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ABSTRACT
Energy efficiency and energy-proportional computing have
become a central focus in enterprise server architecture. As
thermal and electrical constraints limit system power, and
datacenter operators become more conscious of energy costs,
energy efficiency becomes important across the whole sys-
tem. There are many proposals to scale energy at the data-
center and server level. However, one significant component
of server power, the memory system, remains largely un-
addressed. We propose memory dynamic voltage/frequency
scaling (DVFS) to address this problem, and evaluate a sim-
ple algorithm in a real system.

As we show, in a typical server platform, memory con-
sumes 19% of system power on average while running SPEC
CPU2006 workloads. While increasing core counts demand
more bandwidth and drive the memory frequency upward,
many workloads require much less than peak bandwidth.
These workloads suffer minimal performance impact when
memory frequency is reduced. When frequency reduces,
voltage can be reduced as well. We demonstrate a large
opportunity for memory power reduction with a simple con-
trol algorithm that adjusts memory voltage and frequency
based on memory bandwidth utilization.

We evaluate memory DVFS in a real system, emulat-
ing reduced memory frequency by altering timing registers
and using an analytical model to compute power reduction.
With an average of 0.17% slowdown, we show 10.4% aver-
age (20.5% max) memory power reduction, yielding 2.4%
average (5.2% max) whole-system energy improvement.

Categories and Subject Descriptors: C.5.5 [Computer
System Implementation]: Servers, B.3.1 [Semiconductor Mem-
ories]: DRAM

General Terms: Measurement, Performance

1. INTRODUCTION
Power management has become a critical component of

both mobile and enterprise systems in recent years. In the
data center environment, thermal management and power
budgeting have become significant concerns, especially as
data centers become larger and pack servers more densely.
The cost of operating a data center increasingly depends on
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its energy usage as much as its capital cost. As a result
of these shifting constraints, server power consumption has
become a significant focus of work, stimulating a variety of
research for energy-efficient systems [4, 35].

Most proposed energy efficiency mechanisms autonomous-
ly observe system load or behavior and adjust the system’s
operating point periodically, moving on the performance /
power curve to achieve the best efficiency. Several mech-
anisms operate by shutting down unused servers in clus-
ters [10, 34], placing unused servers in a sleep state and
batching work to minimize sleep transitions [10, 23], or scal-
ing active server power proportionally to load [2]. In this
paper, we focus on the last goal, known as server energy
proportionality, which works by scaling subsystems within
an individual server.

Prior work has focused mostly on CPU energy propor-
tionality, adjusting frequency and voltage according to load
(DVFS, or dynamic voltage/frequency scaling) [36]. While
CPU DVFS, and idle powerdown states in various other sys-
tem components, help to achieve scalability, we observe that
the memory system often draws power disproportionate to
its load. In modern systems, memory power can be a sig-
nificant portion of system power: in our evaluations, 23%
on average. Although modern systems make use of memory
powerdown states during idle periods between memory re-
quests, significant further opportunity exists. Current mem-
ory systems run at speeds that are balanced with respect to
the peak computing power, optimized for memory-intensive
workloads. However, for many other workloads, the per-
formance impact of running at lower memory frequency is
minimal. A slower memory frequency allows for lower volt-
age, furthering power reduction. Thus, we propose mem-
ory DVFS to dynamically adapt the memory system’s op-
erating point to current needs. We make the following con-
tributions:

• We identify the opportunity for memory DVFS by pre-
senting a detailed power model that quantifies fre-
quency-dependent portions of memory power, showing
that significant reductions are possible.

• We present a control algorithm based on observing
memory bandwidth utilization and adjusting its fre-
quency/voltage to minimize performance impact.

• We evaluate this on real hardware, obtaining perfor-
mance results by emulating memory frequency with
altered timing settings and modeling power reduction
analytically.

The rest of this paper is organized as follows. In §2, we
motivate the opportunity for memory DVFS. In §3, we dis-
cuss the components of DRAM power, and in §4 we present
a model of memory power under voltage and frequency scal-
ing. §5 discusses the impact of frequency scaling on appli-
cation performance. We present our control algorithm in

1



 0

 100

 200

 300

 400

lbm
G

em
sFD

TD

m
ilc

leslie3d

libquantum

soplex

sphinx3

m
cf

cactusA
D

M

gcc
dealII

tonto
bzip2

gobm
k

sjeng

calculix

perlbench

h264ref

nam
d

grom
acs

gam
ess

povray

hm
m

er

P
o
w

er
 (

W
) System Power

Mem Power

Figure 1: Memory system power in a 12-DIMM (48 GB), 2-socket system for SPEC CPU2006 benchmarks.

§6, and evaluate it in §7. We conclude with a discussion of
related work and future directions for memory DVFS.

2. MOTIVATION
In order to motivate memory frequency/voltage scaling as

a viable mechanism for energy efficiency, we must show (i)
that there is significant opportunity for power reduction with
this mechanism, and (ii) that common workloads tolerate
the performance impact of memory frequency scaling with
minimal degradation.

At a high level, two opposing forces on energy efficiency
are at play when memory frequency is reduced. The effi-
ciency depends both on power consumption and on runtime,
as energy is the product of power and time. Power reduction
alone will increase efficiency. However, performance also de-
grades at lower-power operating points, which increases run-
time and thus energy. Thus, there is a tradeoff in reducing
memory frequency/voltage. We will show later that stati-
cally scaling memory frequency has little performance effect
on many lower-bandwidth workloads because frequency im-
pacts only bus transfer latency, a portion of the full memory
latency. In this section, we motivate that memory frequency
scaling can have an effect on system power and thus energy
(in the next section, we present an analytical model that
incorporates voltage scaling).

2.1 Magnitude of Memory Power
We argue that (i) memory power is a significant portion of

full-system power in modern systems, and (ii) the magnitude
of power reduction attainable by memory frequency/voltage
scaling is on par with the reduction due to CPU DVFS.
First, Figure 1 shows average memory system power in a
12-DIMM (48 GB), 2-socket server class system running 8
copies of each benchmark (see §7.1 for details) as computed
by our power model (see §3). Total average system power for
each run is shown for comparison. Memory power is 80W
in the highest case, and 65W on average, against a 382W
maximum (341W average) system power.

