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Abstract

Higher level of resource integration and the addition of new fea-

tures in modern multi-processors put a significant pressure on their

verification. Although a large amount of resources and time are de-

voted to the verification phase of modern processors, many design

bugs escape the verification process and slip into processors operating

in the field. These design bugs often lead to lower quality products,

lower customer satisfaction, diminishing brand/company reputation,

or even expensive product recalls.

This paper proposes a flexible, low-overhead mechanism to detect

the occurrence of design bugs during on-line operation. First, we an-

alyze the actual design bugs found and fixed in a commercial chip-

multiprocessor, Sun’s OpenSPARC T1, to understand the behavior and

characteristics of design bugs. Our RTL analysis of design bugs shows

that the number of signals that need to be monitored to detect design

bugs is significantly larger than suggested by previous studies that ana-

lyzed design bugs at a higher level using processor errata sheets. Sec-

ond, based on the insights obtained from our analyses, we propose

a programmable, distributed online design bug detection mechanism

that incorporates the monitoring of bugs into the flip-flops of the de-

sign. The key contribution of our mechanism is its ability to monitor

all control signals in the design rather than a set of signals selected at

design time. As a result, it is very flexible: when a bug is discovered

after the processor is shipped, it can be detected by monitoring the set

of control signals that trigger the design bug.

We develop an RTL prototype implementation of our mechanism

on the OpenSPARC T1 chip multiprocessor. We found its area over-

head to be 10% and its power consumption overhead to be 3.5% over

the whole OpenSPARC T1 chip.

1. Introduction
The Challenges of Correct Design - The advent of chip-

multiprocessing has led to unprecedented levels of chip integration.

Today, most general purpose processor chips are equipped with mul-

tiple cores, multiple levels of coherent memory, on-chip interconnec-

tion networks, and memory and I/O controllers. At the same time,

processors are augmented with new technologies such as virtualiza-

tion, dynamic power management, and 64-bit extensions. Complex

interactions between these modules, as well as the complexity of the

modules themselves, put a tremendous pressure in the verification of

the system. Although the verification phase of modern processors can

consume a large portion of the design cycle [3], require significant

amount of resources [7], and utilize state-of-the-art verification tech-

niques, design bugs (also known as errata, design defects, or design

errors) still slip into the final products and “buggy” processors find

their way into the field.

This trend is clearly shown in Figure 1. We studied the errata doc-

umentation of five recent Intel processors and found that the rate of

design bugs discovered after product release has more than doubled

in the latest generation of processors.1 The graph shows the number

1The data is extracted from the processors’ errata documentation [12, 11, 8,

10, 9].
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Figure 1. Timeline of discovered design bugs over the lifetime of

five Intel processors

of discovered design bugs over the lifetime of five Intel processors.

The Pentium 4, Pentium M, and the Xeon 1.4-3.2 processors exhibit a

similar trend with an average of 1.2 design bugs discovered per month

during their lifetime.2 On the other hand, the higher chip-level inte-

gration of resources and the addition of new features in the Core Duo

and Core 2 Duo processors resulted in more design bugs. For exam-

ple, although the Core Duo dual-core processor was derived from the

Pentium M single-core processor and had the same architecture, it ex-

hibited a much higher rate of design bugs than its predecessor. Specif-

ically, the design bug discovery rate of the two multi-core processors

is 3.5 design bugs per month, almost triple that of their single-core

predecessors. This trend is expected to worsen in the future as tech-

nology scaling will allow for more diverse resources to be integrated

into a single chip.

Why is Online Bug Detection Needed? Today, design bugs are

treated with ad-hoc heuristic techniques that seek to avoid the oc-

currence of design bugs through software and hardware configura-

tion changes [16]. A common approach employed by such techniques

to avoid the occurrence of design bugs is disabling some processor

features that trigger the design bugs (e.g., support for cache prefetch-

ing [16], dynamic power management [1], etc.). However, this often

leads to reduced product quality/performance and lower customer sat-

isfaction. Furthermore, when such workarounds are not possible, de-

sign bugs can lead to expensive product recalls [27] and a potentially

diminishing brand/company reputation.

Augmenting a design with a mechanism that enables a systematic

approach to detect and avoid design bugs after the product release and

while the system is operating in the field can offer the following ben-

efits:
1. Faster design cycle and time to market. Today, a significant frac-

tion of the verification phase is spent to discover a very small

number of design bugs [6]. This time can be saved by discover-

ing and fixing that small number of design bugs in the field after

product release.

2We suspect that the reason why the Pentium M processor had less design

bugs than the other two processors is because it was based on the matured Intel

P6 architecture.

1



Design Bug 

Avoidance Techniques

System Recovery

Mechanisms

Field-programmable

Online Design Bug 

Detection Mechanism

Field-programmable

Substrate for Flexible 

Signal Monitoring

Firmware loads the bug 

detection mechanism with 

the design bug triggering 

conditions. 

Firmware configures the set 

of signals to be monitored. 

Figure 2. High-level overview of an in-the-field design bug detection

and avoidance framework

2. Reduce the risk of expensive product recalls (and potentially

damaged company reputation) due to ad-hoc heuristic tech-

niques that might not be able to avoid a discovered design bug.

A systematic online design bug detection technique increases

the probability of successfully dealing with the design bug and

avoiding expensive recalls.
3. Avoid potential impact to product quality and customer satisfac-

tion due to the use of conventional techniques that disable design

features to avoid design bugs. Instead, online design bug detec-

tion allows the system to operate with all its features enabled and

recover the system only when the design bug occurs. Therefore,

during bug-free execution the system is operating under its orig-

inal specifications.

Online Design Bug Detection and Avoidance - Figure 2 pro-

vides a high-level overview of the in-the-field design bug detection

and avoidance framework which we will describe in this paper. The

framework has four layers: 1) The bottom layer that provides a field-

programmable substrate for flexible signal monitoring. This substrate

is programmed by special firmware at system startup to select the set

of signals that are required to be monitored for design bug detection.

2) A field-programmable design bug detection mechanism that checks

if the monitored signals match with a bug triggering condition. The

mechanism is programmed by special firmware at system startup with

the bug triggering conditions. 3) A system recovery mechanism that

rolls back the system state to the last correct state when a design bug

occurrence is detected. 4) Design bug avoidance techniques that are

activated after a design bug detection to guide execution around the

bug triggering conditions and avert the design bug. In this paper we

focus on the first two layers and provide a novel mechanism for per-

forming flexible signal monitoring and online design bug detection.

1.1. Contributions of this Work
This work makes the following contributions in the area of online

design bug detection:

• We further the understanding in online design bug detection

by performing a rigorous analysis of the design bugs in the

OpenSPARC T1 chip-multiprocessor. Unlike previous works

that based their design bug analyses on high-level abstract de-

scriptions of the processor errata documentation, our analysis is

performed at the RTL model of the design, thus enabling the

extraction of low-level information directly related to the actual

hardware implementation. To the best of our knowledge this is

the first RTL design bug analysis study published to date.
• Based on the insights obtained from our RTL analysis of design

bugs, we propose a novel distributed online bug detection mech-

anism. Unlike the mechanisms proposed in previous work, our

mechanism can concurrently monitor all the control signals in

the design that can trigger a design bug.
• We provide a detailed hardware implementation of our mech-

anism. Unlike previously proposed mechanisms that route se-

lected signals from the source flip-flops to a centralized moni-

toring mechanism that checks for bug triggering conditions, our

R31. Interactions between the Instruction Translation 

Lookaside Buffer (ITLB) and the Instruction Streaming 

Buffer May Cause Unpredictable Software Behavior

Problem: Complex interactions within the instruction 

fetch/decode unit may make it possible for the processor 

to execute instructions from an internal streaming buffer 

containing stale or incorrect information.

