Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories

Yu Cai¹ Gulay Yalcin² Onur Mutlu¹ Erich F. Haratsch³ Adrian Cristal² Osman S. Unsal² Ken Mai¹

¹ Carnegie Mellon University
 ² Barcelona Supercomputing Center
 ³ LSI Corporation

Executive Summary

- Problem: Cell-to-cell Program interference causes threshold voltage of flash cells to be distorted even they are originally programmed correctly
- Our Goal: Develop techniques to overcome cell-to-cell program interference
 - Analyze the threshold voltage distributions of flash cells conditionally upon the values of immediately neighboring cells
 - Devise new error correction mechanisms that can *take advantage of the values of neighboring cells* to reduce error rates over conventional ECC
- Observations: Wide overall distribution can be decoupled into multiple narrower conditional distributions which can be separate easily
- Solution: Neighbor-cell Assisted Correction (NAC)
 - Re-read a flash memory page that initially failed ECC with a set of read reference voltages corresponding to the conditional threshold voltage distribution
 - Use the re-read values to correct the cells that have neighbors with that value
 - Prioritize reading assuming neighbor cell values that cause largest or smallest cell-to-cell interference to allow ECC correct errors with less re-reads
- Results: NAC improves flash memory lifetime by 39%
 - Within nominal lifetime: no performance degradation
 - □ In extended lifetime: less than 5% performance degradation

Outline

- Background of Program Interference in NAND Flash Memory
- Statistical Analysis of Cell-to-cell Program Interference
- Neighbor-cell Assisted Correction (NAC)
- Evaluation
- Conclusions

Flash challenges: Reliability and Endurance

SAFARI

Carnegie Mellon

NAND Flash Error Model

SAFARI

Carnegie Mellon

How Aggressor Cells are Programmed

Programming 2-bit MLC NAND flash memory in two steps

SAFARI

Carnegie Mellon

How Program Interference Happens

 Model of victim cell threshold voltage changes when neighbor cells are programmed

$$\Delta V_{victim}(n,j) = \sum_{y=j-K}^{j+K} \sum_{x=n+1}^{n+M} \alpha(x,y) \Delta V_{neighbor}(x,y) + \alpha_0 V_{victim}^{before}(n,j)$$

Cai et al., "Program Interference in MLC NAND Flash Memory: Characterization, Modeling, and Mitigation", ICCD 2013

Our Goals and Related Work

Our goals

- Analyze the threshold voltage distributions of flash cells *conditionally upon the values* of immediately neighboring cells
- Devise new error correction mechanisms that can *take advantage of the values of neighboring cells* to reduce error rates over conventional ECC

Limitations of previous work

- Program interference mitigation [Cai+ICCD 2013]
 - Predict optimum read reference voltage for overall distribution (Unaware of the value dependence of neighbor aggressor cells)
- □ Signal processing [Dong + TCAS-I 2010]
 - Assumes threshold voltage changes of neighbor aggressor cells are known (difficult to record)
 - Assume the average of threshold voltage of cells in erased state are known (not known for state-of-art flash memory)
 - Assume the threshold voltage of cells in the same state are close enough (greatly different)
 - Read the victim cells and neighbor aggressor cells with 2ⁿ times, where n is in the range of 4 and 6 (large latency)

SAFARI

Carnegie Mellon

Outline

- Background of Program Interference in NAND Flash Memory
- Statistical Analysis of Cell-to-cell Program Interference
- Neighbor-cell Assisted Correction (NAC)
- Evaluation
- Conclusions

Flash Voltage Distribution Analysis

- Formal statistically analyze
 - How to optimize read reference voltage?
 - What determines minimum raw bit error rate?
 - Overall distribution vs conditional distribution
 - Can we achieve smaller BER than minimum raw BER of overall distribution?
- Empirical silicon measurement and validation

Optimizing Read Reference Voltage

Raw bit error rate (BER)

$$ErrRate^{total} = P_0 \times \int_{v}^{+\infty} f(x) dx + P_1 \times \int_{-\infty}^{v} g(x) dx$$

 Optimum read reference voltage that achieves the minimum raw BER is at the cross-point of neighbor distributions when random data are programmed

SAFARI

Carnegie Mellon¹¹

BER with Read Reference Voltage


```
Carnegie Mellon<sup>12</sup>
```

Modeling the Minimum BER

Minimum raw BER can be further minimized by

- Increasing distance between neighbor distributions (μ_2 - μ_1)
- Decreasing the standard deviation (σ)

Secrets of Threshold Voltage Distributions

Carnegie Mellon¹⁴

Overall vs Conditional Distributions (1)

- Overall distribution: p(x)
- Conditional distribution: p(x, z=m)
 - m could be 11, 00, 10 and 01 for 2-bit MLC all-bit-line flash
- Overall distribution is the sum of all conditional distribution

$$p(x) = \sum_{m=1}^{2^n} p(x, z = m)$$

Overall vs Conditional Distributions (2)

 Distance of two neighbor overall distribution is the average of the distances of neighbor conditional distributions

$$E(X^{P(i+1)}) - E(X^{P(i)}) = \frac{1}{N} \sum E(x_m^{P(i+1)}) - \frac{1}{N} \sum E(x_m^{P(i)}) = \frac{1}{N} \sum (E(x_m^{P(i+1)}) - E(x_m^{P(i)}))$$

