
A Low-Overhead, Fully-Distributed,

Guaranteed-Delivery Routing Algorithm for

Faulty Network-on-Chips

Mohammad Fattah1, Antti Airola1, Rachata Ausavarungnirun2, Nima Mirzaei3,
Pasi Liljeberg1, Juha Plosila1, Siamak Mohammadi3, Tapio Pahikkala1,

Onur Mutlu2 and Hannu Tenhunen1

What is This Talk About?

2

 Overtime, routers and links can become faulty.

 Dynamically find alternative paths.

 Previous works have at least one of the following limitations:
 Cover only few number of faults

 Use a central controller

 High area overhead

 High reconfiguration overhead upon new faults

 Maze-Routing overcomes all the above limitations:
 Full-coverage: formally proven

 Fully-distributed: using autonomous and standalone routers

 Low area overhead: using an algorithmic approach (16X less
area compared to routing tables)

 Low reconfiguration overhead: by on the fly path exploration
(Instantaneous operation on new failures)

 Better performance: 50% higher saturation throughput and,
28% lower latency on SPEC benchmarks
compared to state-of-the-art

Source: condenaststore.com

 Any # of faults

 Detect

partitioning

 No central

component

 No

reconfiguration

phase

 No routing

table

Aggressive Transistor Scaling

Key Benefit A Major Curse

3

 Integrating many IPs

 Processors

 Cache slices

 Memory controllers

 Specialized HW

 Etc.

 Reduced reliability

 Fabrication time:

 Defect

 Process variation

 Run-time:

 Negative bias temperature instability

(NBTI)

 Hot carrier injection (HCI)

 Gate oxide breakdown

 Electro-Migration

Our designs must be:

Fault-tolerant by construction!

IP vs. Network Faults

4

 IP

 Degrades the performance

 Rest of the system can continue

 Network Elements

 Cripples the performance

 Single point of failure

It is crucial to tolerate

Many faults in links and routers!

Maze-Routing

Fault-Tolerant by Construction Four Critical Goals

5

 It is not:

 A router architecture,

with fault tolerance patched to it

 Rather, it is

 Essentially a routing algorithm,

which

 Is inherently fault-tolerant

 Full coverage (guaranteed

delivery)

 Fully-distributed operation

 Low area footprint

 No reconfiguration

component/phase

Maze-Routing is

The first to provide all!

XY

XY

XY

XY

XY

X

P
ri
o

ri
ty

 A
rb

it
e
r

North

East

South

West

Local

North

East

South

West

Local

Maze

Maze

Maze

Maze

Maze

Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

Maze-Routing

- Finding the path

- Detecting
disconnected
nodes

Results

- Area

- Throughput

- Reconfiguration
overhead

6

Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

7

Goal 1: Full (Fault) Coverage

Literature Maze-Routing

8

 Limited number of faults

 Limited fault pattern

 Limited when disconnected

nodes

 No restriction on

 Fault count

 Fault pattern

 Detect disconnected nodes

 At router level

Goal 2: Fully Distributed Operation

Literature Maze-Routing

9

 Centralized methods

 Single point of failure

 TMR: Expensive

 Distributed methods

 Synchronization points.

 Fault in Reconf. unit.

 No central component

 No reconfiguration unit

 Each router makes
individual decisions

 Faults in algorithm
only disables the
associated links Reconf. Reconf. Reconf. Reconf.

Reconf. Reconf. Reconf. Reconf.

Reconf. Reconf. Reconf. Reconf.

Reconf. Reconf. Reconf. Reconf.

Cent. SW/HW

Controller

Maze

Maze

Maze

Maze

Maze

X

P
ri

o
ri

ty
 A

rb
it

e
r

North

East

South

West

Local

North

East

South

West

Local

Goal 3: Low Area Overhead

Literature Maze-Routing

10

 Routing tables

 High area overhead

 5 read ports

 Implementation cost

 Power dissipation

 Vulnerability to run-time faults

 One failed bit: affects the whole router

 Area ~ fault probability of router

 An algorithmic approach

 No routing table

Goal 4: Low Reconfiguration Overhead

Literature Maze-Routing

11

 New failure detected?

1) Pause the network

2) Reconfigure to an alternative solution

3) Resume normal operation

 Issues?

