
Improving the Performance of
Object-Oriented Languages with
Dynamic Predication of Indirect Jumps

José A. Joao*‡

Onur Mutlu‡*

Hyesoon Kim§
Onur Mutlu
Hyesoon Kim§

Rishi Agarwal†‡

Yale N. Patt*

* HPS Research Group

University of Texas at Austin
‡ Computer Architecture Group

Microsoft Research

§§§§ College of Computing

Georgia Institute of Technology
† Dept. of Computer Science and Eng.

IIT Kanpur

Motivation

� Polymorphism is a key feature of Object-Oriented Languages

� Allows modular, extensible, and flexible software design

� Object-Oriented Languages include virtual functions

to support polymorphism

� Dynamically dispatched function calls based on object type

2

� Dynamically dispatched function calls based on object type

� Virtual functions are usually implemented using

indirect jump/call instructions in the ISA

� Other programming constructs are also implemented with indirect

jumps/calls: switch statements, jump tables, interface calls

Indirect jumps are becoming more frequent with modern languages

Example from DaCapo fop (Java)

public int mvalue() {

if (!bIsComputed)

computeValue();

return millipoints;

}

Length.class:

Length

LinearCombinationLength.class:

This indirect call is
hard to predict

protected void computeValue() {}

LinearCombinationLength

PercentLength

MixedLength

protected void computeValue() {

// …

setComputedValue(result);

}

LinearCombinationLength.class:

protected void computeValue() {

// …

setComputedValue(result1);

}

PercentLength.class:

LinearCombinationLength

PercentLength

LinearCombinationLength

PercentLength

LinearCombinationLength

PercentLength

3

LinearCombinationLength

PercentLength

Predicting Direct Branches vs. Indirect Jumps

TARG A+1

A
T N

α β

A

δ

?

ρ

br.cond TARGET R1 = MEM[R2]

branch R1

4

Conditional (Direct) Branch Indirect Jump

Indirect jumps:

� Multiple target addresses � More difficult to predict
than conditional (direct) branches

� Can degrade performance

The Problem

� Most processors predict using the BTB:
target of indirect jump = target in previous execution

� Stores only one target per jump
(already done for conditional branches)

� Inaccurate

5

� Inaccurate

� Indirect jumps usually switch between multiple targets

� ~50% of indirect jumps are mispredicted

� Most history-based indirect jump target predictors
add large hardware resources for multiple targets

Indirect Jump Mispredictions

8

10

12

14

16

p
e
r
 K
il
o
 I
n
s
tr
u
c
ti
o
n
s

(
M
P
K
I
)

direct

indirect

41% of mispredictions due to Indirect Jumps

6

0

2

4

6

8

M
is
p
r
e
d
ic
ti
o
n
s
p
e
r
 K
il
o

(
M
P
K
I
)

Data from Intel Core2 Duo processor

41% of mispredictions due to Indirect Jumps

B C

E
H

A

C

B

DIP-jumpA
Hard to predict

p1

p2

Dynamic Indirect Jump Predication (DIP)

D

call R1

TARGET 3TARGET 1 TARGET 2

F

H

Frequently executed path

Not frequently executed path

C

G

I

Insert select-µops

(φ-nodes in SSA)
CFM pointI

p2

7

G

return

Fp1

p2

B C

E
H

A

C

B

DIP-jumpA
Hard to predict

p1

p2

Dynamic Indirect Jump Predication (DIP)

D

call R1

F

H

Frequently executed path

Not frequently executed path

C

G

I

Insert select-µops

(φ-nodes in SSA)
CFM pointI

p2

8

G

return

Fp1

p2

Dynamic Predication of Indirect Jumps

� The compiler uses control-flow analysis

and profiling to identify

� DIP-jumps: highly-mispredicted indirect jumps

� Control-flow merge (CFM) points

� The microarchitecture decides when and

what to predicate dynamically

� Dynamic target selection

9

Dynamic Target Selection

Most-freq target

Target
Selection
Table

BTB
Branch Target Buffer

Most-freq target

• Three frequency counters per entry
• Associated targets in the BTB

10

0 3 1
hash2

Most-freq targetMost-freq target

T
o
 F

e
tc

h

Dynamic Target Selection

Target
Selection
Table

BTB
Branch Target Buffer

3.6KB

11

hash3

0 3 1

2nd most-freq target

T
o
 F

e
tc

h

Additional DIP Entry/Exit Policies

� Single predominant target in the TST

� TST has more accurate information

� Override the target prediction

� Nested low confidence DIP-jumps

12

� Nested low confidence DIP-jumps

� Exit dynamic predication for the earlier jump

and re-enter for the later one

� Return instructions inside switch statements

� Merging address varies with calling site

� Return CFM points

Methodology

� Dynamic profiling tool for DIP-jump and CFM point selection

� Cycle-accurate x86 simulator:

