
Bottleneck Identification and Scheduling

 in Multithreaded Applications

José A. Joao

M. Aater Suleman

Onur Mutlu

Yale N. Patt

Executive Summary
 Problem: Performance and scalability of multithreaded applications

are limited by serializing bottlenecks

 different types: critical sections, barriers, slow pipeline stages

 importance (criticality) of a bottleneck can change over time

 Our Goal: Dynamically identify the most important bottlenecks and
accelerate them

 How to identify the most critical bottlenecks

 How to efficiently accelerate them

 Solution: Bottleneck Identification and Scheduling (BIS)

 Software: annotate bottlenecks (BottleneckCall, BottleneckReturn) and
implement waiting for bottlenecks with a special instruction (BottleneckWait)

 Hardware: identify bottlenecks that cause the most thread waiting and
accelerate those bottlenecks on large cores of an asymmetric multi-core system

 Improves multithreaded application performance and scalability,
outperforms previous work, and performance improves with more cores

 2

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

3

Bottlenecks in Multithreaded Applications

Definition: any code segment for which threads contend (i.e. wait)

Examples:

 Amdahl’s serial portions
 Only one thread exists on the critical path

 Critical sections
 Ensure mutual exclusion likely to be on the critical path if contended

 Barriers
 Ensure all threads reach a point before continuing the latest thread arriving

is on the critical path

 Pipeline stages

 Different stages of a loop iteration may execute on different threads,
slowest stage makes other stages wait on the critical path

4

Observation: Limiting Bottlenecks Change Over Time

A=full linked list; B=empty linked list

repeat

 Lock A

 Traverse list A

 Remove X from A

 Unlock A

 Compute on X

 Lock B

 Traverse list B

 Insert X into B

 Unlock B

until A is empty

5

Lock A is limiter

32 threads

Limiting Bottlenecks Do Change on Real Applications

6

MySQL running Sysbench queries, 16 threads

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

7

Previous Work

 Asymmetric CMP (ACMP) proposals [Annavaram+, ISCA’05]

[Morad+, Comp. Arch. Letters’06] [Suleman+, Tech. Report’07]

 Accelerate only the Amdahl’s bottleneck

 Accelerated Critical Sections (ACS) [Suleman+, ASPLOS’09]

 Accelerate only critical sections

 Does not take into account importance of critical sections

 Feedback-Directed Pipelining (FDP) [Suleman+, PACT’10 and PhD thesis’11]

 Accelerate only stages with lowest throughput

 Slow to adapt to phase changes (software based library)

No previous work can accelerate all three types of bottlenecks or
quickly adapts to fine-grain changes in the importance of bottlenecks

Our goal: general mechanism to identify performance-limiting bottlenecks of
any type and accelerate them on an ACMP

8

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling (BIS)

 Methodology

 Results

 Conclusions

9

10

Bottleneck Identification and Scheduling (BIS)

 Key insight:

 Thread waiting reduces parallelism and
is likely to reduce performance

 Code causing the most thread waiting
 likely critical path

 Key idea:

 Dynamically identify bottlenecks that cause
the most thread waiting

 Accelerate them (using powerful cores in an ACMP)

1. Annotate

bottleneck code

2. Implement waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

11

Bottleneck Identification and Scheduling (BIS)

 while cannot acquire lock

 Wait loop for watch_addr

 acquire lock

 …

 release lock

Critical Sections: Code Modifications

12

 …

 …

 Wait loop for watch_addr

 …

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 acquire lock

 …

 release lock

 BottleneckReturn bid

13

 BottleneckWait bid, watch_addr

 …

 …

 Wait loop for watch_addr

 …

Critical Sections: Code Modifications

 …

 BottleneckCall bid, targetPC

 …

targetPC: while cannot acquire lock

 acquire lock

 …

 release lock

 BottleneckReturn bid

14

 BottleneckWait bid, watch_addr

 …

 …
Used to enable

acceleration

Used to keep track of
waiting cycles

15

Barriers: Code Modifications

 …

 BottleneckCall bid, targetPC

 enter barrier

 while not all threads in barrier

 BottleneckWait bid, watch_addr

 exit barrier

 …

targetPC: code running for the barrier

 …

 BottleneckReturn bid

16

Pipeline Stages: Code Modifications

 BottleneckCall bid, targetPC

 …

targetPC: while not done

 while empty queue

 BottleneckWait prev_bid

 dequeue work

 do the work …

 while full queue

 BottleneckWait next_bid

 enqueue next work

 BottleneckReturn bid

1. Annotate

bottleneck code

2. Implements waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

17

Bottleneck Identification and Scheduling (BIS)

BIS: Hardware Overview

 Performance-limiting bottleneck identification and
acceleration are independent tasks

 Acceleration can be accomplished in multiple ways

 Increasing core frequency/voltage

 Prioritization in shared resources [Ebrahimi+, MICRO’11]

 Migration to faster cores in an Asymmetric CMP

18

Large core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core

Small

 core
Small

 core

Small

 core

1. Annotate

bottleneck code

2. Implements waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

19

Bottleneck Identification and Scheduling (BIS)