2.2 Potential Memory Power Reduction
Second, having seen that the magnitude of memory power

is significant, we argue that the potential reduction is also
significant. In order to show this, we perform a simple
experiment on real Intel Nehalem hardware (§7.1). For a
fixed workload (mcf from SPEC CPU2006 [32], a memory-
intensive benchmark, with one copy running on each core),
we measure AC power for three configurations. First, we
run both the CPU and memory at full speed (2.93GHz and
1333MHz, respectively). Then, we force CPU DVFS to scale
all cores down statically to 2.4GHz, with core voltage re-
duced to the appropriate level (controlled by hardware). Fi-
nally, we force memory speed to 800MHz, the lowest setting
supported by our test system. Table 1 presents the results.
Although CPU DVFS has a larger impact on system power
(9.9% reduction), the impact of memory frequency scaling
on system power is also significant (7.6%).

Because of limitations in existing hardware, this simple
scaling experiment does not perform voltage scaling on mem-
ory, even though the CPU DVFS reduces core voltage. As

Configuration CPU Mem Avg. Power Reduction

Baseline 2.93GHz 1333MHz 355W
CPU scaling 2.4GHz 1333MHz 320W 9.9%
Mem scaling 2.93GHz 800MHz 338W 7.6%

Table 1: Simple (static) reduction for mcf: AC power
reduction due to CPU and memory frequency scal-
ing, in real Intel Nehalem hardware.

we will discuss in more detail later, memory running at lower
speed can operate at lower voltage as well, and this grants
additional power reduction. In the remainder of this paper,
we assume voltage as well as frequency scaling.

3. BACKGROUND: MEMORY POWER
In order to effectively improve energy efficiency by scal-

ing memory frequency and voltage, we must first understand
how this scaling affects memory system power (and thus sys-
tem energy). In this section, we first briefly provide back-
ground on DRAM structure (§3.1). We then break down
the components of DRAM power (§3.2) and discuss how fre-
quency scaling impacts each component. With this under-
standing, we quantify power in terms of operational power
due to memory access (§3.3.1) and background power that
varies with memory sleep states and frequency (§3.3.2). We
next discuss the ability of DRAM to tolerate voltage scal-
ing, and its effects on power (§3.4). We address the effects
that frequency/voltage scaling might have on time spent in
power-down states (and the consequent trade-offs) in §3.5.
Finally, we discuss some potential implementation issues for
memory DVFS in §3.6. This understanding will allow us
to build an analytical model in §4 in order to approximate
power and energy reduction.

3.1 DRAM Structure Background
Figure 2 (a simplified version of Figure 1 in [26]) gives a

general overview of the structure of a DDR3 DRAM device.
A set of devices placed together on a DIMM comprises a
rank. Within a rank, a number of banks consist of indepen-
dent DRAM storage arrays in each device with associated
decoders and sense amplifiers. These banks share I/O hard-
ware (drivers and receivers) to interface with the DDR bus.
Each bank is a matrix of storage cells, organized into rows.
The row buffer can hold one active row (or page) at a time.
An activate command brings a row into the buffer, after
which read/write commands can access columns in the row.
A precharge command returns the data to the storage array
and prepares for the next activation. Detailed descriptions
of memory operation can be found in datasheets, technical
notes and papers [26, 24, 25, 27].

Various policies govern the way in which a memory con-
troller uses these commands. Two common policies are
page-open and page-closed policies. Page-open keeps the
last-accessed row (page) active in the row buffer. This ben-
efits performance when the next access is to the same row,
because no activate is necessary. Page-closed performs a
precharge as soon as the access is complete. Although this
eliminates row hits, it reduces latency upon a row miss, be-
cause no precharge is necessary, only an activate. Note that
we assume a page-closed policy in this paper. This is mo-
tivated by the observation that in multi-core systems, in-
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Command Energy (nJ) @
1333MHz

Energy (nJ) @
800MHz

Read (array) 18 18
Write (array) 20 20
Read I/O (1 DIMM/channel) 1 1.7
Write I/O (1 DIMM/channel) 4 7
I/O additional termination (2 DIMMs/channel) 12 20
Activate+Pre-charge (page open+close) 25 25

Average energy/read, page-closed policy, 2 DIMMs/channel 56 64.7
Average energy/write, page-closed policy, 2 DIMMs/channel 61 72

Table 2: Energy per operation for DRAM commands in a DDR3 DIMM, at 1333 and 800MHz. All energy
components shown comprise the energy for a memory access, summarized in the last two rows. Note that
energy is higher at lower frequencies due to the increased bus utilization (the bus is driven for more time).

Power-down State Exit La-
tency to
Read Com-
mand

Power
@ 1333

Power
@ 800

PLL,
Out.
Clk

IBT,
ODT

DLL Clk.
Tree

Page
Buf.

Decod. Input
Buf.

Self
Re-
fresh

SelfRefresh-Register Off 512 tCK +
6µs

0.56W 0.56W 0 0 0 0 0 0 0 1

SelfRefresh * 512 tCK 0.92W 0.77W 1 0 0 0 0 0 0 1
Precharge Slow Powerdown -
Register Off

tMRD +
tXPDLL

1.35W 1.16W 1 0 0 0 0 0 0 0

Precharge Slow Powerdown tXPDLL 1.60W 1.41W 1 1 1 0 0 0 0 0
Precharge Fast Powerdown * tXP +

tRCD
2.79W 2.33W 1 1 1 0 0 0 0 0

Active Powerdown tXP 3.28W 2.71W 1 1 1 0 1 0 0 0
Precharge Standby * tRCD 4.66W 3.87W 1 1 1 1 0 1 1 0
Active Standby 0 5.36W 4.36W 1 1 1 1 1 1 1 0

Table 3: Background Power: power states for a 4GB DDR3 DRx4 R-DIMM. Asterisks mark states our
evaluation system supports. These values incorporate all device power that is not accounted for by per-
operation energy above. Within the table, a 1 indicates that the given component is powered up.
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Figure 2: General overview of DRAM device struc-
ture, simplified from [26].
creasing page-conflict rates due to parallel access by many
threads reduce the benefit of page-open policies [33, 29].

