Orchestrated Scheduling and
Prefetching for GPGPUs

Adwait Jog, Onur Kayiran, Asit Mishra, Mahmut Kandemir,
Onur Mutlu, Ravi Iyer, Chita Das

PENNgéT Carnegie Mellon < intel.
¢

Parallelize your code! Improve

Replacement
Launch more threads! | Policies

Multi- .
threading Caching

Is the Warp Scheduler

aware of these techniques?

Main
Memory Prefetching

I || Improve Prefetcher
Improve Memory L (look deep in the future,
Scheduling Policies if you can!)

N

Cache-Conscious
Two-level Scheduling L Scheduling,

MICRO11 } MICRO’12

Multi-
threading

I
Warp

Scheduler

" Thread-Block-Aware
Scheduling (OWL)
. ASPLOS'13

Our Proposal

s Prefetch Aware Warp Scheduler

s Goals:
o Make a Simple prefetcher more Capable

o Improve system performance by orchestrating
scheduling and prefetching mechanisms

m 25% average IPC improvement over
o Prefetching + Conventional Warp Scheduling Policy

m /% average IPC improvement over
o Prefetching + Best Previous Warp Scheduling Policy

Outline

= Background and Motivation

= Prefetch-aware Scheduling

s Evaluation

= Conclusions

High-Level View of a GPU

Streaming Threads

Multiprocessors
CTA CTA CTA CTA

Cooperative
Thread Arrays
(CTAs) Or
Thread Blocks

L2 cache
DRAM

Warp Scheduling Policy

= Equal scheduling priority
2 Round-Robin (RR) execution

= Problem: Warps stall roughly at the same time

(_) v (
wi [wi] [w] [w] [w] [w] [w] |w [— w
1| 12| 3] 4] |5]||6]|]|7]||8 Si HHHH
o
;S

|
f
I
T
tﬂs{, | Compute

> J —_—
Compute
. Phase (1) | / N\ _ Phase (2) |
D1 ‘ >
D2 >
DRAM D3 - >
Requests D5 - >>>

D7]
D8 > Time

W| |W] [W] W] W] |W] |W] |W :
1|12]13]|14]||5]||6]|7]|8 SIMT
s 4 Core
Compute Stalls Compute
L Phase (1) J . Phase (2)
D2 >)
DRAM %Ba 2>
Requests D6 - >

i) rnase 1)))

°b2 2>

DRAM | %7 25
Requests D6 >

n
Q)
<
)
o

|

O
<
Q
)
)

-]
=
@)
-
m
<
m
-
=
L
n
O
L
m
O
C
C
2
()

w
&)
A 4

Accessing DRAM ...
—————————

- N ™ — N ™
+ + + + + +
_ X X X @>— > >
nghBank- wl [w] [w] [w] [w] [w] [w] [w
| evel 1| 2] 13| [4]|5]|el|7]]|8
Parallelism
High Row
Buffer Bank 1 Bank 2
Locality

[

W| |W| W] |W
2

HEEA]

1 3 4
|dle for a
period
Bank 1 Bank 2

- Memory

Addresses

Legend

Group 1

[orowa].

Low Bank-Level
Parallelism

High Row Buffer

Locality

Warp Scheduler Perspective (Summary)

Warp Forms Multiple DRAM Bandwidth
Scheduler | Warp Groups? Utilization
Bank Row
Level Buffer
Parallelism Locality
Round-
Robin | M v v
(RR)
Two-Level
o |Y v

10

Evaluating RR and TL schedulers

yo-level (TL)

Can we further Perfect L1 Cache
reduce this gap'? 220X 1.88X

N\
}

Z

—

Via Prefetching ?

O-=_NWHA,O1O0 N

X - Q)
— < Ll
m T8 0

P)

GMEA

%) /

(1) Prefetching: Saves more cycles

(A) ,(B)TL RR
Compute [ofe]yyelli
Phase (1) P:aEEENES

Comp. " Comp.
Phase Phase
- D1 >
D2

(2) (2)
D3

DRAM _ D4
Requests

Compute pefe];yle]0] !
Phase (1) P EEERGD

— D1
D2

D3
2

Compute
Phase-2

~ (Group-2)

Phase Phase

[Comp. | Comp.
2) EEEES Saved

r
) L B R N N]

|

DRAM T
Requests

(2) Prefetching: Improve DRAM Bandwidth Utilization

- N ™ - N ™
+ + + + + +

X X X X > > > > Jum Memory

= 0 ol [— Addresses

EFEEEEELE)

|dle for
a period

_ Bank 1 Bank 2
High Bank-

Level

Parallelism [[w] W] [w] [w Hﬂﬂ]
1 2 3 4 7

High Row Prefetch

Buffer ,Z/ Requests

Locality Bank 1 Bank 2

Challenge: Designing a Prefetcher

Memory
Addresses

X ==

Prefetch

/L/ Requests

Bank 1 Bank 2

Sophisticated
Prefetcher

- Y

Our Goal

= Keep the prefetcher simple, yet get the
performance benefits of a sophisticated
prefetcher.

