 1. Each of the 
reference voltages is called a read reference voltage.  

If the set of read reference voltages is set to a set of values that are 
not optimal, a cell’s logical value may be incorrectly read (i.e., the 
cell may be attributed to belong to a threshold voltage window 
that is different from the window corresponding to the logical 
value it was programmed with). This leads to errors in read 
operation. There are at least two issues that complicate the 
optimal determination of read reference voltage values: 1) the 
threshold voltage distribution of flash cells gets distorted as the 
cells wear out (i.e., as the number of P/E cycles increases) [4], 2) 
the threshold voltages of cells get disturbed as neighboring cells 
are programmed [3].  

Recent flash memory devices [9] allow the read reference 
voltages to be configurable online, which allows the flash 
controller to try different reference voltages in order to find one 
that leads to a lower error rate. This functionality is called read-
retry. Previous works [3][4] leverage the read-retry feature to 
identify the exact threshold voltage of each flash cell and 
experimentally characterize the threshold voltage distributions.  

2.3 Cell-to-cell Program Interference 
Due to coupling capacitance between flash cells, the threshold 
voltage of a flash cell can change when its neighbor cells are 
being programmed [3][5]. The former cell is called the victim cell, 
while the latter are called aggressor cells, as shown in Fig. 1(a). 
Generally, the pages inside a block are programmed in page 
number order to reduce program interference [3]. The flash cells 
on lower wordlines will finish programming before the MSB page 
programming of the upper wordlines. Thus, the cells on a lower 
wordline will not be the aggressor cells for those on an upper 
wordline. For all-bit-line flash memory, the cells on the same 
wordline are programmed simultaneously and finish programming 
at the same time [3][5]. Therefore, program interference from 
neighbor cells on the same wordline is negligible, as demonstrated 
in [3][5]. The program interference on a victim flash cell C(n,j) 
due to the aggressor cells on the wordline that is immediately 
above the victim wordline and can be modeled as [3]: 
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Here before
victimV  is the threshold voltage of the victim cell before 

aggressor cells are programmed and ΔVneighbor(x, y) is the 
threshold voltage change of the aggressor cell C(x,y). α(x,y) is a 
positive coefficient, which represents the ratio of the coupling 
capacitance between the aggressor cell C(x,y) and the victim cell 
C(n,j) over the total capacitance of the victim cell C(n,j). α0 is a 
negative coefficient, which models the fact that the victim cell 
with more electrons programmed tends to suffer less from 
program interference. The coupling coefficients decrease 
exponentially with the distance between neighbor cells [3] and the 
dominant interference to a victim cell in all-bit-line NAND flash 
comes from the aggressor cell that is directly above the victim [3], 
i.e. the direct or immediate neighbor (e.g., aggressor C(n+1, j) to 
victim C(n, j)). Thus, equation (1) can be simplified to: 

),1(),( jnVkjnV neighborvictim    (2) 

3. OUR GOALS AND RELATED WORK  
Our goal in this work is threefold. First, we would like to 
empirically and statistically analyze the threshold voltage 
distributions of flash cells conditionally upon the values of 
immediately neighboring cells. Second, we would like to find 
better sets of read reference voltages that can minimize read error 
rates by using information from neighboring cell values. Third, we 
aim to devise new error correction mechanisms that can take 
advantage of the values of neighboring cells to reduce error rates 
after the application of conventional ECC.  

To our knowledge, no previous work explored the effect of 
neighboring cell values on flash memory threshold voltage 
distributions and provided ways of taking advantage of 
neighboring cell values to minimize flash memory error rates. We 
briefly discuss the most relevant works below. 

Cai et al. [4] was the first to characterize and propose an empirical 
model for threshold voltage distributions in MLC NAND flash 
memory. Cai et al. [3] also characterized the effect of 
programming of neighboring cells (program interference) on 
threshold voltage distributions of cells. Building upon the 
empirical measurements in [3], they proposed a mechanism that 
can predict and use a set of read reference voltages to minimize 
bit error rate, taking into account the changes in the overall 
threshold voltage distribution of cells due to program 
interference. However, [3] did not characterize or take advantage 
of the fact that the changes in threshold voltage distribution are 
dependent on the values programmed in the neighboring aggressor 
cells. This paper builds upon [3] and shows that knowing the 
values stored in neighboring cells can lead to the determination of 
a better set of read reference voltages that can further reduce bit 
error rate and improve lifetime compared to the neighbor-cell-
value-unaware read reference voltage prediction mechanism of [3] 
(Section 7.1). 

Two other works [10][11] proposed signal processing techniques 
to overcome program interference effects in flash memory. 
However, these works face multiple implementation challenges 
and are based on hypothesized (as opposed to experimentally 
measured and validated) models for program interference, which 
we briefly summarize. First, these works rely on accurate 
measurement of 1) the threshold voltage changes of neighbor 
aggressor cells and 2) threshold voltages of the victim cells. This 
means that an n-bit representation (e.g. 4~6 bits to represent the 
threshold voltage for 2-bit MLC flash) needs 2x2n read operations 
to sense the threshold voltage of neighbor aggressor cells (LSB 



  

 

and MSB pages) and 2n read operations for the victim cell to be 
read. This will cause severe performance and energy overheads 
during a read operation. Second, these works need to record the 
threshold voltage changes of all the aggressor cells, which cannot 
be accurately obtained as at the time of reading: only the current 
threshold voltage of neighboring aggressor cells can be measured 
while their past threshold voltages before they were fully 
programmed are difficult to obtain. To circumvent this problem, 
[11] uses the mean threshold voltage value of the erased (ER) 
state to estimate the threshold voltages of all aggressor cells 
before they are programmed, which is inaccurate (see Cai et al. 
[4], which shows that the cells in the same state can have greatly 
different threshold voltages) and difficult to implement (it is 
difficult to apply negative read voltage on the control gate to 
measure threshold voltages of cells in the erased state). In contrast 
to these works, the mechanisms proposed in this paper to improve 
bit error rates do not need to measure, record or estimate the 
voltage of aggressor cells before they were fully programmed. 

To our knowledge, this is the first work that uses information 
stored in neighbor cells to correct errors in a victim cell with low-
overhead mechanisms that can be implemented practically. We 
propose to still use conventional ECC, such as BCH codes [12], to 
correct most of the errors (including those due to program 
interference) upon reading a flash cell, but leverage information of 
neighbor cells only when conventional ECC fails and minimize 
the number of read operations on the neighbor cells by taking 
advantage of our experimental observations from real flash chips. 

4. Flash Voltage Distribution Measurement 
We first describe our methodology to measure cell threshold 
voltage distributions using real flash memory chips. As shown in 
previous work [4], the threshold voltages of different flash cells 
are different even when the cells are programmed with the same 
value. This is due to manufacturing process variations within a 
flash chip. The threshold voltage of flash cells can be represented 
by a random variable x. The probability density function (PDF) of 
x, p(x), is generally called the (threshold) voltage distribution. The 
value programmed on a cell’s direct-neighbor aggressor cell is a 
discrete bit value, which can be denoted as z. For n-bit MLC 
NAND flash memory, z can take up to 2n values and can be 
treated as a discrete random variable. As such, the voltage 
distribution of flash cells can be expressed as: 
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where p(z=m) is the probability that the direct-neighbor aggressor 
cell is programmed with the logical data value m. p(x|z=m) is the 
conditional probability that the threshold voltage of a (victim) cell 
equals x given that value m is programmed to its direct-neighbor 
aggressor cell z. Equation (3) can be reformulated as: 
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where p(x, z=m) is the joint probability density function of 
random variable x (threshold voltage of the victim cell) and z 
(value programmed in the direct-neighbor aggressor cell). For the 
rest of this paper, we refer to p(x, z=m) as the conditional 
distribution and p(x) as the overall distribution of threshold 
voltages for all flash memory cells. 