3.2 DRAM Power Breakdown
To provide background for this work, we will first describe

the power usage of various components in a DRAM device.
DRAM Array Power: The DRAM array is the core of the
memory. It is asynchronous in operation. Thus, array power
is not dependent on memory frequency, only on access count
(memory bandwidth). Low-power states also have no effect
on DRAM array power: its power consumption is already
low when idle (∼10mW/device in x8 DDR3 DIMMs). The
array draws a constant active-state power when a read, write
or precharge command is active.
I/O Power: This component of device power consists of
input buffers, read/write latches, DLL (delay-locked loop),
data bus drivers, and control logic, and is consumed when
the DRAM is idle (not powered down) or actively executing
a command. I/O power is memory-frequency-dependent:
it reduces with lower frequency. The portion of I/O power
due to active command execution scales with bus utilization;
this leads to an indirect effect when considering the energy
impact of frequency scaling, discussed below. I/O power is
reduced in memory power-down states (described below).

Register Power: A registered DIMM consists of input/
output registers on clock and command/address lines; regis-
ter power consists of these components as well as associated
logic and phase-locked loop (PLL). Like I/O power, register
power is related to the bus interface and so is frequency--
dependent. It also scales with low-power states. (Registers
are not shown in Figure 2 for simplicity.)
Termination Power: Finally, modern DRAM devices in-
clude on-die termination (ODT) to properly terminate the
bus during active operation. Termination power is dissi-
pated in on-die resistive elements, and is adjusted to bus
electrical characteristics, depending on DIMM count. With
2 DIMMs per channel, DDR3 termination power can reach
1.5-2.0W per DIMM. Termination power is not directly fre-
quency-dependent; it depends only on bus utilization.

3.3 Operation and Background Power
In order to understand and model DRAM power quan-

titatively, we split it into two parts: operation power and
background power. Operation power accounts for the effects
of active memory operations in all four components, and is
computed from the energy that each operation comprising
a memory access consumes. Background power accounts for
all other power in the device, and depends only on power-
down state and operating frequency. Taken together, these
two characterizations (given in Tables 2 and 3) describe the
power usage of the memory system.

The energy and power figures given in Tables 2 and 3
are based on measurements of standby and active current
(IDD values) for multiple DIMMs. This process is statisti-
cally rigorous: measurements are taken of multiple vendors’
DIMMs, and the values used here have certain statistical
confidence based on the distributions. More details can be
found in [18].

3.3.1 Operation Power
First, we must understand operation power, or the power

required to execute a command when the device is in an
active state. We first present operation energy, split into
several subcomponents that comprise a complete access and
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data transfer. The average power for a given access rate can
then be determined from these components.

Table 2 shows the energy required for each operation that
comprises a memory access at two operational frequencies,
1333MHz and 800MHz. A single memory access is 64 bytes
(8 data transfer cycles). The first two rows correspond to
actions that occur in the DRAM storage array itself. The
next two table rows correspond to the energy required to
drive the data onto the bus. The fifth table row accounts
for additional I/O power required for bus termination when
two DIMMs are present on the bus. Finally, the sixth ta-
ble row shows the energy for one Activate and Pre-charge
command pair required to bring a new row into the bank’s
row buffer. Note that because we use a closed-page policy,
operation power for a single access always includes an acti-
vate, read/write operation, and precharge. Given this, the
last two rows compute the average energy per read or write
operation as the sum of all components.

Note that I/O and termination energy are higher at lower
frequencies due to increased bus utilization: for a given
transfer size, I/O drivers and on-die termination are active
for longer at lower frequencies. Higher bus utilization at
lower frequency acts to increase energy more than the fre-
quency decrease acts to reduce energy. It is important to
note, however, that this affects only operation power. The
net reduction in energy with frequency scaling comes from
two sources: (i) the reduction in background power, and (ii)
the voltage scaling that reduced frequency enables.

3.3.2 Background Power and Power-Down States
Background power accounts for all DRAM device power

that is not operational power. In other words, it is the power
that the device consumes regardless of which or how many
commands it is executing, dependent only on its current
state and frequency. Current DDR3 devices support a va-
riety of power-down states to save power when inactive. In
order to quantify DRAM power during a system’s execution,
we must quantify the power usage in each state, and then
calculate average background power weighted by the time
spent in each state.

As with any power-management technique, DRAM power-
down states present a tradeoff between aggressiveness and
wake-up latency: turning off more of the device will save
power, but wake-up will take longer. Power-down states are
summarized in Table 3. Asterisks (*) mark states that our
evaluation system supports.

DDR3 memory supports three power states with decreas-
ing power consumption: standby, power-down and self-re-
fresh. A CKE (Clock Enable) control signal is de-asserted
in power-down and self-refresh states. When CKE is dis-
abled, no commands can be issued to memory.

When DRAM is in standby, it consumes the highest am-
ount of background power but can accept commands imme-
diately without any latency penalty. There are two standby
modes: active standby and precharge standby, with pre-
charge mode consuming less power. Precharge mode re-
quires all banks to have closed their row buffers (i.e., per-
formed a precharge).

Three power-down states (Active, Precharge Fast, and
Precharge Slow) consume less power than standby states
at the cost of moderate exit latency. DRAM enters Active
Powerdown state only if one of its banks is active when the
CKE signal is de-asserted. Otherwise, DRAM enters one
of the Precharge Powerdown states. In the fast mode, the
DRAM DLL is on, while in the slow mode, it is stopped.
The slow mode offers a trade-off between performance and
power, consuming 40% less power than the fast mode, but at
the cost of increased exit latency (2-4 clocks in DDR3-1333).
Finally, it is possible to turn some register logic off in Slow

Powerdown state, as shown in Table 3. In this state, called
Precharge Slow Powerdown – Register Off, input buffer ter-
mination (IBT) and output ODT are turned off, further re-
ducing DIMM power.