 Severe degradation of performance

 aggressive online testing

 Few works with fast reconfiguration

 No reconfiguration phase

 Path to destination is dynamically

calculated per packet

 Called on the fly reconfiguration

Maze-Routing: The First to Provide All

12

Coverage Reconfiguration O(Area) O(Reconf.)

Zhang et al. [43] few fully distributed low on the fly

LBDR [35] moderate central low N/A

d2-LBDR [7] moderate central low N/A

OSR-Lite [38] moderate central low moderate

TOSR [5] moderate distributed high fast

BLINC [25] moderate distributed high fast

uLBDR [36] high central high N/A

Wachter et al. [39] high distributed high slow

Fick et al. [19] high distributed high slow

Face routing [11] high fully distributed excessive on the fly

FTDR-H [18] high fully distributed high fast

uDIREC [32] full central high excessive

ARIADNE [3] full distributed high slow

Maze-routing full fully distributed low on the fly

Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

Maze-Routing

- Finding the path

- Detecting
disconnected
nodes

13

Preliminaries

14

 Face: regions bounded by links and routers

 4 inner faces

 1 outer face

 Right/Left hand rule: exit from first output in right/left side.

 : clockwise around inner faces

 : counterclockwise around inner faces

 Opposite direction around outer faces

Preliminaries (II)

15

 Few additional fields in the header

1. MDbest : closest distance (MD) to dst that the packet has reached so far

 Initial: MDsrc, dst

 Only decrements

2. Mode: routing mode used for the packet

 Values: normal, traversal (or), unreachable

 Initial: normal

 2 more fields to detect disconnected nodes

Maze-Routing

16

 Normal mode:

 Is there any productive output?

 Take it and dec(MDbest)

 No? we should enter traversal mode:

 Draw line(cur, dst) between current node and dst

 ? Take the first output in the left of line(cur, dst)

 ? Take the first output in the right of line(cur, dst)

 Set the mode (either or), accordingly

 Traversal mode:

 If MDcur, dst = MDbest with productive output?

 Return to (and act as in) normal mode

 Otherwise, follow the hand rule

5 4 3 2

4 3 2 1

3 1

4 3 2 1

dst

src5│N

4│N

3│N

3│

2
│
N

1
│
N

0│N

Maze-Routing definitely reaches dst,

if a path to dst exists.

We provide the formal proof in the paper.

Detecting Disconnected Nodes

17

 Traversal mode:

 If MDcur, dst = MDbest with productive output?

 Return to normal mode

 No?

 Follow the hand rule

 The destination is unreachable if:

 In traversal mode, we meet the same node

as the one we entered the traversal mode

 The hand rule picks the same output as

when we entered the traversal mode
3 2 3 4

2 1 2 3

1 1 2

2 1 2 3

dst

src3│N

1│N

1│

More implementation details

are available in the paper

Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

Maze-Routing

- Finding the path

- Detecting
disconnected
nodes

Results

- Area

- Throughput

- Reconfiguration
overhead

18

Simulation Methodology

19

 NOCulator[1]

 8x8 mesh for performance analysis

 Synthetic traffic for performance evaluation

 SPEC CPU2006 benchmarks are also evaluated

 Maze-Routing[2] implanted in minBD[3] routers

 Deflection-based: deadlock freedom

 Golden and sliver flits: router-level livelock freedom

 Retransmit-once: protocol-level deadlock freedom

[1] NOCulator: https://github.com/CMU-SAFARI/NOCulator

[2] Maze-Routing: https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing

[3] MinBD: Fallin, Chris, et al. "MinBD: Minimally-buffered deflection routing for energy-efficient

interconnect." NoCS 2012.

https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing

Configurations

20

 Maze-Routing

 16 buffer spaces per (minBD) router

 Base-line router

 Wormhole buffered routers

 1 VC per port

 40 buffer spaces per router

 Faults:

 Links disabled randomly

 From 1 to 5 link failures

Workloads

21

 Synthetic traffic

 Uniform random traffic with variant injection rates

 SPEC CPU2006 benchmarks

 Grouped based on L1 misses per kilo instruction (MPKI)

 3 groups: High (>50), Low (<5), and Medium (rest) intensity

 4 mixes: L (all Low), ML (Medium/Low), M (all Medium), and H (all High).