Experimental Measurement Methodology: To measure the 
threshold voltage distributions, we use an FPGA-based testing 
platform [4][13] that can issue commands to raw flash chips. We 
tested 2-bit MLC NAND flash memory devices manufactured in 
2Y-nm technology. There are four conditional distributions p(x, 

z=11), p(x, z=10), p(x, z=00) and p(x, z=01). Recall that p(x, 
z=m) is equal to p(z=m)p(x|z=m). p(z=m) is measured by dividing 
the number of direct-neighbor aggressor cells with value z=m by 
the total number of direct-neighbor aggressor cells. Since random 
(or pseudo-random) data is generally programmed into raw flash 
chips due to data encryption and randomization techniques 
employed before programming [14][15], we measure the 
threshold voltage of cells with random data values programmed in 
all cells. As a result, p(z=m) is approximately 25% for each 
possible value of m. Each conditional distribution p(x|z=m) is 
measured via the following steps: 1) program flash memory with 
random data; 2) select all the cells whose direct neighbor 
aggressor cell is programmed with value z=m and measure the 
threshold voltage of these selected cells; 3) count the number of 
cells with threshold voltage equal to x; 4) divide the count found 
in step 3 by the total number of cells selected in step 2. The 
overall distribution p(x) can be measured by dividing the number 
of cells whose threshold voltage equals x over the total number of 
flash cells.  

Example Distribution and Initial Observations: Fig. 2 shows 
the overall distribution (dotted line) and all four conditional 
distributions (solid line) for a flash memory chip tested after 35k 
P/E cycles (More details on threshold voltage distribution 
measurement methodology can be found in our past works 
[3][4].). We make several observations, which we will formally 
back up in Section 5 with statistical analyses. We will also use 
some of these observations to develop new error correction 
methods in Section 6. First, and most importantly, two 
neighboring states in each conditional distribution are farther 
apart from each other than they are in the overall distribution, as 
shown by the “large margin” and “small margin” arrows in the 
figure between states P1 and P2. This indicates that accurately 
distinguishing between the neighboring states (i.e., identifying the 
logical values of flash cells) can be easier if the conditional 
threshold voltage distribution is used instead of the overall 
distribution, which in turn suggests that knowing the value of the 
immediate-neighbor cell can enable more accurate identification 
of the logical value of a cell when it is read.  Second, for a given 
state, each of the conditional distributions has a smaller variance 
(informally, spread of the threshold voltage values belonging to 
that state) than the overall distribution. Third, the overall 
distribution is the sum of all the conditional distributions (as 
expected). Fourth, the conditional distributions for direct-neighbor 
cell values 10 and 01 are similar to each other and have the 
highest average threshold voltage values for each state, whereas 
the conditional distribution for the direct-neighbor cell value 11 
(corresponding to the Erased state in the neighbor cell) has the 
lowest average threshold voltage values for each state. This latter 
observation is expected because programming a direct-neighbor 
cell to 11 (the erased state) leads to the smallest amount of 
injected charge into that cell (causing the smallest amount of 
program interference to the victim cell) and programming a 
direct-neighbor cell to 10 or 01 leads to the largest amount of 
injected charge as can be seen in Fig. 1(b) (causing the largest 
amount of program interference to the victim cell).  

5. Flash Voltage Distribution Analysis 
In this section, we first statistically analyze the threshold voltage 
distribution characteristics of flash memory from a formal 
standpoint and develop a model for both overall and conditional 
threshold voltage distributions (Sections 5.1-5.3). We then 
provide empirical measurement results that validate the statistical 



  

 

 
Fig. 2 Threshold voltage distributions of cells when neighbor wordline is programmed with random data (after 35000 P/E cycles). The dotted curve shows 

the overall distribution of all cells. Solid curves show the four conditional distributions corresponding to four possible direct-neighbor cell values. 

model (Sections 5.4-5.5). In particular, our statistical analyses are 
to show that: 1) there exists an optimum read reference voltage 
between two neighboring logical states that minimizes the raw bit 
error rate (Section 5.1), 2) raw bit error rate can be minimized by 
either increasing the distance between the average threshold 
voltage values of neighboring states or reducing the variance of 
threshold voltage distributions of each logical state (Section 5.2), 
and 3) the conditional distributions for each logical state have 
smaller variances and larger signal-to-noise ratios than the overall 
distribution and therefore using the conditional distribution to 
determine the value of a cell that is being read leads to a smaller 
bit error rate than using the overall distribution (Section 5.3). 

5.1 Optimizing the Read Reference Voltage 
We first show that there exists an optimum read reference voltage 
to distinguish between two logical states in a threshold voltage 
distribution. Fig 3(a) shows an illustration of the threshold voltage 
distributions of two neighboring states of NAND flash memory. 
Assume that the probability density functions (PDFs) of cells 
programmed into state Pi and state Pi+1 are f(x) and g(x) 
respectively. When voltage Vref is selected as the read reference 
voltage to differentiate between these two neighboring states 
during a read operation, the fraction of cells that are actually 
programmed into the Pi state but misread as belonging to the Pi+1 
state is shown in the blue area in Fig. 3(a). We call this fraction as 
the error rate due to Pi misread as Pi+1 and formulate it as: 
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Similarly, the fraction of cells that are actually programmed into 
the Pi+1 state but misread as belonging to the Pi state is shown in 
the red area in Fig. 3(a) and can be formulated as: 
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Assume that the probability of a cell to be programmed into the Pi 
state is P0 and the probability of a cell to be programmed into the 
Pi+1 state is P1. Then, the total error rate is the sum of equations 
(5) and (6) weighted by these probabilities: 
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The optimum read reference voltage, Vopt, which minimizes the 
total error rate between these two states, is obtained by setting 

vErrRatetotal  / to zero. Vopt satisfies the following equation: 

)()( 10 optopt VgPVfP   (8) 

If the probabilities of programming a cell into the Pi state and Pi+1 
state are equal (i.e., P0 equals to P1), the optimum read reference 
voltage Vopt satisfies the criteria f(Vopt)=g(Vopt) and Vopt is at the 
cross-point of neighboring distributions, as shown in [3].  

Previous works [4][16] have shown that the threshold voltage 
distributions of each state approximately follow the Gaussian 
distribution. Due to the characteristics of the Gaussian 
distribution, the distribution PDF can be completely defined by 
the statistics of the mean and variance pair (e.g., (μ1, σ1) for the Pi 
state and (μ2, σ2) for the Pi+1 state, as illustrated in Fig. 3(a)). We 
replace the f(.) and g(.) functions in Equation (8) with Gaussian 
PDFs. Thus, the optimum read reference voltage Vopt between two 
neighboring states should satisfy: 
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By applying logarithmic operation to both sides of Equation (9) 
and solving the quadratic equation, we can get the optimum read 
reference voltage as 2/)4( 2 CBBVopt  . Here, B is (μ2σ1
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the variances of the two neighboring states are approximately 
equal (σ1 and σ2 equal to value σ), the optimum read reference 
voltage that achieves the minimum raw BER can be simplified as: 
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If the probabilities of programming a cell into the Pi state and Pi+1 
state are equal (i.e., P0 equals to P1), which is the case for data 
values that are random or pseudo-random (which was shown for 
real flash memory chips due to the heavy use of data encryption 
and randomization techniques employed before programming 
[14][15]), the optimum read reference voltage is the average of 
the mean threshold voltages of the neighboring states: 

2/)( 21  optv  (11) 

 
Fig. 3  (a) Read reference voltage Vref between neighboring states. The 

area marked by blue lines correspond to Equation 5 and red lines 
correspond to Equation 6; (b) Measured raw BER vs. read reference 
voltage between P2 and P3 states at 35k P/E cycle endurance. 

Measurement: To experimentally demonstrate how raw BER 
changes with read reference voltage, we sweep the read reference 
voltage between neighboring states and calculate the 



  

 

corresponding raw BER on our testing platform. Fig. 3(b) shows 
raw BER vs. read reference voltage when sweeping the latter from 
the center of the P2 state to the center of the P3 state for flash 
memory at 35k P/E cycles. We can see that raw BER first 
decreases as read reference voltage increases but increases after a 
certain point. There exists a point that can achieve minimum raw 
BER, as these empirical results demonstrate. 

5.2 Minimizing Raw Bit Error Rate 
The minimum raw bit error rate can be obtained by setting the 
variable v in Equation (7) to be the optimum read reference 
voltage. To get a simple closed-form expression, we assume that 
the threshold voltage distributions follow Gaussian distributions 
with equal variance, as shown as an approximation in [3][16]. The 
mean values of the neighboring states are μ1 and μ2 respectively. 
We also assume that the probabilities for each state are equal 
since random data are programmed to cells [14][15] and thus the 
optimum read reference voltage is (μ1+μ2)/2 according to 
Equation (11). Thus, the minimum raw BER can be expressed as: 
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After a series of algebraic manipulation, this can be simplified to: 
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To simplify the notation, we define the function Q(x) as: 
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By setting x to be (μ2-μ1)/2σ in Q(x), we can obtain the minimum 
raw BER. Fig. 4 plots the function Q(x). We can see that Q(x) 
monotonically decreases as x increases. Thus, in order to decrease 
the minimum raw BER, it is desirable to have distributions that 
have a higher value of (μ2-μ1)/2σ. This is possible in two ways: 

1. Have a larger threshold voltage distance (μ2-μ1) between 
neighboring distributions. The farther apart from each other 
the neighbor distributions, the larger the value of (μ2-μ1)/2σ.  

