
Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior

Yoongu Kim
Michael Papamichael
Onur Mutlu
Mor Harchol-Balter

Motivation

• Memory is a shared resource

• Threads’ requests contend for memory

– Degradation in single thread performance

– Can even lead to starvation

• How to schedule memory requests to increase
both system throughput and fairness?

2

Core Core

Core Core
Memory

1

3

5

7

9

11

13

15

17

8 8.2 8.4 8.6 8.8 9

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

FRFCFS

STFM

PAR-BS

ATLAS

Previous Scheduling Algorithms are Biased

3

System throughput
bias

Fairness
bias

No previous memory scheduling algorithm provides
both the best fairness and system throughput

Better system throughput

B
et

te
r

fa
ir

n
e

ss

Take turns accessing memory

Why do Previous Algorithms Fail?

4

Fairness biased approach

thread C

thread B

thread A

less memory
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient

thread

thread

thread

thread

Insight: Achieving Best of Both Worlds

5

thread

higher
priority

thread

thread

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive
being prioritized over each other

• Shuffle threads

Memory-intensive threads have
different vulnerability to interference

• Shuffle asymmetrically

For Fairness

Outline
Motivation & Insights

Overview

Algorithm

Bringing it All Together

Evaluation

Conclusion

6

Overview: Thread Cluster Memory Scheduling

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster

7

thread

Threads in the system

thread

thread

thread

thread

thread

thread

Non-intensive
cluster

Intensive cluster

thread

thread

thread

Memory-non-intensive

Memory-intensive

Prioritized

higher
priority

higher
priority

Throughput

Fairness

Outline
Motivation & Insights

Overview

Algorithm

Bringing it All Together

Evaluation

Conclusion

8

TCM Outline

9

1. Clustering

Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)

10

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

th
re

ad

higher
MPKI

T
α < 10%

ClusterThreshold

Intensive
clusterαT

Non-intensive
cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters

TCM Outline

11

1. Clustering

2. Between
Clusters

Prioritize non-intensive cluster

• Increases system throughput

– Non-intensive threads have greater potential for
making progress

• Does not degrade fairness

– Non-intensive threads are “light”

– Rarely interfere with intensive threads

Prioritization Between Clusters

12

>
priority

TCM Outline

13

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

Throughput

Prioritize threads according to MPKI

• Increases system throughput

– Least intensive thread has the greatest potential
for making progress in the processor

Non-Intensive Cluster

14

thread

thread

thread

thread

higher
priority lowest MPKI

highest MPKI

TCM Outline

15

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

4. Intensive
Cluster

Throughput

Fairness

Periodically shuffle the priority of threads

• Is treating all threads equally good enough?

• BUT: Equal turns ≠ Same slowdown

Intensive Cluster

16

Increases fairness

Most prioritizedhigher
priority

thread

thread

thread

0
2
4
6
8

10
12
14

random-access streaming
Sl

o
w

d
o

w
n

Case Study: A Tale of Two Threads
Case Study: Two intensive threads contending

1. random-access

2. streaming

17

Prioritize random-access Prioritize streaming

random-access thread is more easily slowed down

0
2
4
6
8

10
12
14

random-access streaming

Sl
o

w
d

o
w

n

7x
prioritized

1x

11x

prioritized
1x

Which is slowed down more easily?

Why are Threads Different?

18

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

Why are Threads Different?

19

random-access

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

•All requests parallel
•High bank-level parallelism

activated row

req
req

req
req

Why are Threads Different?

20

streaming

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

req

req

req
req

•All requests  Same row
•High row-buffer locality

random-access

•All requests parallel
•High bank-level parallelism

activated row

Why are Threads Different?

21

random-access streaming

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

•All requests parallel
•High bank-level parallelism

•All requests  Same row
•High row-buffer locality

stuck

Vulnerable to interference

req
req

req

req

req

req

req
req

TCM Outline

22

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

4. Intensive
Cluster

Fairness

Throughput

Niceness

How to quantify difference between threads?

23

Vulnerability to interference

Bank-level parallelism

Causes interference

Row-buffer locality

+ Niceness -

NicenessHigh Low

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

24

What can go wrong?

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

25

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread

What can go wrong?

A

B

C

D

D A B C D

A

B

D

C

B

C

A

D

C

D

B

A

D

A

C

B

GOOD: Each thread
prioritized once

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

26

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread

What can go wrong?