Implication: When this erratum occurs, an incorrect 

instruction stream may be executed resulting in 

unpredictable software behavior.

(a)

63 - TLB Flush Filter Causes Coherency Problem in 

Multiprocessor Systems

Description: If the TLB flush filter is enabled in a 

multiprocessor configuration, coherency problems may 

arise between the page tables in memory and the arise between the page tables in memory and the 

translations stored in the on-chip TLBs. This can result 

in the possible use of stale translations even after 

software has performed a TLB flush.

Potential Effect on System: Unpredictable system failure.

(b)

Figure 3. Examples of design bugs from (a) the Pentium 4 errata

sheet, and (b) the Opteron errata sheet

mechanism distributes the monitoring and checking process at

the flip-flop level.

• We show that our online design bug detection mechanism can

be synergistically combined with a previously proposed online

hardware defect detection mechanism. The combination imple-

ments a thorough solution that provides a high degree of both re-

liability and dependability to a system operating in the field. We

show that the hardware used for the detection of design bugs can

partially be used for detecting hardware defects, thereby amor-

tizing the cost of both mechanisms.

2. Design Bug Analysis
We first analyze design bugs in a real processor to obtain insights

into their characteristics and to develop a mechanism that can flexibly

and efficiently detect the occurence of design bugs while the system is

in operation.

2.1. Previous Design Bug Analysis Studies
The potential of augmenting future microprocessors with online

design bug detection has led to a number of studies that analyzed the

known design bugs that slipped into recent commercial microproces-

sors. The objective of these studies was to better understand and gain

insights into the characteristics of the known design bugs in existing

microprocessors, and extrapolate the expected characteristics of the

design bugs of future microprocessors.

Specifically, Avžienis et al. [2] analyzed the known design bugs in

the Intel Pentium II since its initial release. More recently, Sarangi et

al. [20] analyzed the design bugs in ten modern commercial micropro-

cessors from Intel, AMD, IBM and Motorola, and Narayanasamy et

al. [17] analyzed the design bugs in two microprocessors: Intel’s Pen-

tium 4 and AMD’s Athlon 64. Another study by Wagner et al. [26]

analyzed the design bugs in Intel StrongARM SA1100 and IBM Pow-

erPC 750GX. The analysis in all of these studies was based on in-

formation extracted from the available microprocessor errata sheets

e.g. [13, 1, 5]. An errata sheet is a document published and main-

tained by the microprocessor manufacturer to provide its customers

with details about known microprocessor design bugs. The document

provides an assessment of each design bug’s severity, the degree to

which it can affect the system, a possible set of conditions that can

trigger the design bug, any possible workarounds, and sometimes the

company’s intention to provide a fix in a future version of the product.
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Example 1 from Verilog file tlu_tcl.v

line 1089:   assign  intrpt_taken =

line 1090:               rstint_taken | hwint_taken | sirint_taken;

...

line 1105:   // modified for bug 3919

line 1106:   // assign       trap_to_redmode = trp_lvl_at_maxtlless1 & ~intrpt_taken;

line 1107:   assign  trap_to_redmode = trp_lvl_at_maxtlless1 & ~(rstint_taken | sirint_taken);

Buggy Code

Correct Code

Figure 4. Example of a logic design bug at the RTL level

A major drawback of using the errata sheets to extrapolate statis-

tics about design bugs is that the errata sheets commonly provide very

high-level descriptions of the design bugs. Such descriptions provide

little or no insight into the low-level details of the underlying hard-

ware problem. An example description of a design bug listed in the

Intel Pentium 4 errata sheet [13] is shown in Figure 3(a). This design

bug is related to complex interactions between the processor’s instruc-

tion translation lookaside buffer and the instruction streaming buffer

that can result in the execution of an incorrect instruction stream with

unpredictable software behavior. Using this description, it is very hard

to accurately relate this design bug to the actual hardware implemen-

tation and reason about, for example, exactly what hardware signals

(i.e., wires) need to be monitored by an online design bug detection

mechanism to effectively detect the occurrence of the design bug. Fig-

ure 3(b) shows another example design bug description, from AMD’s

Opteron errata sheet [1]. This bug is related to the translation looka-

side buffer flush filter and can lead to unpredictable system behavior.

Again, from this high-level description, it is very difficult to infer the

set of hardware signals that should be examined to dynamically de-

tect its occurrence. Without knowing the set of hardware signals that

needed to be monitored to detect the bug, it is very difficult to design

a mechanism that would detect the bug and to accurately estimate the

hardware cost of such a mechanism.

Our Goal: In order to design a hardware mechanism that detects

design bugs, the signals that affect the occurrence of each bug need

to be known. Our goal in this section is to perform a more rigor-

ous, lower-level (RTL) analysis of design bugs. Our purpose is to

understand design bug characteristics at the register transfer level to

(1) design a flexible mechanism that can detect known design bugs

during online operation after the chip is manufactured, and (2) more

accurately estimate the hardware cost of such a design bug detection

mechanism. To this end, we first draw insights from our analysis of de-

sign bugs found and fixed in an existing commercial processor, Sun’s

OpenSPARC T1.

2.2. RTL Design Bug Analysis
We perform an RTL design bug analysis in an attempt to bridge the

gap between the high-level design bug descriptions provided by the

microprocessor errata sheets and the low-level hardware implemen-

tation details needed to devise effective online design bug detection

mechanisms. At the RTL level, the microprocessor design behavior is

described in a hardware description language (e.g., Verilog or VHDL).

This level is considered to be very close to the actual hardware imple-

mentation. The only design phases separating the RTL level with the

actual hardware implementation are 1) logic synthesis, which gener-

ates the design’s gate-level netlist and 2) place-and-route, which cre-

ates the transistor-level layout of the netlist. Therefore, the direct re-

lation between the RTL level and the underlying implementation pro-

vides an adequate level of detail that allows the extraction of low-level

design bug characteristics.

Our study focuses on the Verilog RTL source code of the

OpenSPARC T1 chip-multiprocessor [23], the open source version

of Sun’s commercial UltraSPARC T1 (Niagara) chip-multiprocessor.

Since no errata documentation is publicly available for the Ultra-

SPARC T1 microprocessor, we focus on the actual design bugs found

during the development of the OpenSPARC T1 and documented in

the RTL source code. Specifically, when the designers corrected a de-

sign bug, they left the original buggy code in the RTL source file as

a comment. Therefore, both the original erroneous implementation as

well as the fixed implementation are available in the source code. As

such, by examining these two implementations, it is straightforward to

discover what hardware signals are involved in each design bug. Al-

though these design bugs did not slip into the final product, we believe

they share similar characteristics with the design bugs that eventually

slipped into the released version of the microprocessor with the excep-

tion of some differences which we discuss in the next section.

Methodology: We analyzed 296 design bugs that were docu-

mented in the Verilog source files of two OpenSPARC core units.

These bugs account for about 99% of all documented and commented-

out bugs in the OpenSPARC T1 RTL. We classified these bugs into

three major classes: 1) Logic design bugs, 2) Algorithmic design bugs,

and 3) Timing design bugs. Later, in Section 3, we analyze the logic

signals that need to be monitored to detect these bugs.

2.3. Classification of Design Bugs
Logic Design Bugs: This class of design bugs is characterized by

erroneous logic in combinational circuits. A logic bug occurs because

the designer formed an erroneous logic block; for example an AND

gate could be used instead of an OR gate, or an inverted signal rather

than the non-inverted one. The code segment presented in Figure 4,

taken from the OpenSPARC T1 Verilog source files, illustrates an ex-

ample of a logic design bug. The design bug is located in the core’s

trap logic unit (TLU) and is associated with the combinational logic

that computes the control signal trap to redmode. The incorrect

combinational circuit implementation is commented out in line 1106.