The last DRAM low power state is self-refresh. In this
state, CKE is de-asserted, the DRAM DLL is stopped, and
DRAM devices are in self-refresh mode, consuming 40%
less power than in Precharge Slow Powerdown state. How-
ever, this state has a significantly higher exit latency of 512
DRAM clocks. As with power-down modes, self-refresh has
a special register state, called SelfRefresh – Register Off, in
which register PLL is turned off, reducing power by another
40% at the expense of additional 6µs exit latency.

3.4 Voltage Scaling
Now that we have discussed the baseline power character-

istics of DRAM, including those portions that are sensitive
to frequency, we are interested in understanding how power
can reduce when voltage scales. DRAM devices require a
certain minimum supply voltage (Vdd) for stable operation
at a given frequency. This voltage scales with frequency; at
lower frequencies, a lower supply voltage is necessary. Note
that DRAM power has components that scale by both V
and V 2. Specifically, the internal DRAM array is powered
by an on-chip low-dropout linear regulator [19], and so its
current is not dependent on external supply voltage. Its
power thus scales linearly with V (since P = IV and I re-
mains constant). The I/O and register circuitry, however,
draws current in proportion to supply voltage, and so its
power scales with V 2. This, in turn, allows for significant
power reduction.

In order to understand the potential for voltage scaling
in real DDR3 devices, we performed tests on 8 DIMMs in
our evaluation system (detailed in §7) while manually con-
trolling the memory voltage regulator output. The results
are shown in Figure 3. At 1333, 1066, and 800MHz re-
spectively, we observed average minimum stable voltages of
1.280V, 1.203V, and 1.173V respectively, and a maximum
across the 8 DIMMs of 1.35V, 1.27V and 1.24V respectively.
Thus, we conclude that the required supply voltage reduces
with frequency. Later, in §4.1.2, we will model power re-
duction by conservatively assuming Vdd of 1.5V, 1.425V and
1.35V shown in this figure. Note that these voltages are well
above the minimum stable voltages for the tested DIMMs.
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Figure 3: Minimum stable memory voltage as a
function of frequency for 8 tested DDR3 DIMMs.

3.5 Indirect Effects of Frequency on Power-
Down State Residency

Scaling down memory frequency can lead to another trade-
off that we have not yet discussed. Because the memory bus
runs more slowly, data transfers take longer. This could re-
duce the idle time between transfers, eliminating or reducing
opportunity to place the DRAM into low-power sleep states.
Frequency scaling could thus cause average memory power
to increase in the worst case. In such cases, it would be bet-
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ter to run the bus at a higher frequency so that the DRAM
can be placed into a low-power sleep state sooner.

However, we observe that in many real workloads, there
are idle periods between data transfers that are not long
enough to enter a sleep state even at the highest memory
frequency. In these cases, slowing the data transfers by re-
ducing frequency will fill the time between transfers without
reducing the time spent in sleep states.

To test how sleep state residency changes with frequency,
we measured the change in time spent in sleep states (CKE-
low residency) from 1333MHz to 800MHz in three represen-
tative workloads: gcc, mcf and GemsFDTD from SPEC CPU-
2006. We also measured CPU core C0 (active state) resi-
dency to address concerns about reduced energy improve-
ments due to increased runtime. The results show small
deltas from 1333MHz to 800MHz: in gcc, time spent in a
sleep state actually increases from 3.6% to 4.0%, and C0 res-
idency (CPU utilization) increases from 93.6% to 94.0%. For
mcf, sleep-state residency decreases from 25.2% to 23.8%,
and C0 residency increases from 72.7% to 73.8%. For GemsFDTD,
sleep-state residency decreases from 2.2% to 1.3%, and C0
increases from 95.9% to 97.8%. In all cases, these deltas
are within the bounds of experimental error. Of course, the
final confirmation that increased residency in higher-power
states does not cancel power reduction at lower frequencies
comes with our evaluation results in §7, which incorporate
memory sleep-state information into the power model, and
CPU utilization into the measured system power.

3.6 Potential Complexities of Scaling
Finally, we will briefly discuss the impact of DVFS on

memory controller complexity, and discuss potential imple-
mentation difficulties. There are three general categories
of problems that must be solved in order to make memory
DVFS practical: ensuring that memory will operate cor-
rectly over the range of frequency/voltage points, actually
implementing the run-time switching of frequency and volt-
age, and ensuring data stability across voltage changes.

Our DIMM voltage tests summarized in Figure 3 address
the first point, validation: we observed the evaluation sys-
tem to be stable over the range of voltages and frequencies
that we propose. Initial implementations of memory DVFS
could stay within voltage and frequency ranges that have
been validated on existing DIMMs. In the future, DIMMs
could also be validated at other operating points for poten-
tially more power reduction.

Second, the procedure to switch frequency and voltage at
run-time must be implemented in the memory controller and
properly validated. This procedure can occur as follows: (1)
freeze memory traffic, (2) put the memory into self-refresh,
(3) stop the DIMM clock, (4) start ramping voltage toward
the new setting, and re-lock the memory controller’s clock
PLL at the new frequency, (5) re-start the DIMM clock when
voltage stabilizes, (6) re-lock the register PLL on registered
DIMMs (this takes tSTAB = 6µs), (7) take memory out of
self-refresh, (8) re-lock the DLL in the DRAM (this takes
512 clocks, as shown in Table 3 for exit from Self-Refresh),
and (9) re-start the memory traffic. We note that the only
part of this procedure not possible on existing platforms is a
configurable multiplier on the memory controller clock PLL.
Even the memory voltage is already programmable: DRAM
voltage regulators can be adjusted from BIOS settings. This
procedure in total should take less than 20µs if the voltage
regulator has a comparable slew rate to those used for CPU
DVFS.

Finally, when switching voltage, data stability in the DRAM
cells could be reduced. Because DRAM stores values as
charges on capacitors, altering the DRAM core voltage will
change the detection threshold when reading these capaci-

tors, and might reduce margins. However, as noted above,
internal DRAM arrays in modern devices are powered by a
linear voltage regulator [19]. Thus, Vcore will be unaffected
by changes in Vdd, and no changes to the DRAM core or
the refresh strategy are required to accommodate voltage
scaling.