2. Have a smaller variance σ2 for the threshold voltage 
distributions. The narrower the distributions (i.e., their 
standard deviation σ), the larger the value of (μ2-μ1)/2σ. 

 
Fig. 4 Monotonic property of Q(x): Q(x) decreases as x increases  

Signal to Noise Ratio (SNR): The half distance (μ2-μ1)/2 between 
neighboring states can be thought of as the signal and the standard 
deviation σ of the threshold voltage distribution can be thought of 
as noise. The ratio (μ2-μ1)/2σ can therefore be defined as signal-to-
noise ratio (SNR) when reading flash memory. The larger the 
SNR ((μ2-μ1)/2σ), the smaller the minimum raw BER, which is 
equal to Q(SNR).  

The next section shows that conditional distributions of flash 
memory cells that distinguish between the values of the direct-
neighbor cell (as opposed to the overall distribution that does not) 
lead to a larger SNR: two neighboring states in each conditional 
distribution have a similar threshold voltage distance (μ2-μ1) as 
the same two neighboring states in the overall distribution but 
they have a significantly smaller variance σ2. As such, using 

conditional distributions to determine the value of cells improves 
SNR, thereby reducing the minimum raw BER.  

5.3 SNR and Minimum Raw BER Analysis of 
Conditional and Overall Distributions 
Since a cell’s direct-neighbor aggressor cell can take up to N=2n 
possible values for n-bit MLC flash memory, the threshold 
voltage X of a cell can be one of the N conditional random 
variables xm as },...,,,,{ 13210  NxxxxxX . Here, xm represents the 

threshold voltage of a cell with direct neighbor aggressor cell 
programmed to value m. The PDF of X is the overall threshold 
voltage distribution. The PDF of xm is the conditional distribution. 
We now statistically analyze the distance of neighboring 
distributions, the variance of distributions, and their resulting SNR 
and BER comparatively between the overall distribution and 
conditional distributions. Our key finding is that the threshold 
voltage distance between neighboring states is similar for both the 
overall distribution and the conditional distributions, while the 
variance of the overall distribution is much larger than those of 
the conditional distributions, and thus using the conditional 
distributions to determine the optimum set of read reference 
voltages leads to larger SNR and smaller BER. 
Distance of Neighboring Distributions: The mean of the overall 
distribution is the average of the means of all the conditional 
distributions (i.e., E(X)=∑E(xm)/N). Therefore, the distance of 
neighboring states in the overall distribution is equal to:  
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where E(XP(i+1)) and E(XP(i)) are the mean values of the threshold 
voltage distributions of all the cells in state Pi+1 and state Pi 
respectively. )( )1( iP

mxE  and )( )(iP
mxE are the means of the 

conditional distributions for cells in state Pi+1 and Pi respectively 
with direct aggressor cell programmed to value m. 

)()( )()1( iP
m

iP
m xExE  is the distance between neighboring states in 

the same conditional distribution. We can see from Equation (15) 
that the distance of two neighboring states in the overall 
distribution is the average of the distances of the same two 
neighboring states in all of the conditional distributions.  

Variance of Distributions: The variance of the threshold voltage 
of all the cells in a state is equal to 22 ))(()()( XEXEXVar  . 

By applying E(X2)=ΣE(xm
2)/N and E(X)=ΣE(xm)/N, we can get the 

variance of the threshold voltage distribution after algebraic 
manipulation: 
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From Equation (16), we can see that the variance of the overall 
distribution consists of two parts: 1) the average of the variances 
of all of its conditional distributions, ∑Var(xm)/N and 2) the 
average of the square of the differences between the mean values 
of every pair of conditional distributions, ∑∑(E(xm)-E(xn))

2/N2. 
Since the latter is non-negative, the variance of the overall 
distribution is no less than the average of the variance of all of its 
conditional distributions. We can consider two hypothetical 
extreme cases: 

1. The conditional distributions completely overlap with each 
other. As a result, the variance of the overall distribution 
would simply be the average of the variances of all of its 
conditional distributions since E(xm)-E(xn) is zero for (m,n) 
pairs (i.e., the second sum part of Equation (16) is zero). 



  

 

2. The conditional distributions are completely separate (i.e., far 
away) from each other. As a result, the variance of the 
overall distribution would be much larger than the average 
variance of all of its conditional distributions and would be 
dominated by the second sum part of equation (16). 

We next analyze the mean values of conditional distributions to 
show that the latter hypothetical case is closer to empirical reality 
and, as a result, the variance of the overall distribution is much 
larger than the average variance of the conditional distributions.  

Analysis of the Mean Values of Conditional Distributions: 
Assume the threshold voltage of a cell before program 
interference is a random variable Y, and the voltage change 
caused by the program interference is ΔV. Then the threshold 
voltage after program interference will be X=Y+ΔV. As in 
equation (2), ΔV is mainly determined by the threshold voltage 
change of the direct-neighbor aggressor cell [3]. Assuming the 
threshold voltages of the direct-neighbor aggressor cell before and 
after programming value m are )(mNb

beforeV  and )(mNb
afterV respectively, 

then ΔV approximately equals k ( )(mNb
afterV - )(mNb

beforeV ) according to 

Equation (2), where k is the coefficient denoting the coupling 
capacitance over the total capacitance of the victim cell. Then, the 
mean value of the conditional distribution xm is 

))()(()()()( )()( mNb
before

mNb
afterm VEVEkEYExE   (17) 

As the LSB page number of an upper wordline is always smaller 
than the MSB page number of a lower wordline in the same block 
(see Fig. 1(a)) and the pages inside a block are programmed in 
sequential page number order to minimize program interference 
[3], only MSB page programming of the aggressor cell affects the 
threshold voltage of the victim cell. For 2-bit MLC flash memory 
(as in Fig. 1(b)), the starting state before MSB page programming 
is either the ER state or the Temp state, and the ending state could 
be the ER, P1, P2 or P3 state. When either P3 (value 01) or P1 
(value 10) is programmed to the aggressor cell, the threshold 
voltage of the aggressor cell changes either from TEMP to P3 or 
from ER state to P2, respectively. Either of these cases leads to a 
larger threshold voltage change )()( )()( mNb

before
mNb

after VEVE  , as 

illustrated in Fig. 1(b) [3], compared to when ER (value 11) or P2 
(value 00) is programmed to the aggressor cell. Thus, the mean 
values of conditional distributions of x01 and x10 are larger than the 
mean values of the conditional distributions of x11 and x00. When 
value 11 is programmed on aggressor cell, the starting and ending 
states are the same, i.e., the ER state, which corresponds to the 
smallest threshold voltage change. Therefore, the mean of the 
conditional distribution of x11 is the smallest [3]. Through similar 
reasoning, the mean of the conditional distribution of x00 sits in-
between the mean of the conditional distribution of x11 and the 
mean of the conditional distributions of x01 and x10. In summary, 
the means of conditional distributions for 2-bit MLC satisfy the 
following property: 

)()()()( 10010011 xExExExE   (18) 

Fig. 2 shows that this property empirically holds for different 
conditional distributions; in Fig. 2, it is clear that the mean 
threshold voltage value of the conditional distributions with direct 
neighbor values 01 and 10 are similar and the highest for all 
states, whereas the mean value of the conditional distribution with 
direct neighbor value 11 is the smallest.  

The result in Equation (18), empirically supported by Fig. 2, 
shows that the second sum part of Equation (16) is clearly greater 
than zero as the mean values of conditional distributions do not 
completely overlap. As a result, the variance of the overall 

distribution is larger than the average variance of the conditional 
distributions.  

