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Executive Summary 
n  Problem: General purpose core design is a compromise between 

performance and energy-efficiency 
n  Our Goal: Design a core that achieves high performance and high 

energy efficiency at the same time 
n  Two New Observations: 1) Applications exhibit fine-grained 

heterogeneity in regions of code, 2) A core can exploit this 
heterogeneity by grouping tens of instructions into atomic blocks 
and executing each block in the best-fit backend  

n  Heterogeneous Block Architecture (HBA): 1) Forms atomic blocks of 
code, 2) Dynamically determines the best-fit (most efficient) 
backend for each block, 3) Specializes the block for that backend 

n  Initial HBA Implementation: Chooses from Out-of-order, VLIW or 
In-order backends, with simple schedule stability and stall heuristics 

n  Results: HBA provides higher efficiency than four previous designs 
at negligible performance loss; HBA enables new tradeoff points 
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Talk Agenda 
n  Background and Motivation 
n  Two New Observations 
n  The Heterogeneous Block Architecture (HBA) 
n  An Initial HBA Design  
n  Experimental Evaluation 
n  Conclusions 

4 



Competing Goals in Core Design 
n  High performance and high energy-efficiency  

q  Difficult to achieve both at the same time 

n  High performance: Sophisticated features to extract it 
q  Out-of-order execution (OoO), complex branch prediction, 

wide instruction issue, … 
n  High energy efficiency: Use of only features that provide 

the highest efficiency for each workload 
q  Adaptation of resources to different workload requirements 

n  Today’s high-performance designs: Features may not yield 
high performance, but every piece of code pays for their 
energy penalty 
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Principle: Exploiting Heterogeneity 
n  Past observation 1: Workloads have different characteristics 

at coarse granularity (thousands to millions of instructions) 
q  Each workload or phase may require different features  

n  Past observation 2: This heterogeneity can be exploited by 
switching “modes” of operation 
q  Separate out-of-order and in-order cores 
q  Separate out-of-order and in-order pipelines with shared 

frontend 

n  Past coarse-grained heterogeneous designs  
q  provide higher energy efficiency  
q  at slightly lower performance vs. a homogeneous OoO core 
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Two Key Observations  
n  Fine-Grained Heterogeneity of Application Behavior 

q  Small chunks (10s or 100s of instructions) of code have 
different execution characteristics 
n  Some instruction chunks always have the same instruction 

schedule in an out-of-order processor 
n  Nearby chunks can have different schedules 

 
 
n  Atomic Block Execution with Multiple Execution Backends 

q  A core can exploit fine-grained heterogeneity with 
n  Having multiple execution backends 
n  Dividing the program into atomic blocks  
n  Executing each block in the best-fit backend 
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Fine-Grained Heterogeneity 
n  Small chunks of code have different execution characteristics 
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Instruction Schedule Stability Varies at Fine Grain 

n  Observation 1: Some regions of code are scheduled in the 
same instruction scheduling order in an OoO engine across 
different dynamic instances 

n  Observation 2: Stability of instruction schedules of (nearby) 
code regions can be very different 

n  An experiment: 
q  Same-schedule chunk: A chunk of code that has the same 

schedule it had in its previous dynamic instance 
q  Examined all chunks of <=16 instructions in 248 workloads 
q  Computed the fraction of “same schedule chunks” in each 

workload 
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Instruction Schedule Stability Varies at Fine Grain 
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Two Key Observations  
n  Fine-Grained Heterogeneity of Application Behavior 

q  Small chunks (10s or 100s of instructions) of code have 
different execution characteristics 
n  Some instruction chunks always have the same schedule 
n  Nearby chunks can have different schedules 