4. ANALYTICAL MEMORY POWER MODEL
As described previously, we aim to evaluate memory DVFS

in real hardware. However, current hardware cannot dy-
namically scale memory frequency and voltage (although we
can emulate the performance effects of frequency scaling by
changing timing parameters of the DRAM). Thus, we are
limited to analytical modeling to compute power and en-
ergy reduction in this regard. In this section, we present
our analytical model for DRAM power, based on the power
breakdown and figures presented in §3. First, in §4.1, we will
present a baseline model that assumes nominal frequency
and voltage (i.e., the maximum speed, since our mechanism
scales frequency and voltage down). Then, we will model
the effects of frequency scaling (§4.1.1) and voltage scaling
(§4.1.2).

4.1 Baseline Model
Our analytical model of memory power is based on back-

ground power, or power that is consumed regardless of mem-
ory operations performed and depends only on power-down
state (Table 3), and operation power, according to the com-
mands executed by the device (Table 2).

To model background power, we record time spent in
each power-down state: active (tCKEH), fast powerdown
(tCKEL) and self-refresh (tSR), such that tCKEH + tCKEL +
tSR = 1. We weight power in each state by time spent in
that state to arrive at average background power. Opera-
tion power is modeled by determining power per unit band-
width, based on energy per operation, and multiplying it by
bandwidth consumed. Together, background and operation
power comprise memory power:

MemPower = (PSR ∗ tSR

+ PCKEL ∗ tCKEL + PCKEH ∗ tCKEH)

+ (PBW,r ∗ RBW + PBW,w ∗WBW )

where RBW and WBW indicate read and write bandwidth,
respectively, to this memory channel. PSR, PCKEL, and
PCKEH come from Table 3; specifically PSR = 0.92W , PCKEL

= 2.79W , PCKEH = 4.66W . PBW,r and PBW,w come from
per-operation energy in Table 2: we compute PBW,r = 0.939W/
(GB/s), PBW,w = 1.023W/ (GB/s) (for 2 DIMMs/channel).
These two parameters are computed as follows: 1 GB of
transfer is 16M operations, since each read or write moves
64 bytes. Then, multiplying 16M by the energy per opera-
tion gives energy per GB of transfer. Taking this value as a
rate relates GB/s (bandwidth) to energy per time, or power.

4.1.1 Frequency Scaling
Next, we model the effects of frequency scaling. As dis-

cussed above, the background register and I/O power are
frequency-dependent, and will decrease with frequency. How-
ever, the operation energy due to I/O and termination in-
creases at lower frequencies, because the bus is active for a
longer time for a given transfer. For a given bandwidth, this
increases operation power. Said another way, bus utilization
goes up at lower frequencies, increasing I/O and termination
power.

We model the power reduction due to frequency scaling
by taking both of these opposing effects into account. We
model both effects linearly, according to the number of fre-
quency steps Nf below nominal (maximum). For Nf fre-
quency steps below nominal, DIMM power scales to:
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MemPowerf = MemPower

− (Nf ∗ (PSR,save ∗ tSR

+PCKEL,save ∗ tCKEL

+PCKEH,save ∗ tCKEH))

+ (Nf ∗ PIO,adder,r ∗ RBW + PIO,adder,w ∗WBW ))

For our modeled devices and system setup, we are inter-
ested in three operating points: 1333MHz (0 steps), 1066MHz
(1 step), and 800MHz (2 steps). Our model derives from real
measurements at 1333 and 800MHz; we assume linear scal-
ing to derive the 1066MHz point, calculating a per-step delta
that is half of the 800MHz-1333MHz power difference. We
compute this background-power reduction per step from Ta-
ble 3: PSR,save = 0.075W/step (from the“SelfRefresh”row),
PCKEL,save = 0.23W/step (from the “Precharge Fast Pow-
erdown” row), and PCKEH,save = 0.395W/step (from the
“Precharge Standby” row). We then compute the “adder”
factors from Table 2: PIO,adder,r = 0.073W/(GB/s)/step
(from the second-to-last row), and PIO,adder,w = 0.092W/
(GB/s)/ step (from the last row), corresponding to increased
operation energy at lower frequencies.

4.1.2 Voltage Scaling
As we described earlier, DRAM devices require lower volt-

age at lower frequencies. Thus, we assume that memory
voltage will scale as the DRAM devices move between volt-
age steps, and model the power reduction here. Details of
this mechanism are beyond the scope of this paper; how-
ever, we note that existing memory voltage regulators have
software-configurable voltage settings, and slew rates should
be fast enough that transition times are amortized over reasonable-
length epochs (as with CPU DVFS).

In §3.4, we measured minimum stable operating voltage
for 8 DIMMs at our three frequency operating points. From
those figures, we add some margin and choose voltages that
are commonly available on existing motherboards: 1.5V,
1.425V and 1.35V for 1333, 1066 and 800MHz respectively.
As noted earlier, I/O circuitry scales power as V 2, and the
storage array power scales as V . With V 2 scaling, these
voltage steps correspond to 10% reduction per step; with V
scaling, 5%. From our background and operational power
figures, we derive the percentage of power drawn by I/O cir-
cuitry (V 2 scaling). At 800MHz with two registered DIMMs
per channel, the combination of I/O power and register
power (estimated at 0.67W from a DDR register data sheet [17])
ranges from 25% (at 2GB/s bandwidth) to 29% of power (at
both idle and maximum bandwidth); we assume that the re-
mainder of power scales linearly with V . Total power reduc-
tion per voltage step is thus at least 25%∗10%+75%∗5% =
6.25%. We conservatively take a value of 6%. Thus, the
power reduction due to memory voltage scaling is as follows,
with Pvstep = 0.06:

MemPowerf,v = MemPowerf −MemPowerf ∗ Pvstep ∗Nf

5. PERFORMANCE IMPACT OF
FREQUENCY SCALING

We have quantified the power implications of memory fre-
quency and voltage; in order to develop a dynamic control
algorithm that adjusts memory frequency based on band-
width demand, we now aim to understand how workload
bandwidth demand varies across a spectrum (§5.1), how re-
duced memory frequency increases memory latency for dif-
ferent bandwidth demands (§5.2), and how this increased
latency due to frequency scaling affects performance (§5.3).
These insights will lead directly to a simple, intuitive control
algorithm.

