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Our Proposal

s Prefetch Aware Warp Scheduler

s Goals:
o Make a Simple prefetcher more Capable

o Improve system performance by orchestrating
scheduling and prefetching mechanisms

m 25% average IPC improvement over
o Prefetching + Conventional Warp Scheduling Policy

m /% average IPC improvement over
o Prefetching + Best Previous Warp Scheduling Policy




Outline

= Background and Motivation

= Prefetch-aware Scheduling

s Evaluation

= Conclusions




High-Level View of a GPU

Streaming Threads

Multiprocessors
CTA CTA CTA CTA

Cooperative
Thread Arrays
(CTAs) Or
Thread Blocks

L2 cache
DRAM



Warp Scheduling Policy

= Equal scheduling priority
2 Round-Robin (RR) execution

= Problem: Warps stall roughly at the same time
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Accessing DRAM ...
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Warp Scheduler Perspective (Summary)
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Evaluating RR and TL schedulers
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(1) Prefetching: Saves more cycles
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(2) Prefetching: Improve DRAM Bandwidth Utilization
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Challenge: Designing a Prefetcher

Memory
Addresses

X ==

Prefetch

/L/ Requests

Bank 1 Bank 2

Sophisticated
Prefetcher

- Y



Our Goal

= Keep the prefetcher simple, yet get the
performance benefits of a sophisticated
prefetcher.

To this end, we will design a prefetch-aware warp
scheduling policy Why?

A simple prefetching does not improve
performance with existing scheduling policies.
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Simple Prefetching + RR scheduling RR
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Simple Prefetching + TL scheduling
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Let’s Try...
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Simple Prefetching with TL scheduling
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Simple Prefetching with TL scheduling
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Warp Scheduler Perspective (Summary)
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Our Goal

= Keep the prefetcher simple, yet get the
performance benefits of a sophisticated
prefetcher.

To this end, we will design a prefetch-aware warp
scheduling policy
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Prefetch-aware (PA) warp scheduling
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Simple Prefetching with PA scheduling
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Simple Prefetching with PA scheduling
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Simple Prefetching with PA scheduling

(A)

o111 111 -8 Compute el g

Phase (1) P:aEEENES (2)
~ D1 >

D3
D5

DRAM _ D7
Requests

Compute pefe];yle]0] !
Phase (1) P EEERGD

— D1
D3

D5
»

Phase-2
~ (Group-2)

DRAM T
Requests




DRAM Bandwidth Utilization
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18% increase in bank-level parallelism

24% decrease in row buffer locality
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Warp Scheduler Perspective (Summary)
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Outline

= Evaluation

s Conclusions
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Evaluation Methodology

= Evaluated on GPGPU-Sim, a cycle accurate GPU simulator

s Baseline Architecture
o 30 SMs, 8 memory controllers, crossbar connected
o 1300MHz, SIMT Width = 8, Max. 1024 threads/core
o 32 KB L1 data cache, 8 KB Texture and Constant Caches
o L1 Data Cache Prefetcher, GDDR3@1100MHz

= Applications Chosen from:
o Mapreduce Applications
o Rodinia — Heterogeneous Applications
o Parboil — Throughput Computing Focused Applications
o NVIDIA CUDA SDK — GPGPU Applications
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Spatial Locality Detector based Prefetching

“gfgcl‘l((’ Prefetch:- Not accessed
(demanded) Cache Lines
X D
A+ 1P = Prefetch-aware Scheduler

See paper for more details

- D = Demand, P = Prefetch
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Improving Prefetching Effectiveness
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Performance Evaluation

Results are Normalized to RR scheduling
B RR+Prefetching OTL BTL+Prefetching @ Prefetch-aware (PA) B PA+Prefetching
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Conclusions

m Existing warp schedulers in GPGPUs cannot take advantage of
simple prefetchers

o Consecutive warps have good spatial locality, and can
prefetch well for each other

o But, existing schedulers schedule consecutive warps closeby
in time - prefetches are too late

= We proposed prefetch-aware (PA) warp scheduling
o Key idea: group consecutive warps into different groups

o Enables a simple prefetcher to be timely since warps in
different groups are scheduled at separate times

s Evaluations show that PA warp scheduling improves
performance over combinations of conventional (RR) and the
best previous (TL) warp scheduling and prefetching policies

o Better orchestrates warp scheduling and prefetching decisions

35



THANKS!

QUESTIONS?

36



BACKUP

37



Effect of Prefetch-aware Scheduling

Percentage of DRAM requests (averaged over group) with:
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Working (With Two-Level Scheduling)
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Working (With Prefetch-Aware Scheduling)
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Working (With Prefetch-Aware Scheduling)
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Effect on Row Buffer locality
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24% decrease in row buffer locality over TL
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Effect on Bank-Level Parallelism
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Simple Prefetching + RR scheduling
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Simple Prefetching with TL scheduling
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CTA-Assignment Policy (Example)

Multi-threaded CUDA Kernel

-
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Warp Scheduler Warp Scheduler

L1 Caches ALUs L1 Caches ALUs

46