The corrected combinational circuit implementation is shown in line

1107. By examining lines 1089-1090, we notice that the signal re-

placed in the correct code (intrpt taken) is computed by ORing

three other signals. One of the three signals (hwint taken) is no

longer a source signal in the correct implementation. We observed that

many logic design bugs cannot be fixed by simply redefining the logic

between the source signals in the buggy implementation. Instead, it

is very common that fixing the bug requires the addition or removal

of signals to/from the buggy implementation (more than 95% of logic

design bugs had this requirement).

This example demonstrates the amount of low-level informa-

tion provided in the RTL code that is missing from the de-

sign bug descriptions in the errata documentation. For instance,

by observing the code segment associated with the design bug,

it is very easy to find the set of hardware signals that acti-

vate the bug (i.e., trp lvl at maxtlless1, rstint taken,

hwint taken, and sirint taken). In analyses solely based on

errata sheets, this low-level information is abstracted away in the

high-level design bug description and has to be inferred, a process

that involves a high amount of uncertainty and inaccuracy.

Algorithmic Design Bugs: This class covers major design bugs

related to the algorithmic implementation of the design. These design

bugs exhibit algorithmic deviations from the design specification and

they usually require major modifications to be fixed. Figure 5 illus-

trates an example algorithmic design bug located in the load queue

control logic at the core’s load/store unit. This bug is due to an incor-

rect implementation of the round robin algorithm for selecting one of
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Example from Verilog file lsu_qctl1.v

line 2993: //bug4814 - change rrobin_picker1 to rrobin_picker2

line 2993: // Choose one among 4 loads.

line 2994: //lsu_rrobin_picker1 ld4_rrobin  (

line 2995: //    .events             ({ld3_pcx_rq_vld,ld2_pcx_rq_vld,

line 2996: //                  ld1_pcx_rq_vld,ld0_pcx_rq_vld}),

...

line 3007: //    .se(se),

line 3008: //    .so()

line 3009: //  );

line 3010:

line 3011:   lsu_rrobin_picker2 ld4_rrobin  (

line 3012:       .events       ({ld3_pcx_rq_vld,ld2_pcx_rq_vld,ld1_pcx_rq_vld,ld0_pcx_rq_vld}),

...

line 3020:    .se(se),

line 3021:    .so()

line 3022:  );

Buggy Code

Correct Code

Figure 5. Example of an algorithmic design bug at the RTL level

Example from Verilog file lsu_qdp1.v

line 1228:   // Begin - Bug3487.

...

line 1239:   dff #(48) ifu_std_d1 (

line 1240:           .din    (tlb_st_data[47:0]),

line 1241:           .q      (lsu_ifu_stxa_data[47:0]),

line 1242:           .clk (asi_data_clk),

line 1243:           .se     (1'b0),     .si (),          .so ()

line 1244:           );

line 1245:

line 1246:   // select is now a stage earlier, which should be

line 1247:   // fine as selects stay constant.

line 1248:   //assign  lsu_ifu_stxa_data[47:0] = tlb_st_data_d1[47:0] ;

line 1249:

line 1250:   // End - Bug3487.

Buggy Code

Correct Code

Figure 6. Example of a timing design bug at the RTL level

the four loads buffered in the load queue. To fix the incorrect round

robin implementation described in module lsu rrobin picker1,

a newmodule had to be implemented (lsu rrobin picker2). Un-

like fixes for logic design bugs, fixes for algorithmic design bugs are

not limited to combinational circuit modifications, rather they some-

times require multiple major modifications that can span the whole

module.

Timing Design Bugs: This third class of design bugs is associated

with the timing correctness of the implementation. We have observed

that most of these design bugs are cases where a signal needed to be

latched a cycle earlier or a cycle later in order to keep the timing of

signals correct in the design. An example of such a design bug is

shown in Figure 6. This timing design bug is located in the queue

data path of the core’s load/store unit. As shown in the Verilog source

code, the incorrect implementation in line 1248 assigns the value of

the 48-bit tlb st data d1 bus to the lsu ifu stxa data bus

in the same cycle. However, as shown in lines 1239-1244, the correct

timing of the data movement between the two buses requires the data

to be latched for one clock cycle. We found that the most common fix

for this class of design bugs is the addition or removal of flip-flops to

adhere to the timing constraints required to keep the design correct.

2.4. Design Bug Type Distribution
After studying the OpenSPARC T1 Verilog source files [22] we

found that almost all (∼99%) of the documented design bugs are lo-

cated in two units, the load/store unit (LSU) and the trap logic unit

(TLU) [23], shown in Figure 7(a). The LSU processes all data mem-

ory access instructions. It interfaces with all the functional units and

it serves as the gateway between the SPARC core and the core-cache

crossbar to the memory subsystem. The LSU also includes the core’s

data TLB and L1 cache. The TLU implements the SPARC core’s trap

and software interrupt handling logic. It supports six trap levels rang-

ing from hypervisor and supervisor mode traps to user mode traps and

is capable of handling up to 64 pending software interrupts per thread.

In our study we analyzed a total of 296 design bugs documented in

these two units.

Figure 7(b-c) shows the design bug type distribution. A large frac-

tion of the documented design bugs in the two units belong to the

logic design bug class, which accounts for 59% and 49% of the total

design bugs for the LSU and the TLU, respectively. The second most

frequent design bug class is algorithmic design bugs, while timing de-

sign bugs are less frequent and account for only ∼5% of all bugs. The

dominance of logic design bugs over the other two bug classes might

imply that the process of implementing complex combinational logic

is more prone to human error than implementing the algorithmic or

timing specifications of the design.

Asmentioned earlier in this section, these design bugs were discov-

ered, fixed, and documented before the final tape-out of the design. As

such, we expect them to have some differences with the design bugs

that escape the verification phase and slip into the final product. We

suspect that the algorithmic and timing design bugs have a more se-

vere impact on the design’s correctness and therefore they might have

a higher probability of being discovered during the design verification

phase. In contrast, because logic design bugs are isolated and local-

ized to small combinational logic portions, they could be less likely

to be discovered during the verification of the chip. This is because

the erroneous effects of the logic design bugs either might not be ex-

ercised or might be masked before propagating to observable outputs

during testing. For example, in order for the logic bug illustrated in

Figure 4 to be active, the source combinational circuit must be set to

specific values (which might be a rare combination of values). Based

on this reasoning, the distribution of design bugs that actually slip into

the final product might have fewer algorithmic and timing design bugs

than the distribution shown in Figure 7(b-c).
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Figure 7. Part (a) shows the OpenSPARC T1 core. Parts (b) and (c)

show the design bug distribution for the Load/Store Unit (LSU) and

the Trap Logic Unit (TLU) respectively

3. Detecting Logic Design Bugs at Runtime
Although logic design bugs might be harder to discover than the

other two design bug classes, we believe that once they have been dis-

covered, it is much easier to detect their occurrence while the “buggy”

microprocessor is in operation in the field. Their characteristic of be-

ing isolated in a combinational logic circuit portion makes it possible

to deterministically detect their occurrence by monitoring the values

of their source signals. To illustrate this concept, we consider the logic

bug example shown in Figure 4. By computing the truth table of the

buggy circuit (line 1106) and the correct circuit (line 1107), as shown

in Figure 8(a), we can infer that the design bug occurs when the source

signals are set to a specific combination of values (shown in the shaded

column of the table). Therefore, by monitoring the values of the bug’s

source signals it is possible to deterministically detect the occurrence

of the specific design bug. In this work, we call this set of signals

first-level monitor signals (i.e., signals that directly determine the oc-

currence of the design bug). For this specific bug, the size of the first-

level monitor signal set is 4 because there are 4 signals whose values

directly determine the bug’s occurrence.