5.1 Memory Bandwidth Utilization
Figure 4 shows memory bandwidth for SPEC CPU2006

applications running on our evaluation system (see §7.1).
As is shown, memory bandwidth is highly variable, and
depends on many factors: memory access rate, LLC resi-
dency, memory- and bank-level parallelism (MLP [13] and
BLP [28]) and the ability to tolerate memory latency, for ex-
ample. An application that is entirely resident in last-level
cache will have zero memory bandwidth; at the other ex-
treme, an application that exhibits perfect streaming behav-
ior, accessing memory continually with no dependent loads,
and that has enough outstanding memory accesses in paral-
lel, should be able to maximize memory-system bandwidth.
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Figure 4: Memory bandwidth utilization per chan-
nel for SPEC CPU2006 with 1333MHz memory.
5.2 Impact of Frequency on Memory Latency

It is important to understand the performance-energy trade-
off across the range of bandwidth. So far, we have intro-
duced multiple memory-frequency operating points and dis-
cussed the power implications of frequency/voltage scaling.
By evaluating the ability of each operating point to handle
a given bandwidth, we can choose the best operating point
for optimal efficiency.

We characterize memory latency as a function of memory
frequency. We measured actual latency using a carefully-
constructed microbenchmark that exhibits cache misses with
dependent loads (i.e., MLP of 1) at an adjustable rate. The
resulting bandwidth-latency curves for three memory fre-
quencies are shown in Figure 5 (for closed-page mode).
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Figure 5: Memory latency in as a function of channel
bandwidth demand.

Note that latency remains nearly flat as bandwidth in-
creases up to some point. At that point, the average queue
length begins to add a non-negligible wait time to each re-
quest before it becomes the active request. Eventually, as
the request rate (benchmark bandwidth) rises toward the
peak service rate (memory system bandwidth), the average
queue length grows, and memory latency increases superlin-
early. As shown by the fitted curves in Figure 5, we found
that the measured points closely matched the curve pre-
dicted by the queueing equation for a single-queue, single-
server system [3]:

MemLatency = IdleLatency + slope ∗
BW

PeakBW − BW

where the parameters IdleLatency, slope and PeakBW are
fixed for a given system configuration and memory frequency.
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5.3 Impact of Frequency on Performance
By varying memory frequency, and thus peak bandwidth,

we alter the memory latency perceived by user workloads.
As memory latency increases, an out-of-order core is less
able to hide the latency, and stall time increases, yielding
reduced performance. Ultimately, this effect depends on the
application characteristics. However, as we will show below,
knowing the bandwidth demand of an application suffices
in most cases to bound performance impact for workloads
in SPEC CPU2006, which consists of CPU- and memory-
intensive applications. This is due to the fact that a bandwidth-
based scaling mechanism with properly set thresholds will
transition to a higher frequency, with a lower latency curve
and higher saturation point, as soon as queueing delay starts
to become significant.

Figure 6 shows performance degradation for SPEC CPU-
2006 when memory runs at 800MHz and 1066MHz (de-
graded from baseline 1333MHz). Benchmarks are sorted by
baseline average bandwidth utilization. In general, bench-
marks with higher baseline bandwidth experience more per-
formance degradation at lower memory frequencies, because
the baseline bandwidth is closer to (or beyond) the peak
bandwidth at the lower frequency. As the latency curves in
Figure 5 show, latency rises considerably as utilization ap-
proaches maximum bandwidth. These benchmarks show a
reduction in actual bandwidth at lower memory frequencies
as execution slows due to memory throughput limits.
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Figure 6: Performance degradation as memory
is varied statically from 1333MHz baseline to
1066MHz and 800MHz. Benchmarks with high
bandwidth demand show greater degradation.

6. FREQUENCY CONTROL ALGORITHM
As the previous section has shown, benchmarks with lower

bandwidth demand are, in general, more tolerant to lower
memory frequency. We can reduce average power by scaling
down memory frequency when it has little effect; because
runtime is not affected, or at worst impacted only a little,
energy efficiency will improve.

The key insight our control algorithm builds on is that
at low bandwidth demand, memory latency is not signifi-
cantly affected by memory frequency. This is because only
bus transfer latency is impacted by frequency; other compo-
nents of memory access latency do not change. By choosing
a lower memory frequency at low bandwidth demand, we
have little impact on performance, as Figure 6 shows. As
bandwidth demand increases, we scale up frequency. This
effectively creates a piecewise latency curve as a function
of bandwidth demand that approximates the shape of the
highest memory frequency latency curve.

To implement this, we simply pick a fixed bandwidth
threshold for each frequency transition. A controller algo-
rithm runs periodically, at fixed epochs, and measures aver-
age bandwidth usage for the previous epoch. Based on this
measurement, it picks the corresponding memory frequency.
Algorithm 1 implements this functionality. For our evalu-
ations, we need to specify two thresholds: for the 800 to
1066MHz transition, and the 1066MHz to 1333MHz transi-

tion. We evaluate two threshold settings: BW (0.5, 1) tran-
sitions to 1066 and 1333MHz at 0.5GB/s and 1.0GB/s per
channel, respectively, andBW (0.5, 2) transitions at 0.5GB/s
and 2.0GB/s. These thresholds are conservative in that they
are below the knees on the latency curves in Fig. 5. Rather,
they are chosen based on the range of average per-channel
bandwidth measurements in Fig. 4. As our results show in
§7, these parameter choices result in minimal performance
impact.

Algorithm 1 Bandwidth-based Frequency Selection Policy
while true do

wait for tsample

sample average memory bandwidth per thread as BW
if BW < Tf1

then
set memory frequency to f1

else if Tf1
≤ BW < Tf2

then
set memory frequency to f2

else if Tf2
≤ BW then

set memory frequency to highest frequency f0
end if

end while

7. EVALUATION
7.1 Methodology

We evaluate our proposed memory-frequency scaling algo-
rithm on real hardware, described in Table 4. We emulate
the performance effects of dynamically-variable memory fre-
quency by altering internal memory controller timing regis-
ters: in particular, tRCD (RAS-to-CAS delay) and tB2BCAS

(back-to-back CAS delay) are set so that the effective mem-
ory latency and bandwidth approximate those at the em-
ulated memory frequency. We prefer this methodology to
simulation because allows full-length runs of benchmarks
and captures full-system behavior.