Analysis of Variance of Conditional Distributions: The 
variance of the conditional distribution xi can be expressed as: 

))var()(var()var()var( )()(2 mNb
before

mNb
afterm VVkYx   (19) 

Due to the accurate control of the distribution width of each 
programmed state through incremental step pulse programming 
(ISPP), the variances of threshold voltage distributions of 
aggressor cells before and after programming are approximately 
close for different programming values [4][16]. For example, 
var(Vafter

Nb(m)) is close to var(Vafter
Nb(n)), even when the 

programmed value m and n are not the same. Also, the model 
coefficient k is around 0.06 [3] and the small value of k2 can 
further reduce the value-dependent differences of variances of 
different conditional distributions in Equation (19). Therefore, the 
variances of conditional distributions of victim cells are close 
when different values are programmed to their direct-neighbor 
aggressor cells (e.g., var(xm) is close to var(xn) even if m is not 
equal to n) and thus are approximately equal to the average 
variance of all conditional distributions. Since the variance of the 
overall distribution is larger than the average of the variances of 
conditional distributions (as we have shown based on Equation 
(18)), the variance of the overall distribution is larger than the 
variance of each of the conditional distributions.   

Analysis of the Distance of Distributions between Neighboring 
States: Assume the threshold voltages of cells that are interfered 
with by a direct-neighbor with value m in the Pi and Pi+1 states are 
respectively xm

Pi and xm
Pi+1. The threshold voltages before 

neighbor interference are respectively YPi and YPi+1, which are 
independent of the value m programmed into the direct-neighbor 
cells. The amounts of interference the victim cells receive are 
respectively ∆m

Pi and ∆m
Pi+1. Thus, the distance of the conditional 

distributions between the two neighboring states is E(xm
Pi+1)-

E(xm
Pi), which is equal to E(YPi+1+∆m

Pi+1)-E(YPi+∆m
Pi). Since 

program interference is mainly determined by the threshold 
voltage changes on the direct-neighbor aggressor cells, E(∆m

Pi+1) 
and E(∆m

Pi) are close as the neighbors are programmed to the 
same value m. Thus, E(xm

Pi+1)-E(xm
Pi) is similar to E(YPi+1)- 

E(YPi), which is equal to the distance of the neighboring 
distributions before neighbor cells are programmed and is 
independent of the exact values programmed to the direct-
neighbor aggressor cells. Thus, the distance of the different 
conditional distributions in neighboring states are equal (or close). 
Therefore, the distance of the overall distributions between 
neighboring states is also equal to or close to the distance of any 
of the conditional distributions between neighboring states.  
Final SNR and BER Analysis: So far, we have shown that: 1) 
the variance of each of the conditional distributions is smaller than 
the variance of the overall distribution, 2) the distance of the 
conditional distributions of two neighboring states is similar to the 
distance of the overall distributions of the same two neighboring 
states.  As a result, the signal-to-noise ratio (SNR), (μ2-μ1)/2σ, of 
the overall distribution is smaller than that of the conditional 
distribution, as σ of the overall distribution is larger. Therefore, 
the minimum raw BER, i.e., Q(SNR) (see Equations (13) and 
(14)),  obtained with the set of read reference voltages,determined 
based on the overall distribution would be larger than the 
minimum raw BER obtained with the set of read reference 
voltages determined based on the conditional distributions. We 
will make use of this statistically-demonstrated conclusion to 
devise our error correction mechanisms in Section 6. 



  

 

5.4 Experimental Measurement Results 
We now show experimental results that empirically validate the 
major conclusions of the statistical model we have developed so 
far in Sections 5.1-5.3. We program random data into 2Y-nm 2-bit 
MLC NAND flash devices after 10K P/E cycles and leverage the 
methodology discussed in Section 4 to measure the overall and the 
conditional distributions. Table 1 shows the results: the average 
distance of different distributions between neighboring states 
(signal), along with the average variance (noise), the signal-to-
noise ratio (SNR) and the resulting minimum raw BER of the 
overall distribution and all four conditional distributions. The 
empirical data supports the main conclusions we have drawn from 
statistical analyses: 1) average distance between neighboring 
states is similar regardless of whether we use the overall 
distribution or any of the conditional distributions, 2) the variance, 
the SNR, and the resulting BER of each of the conditional 
distributions is smaller than those of the overall distribution. As 
such, experimental data also favors using conditional distributions 
to maximize SNR and therefore minimize BER. Section 5.5 
explains the BER evaluations in more detail.  

Table 1. Measurement Results of Different Distributions 

5.5 Minimizing BER using Conditional 
Distributions – Mechanism and Measurements 
To measure the minimum BER of reading with the overall 
distribution, we set the read reference voltage between two 
neighboring states to REFx=(μP(i)+μP(i+1))/2, which is the average 
of the mean values of the overall distribution in neighboring states 
Pi and Pi+1. We define this set of read reference voltages as the 
global optimum read reference voltage. The read data is compared 
with the originally programmed data to count the number of 
errors. The BER is measured by dividing the error count with the 
total number of bits read.  
To measure the minimum BER of reading with each conditional 
distribution (e.g., x10), we first set the read reference voltage 
between states Pi and Pi+1 to be REFx10=(μx10

P(i)+ μx10
P(i+1))/2. 

Here, μx10
P(i) and μx10

P(i+1) are the mean values of the conditional 
distribution of x10 in the Pi state and the Pi+1 state respectively. 
Then, we read flash memory using this read reference voltage. We 
only compare the data read out from the cells that have direct-
neighbor aggressors with value 10 to the data originally 
programmed to those cells to get the raw BER of reading with the 
conditional distribution of x10. We repeat the same procedure three 
more times by setting the read reference voltages between two 
neighboring states to REFx11=(μx11

P(i)+ μx11
P(i+1))/2, 

REFx00=(μx00
P(i)+ μx00

P(i+1))/2 and REFx01=(μx01
P(i)+ μx01

P(i+1))/2 to 
get the raw BER of reading with conditional distributions of x11, 
x00 and x01 respectively. The final raw BER of reading with 
conditional distributions is the equally weighted sum of the raw 
BER obtained after reading with each of the conditional 
distributions (with a weight of 0.25 for each BER as direct-
neighbor cells have equal probabilities of being programmed to 
00, 01, 10, 11). We define these four sets of read reference 
voltages as the local optimum read reference voltages. Based on 
Equation (18) and our empirical measurements, the read reference 
voltages obey the following property:  

10010011 REFxREFxREFxREFxREFx   (20) 

The threshold voltage distributions before and after random data 
are programmed in neighbor cells are illustrated in Figure 5(a) and 
5(b) respectively. The relative location of the global and local 
optimum read reference voltages are illustrated in Fig. 5(b). N11, 
N00, N01 and N10 illustrate the conditional distributions of those 
cells with direct-neighbor aggressor cell programed to 11, 00, 01 
and 10 respectively. The optimum BERs of reading with the 
overall distribution and the conditional distributions are shown on 
the fourth row of Table 1. Reading the flash memory cells using 
the set of the local optimum read reference voltages for each 
conditional distribution leads to a raw BER of 4.25x10-5 (equal to 
0.25 times the sum of the raw BER values for each state in Table 
1) whereas reading the same cells with the global optimum set of 
read reference voltages based on only the overall distribution 
leads to a raw BER of 3x10-4. As such, using the conditional 
distributions to determine read reference voltages to read flash 
memory leads to an 86% reduction in minimum raw bit error rate.  

 
Fig. 5 (a) Threshold voltage distributions of two neighboring states before 

direct-neighbor cells are programmed; (b) Overall and conditional 
threshold voltage distributions, the global optimum read reference 
voltage of the overall distribution (REFx), and local optimum read 
reference voltage of each conditional distribution (REFx11, REFx00, 

REFx10, REFx01) after neighbor pages are fully programmed. 

5.6 Summary 
Our experimental results (Sec. 5.4-5.5) validate our statistical analyses 
(Sec. 5.1-5.3) in that: 1) there exists an optimum read reference that 
can achieve the minimum raw BER; 2) the minimum raw BER 
decreases as signal-to-noise ratio increases; 3) the distance (signal) of 
the overall distribution between neighboring states is close to that of 
each of the conditional distributions; 4) the variance (noise) of each 
conditional distribution is smaller than that of the overall distribution; 
5) the variances of different conditional distributions are close; 6) the 
signal-to-noise ratio of the conditional distribution is larger than that 
of the overall distribution; 7) the minimum raw BER obtained after 
reading with the conditional distribution is much smaller than that 
obtained after reading with the overall distribution.  