� Processor configuration
� 64KB perceptron predictor

� 4K-entry, 4-way BTB (baseline indirect jump predictor)�

� Minimum 30-cycle branch misprediction penalty

� 8-wide, 512-entry instruction window

� 300-cycle minimum memory latency

� 2KB 12-bit history enhanced JRS confidence estimator

� 32 predicate registers, 1 CFM register

� Also less aggressive processor (in paper)

� Benchmarks: DaCapo suite (Java), matlab, m5, perl

� Also evaluated SPEC CPU 2000 and 2006

13

Indirect Jump Predictors

� Tagged Target Cache Predictor (TTC) [P. Chang et al., ISCA 97]

� 4-way set associative fully-tagged target table

� Our version does not store easy-to-predict indirect jumps

� Cascaded Predictor [Driesen and Hölzle, MICRO 98, Euro-Par 99]� Cascaded Predictor [Driesen and Hölzle, MICRO 98, Euro-Par 99]

� Hybrid predictor with tables of increasing complexity

� 3-stage predictor performs best

� Virtual Program Counter (VPC) Predictor [Kim et al., ISCA 07]

� Predicts indirect jumps using the conditional branch predictor

� Stores multiple targets on the BTB, as our target selection logic does

14

0

10

20

30

40

50

D
e
lt
a
s
 (
%
)

DIP (3.6KB)

TTC (12.4KB)

VPC

CASC (11.3KB)

Performance, Power, and Energy

37.8%

2.3%

-50

-40

-30

-20

-10

0

D
e
lt
a
s
 (
%
)

IPC
delta (%)

Max power
delta (%)

Energy
delta (%)

EDP
delta (%)

15

24.8%

45.5%

DIP vs. Indirect Jump Predictors

50

60

70

80

90

I
P
C
 d
e
lt
a
 (
%
)

2T-DIP (3.6KB)

TTC (24.8KB)

VPC (12-iter)

CASC (22.6KB)

DIP (3.6KB)

16

0

10

20

30

40

I
P
C
 d
e
lt
a
 (
%
)

Outcome of Executed Indirect Jumps

DIP

used

50

60

70

80

90

100

P
e
r
c
e
n
t
o
f
E
x
e
c
u
te
d
 I
n
d
ir
e
c
t
J
u
m
p
s
 (
%
)

17

0

10

20

30

40

50

P
e
r
c
e
n
t
o
f
E
x
e
c
u
te
d
 I
n
d
ir
e
c
t
J
u
m
p
s
 (
%
)

Mispredicted, no DIP action
Harmful (Correct Prediction, Incorrect DIP Target)
Neutral (Mispredicted, Incorrect DIP Target)
Mod. Harmful (Correct Prediction, Correct DIP Target)
Useful (Mispredicted, Correct DIP Target)
Correctly predicted

BTB

correct

Additional Evaluation (in paper)

� Static vs. dynamic target selection policies

� DIP with more than 2 targets � 2 dynamic targets is best

� DIP on top of a baseline with TTC, VPC or Cascaded predictors

18

� Sensitivity to:
� Processor configuration

� BTB size

� TST size and structure

� More benchmarks (SPEC CPU 2000 and 2006)

Conclusion

� Object-oriented languages use more indirect jumps

� Indirect jumps are hard to predict and have already become
an important performance limiter

� We propose DIP, a cooperative hardware-software technique

Improves performance by 37.8%

19

� Improves performance by 37.8%

� Reduces energy by 24.8%

� Provides better performance and energy-efficiency than
three indirect jump predictors

� Incurs low hardware cost (3.6KB) if dynamic predication
is already used for conditional branches

� Can be an enabler encouraging developers to use
object-oriented programming

Thank You!

Questions?Questions?