Determining Thread Waiting Cycles for Each Bottleneck

20

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Determining Thread Waiting Cycles for Each Bottleneck

21

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0

Determining Thread Waiting Cycles for Each Bottleneck

22

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 1

Determining Thread Waiting Cycles for Each Bottleneck

23

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=2, twc = 1

Determining Thread Waiting Cycles for Each Bottleneck

24

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=2, twc = 3

Determining Thread Waiting Cycles for Each Bottleneck

25

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckWait x4500

bid=x4500, waiters=1, twc = 0 bid=x4500, waiters=1, twc = 1 bid=x4500, waiters=1, twc = 2

BottleneckWait x4500

bid=x4500, waiters=2, twc = 5 bid=x4500, waiters=2, twc = 7 bid=x4500, waiters=2, twc = 9 bid=x4500, waiters=1, twc = 9 bid=x4500, waiters=1, twc = 3 bid=x4500, waiters=1, twc = 4 bid=x4500, waiters=2, twc = 5

1. Annotate

bottleneck code

2. Implements waiting

 for bottlenecks

1. Measure thread

waiting cycles (TWC)

for each bottleneck

2. Accelerate bottleneck(s)

with the highest TWC

Binary containing

 BIS instructions

Compiler/Library/Programmer Hardware

26

Bottleneck Identification and Scheduling (BIS)

Bottleneck Acceleration

27

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

bid=x4600, twc=100

bid=x4700, twc=10000

Bottleneck Acceleration

28

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckCall x4600

Execute locally

bid=x4600, twc=100

bid=x4700, twc=10000

 twc < Threshold

Bottleneck Acceleration

29

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

BottleneckCall x4700

Execute locally Execute remotely

bid=x4600, twc=100

bid=x4700, twc=10000 twc > Threshold

Bottleneck Acceleration

30

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

bid=x4700, pc, sp, core1

BottleneckCall x4700

Execute locally Execute remotely

bid=x4600, twc=100

bid=x4700, twc=10000

Bottleneck Acceleration

31

Small Core 1 Large Core 0

Small Core 2

Bottleneck

Table (BT)

…

Scheduling Buffer (SB)

Acceleration

Index Table (AIT)
bid=x4700 , large core 0

AIT

bid=x4600, twc=100

bid=x4700, twc=10000

bid=x4700 , large core 0

 twc < Threshold

 twc > Threshold

BIS Mechanisms

 Basic mechanisms for BIS:

 Determining Thread Waiting Cycles

 Accelerating Bottlenecks

 Mechanisms to improve performance and generality of BIS:

 Dealing with false serialization

 Preemptive acceleration

 Support for multiple large cores

32

False Serialization and Starvation

 Observation: Bottlenecks are picked from Scheduling Buffer
in Thread Waiting Cycles order

 Problem: An independent bottleneck that is ready to execute
has to wait for another bottleneck that has higher thread
waiting cycles False serialization

 Starvation: Extreme false serialization

 Solution: Large core detects when a bottleneck is ready to
execute in the Scheduling Buffer but it cannot sends the

bottleneck back to the small core

33

Preemptive Acceleration

 Observation: A bottleneck executing on a small core can
become the bottleneck with the highest thread waiting cycles

 Problem: This bottleneck should really be accelerated (i.e.,
executed on the large core)

 Solution: The Bottleneck Table detects the situation and
sends a preemption signal to the small core. Small core:

 saves register state on stack, ships the bottleneck to the large core

 Main acceleration mechanism for barriers and pipeline stages

34

Support for Multiple Large Cores

 Objective: to accelerate independent bottlenecks

 Each large core has its own Scheduling Buffer
(shared by all of its SMT threads)

 Bottleneck Table assigns each bottleneck to
a fixed large core context to

 preserve cache locality

 avoid busy waiting

 Preemptive acceleration extended to send multiple
instances of a bottleneck to different large core contexts

35

Hardware Cost

 Main structures:

 Bottleneck Table (BT): global 32-entry associative cache,
minimum-Thread-Waiting-Cycle replacement

 Scheduling Buffers (SB): one table per large core,
as many entries as small cores

 Acceleration Index Tables (AIT): one 32-entry table
per small core

 Off the critical path

 Total storage cost for 56-small-cores, 2-large-cores < 19 KB

36

BIS Performance Trade-offs
 Bottleneck identification:

 Small cost: BottleneckWait instruction and Bottleneck Table

 Bottleneck acceleration on an ACMP (execution migration):

 Faster bottleneck execution vs. fewer parallel threads

 Acceleration offsets loss of parallel throughput with large core counts

 Better shared data locality vs. worse private data locality

 Shared data stays on large core (good)

 Private data migrates to large core (bad, but latency hidden with
Data Marshaling [Suleman+, ISCA’10])

 Benefit of acceleration vs. migration latency

 Migration latency usually hidden by waiting (good)

 Unless bottleneck not contended (bad, but likely to not be on critical path)