6. Neighbor-cell Assisted Error Correction 
In Section 5, we have established that the bit error rate obtained by 
reading flash memory with the set of local optimum read reference 
voltages for each conditional threshold voltage distribution dependent 
on the direct-neighbor cell value is significantly lower than the bit 
error rate obtained by reading flash memory with the conventional set 
of global optimum read reference voltages determined based on the 
overall threshold voltage distribution of all flash cells. In this section, 
we build upon this observation to introduce two mechanisms that both 
aim to minimize bit error rate: Neighbor-cell Assisted Reading 
(NAR) and Neighbor-cell Assisted Error Correction (NAC).  

 Overall x11 (ER)    x10 (P1) x00 (P2)   X01 (P3) 
Distance 65.4 65.4 64.7 66.4 65.8 
Variance 385.9 286.2 256.7 242.8 252.1 
SNR 3.4 3.8 3.9 4.2 4.1 
BER 3x10-4 7x10-5 5x10-5 2x10-5 3x10-5 



  

 

We have actually already described the key idea of Neighbor-cell 
Assisted Reading (NAR) in Sec. 5.5. NAR classifies the cells to be 
read in a wordline into N types based on the values stored in the 
corresponding direct-neighbor aggressor cells (N is equal to 4 in 2-bit 
MLC flash because the direct-neighbor can take 4 possible values). 
To read the cells of each type, a different set of local optimum read 
reference voltages (that minimizes the bit error rate) is used (i.e., 
REFx11, REFx00, REFx10, REFx01 in Sec. 5.5). Thus, determining the values 
of cells in an entire flash page is an iterative operation that takes N 
reading steps: in every step, the values of those cells with the same 
common direct-neighbor value are determined, which corresponds to 
approximately 1/N-th of the entire page’s contents. For example, first 
the page is read to determine the values of cells that have direct 
neighbor values 11 using the set of local optimum read reference 
voltages corresponding to the conditional distribution assuming 
neighbor values of 11. Afterwards, the step is repeated for cells with 
neighbor values 00, 10, 01, respectively. At the end of all steps, the 
cell values determined in each step are combined to get the complete 
page. This reduces the bit error rate because each type of cell is read 
more accurately using its corresponding local optimum read reference 
voltage.  

Unfortunately, NAR significantly degrades read latency because 
determining the contents of a page requires N+2 read operations 
(whereas using the global optimum read reference voltage requires 
only one read operation): NAR first needs to read the LSB page and 
the MSB page of the direct-neighbor cells to determine the contents of 
direct-neighbors, which requires two read operations. After that, NAR 
needs to read the selected page N times to determine the contents of 
the cells classified into N types based on direct-neighbor cell values. 
The increase in the number of read operations from 1 to N+2 (i.e., 6 in 
the case of 2-bit MLC flash memory) degrades read latency to by N+2 
times and thus can severely degrade system performance.  

To mitigate such performance degradation with NAR, we propose 
Neighbor-cell Assisted Error Correction (NAC). The idea is to first 
read the page with the global optimum read reference voltage (which 
requires only one read operation) and trigger NAR only if ECC fails 
to correct the page data. Doing so requires a total of (1+Pfail (N+2)) 
read operations, where Pfail is ECC failure rate when reading with the 
global optimum reference voltage. If the ECC failure rate is low, 
average read latency would still be low. Extending this reasoning, we 
further optimize NAC by checking whether or not ECC can correct 
the current set of data after each step that reads 1/N-th of the page. 
After a set of local optimum read reference voltages is used to read 
1/N-th of the page more accurately, ECC is applied to the entire page. 
If ECC can correct the entire page, then there is no need to go to the 
next step, i.e., apply the next set of local optimum read reference 
voltages to correct the next 1/N-th of the page. The next step is 
triggered only if ECC fails in the previous step. Thus, number of read 
operations is further reduced.  

6.1 NAC Flow and System Operation 
We briefly describe how NAC fits into the flash-based SSD controller 
architecture (shown in Fig. 6). The SSD controller usually contains an 
internal buffer to store requests and the data to be programmed and 
recently read. To correct raw bit errors in flash media, binary BCH 
codes [12], which can correct multiple bit errors, are widely deployed. 
The data is encoded before programming and decoded after reading. 
To increase error correction capability, we add two NAC-specific 
blocks to the controller: 1) the engine that performs NAC, 2) we 
reserve a small portion of the controller’s internal buffer as the NAC-
buffer, which stores the current page and neighbor pages (Fig. 6).  

 
Fig. 6 Flash controller with Neighbor Assisted Error Correction. 

Fig. 7 shows the flow of a page read request with NAC. When the 
controller starts a read operation, it first checks whether the 
requested page is already in the NAC-buffer (or in the internal 
flash buffer, as done in a state-of-the-art controller) before 
requesting the page from the flash memory. If so and if error-free, 
the page is returned to the requestor (e.g., the host machine). If 
not, the NAND flash interface fetches the requested page from 
flash memory and sends it to the ECC engine. If ECC successfully 
corrects all errors, flash controller sends the corrected page to the 
requestor, and also stores it in the NAC-buffer. If ECC fails, NAC 
is triggered for further correction. When NAC is triggered, it 
requires the direct-neighbor LSB and MSB pages above the 
requested page in order to classify the cells of the requested page. 
If these direct-neighbor pages are not in the NAC-buffer, the flash 
controller reads the neighbor pages out from flash memory. After 
ECC attempts to correct these neighbor pages, they are saved into 
the NAC-buffer, either error-free or erroneously (which is 
indicated by a bit for each page). When both neighbor pages are in 
the NAC-buffer, NAC is ready to correct the requested page. 
NAC iteratively applies a set of local optimum read reference 
voltages to correct 1/N-th of the requested page. ECC attempts to 
correct the page after every step and when ECC passes, NAC 
iterations stop and the requested page data is sent to the requestor. 
If ECC fails after all NAC iterations, the page cannot be corrected 
even with NAC and an exception is raised.  

 
Fig. 7  Flow of the Neighbor Assisted Error Correction (NAC) mechanism 

The size of the NAC-buffer is an important parameter. In order to 
determine the optimum size, we assume the worst-case scenario in 
which every read page requires NAC correction. It is common 
that pages are read from the flash memory in page number order 
due to common sequential access patterns and access to large data 
chunks. For instance, as in Fig. 1(a), when Page 3 fails and needs 
to be corrected by NAC, Pages 5 and 8 are saved to NAC-buffer. 
Pages 5 and 8 are also the neighbors of Page 6, hence, we prefer 
buffering those pages in anticipation that Page 6 will also be read 
due to sequential access. However, when Page 5 is read between 
Pages 3 and 6, two more neighbor pages are added to the NAC-
buffer (i.e., Pages 7 and 10). Therefore, we set the size of the 
NAC-buffer to 5 pages to be able to buffer Pages 5, 6, 7, 8, 10 at 
the same time. When the buffer is full and a new page needs to be 
added, we evict the one with the lowest page number. We have 



  

 

investigated performance sensitivity to NAC buffer size, 
management policies, and prefetching mechanisms; space limits 
prevent us from presenting these detailed evaluations. Our 
empirical results (not shown in this paper) indicate that a NAC-
buffer size of 5 pages leads to minimal read latency.  

6.2 Prioritized NAC  
In this section, we make several observations that improve the 
effectiveness of NAC by allowing us to apply the N sets of local 
optimum read reference voltages in an order that minimizes the 
latency overhead of NAC. In other words, we observe that some 
sets of local optimum read reference voltages provide better error 
correction capability (as they are associated with neighbor cell 
values that are more likely to lead to errors) and we prioritize their 
use when NAC is triggered such that we can reduce the number of 
steps in NAC correction. We call this Prioritized NAC. 

Error Type Analysis: When a page is read with a single global 
optimum read reference voltage, REFx (see Fig. 5), the resulting 
errors can be classified into eight types. The errors for cells 
programmed to a lower-voltage state (Pi state) with direct-
neighbor cell value 11, 10, 00 and 01, but misread as belonging to 
a higher-voltage state (Pi+1 state) are denoted as Pi(11)→Pi+1, 
Pi(10)→Pi+1, Pi(00)→Pi+1, Pi(01)→Pi+1. The errors for cells 
programmed to a higher-voltage state (Pi+1 state) with direct-
neighbor cell value 11, 10, 00 and 01, but misread as belonging to 
a lower-voltage state (Pi state) are denoted as Pi+1(11)→Pi, 
Pi+1(10)→Pi, Pi+1(00)→Pi and Pi+1(01)→Pi. The relative 
percentages of all eight types of errors are shown in Fig. 8 for 2Y-
nm flash under various P/E cycles. We can see that Pi+1(11)→Pi, 
Pi(10)→Pi+1 and Pi(01)→Pi+1 are the three dominant errors. 