Area Overhead

22

 STMicro 60nm
technology node

 Maze-routing:
 5 copies of alg., 1 per port

 ARIADNE:
 Smallest table

 Reconfiguration logic is
not implemented

 5 read ports

 LBDRe:
 Logic-based method

 Central approach

 Limited coverage
1
1
.8

4

4
4
.7

1

5
.6

8

1
5
.0

5

2
3
9
.2

1

6
.0

6

0

5

10

15

20

25

30

35

40

45

50

Maze-routing ARIADNE LBDRe

a
re

a
 (

µ
m

2
)

×
1
0
0

8x8 16x16

3
.8

 x

2.1 x

27%

1
5
.9

 x

Throughput: Uniform Random Traffic

1 disabled link 5 disabled links

23

16

17

18

19

20

21

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28

A
v

e
ra

g
e
 f

li
t

la
te

n
c
y
 (

c
y
c
le

s
)

Injection rate (flits/node/cycle)

Maze-routing up*/down*

16

17

18

19

20

21

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28

A
v

e
ra

g
e
 f

li
t

la
te

n
c
y
 (

c
y
c
le

s
)

Injection rate (flits/node/cycle)

Maze-routing up*/down*

50%

Sub-optimal

paths

Provided path

divergence

Throughput: SPEC CPU

24

workload

mix

Up*/Down* Maze-routing

5 failures no failure 5 failures no failure

L 16.7 16.4 17.8 16.4

ML 18.8 18.2 18.9 17.2

M 27.7 25.7 21.6 19.2

H 54.4 50.5 25.8 23.1

AVG 29.4 27.7 21 19

Average packet latency

30% latency reduction in average case

Reconfiguration Overhead

25

16

17

18

19

15 20 25 30 35 40 45 50

A
v

e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Time (×104 cycle)

ARIADNE Maze-routing

0
.2

 f
lit

s
/n

o
d
e
/c

y
c
le

4
0
K

 C
y
c
le

s

6
6
K

 C
y
c
le

s

Maze-Routing has

no reconfiguration phase

Summary

26

 A practical fault-tolerant routing algorithm must

 Provide full coverage with guaranteed delivery

 Operate in fully-distributed manner

 Impose low area overhead

 Have low reconfiguration overhead

 Maze-Routing is the first work to meet all the above goals

 NOCulator and Maze-Routing are available on GitHub

 https://github.com/CMU-SAFARI/NOCulator

 https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing

A Low-Overhead, Fully-Distributed,

Guaranteed-Delivery Routing Algorithm for

Faulty Network-on-Chips

Mohammad Fattah1, Antti Airola1, Rachata Ausavarungnirun2, Nima Mirzaei3,
Pasi Liljeberg1, Juha Plosila1, Siamak Mohammadi3, Tapio Pahikkala1,

Onur Mutlu2 and Hannu Tenhunen1

Backup slides

Area Overhead

29

 Header fields can be coded in 14/17 bits in 8x8/16x16 meshes.

 Assuming a baseline router with 144-bit channel width, we need to

widen the channel by 10%/12%.

 Results in almost 20%/25% increase in the router area.

Deflection Implications

30

 When a packet is deflected

 Header values are not valid anymore

 We need to reset the header values:

 Mode Normal

 MDbest MD (next router, dst)

5 4 3 2

4 3 2 1

3 1

4 3 2 1

dst

src

3│

Delivery Proof

31

 Property: Given there is a path between src
and dst, starting from src, by traversing the
face underlying line(src,dst), the packet will
definitely intersect the line at some point (p)
other than src

 The MD(p,dst) is definitely smaller than
MD(src,dst).

 In traversal mode: If MDcur, dst = MDbest with
productive output?

 Return to (and act as in) normal mode

 we definitely exit to normal mode
5 4 3 2

4 3 2 1

3 1

4 3 2 1

dst

src

A Low-Overhead, Fully-Distributed,

Guaranteed-Delivery Routing Algorithm for

Faulty Network-on-Chips

Mohammad Fattah1, Antti Airola1, Rachata Ausavarungnirun2, Nima Mirzaei3,
Pasi Liljeberg1, Juha Plosila1, Siamak Mohammadi3, Tapio Pahikkala1,

Onur Mutlu2 and Hannu Tenhunen1