- Distance of conditional distribution of different type is close
 - Average interference is same when aggressor cells are programmed with the same value
- Distance of two neighbor overall distribution is close to the distances of any neighbor conditional distributions

Overall vs Conditional Distributions (3)

 Variance of overall distribution is larger than the average of the variance of all conditional distributions

$$Var(X) = \frac{1}{N} \sum Var(x_m) + \frac{1}{N^2} \sum \sum (E(x_m) - E(x_n))^2$$

Variance of Variance of overall distribution conditional distribution Distance of conditional distribution pair

- Different conditional distributions do not overlap
- Variances of conditional distribution of different type are close
- Variance of overall distribution is larger than that of any conditional distributions

Overall vs Conditional Reading

- Distance of two neighbor overall distribution is close to the distances of any neighbor conditional distributions
- Variance of overall distribution is larger than that of any conditional distributions
- Minimum raw BER when read with overall distribution will be larger than that when read with conditional distribution

Hardware Platform for Measurement

Cai et al., "FPGA-based solid-state drive prototyping platform", FCCM 2011 Cai et al., "Error patterns in MLC NAND flash memory: Measurement, characterization, and analysis", DATE 2012

SAFARI

Carnegie Mellon¹⁹

Measurement Results

Raw BER of conditional reading is much smaller than overall reading

SAFARI

Carnegie Mellon

- There exists an optimum read reference that can achieve the minimum raw BER
- The minimum raw BER decreases as signal-to-noise ratio increases
- The distance (signal) of the overall distribution between neighboring states is close to that of each of the conditional distributions
- The variance (noise) of each conditional distribution is smaller than that of the overall distribution
- The variances of different conditional distributions are close
- The signal-to-noise ratio of the conditional distribution is larger than that of the overall distribution
- The minimum raw BER obtained after reading with the conditional distribution is much smaller than that obtained after reading with the overall distribution.

Outline

- Background of Program Interference in NAND Flash Memory
- Statistical Analysis of Cell-to-cell Program Interference
- Neighbor-cell Assisted Correction (NAC)
- Evaluation
- Conclusions

Neighbor Assisted Reading (NAR)

Neighbor assisted reading

- Read neighbor pages and classifie the cells in a wordline into N types based on the values stored in the corresponding directneighbor aggressor cells (N=4 for 2-bit MLC flash)
- Read the cells of each type, a different set of local optimum read reference voltages (that minimizes the bit error rate) is used (i.e., REF_{x11}, REF_{x00}, REF_{x10}, REF_{x01})
- Combined all reads as one complete read and send to ECC
- Performance degradation
 - \Box log₂(N) neighbor reads plus N reads on the selected wordline
 - Down to 16.7% performance for 2-bit MLC flash memory

Neighbor Assisted Correction (NAC)

NAC is build upon NAR, but only triggered when optimum reading based on overall distribution fails

 $(1+P_{fail}(N+log_2(N)))$

Performance degraded to _____1

(*P_{fail}* <0.01)

Prioritized NAC

 Dominant errors are caused by the overlap of lower state interfered by high neighbor interference and the higher state interfered by low neighbor interference

Online learning

 Periodically (e.g., every 100 P/E cycles) measure and learn the overall and conditional threshold voltage distribution statistics (e.g. mean, standard deviation and corresponding optimum read reference voltage)

NAC procedure

- Step 1: Once ECC fails reading with overall distribution, load the failed data and corresponding neighbor LSB/MSB data into NAC
- Step 2: Read the failed page with the local optimum read reference voltage for cells with neighbor programmed as 11
- Step 3: Fix the value for cells with neighbor 11 in step 1
- Step 4: Send fixed data for ECC correction. If succeed, exit.
 Otherwise, go to step 2 and try to read with the local optimum read reference voltage 10, 01 and 00 respectively

SAFARI

Microarchitecture of NAC (Initialization)

SAFARI

Carnegie Mellon

NAC (Fixing cells with neighbor 11)

SAFARI

Carnegie Mellon

Outline

- Background of Program Interference in NAND Flash Memory
- Statistical Analysis of Cell-to-cell Program Interference
- Neighbor-cell Assisted Correction (NAC)
- Evaluation
- Conclusions

Lifetime Extension with NAC

SAFARI

```
Carnegie Mellon
```

Performance Analysis of NAC

Carnegie Mellon 31

Conclusion

- Provide a detailed statistical and experimental analysis of threshold voltage distributions of flash memory cells conditional upon the immediate-neighbor cell values
- Observation: conditional distributions can be used to determine read reference voltages that can minimize raw bit error rate (RBER) when the cells are read
- Neighbor-cell assisted error correction (NAC) techniques extend flash lifetime with negligible overhead
 - First read with global optimum read reference voltage
 - Correct the failed data with conditional reading
 - Conditional reading can be executed in prioritized order
 - □ Lifetime extend by 39% with negligible overhead

Thank You.

Neighbor-Cell Assisted Error Correction for MLC NAND Flash Memories

Yu Cai¹ Gulay Yalcin² Onur Mutlu¹ Erich F. Haratsch³ Adrian Cristal² Osman S. Unsal² Ken Mai¹

¹ Carnegie Mellon University
 ² Barcelona Supercomputing Center
 ³ LSI Corporation