 
Fig. 8  Error type percentage for all eight types of read errors at (a) 3k (b) 

10k and (c) 30k P/E cycles for 2Y-nm flash.  

Some types of errors are more dominant because cells with 
threshold voltage near the border of the neighboring state’s 
threshold voltage distribution tend to have errors as they are the 
most likely ones to be misclassified using a single reference 
voltage. To understand this, let us examine Fig. 5(a) and 5(b) that 
respectively plot threshold voltage distributions of victim cells 
before and after neighbor cells are programmed. Let us focus on 
two cells, each of which has an initial threshold voltage that is 
close to the border of the neighbor state’s threshold voltage 
distribution: P(i+1)

low and P(i)
high in Fig. 5(a). If P(i+1)

low’s direct-
neighbor cell is programmed to 11, the resulting threshold voltage 
for this cell, P’(i+1)

low, will be at the bottom end of the conditional 
distribution N11 for state P(i+1) (see Fig. 5(b)) because 
programming the neighbor cell with 11 (ER state) leads to the 
smallest amount of program interference. Unfortunately, using 
REFx as the read reference voltage might cause the value of this 
cell to be misread as belonging to state Pi, leading to the 
Pi+1(11)→Pi error type, the most common error type according to 
Fig. 8. Similarly, if P(i)

high’s direct-neighbor cell is programmed to 
01, the resulting threshold voltage for this cell, will be at the 
highest end of the conditional distribution N01 for state P(i) (see 
Fig. 5(b)) because programming the neighbor cell with 01 leads to 
the highest amount of program interference. Unfortunately, using 

REFx as the read reference voltage might cause the value of this 
cell to be misread as belonging to state Pi+1, leading to the 
Pi(01)→Pi+1 error type, second most common error type according 
to Fig. 8. This example shows that two types of cells are more 
vulnerable to errors: 1) those that are at the bottom of the 
distribution of a higher-voltage state and receive the least amount 
of interference from their direct-neighbor, 2) those that are at the 
top of the distribution of a lower-voltage state and receive the 
highest amount of interference from their direct-neighbor. This 
leads to the dominance of corresponding error types.  

Note that the Pi+1(11)→Pi type error is the most dominant one. 
This is because the program interference of aggressor cells with 
values 10 and 01 are close (N01 and N10 almost overlap in Fig. 
5(b)). Thus, more cells are located at the top region of the overall 
distribution of each state. The global optimum read reference 
voltage therefore deviates toward the higher-voltage state. As a 
result, more cells of N11 in the higher-voltage state tend to be 
misread as belonging to the lower-voltage state. 
Prioritized NAC: We take advantage of the above analysis to 
prioritize the selection of the set of local optimum read reference 
voltages during NAC. After a page that is read using the set of 
global optimum read reference voltages fails ECC, we select 
REFx11 as the first set of local optimum read reference voltages to 
read the failed page to fix the dominant Pi+1(11)→Pi errors. At this 
step of NAC, the read data of the cells with direct-neighbor values 
11 will be replaced with the new reading performed with REFx11. 
This leads to three cases: 1) The read data of a cell remains 
unchanged upon the NAC reading. This is the case for cells of 
type-N11 with threshold voltage larger than REFx or smaller than 
REFx11. 2) The new data read using REFx11 is correct and the old 
data read using REFx was incorrect. This is the case for cells of 
type-N11 in Pi+1 state with threshold voltage in the window 
[REFx11, REFx]. 3) The new data read using REFx11 is incorrect 
and the old data read using REFx was correct. This is the case for 
cells of type-N11 in the Pi state with threshold voltage in the 
window [REFx11, REFx]. Since REFx11 is the optimum read 
reference voltage for cells of type-N11, the number of corrected 
cells (case 2) is larger than that of mis-corrected cells (case 3). 
Fig. 9 demonstrates this empirically: the net number of corrected 
cells (number of corrected minus the number of mis-corrected 
cells) of type-N11 can reduce the total errors by 58%, 44% and 
22% for flash memory at 3k, 10k and 30k P/E cycles respectively. 
Since the read data of types N00, N01, and N10 are unchanged, 
the total number of errors is significantly reduced after applying 
NAC with REFx11. ECC may be able to correct the remaining 
errors without requiring another NAC step. In such a case, system 
performance is improved due to Prioritized NAC. If ECC still 
fails after applying REFx11, our mechanism tries REFx10  next, and 
if ECC still fails again it applies REFx01 as the error correction 
capability of these are the second and third highest, as Fig. 9 also 
demonstrates empirically. 

 
Fig. 9 Percentage of corrected errors, mis-corrected errors and net-

corrected errors over total errors for flash memory when local 
optimum read reference voltages corresponding to N01, N10, N00 
and N11 distributions are used at (a) 3k (b) 10k (c) 30k P/E cycles. 



  

 

6.3 Policy When Neighbor Cells Have Errors 
So far, we assumed that the neighbor cell values can be obtained 
correctly for NAC. However, the neighbor page may fail ECC and 
may not be correctly read. If the neighbor page fails ECC, we 
propose to use the uncorrected raw data from the neighbor page to 
classify cells for NAC. This section analyzes the effect of 
neighbor failure on the error correction capability of NAC. 

Neighbor Page Failure Analysis: First, the neighbor page failure 
rate is low. Assume Pfail is the ECC failure rate. The probability of 
one of the two neighbor pages failing when the victim page fails is 
approximately 2(Pfail)

2, which is much smaller than Pfail. Even 
when neighbor pages fail ECC, most of the raw values read from 
neighbor pages are still correct because the raw BER is less than a 
few percent even at very high P/E cycles [1][2]. As a result, most 
cells in the page can be correctly classified using correct neighbor 
values, enabling NAC to correct errors in the victim page. For the 
neighbor cells that are misread, NAC may still be able fix the 
errors on the corresponding victim cells although it could also 
inject additional errors. We demonstrate this with an example. 
Consider a victim cell of type-N11 with its direct-neighbor cell 
programmed as 11 but misread as 10. The threshold voltage of 
this victim cell will be compared to the wrongly-selected local 
read reference voltage REFx10 instead of REFx11 during NAC. If 
the threshold voltage of this victim cell is less than REFx11 or 
larger than REFx10, the read value using the wrong reference 
voltage REFx10 is the same as the value if read with the correct 
reference voltage REFx11. Thus, there is no additional error 
introduced. Only when the threshold voltage of the victim cell is 
smaller than REFx10 or larger than REFx11, the read value could 
be different. For a cell like this, there are still two cases: 

1. Cell is actually in state Pi: The correct local read reference 
voltage REFx11 would have misread the cell as belonging to 
state Pi+1 while the wrongly-selected REFx10 correctly reads 
it as belonging to state Pi. Hence, the error in the neighbor 
cell eliminates a potential error when reading the victim cell. 

2. Cell is actually in state Pi+1: The correct local read reference 
voltage REFx11 would have correctly read the cell as 
belonging to state Pi+1. However, REFx10 misreads it as 
belonging to state Pi. Hence, the error in the neighbor cell 
introduces a new error when reading the victim cell. 

Since the threshold voltages of flash cells in different locations are 
independent of each other [4], the event that a neighbor cell has an 
error is independent from the event that its victim cell’s threshold 
voltage falls in the range of [REFx11, REFx10]. Thus, the 
additional error rate caused by neighbor failure is equal to: 
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was programmed as 11 but misread as 10. )(11 xf Pi and )(1
11 xf Pi  
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is much smaller than 1 since the region of [REFx11, REFx10] is far 
away from the center of the distribution )(1

11 xf Pi and )(11 xf Pi (see 

Fig. 5(b)). Similarly to the case of neighbor 11 being misread as 
10, the additionally injected errors caused by the other types of 
neighbor cell failures are also very small.  

Measurement of Effect on NAC Error Correction Rate: Fig. 
10 plots the fraction of additional errors caused by neighbor 
failure over the errors that are corrected by NAC under various 

P/E cycles as measured for 2Y-nm flash devices. We can see that 
the number of errors corrected by NAC is much larger than the 
additionally injected errors caused by neighbor failure. The 
fraction of injected errors due to neighbor failure increases with 
P/E cycles because the raw error rate of neighbor pages increases 
with P/E cycles and therefore the probability of errors due to 
misclassification of victim cells increases. However, we can see 
that even at 35k P/E cycles, the number of additional errors due to 
neighbor failures is less than 10% of the errors that are corrected 
by NAC. We conclude that neighbor cell errors do not 
significantly reduce the error correction capability of NAC. 

