
A Low-Overhead, Fully-Distributed, 

Guaranteed-Delivery Routing Algorithm for 

Faulty Network-on-Chips

Mohammad Fattah1, Antti Airola1, Rachata Ausavarungnirun2, Nima Mirzaei3,
Pasi Liljeberg1, Juha Plosila1, Siamak Mohammadi3, Tapio Pahikkala1,

Onur Mutlu2 and Hannu Tenhunen1



What is This Talk About?

2

 Overtime, routers and links can become faulty.

 Dynamically find alternative paths.

 Previous works have at least one of the following limitations:
 Cover only few number of faults

 Use a central controller

 High area overhead

 High reconfiguration overhead upon new faults

 Maze-Routing overcomes all the above limitations:
 Full-coverage: formally proven

 Fully-distributed: using autonomous and standalone routers

 Low area overhead: using an algorithmic approach (16X less 
area compared to routing tables)

 Low reconfiguration overhead: by on the fly path exploration 
(Instantaneous operation on new failures)

 Better performance: 50% higher saturation throughput and,
28% lower latency on SPEC benchmarks
compared to state-of-the-art



Source: condenaststore.com

 Any # of faults

 Detect 

partitioning

 No central 

component

 No 

reconfiguration 

phase

 No routing 

table



Aggressive Transistor Scaling

Key Benefit A Major Curse

3

 Integrating many IPs

 Processors

 Cache slices

 Memory controllers

 Specialized HW

 Etc.

 Reduced reliability

 Fabrication time:

 Defect

 Process variation

 Run-time:

 Negative bias temperature instability 

(NBTI)

 Hot carrier injection (HCI)

 Gate oxide breakdown

 Electro-Migration

Our designs must be:

Fault-tolerant by construction!



IP vs. Network Faults

4

 IP

 Degrades the performance

 Rest of the system can continue

 Network Elements

 Cripples the performance

 Single point of failure 


It is crucial to tolerate

Many faults in links and routers!



Maze-Routing

Fault-Tolerant by Construction Four Critical Goals

5

 It is not:

 A router architecture, 

with fault tolerance patched to it

 Rather, it is

 Essentially a routing algorithm, 

which

 Is inherently fault-tolerant

 Full coverage (guaranteed 

delivery)

 Fully-distributed operation

 Low area footprint

 No reconfiguration 

component/phase

Maze-Routing is

The first to provide all!

XY

XY

XY

XY

XY

X

P
ri
o

ri
ty

 A
rb

it
e
r

North

East

South

West

Local

North

East

South

West

Local

Maze

Maze

Maze

Maze

Maze



Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

Maze-Routing

- Finding the path

- Detecting 
disconnected 
nodes

Results

- Area

- Throughput

- Reconfiguration 
overhead

6



Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

7



Goal 1: Full (Fault) Coverage

Literature Maze-Routing

8

 Limited number of faults

 Limited fault pattern

 Limited when disconnected

nodes

 No restriction on

 Fault count

 Fault pattern

 Detect disconnected nodes

 At router level



Goal 2: Fully Distributed Operation

Literature Maze-Routing

9

 Centralized methods

 Single point of failure

 TMR: Expensive

 Distributed methods

 Synchronization points.

 Fault in Reconf. unit.

 No central component

 No reconfiguration unit

 Each router makes
individual decisions

 Faults in algorithm
only disables the
associated links Reconf. Reconf. Reconf. Reconf.

Reconf. Reconf. Reconf. Reconf.

Reconf. Reconf. Reconf. Reconf.

Reconf. Reconf. Reconf. Reconf.

Cent. SW/HW 

Controller






Maze

Maze

Maze

Maze

Maze

X

P
ri

o
ri

ty
 A

rb
it

e
r

North

East

South

West

Local

North

East

South

West

Local





Goal 3: Low Area Overhead

Literature Maze-Routing

10

 Routing tables

 High area overhead

 5 read ports

 Implementation cost

 Power dissipation

 Vulnerability to run-time faults

 One failed bit: affects the whole router

 Area ~ fault probability of router

 An algorithmic approach

 No routing table



Goal 4: Low Reconfiguration Overhead

Literature Maze-Routing

11

 New failure detected?

1) Pause the network

2) Reconfigure to an alternative solution

3) Resume normal operation

 Issues?