Although it is easy to find the set of first-level monitor signals in

the RTLmodel, these signals unfortunately might not exist in the lower

transistor-level implementation due to the logic synthesis process and

optimizations employed during the process of translating the RTL im-

plementation to gate-level and then to transistor-level implementa-

tion [24]. Thus, there is not a guaranteed one-to-one mapping between

signals in the RTL and signals in the transistor-level implementations.

However, the logic synthesis process maintains a one-to-one mapping

of the state-holding elements (e.g., flip-flops) and module-level pri-

mary inputs/outputs3 between the RTL and transistor-level implemen-

tations [24]. To effectively detect the occurrence of a logic design bug

in the transistor-level hardware implementation, we need only to trace

back the combinational logic that feeds the first-level monitor signals

to a set of signals that are directly connected to either 1) state-holding

elements or 2) primary inputs of the module. We call this set of signals

3In this work we consider a module to be a Verilog design module in the

RTL code.

Input

Signals

trp_lvl_at_maxtlless1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

rstint_taken 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

hwint_taken 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

sirint_taken 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Output

Signal

trap_to_redmode 

(buggy logic)
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

trap_to_redmode

(correct logic)
0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0

trap_to

…

Module

Inputs
trp_lvl_at_maxtlless1

rstint_taken

First-Level 

Monitor Signals

(a)

trap_to

redmodeD Q

Clk…

Flip

Flops

rstint_taken

hwint_taken

sirint_taken

Combinational

Logic

Source-Level 

Monitor Signals

D Q

Clk

(b)

Figure 8. Part (a): The logic bug shown in Figure 4 is triggered

whenever its source signals take the values shown in the shaded

column. Part (b): The source-level and first-level signals for the

same logic bug

the source-level monitor signals. Figure 8(b) illustrates this process.

Monitoring the source-level monitor signal set of a design bug allows

the detection of the bug. Note that it is simple to construct a truth table

using the source-level monitor signals instead of the first-level moni-

tor signals to understand which combination of the values assigned to

source-level signals would exercise the bug.

To determine the number of signals required to be monitored to

detect the occurrence of logic design bugs, we measured the first-level

and source-level signals of the 162 logic design bugs located in the

LSU and the TLU units. Figure 9 shows the cumulative distribution

of the logic design bugs versus the first-level and source-level monitor

signal set sizes in the LSU and the TLU units. We observe that 97%

of the logic bugs located in the LSU and 92% of those located in the

TLU have a source-level monitor signal set size that is smaller than 64

signals. This means that for detecting any single bug that is within the

aforementioned percentage, at most 64 signals need to be monitored.

Table 1 focuses on the number of first-level and source-level sig-

nals needed to be monitored to detect logic design bugs. An interesting

observation is that the average set size of source-level monitor signals

per logic bug is about double the size of the first-level monitor signal

set. Notice that the size of the first-level monitor signal set determines

the minimum number of RTL signals required to be monitored to pre-

cisely detect the occurrence of a certain bug, given that those signals

exist in the actual hardware implementation, and can be probed. On

the other hand, the size of the source-level monitor signal set deter-

mines the number of transistor-level signals required to be tapped to

detect a bug, given that design flip-flops and module inputs can be

probed. Furthermore, the average number of source-level monitor sig-

nals per logic design bug is 17 and 24 for the LSU and the TLU units

respectively (The minimum and maximum set sizes are presented as

well). Hence, the detection of an average design bug requires 17 to 24

transistor-level signals to be monitored.

The total amount of tapped signals can be small if there is a high de-

gree of source signal sharing between multiple design bugs. To quan-

tify this, we studied the amount of sharing between the 162 logic bugs

covered by our study. We found that the sharing between the source-

level monitor signal sets is about 65% on average (68% in LSU and

64% in TLU). This means that 65% of the signals that belong to the
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Figure 9. Cumulative distribution of logic bugs versus the first-level

and source-level monitor signal set sizes for the LSU and TLU

source-level monitor signal set of a logic design bug also belong to

the source-level monitor signal set of at least one other logic design

bug. Furthermore, each logic design bug has on average 6-9 signals

in its source-level monitor signal set that are unique, i.e., they do not

belong to the source-level monitor signal set of any other logic design

bug. This result implies that the discovery of a new design bug requires

the monitoring of an additional 6-9 signals, on average, that have not

been previously monitored for any other bug, thus increasing the total

number of tapped signals.

In order to detect all the 162 studied logic design bugs, 516 and

602 unique source-level monitor signals need to be monitored in the

LSU and the TLU modules, respectively. Note that these numbers are

much higher than previous work estimates that used high-level errata

documentation to analyze design bugs. Specifically, the study in [20]

reports that on average, for the ten processors studied, only 210 sig-

nals need to be monitored to detect all design bugs in all modules of

a processor, with the maximum requirement out of the ten micropro-

cessors being 260 signals. The study in [17] reports that monitoring

only 41 signals is adequate to detect the occurrence of 43 out of the

63 known design bugs in the AMD Athlon 64 and AMD Opteron mi-

croprocessors. In contrast, our study shows that 1118 signals need to

be monitored to detect 162 bugs in two modules of the SPARC core.

We believe this discrepancy stems from the attempt in previous stud-

ies to infer low-level hardware implementation information from the

high-level, abstract information provided in the microprocessor errata

documents. By studying the documented design bugs at the lower RTL

level, we found that the signal monitoring requirements of online de-

sign bug detection are significantly higher than the estimates of these

previous studies. As a result, the problem of detecting design bugs is

more difficult and the solution is likely more hardware intensive than

estimated by previous work.

3.1. Insights from RTL Design Bug Analysis
In summary, our RTL design bug analysis provides the following

conclusions and insights:

1. The design bugs documented in the Verilog source files of the

OpenSPARC T1 chip-multiprocessor can be classified into three

major classes based on their characteristics: logic, algorithmic,

and timing design bugs (Section 2.3).

2. Logic design bugs outnumber the documented design bugs of the

other two design bug classes. Furthermore, they might dominate

the distribution of design bugs that escape the verification phase

and slip into the final product (Section 2.4).

3. Because they only affect combinational logic, the occurrence of

logic design bugs is more readily detectable while the system is

in operation. This can be done deterministically by monitoring a

set of source-level signals.

4. The number of signals that need to be monitored to detect the

occurrence of logic design bugs is significantly higher than esti-

mates provided by previous work. The discovery of a new design

Metrics LSU TLU

Min./Average/Max. number of first-level 

monitor signals per logic design bug
2/8/43 2/12/44

Min./Average/Max. number of source-

level monitor signals per logic design bug
2/17/97 2/24/89

Source-level monitor signal sharing 

among different design bugs
68% 64%

Average number of unique source-level 

monitor signals per logic design bug
6 9

Unique source-level monitor signals (for 

all logic design bugs)
516 602

Table 1. Logic design bug statistics

bug requires the monitoring of additional 6-9 signals, on average,

that have not been previously monitored for any other bug.

These conclusions and insights call for a mechanism capable of

concurrently monitoring a large number of different signals scattered

in the design and thus providing an effective and efficient substrate to

perform online detection of the occurrence of logic design bugs. In

the rest of the paper we describe our proposal for developing such a

mechanism.

4. Distributed Online Bug Detection
In this section we present our distributed online design bug detec-

tion mechanism. Section 4.1 gives an overview of our mechanism,

and Section 4.2 describes how it can be implemented in hardware.

Section 4.3 describes how our mechanism is intergrated at the system

level.

4.1. Overview of Online Design Bug Detection
Figure 10 illustrates the high-level architecture of our online design

bug detection mechanism. The mechanism is characterized by two

phases: 1) the initial setup of the mechanism and 2) the cycle-by-cycle

operation where design bugs are detected while the system is operating

in the field.