 
Fig. 10 The fraction of errors due to neighbor cell read failure over total 

errors that are corrected by NAC.  

6.4 Implementation of NAC  
Optimum Read Reference Voltage Learning: NAC needs to 
read the page multiple times using the global optimum and up to 
N local optimum read reference voltages.  The optimum reference 
voltage is the average of the mean values of the threshold voltage 
distributions of neighboring states. To learn the mean values of 
state voltage distributions, we propose to periodically (e.g., every 
100 P/E cycles) measure the overall and conditional threshold 
voltage distribution statistics for a set of sampled wordlines. The 
details of this periodic sampling based learning mechanism are 
straightforward and omitted for brevity. The learning overhead is 
kept low: even for write-intensive applications (e.g., 10 full disk 
writes per day) [7], 100 P/E cycles will be consumed after at least 
10 days. The learning task runs in background with low priority so 
that it does not interfere with normal operation. 

NAC Microarchitecture: Fig. 11 shows the microarchitecture of 
NAC.  It contains four buffers, one comparator (Comp) vector and 
one pass circuit vector. The neighbor LSB page buffer and MSB 
page buffer store the neighbor LSB/MSB page data of the current 
failed page respectively. The Page-to-be-Corrected buffer 
initially contains the data of the page that was read with the global 
optimum read reference voltage and failed ECC. The Local-
Optimum-Read buffer is loaded with the page data that is read 
using the local optimum read reference voltage at each step of 
NAC. Two bits, Bit1/Bit2, indicate which of the four local 
optimum read reference voltages (corresponding to four possible 
values in the neighbor cells) is used to read the current data in the 
Local-Optimum-Read buffer. In each step of NAC, after the page 
is read using the local optimum read reference voltage, each 
comparator circuit compares Bit1/Bit2 to the corresponding 
MSB/LSB neighbor bits. If there is a match (indicating that the 
neighbor cell value is the same as the value for which the local 
optimum read reference voltage is selected), the corresponding 
pass circuit is enabled, which causes the corresponding data in the 
Local-Optimum-Read buffer to overwrite the corresponding cell 
in the Page-to-be-Corrected buffer, thereby enabling the NAC 
correction of the cell that has a neighbor value that matches 
Bit1/Bit2. All other circuitry supporting the NAC flow in Fig. 7 is 
not shown. 
 



  

 

 
Fig. 11 Microarchitecture of Neighbor Assisted Error Correction.  

7. EVALUATION RESULTS 

7.1 P/E Cycle Lifetime Evaluation 
Since ECCs that can correct 40 bit errors per 1k-Byte data are 
recommended for 20nm MLC flash memory [17], we chose such 
ECC as baseline in our evaluations. Following the methodology of 
[2], the probability of ECC failure can be calculated as: 
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Here, N is the number of bits protected by ECC and E is the 
maximum number of errors that can be corrected. RBER is the 
raw bit error rate before error correction. Raw BER and ECC 
failure rate are listed in Table 2. When RBER is larger than 10-2.64, 
ECC almost always fails. Also, to guarantee ECC failure rate to 
be below 10-15, the acceptable RBER should be less than 10-3. 

Table 2. Correlation of raw BER and ECC failure 

P/E Cycle Lifetime Evaluation: We program random data into 
2Y-nm 2-bit MLC flash memory for up to 50k P/E cycles. 
Assuming that retention errors can be fixed by using flash refresh 
techniques [6][7], the programmed data are read out after one-
week retention at room temperature. The raw BER values 
resulting from reading with the global optimum read reference 
voltage without NAC and reading with different strengths of NAC 
using respectively one, two, three or four potential sets of local 
optimum read reference voltages are shown in Fig. 12 over 
different P/E cycles. To guarantee system reliability, the raw BER 
must be less than the acceptable raw BER (i.e., 10-3) of the 
baseline ECC. Thus, the maximum P/E cycle lifetime of the 
baseline flash memory without NAC is only 18k P/E cycles, as 
shown in Fig. 12. NAC increases the P/E cycle lifetime by 22% 
(22k P/E cycles), 33% (24k P/E cycles) and 39% (25k P/E cycles) 
respectively for different strengths. Since the fourth set of local 
optimum read reference voltages mainly corrects errors for the 
conditional distribution that is in the middle of the overall 
distribution where there are fewer errors (see Fig. 8), its raw BER 
curve almost overlaps with that of using three sets of local 
optimum read reference voltages. We conclude that NAC is 
effective in improving flash memory lifetime and as NAC 
strength is increased lifetime improvement increases.  
NAC Frequency Analysis: As Fig. 12 shows, the extended 
lifetime due to NAC is divided into three regions based on NAC 
strength: stage 1, stage 2, and stage 3. At the beginning of the 
extended lifetime, the raw BER is about 10-3 and the ECC failure 

rate before NAC is 10-14. NAC is seldom triggered. As P/E cycles 
increase, the raw BER after reading with global optimum read 
reference voltage increases. Raw BERs without NAC at the end of 
stage-1, stage-2 and stage-3 are 1.6x10-3, 2x10-3 and 2.2x10-3 

respectively. These cause the ECC failure rates without NAC to 
be 10-5, 10-2 and 33% respectively. This means that ECC does not 
always fail during the extended lifetime and hence NAC is not 
triggered for all requested pages. We use the ECC failure rate 
without NAC at the end of each stage to estimate the worst-case 
NAC trigger frequency in that stage. Note that the ECC failure 
rate within a stage is generally lower than this worst-case value as 
it increases with P/E cycles. In stage-1, NAC trigger frequency is 
very low (<10-5). However, the ECC failure rate would not satisfy 
modern storage systems’ requirement (less than 10-15 failure rate) 
without NAC protection. In stage-2, NAC is triggered at a rate 
<1%. Only in the third region, NAC is triggered often (<33%). 
However, if NAC is applied, the raw BER of all these stages can 
be reduced to lower than 10-3. Hence, using NAC guarantees the 
uncorrectable failure rate to be below 10-15, which is the error rate 
requirement for storage. 

 
Fig. 12 Raw bit error rate of experimental 2Y-nm NAND flash memory 

with and without NAC of varying levels of strength.  
Reducing the Cost of ECC using NAC: If P/E-cycle lifetime that 
is desired is the same as that of the baseline without NAC, the 
employed ECC mechanism can be simplified in the presence of 
NAC. We explore how much NAC can help reduce ECC cost to 
achieve the same P/E-cycle lifetime as the baseline ECC 
mechanism. The maximum P/E cycle lifetime of the employed 
baseline ECC is 18K P/E cycles, as seen in Fig. 12 (at this 
lifetime, the raw BER of the baseline reaches 10-3, which is the 
maximum acceptable raw BER that leads to an ECC failure rate of 
10-15, as shown in Table 2). At 18K P/E cycles, using NAC 
reduces the acceptable raw BER for ECC by 65% from 10-3 to 
3.5x10-4. To satisfy this raw BER, simpler ECC that can correct 
only 24 bit errors (as opposed to 40 in the baseline) for 1k-Byte 
data can be used. Since ECC complexity increases linearly with 
the number of errors that ECC can correct [12], the ECC design 
cost can be reduced by approximately 40% when NAC is 
employed. This can lead to significant power and area savings in 
the system.  

P/E Cycle Analysis: NAC provides diminishing returns on raw 
BER rate as the number of P/E cycles increases. The raw BER 
reduction with NAC can be more than 90% at the beginning of 
flash lifetime. However, at high P/E cycles (e.g., 35k P/E cycles), 
NAC reduces raw BER by only 30%. This is mainly due to two 
reasons. First, at low P/E cycles program interference related 

Raw BER 10-3 10-2.9 10-2.8 10-2.7 10-2.65 10-2.64 

ECC FER 10-15 10-10 10-6 10-2 0.07 100% 



  

 

errors, which are the errors that can be fixed by NAC, constitute a 
higher fraction of all flash errors, whereas at higher P/E cycles 
they constitute a smaller fraction [3] and other errors, e.g., those 
due to P/E cycling noise, which cannot be fixed by NAC, become 
dominant [1][4].  Note that this is because program interference is 
due to cell-to-cell coupling and is mainly determined by the 
geometry of flash cells (e.g., the distance between neighboring 
flash cells) instead of P/E cycles whereas many other flash error 
types increase with P/E cycles [3]. Second, the ECC failure rate 
of, and correspondingly the number of, erroneously read cells on 
the neighbor pages, which are needed by NAC for error 
correction, increases over P/E cycles. Neighbor page ECC failure 
causes misclassification of cells and can partly counteract the 
errors corrected by NAC (Sec. 5.3). When flash memory scales to 
smaller geometries and program interference becomes more 
dominant, we would expect NAC to have even higher benefits in 
error reduction and relative lifetime improvement. 