 Severe degradation of performance

 aggressive online testing

 Few works with fast reconfiguration

 No reconfiguration phase

 Path to destination is dynamically

calculated per packet

 Called on the fly reconfiguration



Maze-Routing: The First to Provide All

12

Coverage Reconfiguration O(Area) O(Reconf.)

Zhang et al. [43] few fully distributed low on the fly

LBDR [35] moderate central low N/A

d2-LBDR [7] moderate central low N/A

OSR-Lite [38] moderate central low moderate

TOSR [5] moderate distributed high fast

BLINC [25] moderate distributed high fast

uLBDR [36] high central high N/A

Wachter et al. [39] high distributed high slow

Fick et al. [19] high distributed high slow

Face routing [11] high fully distributed excessive on the fly

FTDR-H [18] high fully distributed high fast

uDIREC [32] full central high excessive

ARIADNE [3] full distributed high slow

Maze-routing full fully distributed low on the fly



Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

Maze-Routing

- Finding the path

- Detecting 
disconnected 
nodes

13



Preliminaries

14

 Face: regions bounded by links and routers

 4 inner faces

 1 outer face

 Right/Left hand rule: exit from first output in right/left side.

 : clockwise around inner faces

 : counterclockwise around inner faces

 Opposite direction around outer faces 



Preliminaries (II)

15

 Few additional fields in the header

1. MDbest : closest distance (MD) to dst that the packet has reached so far

 Initial: MDsrc, dst

 Only decrements

2. Mode: routing mode used for the packet

 Values: normal, traversal ( or ), unreachable

 Initial: normal

 2 more fields to detect disconnected nodes



Maze-Routing

16

 Normal mode:

 Is there any productive output?

 Take it and dec(MDbest)

 No? we should enter traversal mode:

 Draw line(cur, dst) between current node and dst

 ? Take the first output in the left of line(cur, dst)

 ? Take the first output in the right of line(cur, dst)

 Set the mode (either  or ), accordingly

 Traversal mode:

 If MDcur, dst = MDbest with productive output?

 Return to (and act as in) normal mode

 Otherwise, follow the hand rule

5 4 3 2

4 3 2 1

3 1

4 3 2 1

dst

src5│N

4│N

3│N

3│

2
│
N

1
│
N

0│N

Maze-Routing definitely reaches dst,

if a path to dst exists.

We provide the formal proof in the paper.



Detecting Disconnected Nodes

17

 Traversal mode:

 If MDcur, dst = MDbest with productive output?

 Return to normal mode

 No?

 Follow the hand rule

 The destination is unreachable if:

 In traversal mode, we meet the same node

as the one we entered the traversal mode

 The hand rule picks the same output as

when we entered the traversal mode
3 2 3 4

2 1 2 3

1 1 2

2 1 2 3

dst

src3│N

1│N

1│

More implementation details 

are available in the paper



Our 4 Goals

- Full coverage

- Full distribution

- Low area cost

- Fast adaptation

Maze-Routing

- Finding the path

- Detecting 
disconnected 
nodes

Results

- Area

- Throughput

- Reconfiguration 
overhead

18



Simulation Methodology

19

 NOCulator[1]

 8x8 mesh for performance analysis

 Synthetic traffic for performance evaluation

 SPEC CPU2006 benchmarks are also evaluated

 Maze-Routing[2] implanted in minBD[3] routers

 Deflection-based: deadlock freedom

 Golden and sliver flits: router-level livelock freedom

 Retransmit-once: protocol-level deadlock freedom

[1] NOCulator: https://github.com/CMU-SAFARI/NOCulator

[2] Maze-Routing: https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing

[3] MinBD: Fallin, Chris, et al. "MinBD: Minimally-buffered deflection routing for energy-efficient 

interconnect." NoCS 2012.

https://github.com/CMU-SAFARI/NOCulator
https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing


Configurations

20

 Maze-Routing

 16 buffer spaces per (minBD) router

 Base-line router

 Wormhole buffered routers

 1 VC per port

 40 buffer spaces per router

 Faults:

 Links disabled randomly

 From 1 to 5 link failures



Workloads

21

 Synthetic traffic

 Uniform random traffic with variant injection rates

 SPEC CPU2006 benchmarks

 Grouped based on L1 misses per kilo instruction (MPKI)

 3 groups: High (>50), Low (<5), and Medium (rest) intensity

 4 mixes: L (all Low), ML (Medium/Low), M (all Medium), and H (all High).