4.1.1. Initial Setup Process The first step of the mechanism’s
setup process is the determination of the triggering conditions for each

design bug in the system. The design bug triggering conditions are

characterized by (1) the bug’s source-level monitor signals and (2)

their values that would activate the bug. The design bug triggering

conditions of each bug are determined by system engineers after per-

forming the bug analysis process presented in Section 3.

Bug Signatures: Once bug triggering conditions are determined,

they are represented by a structure called a bug signature (step 1 in

Fig. 10). Conceptually, the bug signature is a list of all the signals in

the system. From that list, the bug’s source-level monitor signals are

marked with the value they need to take to trigger the bug, while non-

source signals are marked with a don’t care value (X) indicating

that their values are irrelevant to the bug activation. The bug signature

can be considered as a representation of the system state that would

activate the design bug. Each design bug can have multiple bug signa-

tures due to multiple possible combinations of triggering conditions.

System Bug Signature: The next step in setting up the design

bug detection mechanism is the generation of the system bug signa-

ture. The collection of bug signatures of all design bugs are merged

together to form the system bug signature (step 2 in Fig. 10). The

system bug signature constitutes a representation of all the conditions

that can trigger any individual design bug in the system. The process

of merging multiple bug signatures into the system bug signature is

detailed in Section 4.2.2.

Bug Detection Segments: The system bug signature is subse-

quently encoded into a binary representation, partitioned into seg-

ments, and loaded into the mechanism’s bug detection segments (step 3

6



BUG#1

XXX1X0…X1X0XX

XXX0X0…X1X1XX

BUG#2 X101XX…XX01XX

BUG#N XXXX1X…X101XX

� �

System Bug Signature

X 1 X 0 X 1 0 X

Bug Signature Collection

�

Merge

Bug Signatures2

Bug 

Detection 

Segment

System State (Flip-Flops)

Bug 

Detection 

Segment

Bug 

Detection 

Segment

Bug 

Detection 

Segment

�

�

Firmware encodes and  

loads  the system bug  

signature to the bug 

detection segments

3

Segment Match 

Detection 

Table

Segment Match 

Detection

Table

�

Segment Match 

Detection 

Table

Design Bug

Recovery 

Handler

Segment

Checking Tree

Global Bug

Detection Signal

Firmware loads 

the segment match 

detection entries

4

Generate the bug 

signatures based on 

bug triggering conditions

Design Bugs &

Triggering Conditions

Aggregate bug detection 

segment match/mismatch 

signals to a global bug 

detection signal
6

1

Cycle-by-cycle online 

checking for design bugs
5

If the global bug detection 

signal flags a bug, system 

recovery is triggered
7

match/mismatch signals

Figure 10. Overview of our online design bug detection mechanism: 1) initial setup (steps 1-4) and 2) online bug detection (steps 5-7)

in Fig. 10). The bug detection segments are field programmable struc-

tures each associated with a part of the system state (i.e., the system’s

flip-flops). Each bug detection segment is loaded with the part of the

system bug signature corresponding to its part of the system state. The

loading of the bug detection segments is done by firmware that has

access to the segments’ field programmable resources. During system

operation, the bug detection segments compare the system state to the

system bug signature and generate match/mismatch signals.

Segment Match Detection Tables: The source-level signals of a

design bug might be located only in some of the bug detection seg-

ments. Therefore, each bug is associated with a segment match detec-

tion entry that indicates which lower-level segments need to match the

system bug signature with the system state for the bug to be detected.

In essence, the system bug signature summarizes all the triggering

conditions from all bugs whereas each segment match detection en-

try demultiplexes them to enable the detection of individual bugs. The

segment match detection entries are loaded into the segment match

detection tables by firmware (step 4 in Fig. 10).

4.1.2. Cycle-by-cycle Operation and Design Bug Detection
Flip-Flop Level Checking: Once the initial setup of the mechanism

is done by the firmware, the remaining task of the mechanism is to

check if the system steps into a bug triggering state while it is operat-

ing. To check this, each bug detection segment compares its portion of

the system bug signature to the system state and generates a segment-

wide match/mismatch signal (step 5 in Fig. 10).

Segment Checking Tree: The detection of each individual bug

usually requires only a subset of all the bug detection segments in the

design to match their portion of system bug signature with the sys-

tem state. For each bug, this information is encoded into a segment

match detection entry. However, the set of segments that are required

for the detection of an individual bug might be scattered in different

areas of the chip. To aggregate the match/mismatch signals of all the

segments on the chip, our mechanism employs a distributed segment

checking tree. Each node in the segment checking tree has a segment

match detection table that is populated with the segment match de-

tection entries of each bug that has bug-detetcion required segments

connected to the tree node. These entries are loaded during the initial

setup phase by firmware (step 4 in Fig. 10). During system operation,

if the match/mismatch signals of the underlying segments match with

one of the node’s segment match detection entries, this indicates that

the local triggering conditions of a design bug within that node are

met. In a similar fashion, each level of nodes in the tree generates a

match/mismatch signal and feeds the upper level of nodes (step 6 in

Fig. 10). If a match signal propagates all the way from the bug detec-

tion segment level to the top level of the tree, this indicates that the

triggering conditions of a specific design bug are met for the whole

chip and a global bug detection signal is asserted. This process is

illustrated in detail with an example in Section 4.2.3. The bug is sub-

sequently flagged to the bug recovery handler (step 7 in Fig 10).

Design Bug Recovery Handler: If a bug is flagged by the global

bug detection signal, the design bug recovery handler recovers the sys-

tem into the last validated system state. Execution is then restarted and

guided by design bug avoidance techniques so that the design bug is

averted, if possible. Since our focus is on bug detection, we leave the

design of the bug recovery handler to future work.

4.2. Hardware Implementation

4.2.1. Bug Detection Flip-Flops In our mechanism, the system
bug signature and its comparison with system state is distributed to

the flip-flop level. This is achieved by augmenting the system flip-

flops with extra logic for storing the system bug signature and com-

paring it to the system state. Figure 11(a) shows a system flip-flop

augmented with these extensions. The non-shaded logic comprises a

scan flip-flop, the common type of flip-flop used in modern processors

to enable scan-in and scan-out functionality to facilitate manufacturing

testing using Automatic Test Pattern Generation [14, 28]. The system

portion is used for holding the system state, while the scan portion

is used to scan-in test patterns and scan-out test responses. In cur-

rent designs, the scan portion is utilized only during the manufacturing

testing phase and stays idle during normal operation. During normal

operation, our mechanism uses the scan portion in combination with

an extra bug detection portion to store the system bug signature. The

scan portion is used to indicate whether the specific flip-flop belongs

to any bug’s source-level monitor signal set. If the scan portion is set

to 1 the flip-flop is indicated as a bug source signal, otherwise the flip-

flop’s value is irrelevant to the activation of a design bug. In the former

case, the value that will activate the design bug is stored in the bug de-

tection portion. The box at the top of Figure 11(b) illustrates the three

encoding rules used to binary map the system bug signature to the bug

detection portion (shaded box) and the scan portion (white box).
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Figure 11. Modified scan flip-flop with bug detection capabilities (a). Example of an 8-bit bug signature encoding and checking (b).

If the scan portion is set, the value of the system flip-flop is com-

pared to the value of the bug detection portion to check if there is

a match between the system state and the system bug signature. In

our mechanism, flip-flops are grouped into bug detection segments

to simplify checking; the comparison result is ORed with the com-

parison result of the previous flip-flop to generate a segment-wide

match/mismatch signal. The signal is propagated to the next flip-flop

(0 indicates a segment match and 1 indicates a segment mismatch).

A bug detection segment consists of multiple bug detection flip-flops

connected together in a serial fashion (this is analogous to scan seg-

ments in scan chains).