 
 
n  Atomic Block Execution with Multiple Execution Backends 

q  A core can exploit fine-grained heterogeneity with 
n  Having multiple execution backends 
n  Dividing the program into atomic blocks  
n  Executing each block in the best-fit backend 
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Atomic Block Execution w/ Multiple Backends  

n  Fine grained heterogeneity can be exploited by a core that: 

q  Has multiple (specialized) execution backends  

q  Divides the program into atomic (all-or-none) blocks  

q  Executes each atomic block in the best-fit backend 
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HBA: Principles 
n  Multiple different execution backends 

q  Customized for different block execution requirements: OoO, 
VLIW, in-order, SIMD, … 

q  Can be simultaneously active, executing different blocks 
q  Enables efficient exploitation of fine-grained heterogeneity 

n  Block atomicity 
q  Either the entire block executes or none of it 
q  Enables specialization (reordering and rewriting) of 

instructions freely within the block to fit a particular backend 

n  Exploit stable block characteristics (instruction schedules) 
q  E.g., reuse schedule learned by the OoO backend in VLIW/IO 
q  Enables high efficiency by adapting to stable behavior 
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HBA Operation at High Level 
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HBA Design: Three Components (I) 
n  Block formation and fetch 
n  Block sequencing and value communication 
n  Block execution 
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HBA Design: Three Components (II) 

18 

Branch	  
predictor	  

Block	  Cache	  

Block	  
Forma7on	  

Block	  
Liveout	  
Rename	  

Global	  RF	  

Su
bs
cr
ip
7o

n	  
M
at
rix
	  

Se
qu

en
ce
r	  

Block	  Execu7on	  
Unit	  

Block	  Execu7on	  
Unit	  

Block	  Execu7on	  
Unit	  

Block	  Execu7on	  
Unit	  

Block Core Block Frontend 

Block	  Execu7on	  
Unit	  

Block	  Execu7on	  
Unit	  

... 

Block	  ROB	  &	  
Atomic	  Re7re	  

Shared	  
LSQ	  L1D Cache 

1. Frontend forms blocks dynamically 2. Blocks are dispatched and  
    communicate via global registers 

3. Heterogeneous block execution 
units execute different types of 
blocks in a specialized way 



Talk Agenda 
n  Background and Motivation 
n  Two New Observations 
n  The Heterogeneous Block Architecture (HBA) 
n  An Initial HBA Design  
n  Experimental Evaluation 
n  Conclusions 

19 



An Example HBA Design: OoO/VLIW 
n  Block formation and fetch 
n  Block sequencing and value communication 
n  Block execution 

n  Two types of backends 
q  OoO scheduling 
q  VLIW/in-order scheduling 
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Block Formation and Fetch 
n  Atomic blocks are microarchitectural and dynamically formed 
n  Block info cache (BIC) stores metadata about a formed block 

q  Indexed with PC and branch path of a block (ala Trace Caches) 
q  Metadata info: backend type, instruction schedule, … 

n  Frontend fetches instructions/metadata from I-cache/BIC 
n  If miss in BIC, instructions are sent to OoO backend 
n  Otherwise, buffer instructions until the entire block is fetched 

n  The first time a block is executed on the OoO backend, its’ 
OoO version is formed (& OoO schedule/names stored in BIC) 
q  Max 16 instructions, ends in a hard-to-predict or indirect branch  
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An Example HBA Design: OoO/VLIW 
n  Block formation and fetch 
n  Block sequencing and value communication 
n  Block execution 

n  Two types of backends 
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Block Sequencing and Communication 
n  Block Sequencing 

q  Block based reorder buffer for in-order block sequencing 
q  All subsequent blocks squashed on a branch misprediction 
q  Current block squashed on an exception or intra-block 

misprediction 
q  Single-instruction sequencing from non-optimized code upon 

an exception in a block to reach the exception point 

n  Value Communication 
q  Across blocks: via the Global Register File 
q  Within block: via the Local Register File 
q  Only liveins and liveouts to a block need to be renamed and 

allocated global registers [Sprangle & Patt, MICRO 1994] 