SPEC CPU2006 benchmarks are run to completion in our
evaluation. Table 4 shows the evaluation system’s parame-
ters. In each run, effective memory frequency is either static
or is controlled by our algorithm. Memory always physi-
cally runs at 1333MHz. Dynamic control is implemented in
a userspace daemon, with a custom kernel module to read
bandwidth counters and set timing registers in the memory
controller.

Power and energy results are computed using real-system
measurements and analytically-modeled power reduction. Be-
cause memory frequency does not actually change, memory
will show no power reduction as we emulate lower memory
speeds. However, by taking periodic measurements from an
AC power-meter attached to the evaluation system, and sub-
tracting our analytical model’s predicted power reduction
(based on our model in §4), we compute full-system power
for the frequency-scaled runs. We compensate for 85% AC-
DC PSU efficiency and 85% voltage-regulator efficiency by
scaling our memory power reductions to correspond to AC
power reductions. From average AC power and runtime,
we compute energy per workload, in order to evaluate en-
ergy efficiency as energy per fixed work unit (one benchmark
run).

7.2 Performance Impact
Fig. 7 shows slowdown from baseline for two bandwidth-

based policies, BW (0.5, 1) and BW (0.5, 2), alongside static
800MHz and 1066MHz-memory slowdowns for comparison.
All slowdowns are relative to a 1333MHz-memory baseline.
Additionally, Fig. 8 shows this memory frequency distribu-
tion shift as bandwidth decreases. Fig. 9 shows frequency-
switching behavior over time for two representative work-
loads, bzip2 and gcc.

Our bandwidth-based policy is successful in limiting per-
formance impact: at the high-bandwidth end (left), mem-
ory bandwidth is easily above the threshold, and memory
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Processor two Intel Xeon Nehalem (X5500-series), 4 cores each (8 cores total)
SMT disabled (one logical thread per core) for repeatability
Power management settings TurboBoost disabled for repeatability
Memory controllers three on-chip per 4-core CPU, 6 total, DDR3, 1333MHz (timing altered to emulate freq. scaling)
Memory timing registers 1333 baseline: tRCD = 9, tB2BCAS = 3; 1066 emulated: tRCD = 12, tB2BCAS = 6; 800 emulated:

tRCD = 14, tB2BCAS = 9
Memory 12x 4GB DIMMs, registered, dual-rank x4, PC10667 (1333MHz), two per channel
Motherboard Intel server platform reference board
Hard drive 500GB SATA
OS Fedora Core 9 (GNU/Linux), single-user mode
SPEC CPU2006 Compiled with Intel C++ compiler 11.0, base optimization, rate run-type, ref input sets (8 copies)
Power supply Redundant server power supply, 650W, 120V
Instrumentation Yokogawa WT210 power-meter, 1 sample/second

Table 4: System configuration parameters for evaluation.
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Figure 7: Performance degradation, power reduction, and energy reduction with our memory DVFS policy
compared to static-frequency baselines.

runs at 1333MHz most or all of the time. As the static
scaling shows, the performance impact of lower memory fre-
quencies with these workloads would be catastrophic. As
memory bandwidth decreases to the right, frequency scal-
ing starts to choose lower settings, and slowdowns become
nonzero. However, because thresholds are chosen conserva-
tively, the worst-case slowdown is also minimal, under 2%.
For the middle benchmarks, slowdown is still less than that
for static scaling, because memory spends only some time
in lower frequency states. Finally, for the lowest-bandwidth
benchmarks, slowdown again decreases to negligible levels,
because these benchmarks are almost completely unaffected
by lower memory frequency. As the frequency distribution
shows, these workloads spend most or all of their time in the
lower-frequency states.

Note that in several cases, measurement errors inherent in
a real-system evaluation yield a slightly negative slowdown.
We ran each application five times to minimize this error.

7.3 System Power and Energy
Our fundamental goal is to improve energy efficiency while

minimally impacting performance. To this end, we deter-
mine the total energy (whole-system) taken to run each
benchmark. As described above in §7.1, full-system power is
computed by subtracting (analytical) memory-power reduc-
tion from measured full-system power. We compute energy
by multiplying average power with runtime.

Figure 7 shows energy reduction under our control al-

gorithm as well as static frequency reduction for compar-
ison. The results show that the bandwidth-based policy
is able to attain as much energy-efficiency improvement as
static frequency reduction for low-bandwidth benchmarks,
while avoiding the significant efficiency reductions (due to
increased runtime and thus inflated total energy) when run-
ning high-bandwidth benchmarks. Fig. 7 shows average sys-
tem power reductions: at low bandwidth, the reduction is
significant, proportional to time spent at lower frequencies.

On average, across SPEC CPU2006, the BW (0.5, 2) pol-
icy reduces memory power by 6.05W (11.31W max) (DC
power) for 0.17% average (1.69% max) slowdown. Taking
only benchmarks including and to the right of gcc when
sorted by bandwidth (that is, with bandwidth roughly less
than 1.1GB/s per channel), we reduce memory system power
by 9.62W on average. This is significant when average mem-
ory system power at 1333MHz is 65.1W .

In a whole-system context, BW (0.5, 2) provides 2.43% av-
erage (5.15% max) energy-efficiency improvement. It is im-
portant to note that (i) power reduction and thus energy-
efficiency improvements due to DVFS in memory can give
similar power reductions to CPU DVFS (§2.2), and (ii) this
reduction comes with negligible performance reduction.

8. RELATED WORK
Memory Power Management: MemScale [8], work done
concurrent to ours, proposes DVFS in memory systems as
well. While Deng et al. in [8] evaluated memory frequency
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and voltage scaling in simulation, the primary distinction of
our work is the real-system evaluation methodology. By em-
ulating the effects of lower memory frequency on a real hard-
ware platform, we captured the performance effects across
the full software stack and thus accurately measured the op-
portunity for memory DVFS. Our proposal also differs in
algorithm design: MemScale estimates performance impact
with a model, while our mechanism switches frequency based
on memory bandwidth utilization.