Figure 11(b) demonstrates the system bug signature binary encod-

ing process with an example 8-bit system bug signature. The system

bug signature is encoded and loaded into the bug detection and scan

portions, and the checking is partitioned into two 4-bit bug detection

segments. Figure 11(b) also demonstrates how the bug detection seg-

ment signals are generated for two different scenarios. In the first sce-

nario, the system state matches with the system bug signature and the

segment bug detection signals are both set to zero indicating that the

bug is activated. In the second scenario, the second bit of the system

state does not match with that of the system bug signature and there-

fore the bug detection signal of the particular segment is set to one

indicating that the bug is not activated.

4.2.2. Merging Bug Signatures into the System Signature
In this section we describe the technique we employ to merge multiple

bug signatures to generate the single system bug signature. First, we

merge all the bug signatures related to a single design bug into an

intermediate bug signature. To do so, for each bit location we check

the values of all bug signatures. If the bit takes the value of zero in

some signatures and the value of one in others, then a don’t care

(X) value is assigned to the merged intermediate bug signature since

for that signal either value can lead to a bug triggering combination.

If the value of the bit is constant for all signatures then that value is

assigned to the merged intermediate bug signature. This technique is

illustrated in Figure 12 for two example design bugs.

When merging the intermediate bug signatures of multiple bugs

into the system bug signature, we employ a slightly different tech-

nique. Again, if a bit location takes both values (one and zero)

among different intermediate signatures, it is marked with a don’t

care. The difference from the previous technique is that now it is

possible for a bit location to have a zero or a one in the intermediate

signature of one bug and a don’t care in the intermediate signa-
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Figure 12. Merging bug signatures into system bug sigmature

ture of another. This case is treated differently depending on the status

of the remaining signals in the bug detection segment:

• CASE 1: Consider the two righmost bits of the middle bug de-

tection segment of Figure 12. They both have the value of one

in one of the intermediate bug signatures and a don’t care

value in the other. Since the whole bug detection segment needs

to match to trigger a bug and both bugs have other source sig-

nals in this bug detection segment (the second source signal with

the value zero), the specific source signal is assigned a don’t

care value so that it will not prevent the detection of any of

these two particular design bugs.

• CASE 2: Now, consider the third bits of the leftmost and the

rightmost bug detection segments. Again, in one of the interme-

diate signatures they have the value of one while in the other

they have a don’t care value. However, in this case no other

source signal in the bug detection segments is shared between

the two bugs. This means that the segments are associated with

only one design bug. Therefore, the source signals can be set to

one in the system bug signature because only a single bug re-

quires the particular segment to match its portion of system bug

signature with the system state to detect the bug activation.

False Positives - Notice that our mechanism uses don’t care

values to merge multiple bug triggering conditions and multiple bug
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signatures. This approach relaxes the bug triggering conditions and

can result in false positives, that is, non-errant conditions which ini-

tiate an innocuous recovery sequence. However, since the technique

only relaxes the triggering conditions, it cannot exhibit false nega-

tives, that is, discovered design bugs with installed signatures that do

not successfully initiate recovery. This is a very important property,

since it guarantees that the system will not experience the effects of a

specific design bug once the bug is covered by the mechanism.

However, the presence of false positives can adversely impact the

performance of the system if too many false recovery alarms are is-

sued. Since the false positive rate highly depends on the dynamic sys-

tem conditions and workload, we propose a dynamic scheme for trad-

ing off design bug coverage with system performance. Figure 13 gives

a high-level overview of this scheme. At system start-up, firmware

loads into the mechanism the initial system bug signature that covers

all design bugs. A triggered design bug detection is followed by a di-

agnosis process that determines if the design bug detection is correct or

if it is a false positive. If the detection is correct, the system execution

is recovered and the design bug is averted using design bug avoidance

techniques. If the detection is a false positive, then the false positive

rate of the specific design bug is logged using the bug’s ID tag and

the system’s false positive rate is calculated. The system’s false posi-

tive rate is then compared with a predefined threshold. If the system’s

false positive rate is larger than the threshold, the design bug with the

highest false positive rate is removed from the set of covered design

bugs and firmware regenerates and loads into the mechanism the new

system bug signature. On the other hand, if the system’s false positive

rate is smaller than the threshold, the design bug with the lowest false

positive rate is added to the set of covered design bugs.

The predefined threshold can be adapted dynamically based on

the requirements of the running applications. For example, a

performance-critical application with low dependability requirements

can set the threshold low, while a dependability-critical application

can set it high. Furthermore, this scheme can be optimized to achieve

the optimum trade-off between design bug coverage and performance

overhead due to false positives. Unfortunately, the exploration and

evaluation of this technique requires extensive simulation of real work-

loads on a low-level (RTL) model of the design. To the best of our

knowledge, such a simulation infrastructure is not available in our re-

search community. Therefore, we leave this exploration and evalua-

tion for future work.

4.2.3. Segment Checking Tree Implementation In our mech-
anism, the bug detection segment signals are aggregated to generate

one global bug detection signal through a hierarchical tree structure,

the segment checking tree. The implementation of this structure is
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Figure 14. Distributed segment checking tree example

shown in Figure 14. Each leaf node of the structure is connected to

a set of bug detection segments. For each bug that has source signals

located in bug detection segments assigned to a leaf node, a segment

match detection entry is allocated in that node. Each segment match

detection entry indicates which subset of the node’s bug detection seg-

ments need to match the system bug signature to trigger the given bug

through the Match-bitvector field. Each entry also has a Bug

ID and a Flag field. The Bug ID field indicates the bug associated

with the specific entry, while the Flag field indicates whether the spe-

cific bug has source signals that are mapped on a different leaf node.

For example, the design bug with the ID tag 12, has source signals

both in the leftmost and in the rightmost leaf nodes of the tree. There-

fore, it is allocated a segment match detection entry in each of those

nodes with the Flag field set to zero. On the other hand, the design

bugs with ID tags 7 and 9 have source signals limited only to one leaf

node and this is indicated by having their Flag field set. A bug that

has its Flag field set means that if the Match-bitvector field of

that particular bug matches with the values of the underlying bug de-

tection segments, then no further checking is required (since the bug’s

signals are limited only to that node) and the bug is flagged, along with

its ID tag, through the tree to the top level global bug detection signal.

Notice that if two bugs are flagged in the same cycle (e.g., bugs 7 and

9), only one of them will be flagged to the top level and the decision

will be arbitrary based on the implementation. However, due to the

rare occurence of design bugs, we don’t expect two design bugs to be

triggered in the same cycle.

Figure 14 illustrates the detection of the bug with the ID tag 12.

In the specific example, the values generated by the underlying bug

detection segments match with the Match-bitvector fields of bug

12 in both leaf nodes. Since the Flag field is set to zero, the bug is

not flagged and the hit/miss signal from the leaf nodes are passed to the

upper level. When the node hit/miss signals reach the top level node of

the tree, the values match with the bug’s Match-bitvector entry

and therefore the global bug detection signal is set to one, triggering

the design bug recovery process, and the bug ID tag is passed to the

bug recovery handler.

4.3. System-Level Integration
The proposed mechanism requires two additional critical function-

alities to provide a complete online bug detection solution:

1. In-the-Field Programmability: The system bug signature and

the data that need to be stored in segment match detection en-

tries are dynamic and change as new design bugs are discov-

ered or old bugs get fixed. This part of the design needs to be

field-programmable and upgradable by special firmware devel-

oped and distributed by microprocessor vendors.

2. Recovery Support: The detection of the occurrence of a de-

sign bug is only the first step in providing a solution to the prob-

lem. Further action is required to avert the design bug and avoid

9
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Figure 15. Unifying design bug detection and defect detection

corrupting the execution. This is commonly achieved through

recovery support where the system state recovers to the last vali-

dated/correct state [18, 21] and execution is guided from there in

a way that the design bug is averted [19, 26, 17].