7.2 Performance Evaluation 
We evaluate the performance of NAC by using Disksim [18][19] 
with SSD extensions [19]. We use I/O traces from various 
workloads: cello99 [20], postmark [21], MS-Cambridge [22], 
Financial OLTP [23] and Web Search Engine [23]. Details of 
these traces can be found in [7]. We configure the simulated flash 
based SSD with four channels. Each channel has eight flash chips. 
Each flash chip has 8096 blocks containing 256 pages per block. 
Each page is 8KB unless specified otherwise.  

7.2.1 Workload NAC-Buffer Locality Analysis 
To help explain the performance impact of NAC in Sec. 7.2.2, we 
first analyze the locality behavior of read operations in the 
workloads in the NAC-buffer. NAC presents time overhead for 
reading the neighbor LSB and MSB pages of a requested page 
(called the victim page) that fails ECC. NAC keeps these pages in 
a 5-entry NAC-buffer, as described in Sec. 6.1. If the victim and 
neighbor pages are needed while they are in the NAC-buffer, 
these requests are served from the NAC-buffer instead of flash 
memory.  
We first explore hit rates in a 5-entry NAC-buffer. We study a 
system that always keeps the 5 last accessed pages in the NAC-
buffer (but the system is error-free for the purposes of this study). 
In Fig. 13, we show the hit rate of different types of pages in the 
NAC-buffer. The victim page hit rate shows the caching effect of 
the NAC-buffer: this is the fraction of all flash requests that hit in 
the 5-entry NAC-buffer. The higher this fraction, the more 
effective the NAC-buffer as a latency reduction mechanism for all 
requests in the system. The LSB/MSB neighbor page hit rate 
specifies the fraction of all flash requests for which the LSB/MSB 
neighbor is also in the NAC buffer when the request is received. 
The higher this fraction, the less the overhead of a potential NAC 
correction as there is no need to fetch the LSB/MSB neighbor 
from flash memory to perform NAC correction when these 
neighbors are already in the NAC-buffer. For workloads with 
heavily sequential access patterns, we expect the hit rates of the 
neighbor pages to be higher since the program may have already 
fetched neighbor pages before it requests a (victim) page.   
We make several observations from Fig. 13. First, the NAC-buffer 
hit rate is in general low (i.e., less than 5%), which indicates that 
only a small fraction of pages are accessed repeatedly from the 
small NAC buffer. This is because, in order to reduce disk 
accesses, the operating system keeps the recently used pages in 
main memory and it is unlikely that a page that is recently 
accessed will be evicted from main memory to be accessed again 
soon after. However, Financial has a remarkably high hit rate in 

the small NAC-buffer, which affects its performance positively 
with NAC (see Sec. 7.2.2). Second, we find that the LSB/MSB 
Neighbor Page hit rates are high for Cello, MS-Cambridge and 
Web-Search workloads, as these have more than 30% of their read 
operations as sequential requests. In contrast, Financial and 
Postmark workloads have relatively small request sizes; therefore, 
they feature less sequential read requests, leading to lower hit 
rates. We expect the overhead of NAC correction to be low for the 
former type of (sequential-access) workloads. Third, the hit rate of 
the LSB neighbors is higher than that of the MSB neighbors. This 
is because the number of pages between the victim page and its 
MSB neighbor is higher than the number of pages between the 
victim page and its LSB neighbor. As a result, workloads that 
only have higher levels of spatial locality, of which there are 
fewer, can take advantage of the MSB neighbors. 

 
Fig. 13 The hit rate of different page types in the NAC-Buffer during 

error-free Execution (i.e., when ECC fail rate is zero). Victim Page 
indicates the overall hit rate of the NAC-buffer for all flash accesses. 

7.2.2 NAC Performance Overhead Analysis 
Fig. 14 shows the increase in read latency due to NAC at distinct 
P/E cycles. We activate the NAC mechanism when the first ECC 
failure is experienced in flash memory. After that, each requested 
page is first searched in the NAC-buffer before accessing the flash 
disk. Note that the time spent for this search operation is around 
1% of the latency of flash disk access latency. We make three 
major observations. 

First, NAC does not present any performance impact when the 
flash memory is within the same lifetime as the baseline (<18K 
P/E cycles).  

Second, at relatively low P/E cycles after the extended lifetime, 
NAC presents either only negligible performance degradation or 
slight performance improvement. This is because, for especially 
the workloads with good locality, the 5-entry NAC-buffer behaves 
as an effective small cache in front of the flash memory, as 
indicated by the hit ratio of different types of pages in Fig. 13. 
Even when NAC incurs overhead by fetching the neighbor pages 
upon an ECC failure from flash, the later requests to these pages 
made by the workload can hit in the NAC-buffer, thereby 
potentially hiding the NAC overhead for these neighbor pages.  

Third, NAC incurs less than 5% performance degradation while 
providing a 33% lifetime improvement (i.e., from 18k to 24k P/E 
cycles). Moreover, this performance degradation is only 
introduced for the higher P/E cycles during which a normal flash 
memory without NAC is considered to be non-functional.  

Finally, there is a sharp increase in read latency overhead between 
24k P/E cycles and 25k P/E cycles. The main reason of this 
increase is the drastic increase in ECC failure rate from 10-2 to 
33% between these two points. At 25k P/E cycles, one out of 
every 3 read operations requires NAC correction with its 
associated overhead. However, using NAC still enables a high 
lifetime of 25K P/E cycles, which cannot be achieved by the 
baseline ECC. 



  

 

We conclude that NAC is effective at improving flash memory 
lifetime beyond ECC without significantly degrading system 
performance (up until the point where ECC failure rate increases 
drastically).  

 
Fig. 14 The read latency overhead of NAC at different P/E cycles with 

different ECC failure rates in each P/E cycle.  

Effect on a System with Prefetching: Fig. 15 shows the read 
latency overhead of NAC on a system that prefetches 2 or 4 
consecutive pages for every read request. We increase the 
bandwidth between the flash controller and the flash disk so that 
the prefetched pages can be read to the flash controller in parallel 
with the requested pages. When the number of pages prefetched is 
increased, NAC presents less performance degradation at high 
ECC failure rate, i.e., when p(ECCfail)=33%. This is because a 
more aggressive prefetcher increases the probability of finding the 
neighbor pages in the NAC-buffer when NAC needs them. 
However, at low ECC failure rate, NAC presents more 
performance degradation when number of pages prefetched is 
higher. This is because prefetching aggressively consumes NAC-
buffer entries and reduces the overall hit rate of the victim pages. 
We conclude that NAC has even less performance overhead in a 
state-of-the-art system that employs aggressive prefetching. 

 
Fig. 15 The performance overhead of NAC in a system with prefetching. 

Each bar is normalized to the baseline, error-free system that does 
not employ prefetching.  

8. CONCLUSION 
We comprehensively analyzed threshold voltage distributions in 
state-of-the-art 2Y-nm MLC NAND flash memory and both 
statistically and experimentally demonstrated that bit error rate 
when reading flash memory can be decreased by classifying flash 
cells based on their immediately-neighboring cells’ values. 
Building on these analyses, we introduced the first low-overhead 
and high-accuracy neighbor-cell assisted error correction methods 
that leverage information from neighbor cells to correct errors in 
cells that are being read from flash memory. Our experimental 
evaluations using I/O traces from real workloads and error data 
obtained from real flash memory chips show that our new error 
correction methods can significantly reduce the raw bit error rate 
and improve flash memory lifetime at zero or very modest 
performance overheads. As flash memory scales down to smaller 
technology nodes and cell-to-cell interference therefore becomes 

an even more dominant cause of errors, we expect that the error 
correction techniques proposed in this paper will become even 
more important for reliable operation. We also hope that the 
statistical and experimental analyses provided in this paper can 
enable the development of even more sophisticated and effective 
error tolerance mechanisms. 
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