To this end, we will design a prefetch-aware warp
scheduling policy Why?

A simple prefetching does not improve
performance with existing scheduling policies.

15

Simple Prefetching + RR scheduling RR

[Compute]

Phase (1)
%;
DRAM 1 % No Saved
Requests be
i 0: Cycles

Overlap Overlap

[Compute J with D2 with D4 [Compute]

(Late (Late

Phase (1) 7 Prefetch)__Phase (2)
D >
>
DRAM _ >
Requests PG 2
F > Time

Simple Prefetching + TL scheduling

A
Py

Group 1 Group 2 Group 1 Group 2 |
Compute [{eLe]j G Comp. SO
[Phase) Phase (1) [o gl

DRAM _ D4
Requests

Group 1 Group 2 i
[Compute Compute i

1

Phase (1) P EECRED) :
Overlap I
with D2 |
(Late D D5 E
Prefetch) | Pg 2 :
Overlap with D4 P8 > !

|

(Late Prefetch)

Let’s Try...

X ==

Simple
Prefetcher

=y X + 4

18

Simple Prefetching with TL scheduling

~— (N ™M
+ + o+
X X X (3)> > > < Memory
??wjﬂﬂﬂ]
May no
X +Y Ve Mlefora‘ Useless Prefetch
| period (X +4)

Bank 1 Bank 2

P
N 3
w S
o
-
=
=
——/

17 e e ks Upa 28185
Prefetches

Bank 1 Bank 2

Simple Prefetching with TL scheduling

D8

TL RR
Compute ool 1V gﬁ'a“s': gﬂra"s': i
Phase (1) P:aEEENES (2) 2) !
o 5 i Saved
D2 > K : >'
D3 >, I I
DRAM | b4 — > > | Cycles!
Requests D6 - > : |

No Saved

Compute [eeljpl o]0

up= === =—=-=-=-=-- > SS i

DRAM Tl > Prefetches
equests g = =, > :
D6 > I

D7 > :

Warp Scheduler Perspective (Summary)

Warp Forms Simple DRAM Bandwidth
Scheduler Multiple Prefetcher Utilization
Warp Friendly? Bank Row
Groups? Level Buffer
Parallelism | Locality
Round-
Robin | 9 v v
(RR)
Two-Level

21

Our Goal

= Keep the prefetcher simple, yet get the
performance benefits of a sophisticated
prefetcher.

To this end, we will design a prefetch-aware warp
scheduling policy

22

Sophisticated
Prefetcher

[Prefetch Aware (PA) Warp Scheduler J

Simple
Prefetcher

23

Prefetch-aware (PA) warp scheduling

x
w
1

nE| X+ 1

-

+
> >
W| |W
5| L6

Round Robin
] Scheduling

[

Group 1 N
+
X X

(I\

N ™
+ +
X X
w]| [w
3| |4
N ™
+ +
X X

Y\ Two-level

See paper for generalized
algorithm of PA scheduler

(G0 B 5] BN 5] @ [7] B8] Scheduling

Non-consecutive warps are associated with one group

Simple Prefetching with PA scheduling

~— (N M ~— (N M

+ +
X X > >
W W W W
1 3 5 7

)

Yy

Bank 1 Bank 2

Reasoning of non-consecutive warp grouping is
that groups can (simple) prefetch for each other
(warps can prefetch for red warps using

simple prefetcher)

X‘ Simple - X + 1

Prefetcher

Simple Prefetching with PA scheduling
(B30, 03 @7

Al EE e

Bank 1 Bank 2

X ‘ Simple

Prefetcher

Simple Prefetching with PA scheduling

(A)

o111 111 -8 Compute el g

Phase (1) P:aEEENES (2)
~ D1 >

D3
D5

DRAM _ D7
Requests

Compute pefe];yle]0] !
Phase (1) P EEERGD

— D1
D3

D5
»

Phase-2
~ (Group-2)

DRAM T
Requests

DRAM Bandwidth Utilization

-~ N\ AN

18% increase in bank-level parallelism

24% decrease in row buffer locality

LA A M NVV W
Bank 1 Bank 2

Bank-Level Parallelism
Row Buffer Locality

X‘ Simple ‘X 1 1

Prefetcher

Warp Scheduler Perspective (Summary)

Warp Forms Simple DRAM Bandwidth
Scheduler | Multiple Warp Prefetcher Utilization
Groups? Friendly? Bank Row Buffer
Level Locality
Parallelism
Round-
~obin | 98 X v v
(RR)
Two-Level
|V X x v
Prefetch- V4
Aware ‘/ ‘/ ‘/ (with