In addition, to be widely adopted, a bug detectionmechanism needs

to have low area and power consumption overhead. To accomplish

this, we propose amortizing the cost of the proposed logic by using

it for other purposes than solely bug detection (e.g., hardware defect

detection).

Unifying Defect Detection and Design Bug Detection -We found

that our recently proposed mechanism for detecting hardware defects

can provide an efficient substrate for both requirements [4]. This on-

line defect detection technique introduces the Access/Control Exten-

sion (ACE) framework to provide firmware access to the processor’s

scan state. This functionality is used to load ATPG test patterns and

test the underlying hardware through specialized firmware. The ACE

framework also uses a tree structure to access the scan state, similar to

the tree structure used in this work to maintain the segment match de-

tection entries and perform distributed bug checking (see Figure 14).

Since the ACE framework can read/write to any of the tree nodes and

any scan flip-flop in the design, it can also be used to program the seg-

ment match detection entries in the distributed bug checking tree and

load the bug signature at the flip-flop level. We believe that this frame-

work can be easily adapted to provide the bug detection mechanism

programmability through firmware with minor engineering changes.

Checkpointing & Recovery: The same framework also employs

coarse-grained checkpoint and recovery techniques, based on previous

work [18, 21], to provide recovery from hardware defects. We believe

these checkpoint and recovery techniques can offer an effective sub-

strate to provide recovery support to our mechanism. By rolling back

the system state to the last validated and correct system state, execu-

tion can be guided by design bug avoidance techniques in a way to

avert the design bug. Several design bug avoidance techniques have

already been proposed in the research literature [19, 26, 17]. Any fur-

ther advancement toward this direction is left for future work.

System-Level Operation: Furthermore, the two mechanisms can

work together synergistically and provide a collective solution for re-

liable and dependable computing. Figure 15 shows the synergistic

execution timeline of the two mechanisms. At system startup, spe-

cial firmware uses the ACE framework to load the bug signature and

the segment match detection entries needed for online design bug de-

tection. During a checkpoint interval, execution is guarded from the

effects of design bugs by our online bug detection design (phase 1). If

no design bug is detected, at the end of the checkpoint interval special

firmware uses the ACE framework to test the underlying hardware for

defects as described in [4]. If the test succeeds, a new checkpoint is

taken. If, during the checkpoint interval, a design bug is detected, the

system state is rolled back to the last checkpoint (phase 2) and bug

avoidance techniques are employed to avoid the design bug (phase 3).

If a hardware defect manifests during a checkpoint (phase 4), the de-

fect is detected at the end of the checkpoint and, after system repair,

the system state is rolled back to the last checkpoint for re-execution as

described in [4]. Notice that the use of the tree resources and the scan

state is mutually exclusive by the two mechanisms. The online design

bug detection mechanism utilizes these resources during a checkpoint

Methodology/Tools Used Design Components

Synopsys Power Compiler

1) SPARC Cores, 2) Crossbar, 3) FPU, 

4) Misc. Units (I/O Bridge, DRAM 

Controllers, Control & Test Unit) 

5) ACE Framework, 6) Online Design 

Bug Detection Mechanism

CACTI 4.2 1) L1 Inst. & Data Caches, 2) L2 Cache

Taken from [15] 1) I/O Pads, 2) Wires & Repeaters

Table 2. Power consumption estimation methodology

interval, while the hardware defect detection mechanism utilizes the

resources at the end of a checkpoint interval. Hence, the cost of the

tree is amortized between bug detection and defect detection.

5. Experimental Evaluation

5.1. Experimental Methodology
The case study design used for the experimental evaluation of

our mechanism is the OpenSPARC T1 chip-multiprocessor, the open-

source version of Sun’s Niagara (UltraSPARC T1) [22]. We choose

this design because the OpenSPARC T1 chip-multiprocessor targets

commercial applications such as database and web servers where sys-

tem correctness is of paramount importance. We believe such systems

constitute ideal candidates to employ our mechanism to provide the

required correctness guarantees. The OpenSPARC T1 is a full-system

multiprocessor design implementing the 64-bit SPARC V9 architec-

ture. It contains eight 6-stage pipelined in-order cores, each with 8KB

L1 data-cache, 16KB L1 instruction-cache and full hardware support

for four threads. The eight cores are connected through a crossbar to a

unified 3MB L2 cache and a shared floating-point unit. The chip also

includes four memory controllers and an input/output bridge [23].

RTL Implementation: To make an accurate assessment of our

mechanism’s requirements in silicon area and power consumption, we

developed a detailed RTL model of our mechanism in Verilog. Specif-

ically, in our prototype we implemented 1) the bug detection flip-flops

that hold the bug signature and compare it with the system state, 2)

the segment checking tree with a parameterized number of segment

match detection entries per tree node, and 3) the ACE-based field pro-

grammable framework that loads through firmware the bug signature

and the segment match detection entries. Our implementation covers

all modules in OpenSPARC T1 except the memory cache data and tag

arrays (we don’t expect logic design bugs to be located in regular and

meticulously optimized arrays).

Logic Synthesis and Tools: We used the Synopsys Design Com-

piler to perform logic synthesis on the RTL code of the OpenSPARC

T1 and our mechanism. Logic synthesis mapping is done using the

Artisan IBM 0.13um standard cell library. The resulting gate-level

netlists of the OpenSPARC design and our mechanism provided a

common substrate to accurately estimate the silicon area and power

consumption overhead on the whole OpenSPARC design.

Power Consumption Estimation Methodology: To evaluate the

power consumption overhead of our mechanism, we first estimated

the power consumption of the baseline OpenSPARC T1 design with-

out the extra hardware required by our mechanism. We calibrated the

estimated power consumption with actual power consumption num-

bers provided by Sun for each module of the chip [15]. After we vali-

dated our power estimates for the baseline OpenSPARC T1 design, we

estimated the additional power required by our mechanism. Table 2

shows the major design components of the OpenSPARC T1 and the

methodology/tools we used to estimate their power consumption. We

estimated the power consumption of the majority of the OpenSPARC

T1 modules using the Synopsys Power Compiler (part of the Synop-

sys Design Compiler package). To estimate the power consumption of

the L1 and L2 caches, we used the CACTI 4.2 tool [25], a tool with

integrated performance, area, and power models for memory cache

structures.
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Chip Submodule Data Signals Control Signals

SPARC Core (x8) 15632 (79.06%) 4140 (20.94%)

CPU-Cache Crossbar 27283 (98.69%) 362 (1.31%)

Floating-Point Unit 4054 (87.75%) 566 (12.25%)

Control & Test Unit 2325 (55.29%) 1880 (44.71%)

Input/Output Bridge 10251 (95.14%) 524 (4.86%)

DRAM Controller (x4) 13449 (94.70%) 752 (5.30%)

Total 222765 (84.95%) 39460 (15.05%)

Table 3. Fraction of data and control signals in the OpenSPARC T1
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Figure 16. Area overhead versus design bug coverage

This methodology is sufficient to estimate the power consumption

of most of the chip’s logic modules. However, there are parts of the

design whose power consumption cannot be accurately estimated with

these tools. These include 1) numerous buses, wires, and repeaters

distributed all over the design, which are very hard to model accurately

using the Power Compiler, unless the design is fully placed and routed,

2) I/O pads of the chip. In order to estimate the power consumption of

these two parts, we used values from the reported power envelope of

the commercial Sun UltraSPARC T1 design [15].

5.2. Area Overhead and Design Bug Coverage
Control vs. Data Signals - After synthesizing the OpenSPARC

T1 chip we found that there are about 262K flip-flops in the design.

We also found that providing monitoring and bug detection capabili-

ties for all these signals results in prohibitive area overhead (∼69%).

