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Motivation

• Memory is a shared resource

• Threads’ requests contend for memory

– Degradation in single thread performance

– Can even lead to starvation

• How to schedule memory requests to increase 
both system throughput and fairness?
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System throughput 
bias

Fairness 
bias

No previous memory scheduling algorithm provides 
both the best fairness and system throughput
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Take turns accessing memory

Why do Previous Algorithms Fail?
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Fairness biased approach

thread C

thread B

thread A

less memory 
intensive

higher
priority

Prioritize less memory-intensive threads

Throughput biased approach

Good for throughput

starvation  unfairness

thread C thread Bthread A

Does not starve

not prioritized 
reduced throughput

Single policy for all threads is insufficient
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Insight: Achieving Best of Both Worlds
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thread

higher
priority

thread

thread 

thread

Prioritize memory-non-intensive threads

For Throughput

Unfairness caused by memory-intensive 
being prioritized over each other 

• Shuffle threads

Memory-intensive threads have 
different vulnerability to interference

• Shuffle asymmetrically

For Fairness
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Overview: Thread Cluster Memory Scheduling

1. Group threads into two clusters
2. Prioritize non-intensive cluster
3. Different policies for each cluster
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TCM Outline
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1. Clustering



Clustering Threads

Step1 Sort threads by MPKI (misses per kiloinstruction)
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clusterαT
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cluster

T = Total memory bandwidth usage

Step2 Memory bandwidth usage αT divides clusters



TCM Outline
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1. Clustering

2. Between 
Clusters



Prioritize non-intensive cluster

• Increases system throughput

– Non-intensive threads have greater potential for 
making progress

• Does not degrade fairness

– Non-intensive threads are “light”

– Rarely interfere with intensive threads

Prioritization Between Clusters

12

>
priority



TCM Outline
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2. Between 
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Prioritize threads according to MPKI

• Increases system throughput

– Least intensive thread has the greatest potential 
for making progress in the processor

Non-Intensive Cluster
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TCM Outline

15

1. Clustering

2. Between 
Clusters

3. Non-Intensive 
Cluster

4. Intensive 
Cluster

Throughput

Fairness



Periodically shuffle the priority of threads

• Is treating all threads equally good enough?

• BUT: Equal turns ≠ Same slowdown

Intensive Cluster
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Increases fairness
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Case Study: A Tale of Two Threads
Case Study: Two intensive threads contending

1. random-access

2. streaming
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Prioritize random-access Prioritize streaming

random-access thread is more easily slowed down
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Why are Threads Different?
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Why are Threads Different?
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random-access

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

•All requests parallel
•High bank-level parallelism

activated row
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Why are Threads Different?
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streaming

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows
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•All requests  Same row
•High row-buffer locality

random-access

•All requests parallel
•High bank-level parallelism

activated row



Why are Threads Different?
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random-access streaming

Bank 1 Bank 2 Bank 3 Bank 4 Memory

rows

•All requests parallel
•High bank-level parallelism

•All requests  Same row
•High row-buffer locality
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TCM Outline
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Niceness

How to quantify difference between threads?
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Vulnerability to interference

Bank-level parallelism

Causes interference

Row-buffer locality

+ Niceness -

NicenessHigh Low



Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling
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What can go wrong?



Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling
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Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling
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Most prioritized
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Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling
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Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling
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Shuffling: Round-Robin vs. Niceness-Aware

1. Round-Robin shuffling

2. Niceness-Aware shuffling
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Most prioritized
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TCM Outline

30

1. Clustering

2. Between 
Clusters

3. Non-Intensive 
Cluster

4. Intensive 
Cluster

Fairness

Throughput



Outline
Motivation & Insights

Overview

Algorithm

Bringing it All Together

Evaluation

Conclusion

31



Quantum-Based Operation
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Time

Previous quantum 
(~1M cycles)

During quantum:
• Monitor thread behavior

1. Memory intensity
2. Bank-level parallelism
3. Row-buffer locality

Beginning of quantum:
• Perform clustering
• Compute niceness of 

intensive threads

Current quantum
(~1M cycles)

Shuffle interval
(~1K cycles)



TCM Scheduling Algorithm

1. Highest-rank: Requests from higher ranked threads prioritized

• Non-Intensive cluster > Intensive cluster

• Non-Intensive cluster: lower intensity  higher rank

• Intensive cluster: rank shuffling

2.Row-hit: Row-buffer hit requests are prioritized

3.Oldest: Older requests are prioritized

33



Implementation Costs

Required storage at memory controller (24 cores)

• No computation is on the critical path
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Thread memory behavior Storage

MPKI ~0.2kb

Bank-level parallelism ~0.6kb

Row-buffer locality ~2.9kb

Total < 4kbits
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Metrics & Methodology

• Metrics
System throughput
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• Methodology
– Core model

• 4 GHz processor, 128-entry instruction window

• 512 KB/core L2 cache

– Memory model: DDR2

– 96 multiprogrammed SPEC CPU2006 workloads



Previous Work

FRFCFS [Rixner et al., ISCA00]: Prioritizes row-buffer hits

– Thread-oblivious  Low throughput & Low fairness

STFM [Mutlu et al., MICRO07]: Equalizes thread slowdowns

– Non-intensive threads not prioritized Low throughput

PAR-BS [Mutlu et al., ISCA08]: Prioritizes oldest batch of requests 
while preserving bank-level parallelism

– Non-intensive threads not always prioritized  Low 
throughput

ATLAS [Kim et al., HPCA10]: Prioritizes threads with less memory 
service

– Most intensive thread starves  Low fairness
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Results: Fairness vs. Throughput
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5%

39%

8%

5%

TCM provides best fairness and system throughput

Averaged over 96 workloads



Results: Fairness-Throughput Tradeoff
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When configuration parameter is varied…

Adjusting  
ClusterThreshold

TCM allows robust fairness-throughput tradeoff 
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Operating System Support

• ClusterThreshold is a tunable knob

– OS can trade off between fairness and throughput

• Enforcing thread weights

– OS assigns weights to threads

– TCM enforces thread weights within each cluster
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Conclusion
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• No previous memory scheduling algorithm provides 
both high system throughput and fairness

– Problem: They use a single policy for all threads

• TCM groups threads into two clusters

1. Prioritize non-intensive cluster  throughput

2. Shuffle priorities in intensive cluster  fairness

3. Shuffling should favor nice threads  fairness

• TCM provides the best system throughput and fairness



THANK YOU

43



Thread Cluster Memory Scheduling: 

Exploiting Differences in Memory Access Behavior

Yoongu Kim
Michael Papamichael
Onur Mutlu
Mor Harchol-Balter



Thread Weight Support

• Even if heaviest weighted thread happens to 
be the most intensive thread…

– Not prioritized over the least intensive thread
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Harmonic Speedup
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Shuffling Algorithm Comparison

• Niceness-Aware shuffling

– Average of maximum slowdown is lower

– Variance of maximum slowdown is lower
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Shuffling Algorithm

Round-Robin Niceness-Aware

E(Maximum Slowdown) 5.58 4.84

VAR(Maximum Slowdown) 1.61 0.85



Sensitivity Results
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ShuffleInterval (cycles)

500 600 700 800

System Throughput 14.2 14.3 14.2 14.7

Maximum Slowdown 6.0 5.4 5.9 5.5

Number of Cores

4 8 16 24 32

System Throughput
(compared to ATLAS)

0% 3% 2% 1% 1%

Maximum Slowdown
(compared to ATLAS)

-4% -30% -29% -30% -41%