A

B

C

D

D A B C D

A

B

D

C

B

C

A

D

C

D

B

A

D

A

C

B

BAD: Nice threads receive
lots of interference

GOOD: Each thread
prioritized once

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

27

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

28

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread
A

B

C

D

D C B A D

D

A

C

B

B

A

C

D

A

D

B

C

D

A

C

B

GOOD: Each thread
prioritized once

Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling

29

Most prioritized

ShuffleInterval

Priority

Time

Nice thread

Least nice thread
A

B

C

D

D C B A D

D

A

C

B

B

A

C

D

A

D

B

C

D

A

C

B

GOOD: Each thread
prioritized once

GOOD: Least nice thread stays
mostly deprioritized

TCM Outline

30

1. Clustering

2. Between
Clusters

3. Non-Intensive
Cluster

4. Intensive
Cluster

Fairness

Throughput

Outline
Motivation & Insights

Overview

Algorithm

Bringing it All Together

Evaluation

Conclusion

31

Quantum-Based Operation

32

Time

Previous quantum
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)

TCM Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity  higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

33

Implementation Costs

Required storage at memory controller (24 cores)

• No computation is on the critical path

34

Thread memory behavior Storage

MPKI ~0.2kb

Bank-level parallelism ~0.6kb

Row-buffer locality ~2.9kb

Total < 4kbits

Outline
Motivation & Insights

Overview

Algorithm

Bringing it All Together

Evaluation

Conclusion

35

Fairness

Throughput

Metrics & Methodology

• Metrics
System throughput

36


i

alone

i

shared

i

IPC

IPC
SpeedupWeighted

shared

i

alone

i
i
IPC

IPC
SlowdownMaximum max

Unfairness

• Methodology
– Core model

• 4 GHz processor, 128-entry instruction window

• 512 KB/core L2 cache

– Memory model: DDR2

– 96 multiprogrammed SPEC CPU2006 workloads

Previous Work

FRFCFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits

– Thread-oblivious  Low throughput & Low fairness

STFM [Mutlu et al., MICRO07]: Equalizes thread slowdowns

– Non-intensive threads not prioritized Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests
while preserving bank-level parallelism

– Non-intensive threads not always prioritized  Low
throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory
service

– Most intensive thread starves  Low fairness

37

Results: Fairness vs. Throughput

FRFCFS

STFM

PAR-BS

ATLAS

TCM

4

6

8

10

12

14

16

7.5 8 8.5 9 9.5 10

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

38

Better system throughput

B
et

te
r

fa
ir

n
e

ss

5%

39%

8%

5%

TCM provides best fairness and system throughput

Averaged over 96 workloads

Results: Fairness-Throughput Tradeoff

FRFCFS

2

4

6

8

10

12

12 13 14 15 16

M
ax

im
u

m
 S

lo
w

d
o

w
n

Weighted Speedup

39

When configuration parameter is varied…

Adjusting
ClusterThreshold

TCM allows robust fairness-throughput tradeoff

STFM

PAR-BS

ATLAS

TCM

Better system throughput

B
et

te
r

fa
ir

n
e

ss

Operating System Support

• ClusterThreshold is a tunable knob

– OS can trade off between fairness and throughput

• Enforcing thread weights

– OS assigns weights to threads

– TCM enforces thread weights within each cluster

40

Outline
Motivation & Insights

Overview

Algorithm

Bringing it All Together

Evaluation

Conclusion

41

Fairness

Throughput

Conclusion

42

• No previous memory scheduling algorithm provides
both high system throughput and fairness

– Problem: They use a single policy for all threads

• TCM groups threads into two clusters

1. Prioritize non-intensive cluster  throughput

2. Shuffle priorities in intensive cluster  fairness

3. Shuffling should favor nice threads  fairness

• TCM provides the best system throughput and fairness

THANK YOU

43

Thread Cluster Memory Scheduling:

Exploiting Differences in Memory Access Behavior

Yoongu Kim
Michael Papamichael
Onur Mutlu
Mor Harchol-Balter

Thread Weight Support

• Even if heaviest weighted thread happens to
be the most intensive thread…

– Not prioritized over the least intensive thread

45

Harmonic Speedup

46

Better system throughput

B
et

te
r

fa
ir

n
e

ss

Shuffling Algorithm Comparison

• Niceness-Aware shuffling

– Average of maximum slowdown is lower

– Variance of maximum slowdown is lower

47

Shuffling Algorithm

Round-Robin Niceness-Aware

E(Maximum Slowdown) 5.58 4.84

VAR(Maximum Slowdown) 1.61 0.85

Sensitivity Results

48

ShuffleInterval (cycles)

500 600 700 800

System Throughput 14.2 14.3 14.2 14.7

Maximum Slowdown 6.0 5.4 5.9 5.5

Number of Cores

4 8 16 24 32

System Throughput
(compared to ATLAS)

0% 3% 2% 1% 1%

Maximum Slowdown
(compared to ATLAS)

-4% -30% -29% -30% -41%