However, we observed that the majority of these flip-flops serve as

buffers to data busses or data registers, and only a small fraction of

them are control signals. Furthermore, after analyzing the source sig-

nals of the logic design bugs studied in Section 3, we found that all of

the bug source signals were control signals, and no logic design bug

had a source signal that was part of a data bus or a data register. Af-

ter this observation, we partitioned the flip-flops of the OpenSPARC

T1 design into data and control signals. Table 3 shows the fraction of

data and control signals for all modules in the OpenSPARC T1. For

the whole chip, only 39K flip-flops drive control signals, accounting

for 15% of all flip-flops in the design.

Our prototype implementation taps all 39K control signals in the

OpenSPARC T1 design. This means that each of these flip-flops is

augmented with the extra bug detection logic shown in Figure 11(a).

The area overhead of this flip-flop augmentation is estimated to be 3%.

Flip-flops are grouped into 8-bit bug detection segments and connected

to a four-level segment checking tree structure (shown in Figure 14).

The area overhead of the tree structure depends on the number of seg-

ment match detection entries per tree node. The number of design bugs

that can be covered by our mechanism also depends on the number of

segment match detection entries per tree node, raising an engineering

trade-off between area overhead and bug coverage.

Area Overhead vs. Coverage - Figure 16 illustrates this trade-off

based on the 162 logic design bugs located in the SPARC core’s LSU

and TLU units studied in Section 3. The figure depicts the percent-

age of design bugs covered (left Y-axis) and the area overhead (right
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Figure 17. Power consumption overhead

Y-axis) versus the number of segment match detection entries per tree

node. When the tree nodes are equipped with 32 entries, our mecha-

nism can cover all the 162 design bugs with an overall area overhead

of 17%. Fortunately, not all design bugs are critical to functional cor-

rectness and need to be covered. Sarangi et al. [20] studied the errata

documentation of ten modern microprocessors and found that, on av-

erage for all the studied processors, 64% of the design bugs are critical

to functional correctness. The remaining 36% of the design bugs were

found to be non-critical to the correctness of the system and commonly

located in modules such as performance counters, error reporting reg-

isters, or breakpoint support [20]. In Figure 16, we can observe that

16 segment match detection entries per tree node provide a design bug

coverage of 80% that is much higher than the typical fraction of critical

design bugs. This design configuration leads to a silicon area overhead

of 10% of the whole OpenSPARC T1 design.

5.3. Power Consumption Overhead
Employing the methodology described in Section 5.1, we esti-

mated the power envelope of the baseline OpenSPARC T1 chip,

without the additional hardware required by our mechanism, to be

56.3W. Our estimate of the OpenSPARC T1 power is within 12% of

the reported power consumption of the commercial Sun Niagara de-

sign [15]. Figure 17 shows the power consumption for our enhanced

OpenSPARC T1 design including our online design bug detection

mechanism. The power envelope of the enhanced design is 58.3W.

From this, a total of 3.4% (1.96W) is devoted to the extra hardware

required by our mechanism. The overall power consumption overhead

of our mechanism over the baseline is therefore about 3.5%.

5.4. Unified Design Bug&Defect Detection Overhead
As illustrated in Section 4.3, our online design bug detection mech-

anism can be easily coupled with an online ACE-based hardware de-

fect detection mechanism. Table 4 presents the silicon area and power

consumption overhead of the unified mechanism. The estimated sili-

con area overhead of the unified mechanism is 15.15%, and its power

consumption overhead is 6.8%. Based on these numbers, we believe

that the coupling of the two mechanisms provides an attractive and

relatively low overhead solution for high-dependability computing.

6. Comparison to Related Work
Design Bug Analyses: Our online design bug detection mecha-

nism is based on insights from this work and previous design bug anal-

yses that characterize the known design bugs of existing processors.

Section 2.1 provides a discussion on previous design bug analyses and

how our RTL design bug analysis differs from those previous works.

Online Design Bug Detection: Recently, studies have brought to

attention the increasing rate of discovered design bugs in modern pro-

cessors [20, 17, 26]. These works suggest employing in-the-field de-

sign bug detection and recovery as an approach tomitigate the negative
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Mechanism
Flip-Flops

Covered

Area 

Overhead

Power

Overhead

Online Design 

Bug Detection

(16 seg. comparator 

entries per tree node)

39K Flip-Flops 10.26% 3.5%

Online Hardware

Defect Detection
262K Flip-Flops 5.8% 4%

Online Design

Bug Detection 

+

Online Hardware

Defect Detection

39K Flip-Flops

(bug detection)

262K Flip-Flops

(defect detection)

15.15% 6.8%

Table 4. Cost of combined bug and defect detection

effects of design bugs. As with our mechanism, online design bug de-

tection is facilitated by a signal monitoring substrate. Our work differs

from these previous works in the following ways:

1. Higher Flexibility: In all these works, the signal monitoring

substrate is limited to a small set of signals selected at design

time when the design bugs are still unknown. This constitutes

a major limitation of these previously proposed mechanisms.

Specifically, if a design bug is discovered after product release

and its bug triggering conditions involve signals not included in

the set of signals selected to be monitored by the substrate, the

occurrence of the design bug cannot be detected effectively by

those mechanisms. This leads to greatly inflexible design bug

detection mechanisms whose effectiveness depends on decisions

made at design time based on assumptions regarding the set of

signals that would be involved in unknown design bug trigger-

ing conditions. Our online design bug detection mechanism ad-

dresses this limitation with a novel field-programmable substrate

capable of monitoring all control signals in the design that can

trigger a design bug. This capability waives the requirement of

selecting the set of signals to be monitored at design time and

allows this decision to be made after product release when the

design bugs and their triggering conditions are known.

2. Synergy with Other Mechanisms: We show that our

mechanism can synergistically share its resources with other

mechanisms to amortize cost and provide a complete high-

dependability solution. In contrast, the mechanisms proposed

in previous works are specialized for only design bug detection.

Online Hardware Defect Detection: Our mechanism relies

on a combination of field-programmable flip-flops and a field-

programmable tree structure to provide flexible and efficient in-the-

field signal monitoring and bug detection. This support is similar to

the support needed for flexible online defect detection techniques [4].

As we showed in Section 4.3, defect detection and bug detection can

be combined seamlessly and the hardware cost of the tree structure can

be amortized.

7. Conclusions
This paper provided a rigorous analysis of processor design bugs in

the RTL code of a commercial microprocessor, Sun’s OpenSPARC T1

chip. Our low-level analysis of design bugs concluded that the signal

monitoring requirements of online design bug detection are signifi-

cantly higher than the estimates of previous studies. We believe that

this discrepancy stems from the attempt in previous studies to infer

low-level hardware implementation information from the high-level,

abstract information provided in the microprocessor errata documents.

Based on the insights obtained from our rigorous design bug analy-

sis, this paper proposed a novel distributed online bug detection mech-

anism. The proposed mechanism is able to flexibly monitor all control

signals. This approach enables flexibility in bug detection because, un-

like previous proposals, it does not rely on the successful selection of

relevant signals at design time. Instead, any signal that can participate

in the exercising of a bug can be monitored as needed.

We evaluated the cost of our mechanism based on a detailed RTL

prototype implementation. The silicon area overhead incurred by our

mechanism is 10% of the whole OpenSPARCT1 chip, while the power

consumption overhead is only 3.5%. We showed that the hardware

cost of the proposed technique can be somewhat amortized by com-

bining it with a previously proposed online hardware defect detection

mechanism that relies on similar field-programmable resources.

We believe that the processor design bug analyses presented in this

paper provide an important step in the understanding of design bugs

and the requirements to detect and tolerate them. The proposed online

design bug detection mechanism is the first fruit of that understanding.

We hope the analyses and frameworks provided in this paper will lead

to other, similar techniques that will enable the building of systems

with high levels of dependability during operation.
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