Area Overhead

22

 STMicro 60nm 
technology node

 Maze-routing:
 5 copies of alg., 1 per port

 ARIADNE:
 Smallest table

 Reconfiguration logic is 
not implemented

 5 read ports

 LBDRe:
 Logic-based method

 Central approach

 Limited coverage
1
1
.8

4

4
4
.7

1

5
.6

8

1
5
.0

5

2
3
9
.2

1

6
.0

6

0

5

10

15

20

25

30

35

40

45

50

Maze-routing ARIADNE LBDRe

a
re

a
 (

µ
m

2
)

×
1
0
0

8x8 16x16

3
.8

 x

2.1 x

27%

1
5
.9

 x



Throughput: Uniform Random Traffic 

1 disabled link 5 disabled links

23

16

17

18

19

20

21

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28

A
v

e
ra

g
e
 f

li
t 

la
te

n
c
y
 (

c
y
c
le

s
)

Injection rate (flits/node/cycle)

Maze-routing up*/down*

16

17

18

19

20

21

0 0.04 0.08 0.12 0.16 0.2 0.24 0.28

A
v

e
ra

g
e
 f

li
t 

la
te

n
c
y
 (

c
y
c
le

s
)

Injection rate (flits/node/cycle)

Maze-routing up*/down*

50%

Sub-optimal 

paths

Provided path 

divergence



Throughput: SPEC CPU

24

workload

mix

Up*/Down* Maze-routing

5 failures no failure 5 failures no failure

L 16.7 16.4 17.8 16.4

ML 18.8 18.2 18.9 17.2

M 27.7 25.7 21.6 19.2

H 54.4 50.5 25.8 23.1

AVG 29.4 27.7 21 19

Average packet latency

30% latency reduction in average case



Reconfiguration Overhead

25

16

17

18

19

15 20 25 30 35 40 45 50

A
v

e
ra

g
e
 L

a
te

n
c
y
 (

c
y
c
le

s
)

Time (×104 cycle)

ARIADNE Maze-routing

0
.2

 f
lit

s
/n

o
d
e
/c

y
c
le

4
0
K

 C
y
c
le

s

6
6
K

 C
y
c
le

s

Maze-Routing has

no reconfiguration phase



Summary

26

 A practical fault-tolerant routing algorithm must

 Provide full coverage with guaranteed delivery

 Operate in fully-distributed manner

 Impose low area overhead

 Have low reconfiguration overhead

 Maze-Routing is the first work to meet all the above goals

 NOCulator and Maze-Routing are available on GitHub

 https://github.com/CMU-SAFARI/NOCulator

 https://github.com/CMU-SAFARI/NOCulator/tree/Maze-routing



A Low-Overhead, Fully-Distributed, 

Guaranteed-Delivery Routing Algorithm for 

Faulty Network-on-Chips

Mohammad Fattah1, Antti Airola1, Rachata Ausavarungnirun2, Nima Mirzaei3,
Pasi Liljeberg1, Juha Plosila1, Siamak Mohammadi3, Tapio Pahikkala1,

Onur Mutlu2 and Hannu Tenhunen1



Backup slides



Area Overhead

29

 Header fields can be coded in 14/17 bits in 8x8/16x16 meshes.

 Assuming a baseline router with 144-bit channel width, we need to 

widen the channel by 10%/12%.

 Results in almost 20%/25% increase in the router area.



Deflection Implications

30

 When a packet is deflected

 Header values are not valid anymore

 We need to reset the header values:

 Mode  Normal

 MDbest  MD (next router, dst)

5 4 3 2

4 3 2 1

3 1

4 3 2 1

dst

src

3│



Delivery Proof

31

 Property: Given there is a path between src
and dst, starting from src, by traversing the 
face underlying line(src,dst), the packet will 
definitely intersect the line at some point (p) 
other than src

 The MD(p,dst) is definitely smaller than 
MD(src,dst).

 In traversal mode: If MDcur, dst = MDbest with 
productive output?

 Return to (and act as in) normal mode

 we definitely exit to normal mode
5 4 3 2

4 3 2 1

3 1

4 3 2 1

dst

src



A Low-Overhead, Fully-Distributed, 

Guaranteed-Delivery Routing Algorithm for 

Faulty Network-on-Chips

Mohammad Fattah1, Antti Airola1, Rachata Ausavarungnirun2, Nima Mirzaei3,
Pasi Liljeberg1, Juha Plosila1, Siamak Mohammadi3, Tapio Pahikkala1,

Onur Mutlu2 and Hannu Tenhunen1