(PA)

prefetching)

29

Outline

= Evaluation

s Conclusions

30

Evaluation Methodology

= Evaluated on GPGPU-Sim, a cycle accurate GPU simulator

s Baseline Architecture
o 30 SMs, 8 memory controllers, crossbar connected
o 1300MHz, SIMT Width = 8, Max. 1024 threads/core
o 32 KB L1 data cache, 8 KB Texture and Constant Caches
o L1 Data Cache Prefetcher, GDDR3@1100MHz

= Applications Chosen from:
o Mapreduce Applications
o Rodinia — Heterogeneous Applications
o Parboil — Throughput Computing Focused Applications
o NVIDIA CUDA SDK — GPGPU Applications

31

Spatial Locality Detector based Prefetching

“gfgcl‘l((’ Prefetch:- Not accessed
(demanded) Cache Lines
X D
A+ 1P = Prefetch-aware Scheduler

See paper for more details

- D = Demand, P = Prefetch

32

Improving Prefetching Effectiveness

- RR+Prefetching

100%

80% T
60% -
40% -
20% A

0% -

89%

Fraction of Late Pr
86%

TL+Prefetching

15% A

10% -
5% 1

0% -

100%
80% -
60% -
40% -
20% -

ching

Prefetch Accuracy
85% 89% 90%

0% -

2%

Reduction in L1D Miss Rat

4%

16%

33

Performance Evaluation

Results are Normalized to RR scheduling
B RR+Prefetching OTL BTL+Prefetching @ Prefetch-aware (PA) B PA+Prefetching
1.01 116 1.19 1.20 1.26

3
2.5 1
2 -
1.5 A
1 -
0.5

— L y_W)

GIVIEAIN §

See paper for Additional
Results

34

Conclusions

m Existing warp schedulers in GPGPUs cannot take advantage of
simple prefetchers

o Consecutive warps have good spatial locality, and can
prefetch well for each other

o But, existing schedulers schedule consecutive warps closeby
in time - prefetches are too late

= We proposed prefetch-aware (PA) warp scheduling
o Key idea: group consecutive warps into different groups

o Enables a simple prefetcher to be timely since warps in
different groups are scheduled at separate times

s Evaluations show that PA warp scheduling improves
performance over combinations of conventional (RR) and the
best previous (TL) warp scheduling and prefetching policies

o Better orchestrates warp scheduling and prefetching decisions

35

THANKS!

QUESTIONS?

36

BACKUP

37

Effect of Prefetch-aware Scheduling

Percentage of DRAM requests (averaged over group) with:
B 1 miss 02 misses B 3-4 misses to a macro-block

Recovered by
Prefetching

60%
High Spatial

Locality Requests

yay

40% A

High Spatial
Locality
Requests

20% -

0% -

Two-level Prefetch-aware

38

Working (With Two-Level Scheduling)

MACRO
BLOCK

High
Spatial
Locality

Requests

MACRO
BLOCK

39

Working (With Prefetch-Aware Scheduling)

MACRO MACRO
BLOCK BLOCK

High
Spatial
Locality

Requests

Working (With Prefetch-Aware Scheduling)

MACRO MACRO
BLOCK BLOCK

—y Cachee—
Hlts

Effect on Row Buffer locality

OTL+Prefetching EPA PA+Prefetching

BTL

Aljeo0 Jjayng moy

24% decrease in row buffer locality over TL

42

Effect on Bank-Level Parallelism

c ERR OTL HPA

L 95

[C)

© 20 -

L 15 1

S 10 -

8 5

€ 0- .

0 O © z =z x E o X E O e
2 5 = 2 2 L @ - F oUW Z

v 0 -

18% increase in bank-level parallelism over TL

43

Simple Prefetching + RR scheduling

~— N ™M — (N ™M

+ + + + + +
X X X X > > > -Memory
= 1wl Ml v = Tl v Addresses
1 2 3 4 6 7 8

)

Bank 1 Bank 2

Simple Prefetching with TL scheduling

~— N ™M — (N ™M
+ + + + + +
X X X X > > > > Memory
Addresses
w] [w] [w] [w w
EHEEEERETELE)
|dle for a
period
Bank 1 Bank 2 Legend
Group 1

W| W[|W]| |W W
21| 3] L4 7

—_—

|dle for a
j 2 period

Bank 1 Bank 2

CTA-Assignment Policy (Example)

Multi-threaded CUDA Kernel

-
LCIA-1 CTA-2| |CTA-3| |[CTA-4

SIMT Core-1 SIMT Core-2

CTA-1 CTA-2 CTA-3 CTA-4

—— g ——

Warp Scheduler Warp Scheduler

L1 Caches ALUs L1 Caches ALUs

46