37

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

38

Methodology

 Workloads: 8 critical section intensive, 2 barrier intensive
and 2 pipeline-parallel applications

 Data mining kernels, scientific, database, web, networking, specjbb

 Cycle-level multi-core x86 simulator

 8 to 64 small-core-equivalent area, 0 to 3 large cores, SMT

 1 large core is area-equivalent to 4 small cores

 Details:

 Large core: 4GHz, out-of-order, 128-entry ROB, 4-wide, 12-stage

 Small core: 4GHz, in-order, 2-wide, 5-stage

 Private 32KB L1, private 256KB L2, shared 8MB L3

 On-chip interconnect: Bi-directional ring, 2-cycle hop latency

39

Comparison Points (Area-Equivalent)

 SCMP (Symmetric CMP)

 All small cores

 Results in the paper

 ACMP (Asymmetric CMP)

 Accelerates only Amdahl’s serial portions

 Our baseline

 ACS (Accelerated Critical Sections)

 Accelerates only critical sections and Amdahl’s serial portions

 Applicable to multithreaded workloads
(iplookup, mysql, specjbb, sqlite, tsp, webcache, mg, ft)

 FDP (Feedback-Directed Pipelining)

 Accelerates only slowest pipeline stages

 Applicable to pipeline-parallel workloads (rank, pagemine)

40

BIS Performance Improvement

41

Optimal number of threads, 28 small cores, 1 large core

ACS FDP

BIS Performance Improvement

42

Optimal number of threads, 28 small cores, 1 large core

limiting bottlenecks change over time

BIS Performance Improvement

43

Optimal number of threads, 28 small cores, 1 large core

barriers, which ACS

cannot accelerate

BIS Performance Improvement

44

Optimal number of threads, 28 small cores, 1 large core

 BIS outperforms ACS/FDP by 15% and ACMP by 32%

 BIS improves scalability on 4 of the benchmarks

Why Does BIS Work?

45

Fraction of execution time spent on predicted-important bottlenecks

Why Does BIS Work?

46

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

Why Does BIS Work?

47

 Coverage: fraction of program critical path that is actually identified as bottlenecks

 39% (ACS/FDP) to 59% (BIS)

 Accuracy: identified bottlenecks on the critical path over total identified bottlenecks

 72% (ACS/FDP) to 73.5% (BIS)

Fraction of execution time spent on predicted-important bottlenecks

Actually critical

Scaling Results

48

Performance increases with:

1) More small cores

 Contention due to bottlenecks
increases

 Loss of parallel throughput due
to large core reduces

2) More large cores

 Can accelerate
independent bottlenecks

 Without reducing parallel
throughput (enough cores)

2.4%
6.2%

15% 19%

Outline

 Executive Summary

 The Problem: Bottlenecks

 Previous Work

 Bottleneck Identification and Scheduling

 Evaluation

 Conclusions

49

Conclusions

 Serializing bottlenecks of different types limit performance of
multithreaded applications: Importance changes over time

 BIS is a hardware/software cooperative solution:

 Dynamically identifies bottlenecks that cause the most thread waiting
and accelerates them on large cores of an ACMP

 Applicable to critical sections, barriers, pipeline stages

 BIS improves application performance and scalability:

 15% speedup over ACS/FDP

 Can accelerate multiple independent critical bottlenecks

 Performance benefits increase with more cores

 Provides comprehensive fine-grained bottleneck acceleration
for future ACMPs without programmer effort

50

Thank you.

Bottleneck Identification and Scheduling

 in Multithreaded Applications

José A. Joao

M. Aater Suleman

Onur Mutlu

Yale N. Patt

Backup Slides

Major Contributions

 New bottleneck criticality predictor: thread waiting
cycles
 New mechanisms (compiler, ISA, hardware) to accomplish this

 Generality to multiple bottlenecks

 Fine-grained adaptivity of mechanisms

 Applicability to multiple cores

54

Workloads

55

Scalability at Same Area Budgets

56

iplookup mysql-1 mysql-2 mysql-3

specjbb sqlite tsp webcache

mg ft rank pagemine

Scalability at Same Area Budgets

57

iplookup mysql-1 mysql-2 mysql-3

specjbb sqlite tsp webcache

mg ft rank pagemine

Scalability at Same Area Budgets

58

iplookup mysql-1 mysql-2 mysql-3

specjbb sqlite tsp webcache

mg ft rank pagemine

Scalability with #threads = #cores (I)

59

iplookup mysql-1

60

mysql-2 mysql-3

Scalability with #threads = #cores (II)

61

specjbb sqlite

Scalability with #threads = #cores (III)

62

tsp webcache

Scalability with #threads = #cores (IV)

63

mg ft

Scalability with #threads = #cores (V)

64

rank pagemine

Scalability with #threads = #cores (VI)

Optimal number of threads – Area=8

65

Optimal number of threads – Area=16

66

Optimal number of threads – Area=32

67

Optimal number of threads – Area=64

68

BIS and Data Marshaling, 28 T, Area=32

69