Other work also examines memory power management in
various ways. First, Puttaswamy et al. [31] examined volt-
age/frequency scaling of an off-chip memory in an embed-
ded system. Although this work makes use of the same
opportunity that we do, it differs in two key ways: (i) most
importantly, it evaluates only static voltage/frequency op-
erating points, with no mechanism for dynamic switching;
and (ii) it uses SRAM, while we use DRAM, with different
power and performance characteristics. Several works have
examined the tradeoffs inherent in memory sleep states, and
how to manage the system to increase opportunity for them.
Fan et al. in [11] give an analytical model for sleep-state
benefit, and Lebeck et al. in [20] explored the interaction
of page placement and memory sleep states. Hur and Lin
in [16] present several techniques to increase opportunity for
DRAM power-down states, and [1] presents a mechanism to
judge when speculative DRAM accesses are power-efficient.
All of these techniques are orthogonal to frequency/voltage
scaling, and could be combined with our approach.

Another body of work examines power-limiting as the pri-
mary constraint, either for thermal reasons or for power-
management in dense server environments. Lin et al. [21, 22]
propose two thermal-motivated mechanisms, both of which
throttle the CPU to reduce memory traffic. The first, adap-
tive core gating, uses clock-gating on processor cores when
memory nears its thermal limit; the second, coordinated
DVFS, uses DVFS to slow the cores in the same situation.
David et al. in [5] describe RAPL (running average power
limit), in which memory power is explicitly modelled and

limited by throttling. Their power model is similar to ours.
However, it is used for a different purpose: while we require a
model only for evaluation of memory DVFS, RAPL’s power
model is at the center of its algorithmic control loop (to
maintain an average power limit). Therefore, RAPL cali-
brates its weights against measurements from an in-system
memory power meter. Diniz et al. [9] propose several algo-
rithms to limit power by turning off a subset of the memory
devices in a system that can control each device individ-
ually. Felter et al. [12] propose power shifting, in which
throttling is used to manage power consumption across the
system, including the memory subsystem. All these ap-
proaches differ from ours by taking a power target/limit as
the first-order constraint; we optimize for energy-efficiency
instead, aiming to minimally impact performance. However,
throttling could be combined with frequency/voltage scaling
when scaling alone does not meet a power budget. Or, fre-
quency/voltage scaling alone could be used to meet a power
budget, likely yielding better performance than throttling
due to long-latency delays when DRAM access is throttled.

Additional work examines how software-level decisions,
in particular how software allocates and accesses memory,
can affect memory system power. Delaluz et al. in [6] de-
scribe how compiler analysis of workloads to direct memory
mode control can lead to better energy efficiency; in [7],
they propose controlling DRAM power states from the OS
scheduler. Huang et al. [14] integrate awareness of DRAM
power states into the OS virtual memory system, allocat-
ing pages intelligently from different banks. Huang et al.
in [15] take VM integration a step further by migrating
frequently-accessed pages to “hot” ranks, concentrating uti-
lization there and allowing “cold” ranks to enter sleep states
more frequently. Pandey et al. in [30] examine memory
accesses due to I/O DMA activity, and propose alignment
and data-placement techniques to increase efficiency. All of
these higher-level techniques are orthogonal to our work, and
could be combined; we mention them simply to show that
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memory power management is not limited to hardware-level
(software-transparent) mechanisms.
Energy Efficiency Techniques: As described previously,
energy-proportional computing [2] is the broad research di-
rection that characterizes this work: scaling energy use pro-
portionally to workload demand. Beyond component-specific
approaches in the CPU and memory, several works approach
energy-proportionality on a larger scale. PowerNap [23] pro-
poses a full-system sleep state in lieu of finer-grain power
management. The work demonstrates that for server work-
loads with idle time between requests, it is more efficient to
serve requests quickly and then enter the low-power sleep
state than to scale performance down. While this approach
is valid when such idle time exists, workloads that run con-
tinuously but for which the system is imbalanced (e.g., heav-
ily CPU-bound or memory-bound) do not contain such idle
periods. Our approach specifically targets such CPU-bound
workloads that underutilize memory bandwidth. However,
the techniques are compatible: PowerNap can take advan-
tage of idle periods, while memory frequency scaling can
help to achieve energy efficiency while the system is active.

At the datacenter scale, Elnozahy et al. [10] propose scal-
ing the size of a server cluster according to load. By con-
centrating load onto fewer, more highly-utilized servers, this
technique approximates energy proportionality by reducing
idle-time waste. Tolia et al. [34] optimize a cluster through
a combination of CPU DVFS and consolidation. As above,
this general approach solves the problem for a different class
of workload, but is compatible with our proposal.

9. FUTURE WORK
We have introduced the basic tradeoffs in memory fre-

quency scaling, and performed an initial evaluation using a
simple and intuitive algorithm. However, more work remains
to be done. First, our mechanism is simple, and there is a
large design space, both in predicting and measuring perfor-
mance impact and on predicting the future impact of mem-
ory frequency changes. Further work can investigate both
the measurement and prediction aspects of this problem,
and characterize how various types of workloads respond to
increased memory latency. Additionally, the interaction be-
tween memory scaling and CPU frequency/voltage scaling
(DVFS) has not been examined in this work. Certainly, the
two mechanisms could supply hints to each other. It could
also be the case that better efficiency improvements are pos-
sible through coordinated control than when the two operate
independently. Finally, we considered only SPEC CPU2006
in this work; further evaluations are necessary to quantify
performance impact in other workloads.

10. CONCLUSIONS
In this work, we propose and evaluate memory voltage/

frequency scaling in order to reduce memory power and in-
crease energy efficiency. Starting from the observation that
a significant portion of memory-system power is frequency-
dependent, we present a control algorithm that reduces mem-
ory frequency while limiting performance impact. The key
observation is that at low memory bandwidth utilization,
lowering memory frequency does not significantly alter mem-
ory access latency. By observing memory bandwidth uti-
lization, our proposed control algorithm increases memory
frequency when utilization crosses a threshold, bounding the
performance impact. We conclude that memory DVFS can
be an effective energy efficiency technique, especially when
memory bandwidth utilization is low.
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