n  Reduces energy consumption of register file and bypass units 
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An Example HBA Design: OoO/VLIW 
n  Block formation and fetch 
n  Block sequencing and value communication 
n  Block execution 

n  Two types of backends 
q  OoO scheduling 
q  VLIW/in-order scheduling 
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Block Execution 
n  Each backend contains 

q  Execution units, scheduler, local register file 

n  Each backend receives  
q  A block specialized for it (at block dispatch time) 
q  Liveins for the executing block (as they become available) 

n  A backend executes the block  
q  As specified by its logic and any information from the BIC 

n  Each backend produces 
q  Liveouts to be written to the Global RegFile (as available) 
q  Branch misprediction, exception results, block completion 

signal to be sent to the Block Sequencer 

n  Memory operations are handled via a traditional LSQ 
25 
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OoO and VLIW Backends 
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n  Two customized backend types (physically, they are unified) 

Out-of-order VLIW/In-order 

•  Dynamic scheduling with matrix scheduler 
•  Renaming performed before the backend 
     (block specialization logic) 
•  No renaming or matrix computation logic  
     (done for previous instance of block) 
•  No need to maintain per-instruction order 

•  Static scheduling 
•  Stall-on-use policy 
•  VLIW blocks specialized by OoO  
    backends 
•  No per-instruction order 



OoO Backend 

28 

Block Dispatch 

Liveins (reg, val) 

Liveouts (reg, val) 

Resolved Branches 

Dispatch Queue 

Scheduler 
(no CAM) 

Block Completion 

Generic Interface Dynamically-scheduled implementation 

Se
le
c7
on

	  lo
gi
c	  

Local	  
RF	  

Ex
ec
u7

on
	  U
ni
ts
	  

Co
ns
um

er
	  w
ak
eu

p	  
ve
ct
or
s	   srcs 

ready? 
srcs 
ready? 
srcs 
ready? 
srcs 
ready? 
srcs 
ready? 
srcs 
ready? 

Liveout?	  

Branch?	  

Writeback bus 
Counter	  

Livein bus 

To shared EUs 



VLIW/In-Order Backend 
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Backend Switching and Specialization 

n  OoO to VLIW: If dynamic schedule is the same for N 
previous executions of the block on the OoO backend:  
q  Record the schedule in the Block Info Cache 
q  Mark the block to be executed on the VLIW backend 

n  VLIW to OoO: If there are too many false stalls in the block 
on the VLIW backend 
q  Mark the block to be executed on the OoO backend 
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Experimental Methodology 
n  Models 

q  Cycle-accurate execution-driven x86-64 simulator  
    – ISA remains unchanged 
q  Energy model with modified McPAT [Li+ MICRO’09]                     

     – various leakage parameters investigated 

n  Workloads 
q  184 different representative execution checkpoints 
q  SPEC CPU2006, Olden, MediaBench, Firefox, Ffmpeg, Adobe 

Flash player, MySQL, lighttpd web server, LaTeX, Octave, an 
x86 simulator 
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Simulation Setup 
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Four Core Comparison Points 
n  Out-of-order core with large, monolithic backend 

n  Clustered out-of-order core with split backend [Farkas+ MICRO’97] 

q  Clusters of <scheduler, register file, execution units> 

n  Coarse-grained heterogeneous design [Lukefahr+ MICRO’12] 

q  Combines out-of-order and in-order cores  
q  Switches mode for coarse-grained intervals based on a 

performance model (ideal in our results) 
q  Only one mode can be active: in-order or out-of-order 

n  Coarse-grained heterogeneous design, with clustered OoO 
core 
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Key Results: Power, EPI, Performance 

n  HBA greatly reduces power and energy-per-instruction (>30%) 
n  HBA performance is within 1% of monolithic out-of-order core 
n  HBA’s performance higher than coarse-grained hetero. core 
n  HBA is the most power- and energy-efficient design among the 

five different core configurations 

35 
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Energy Analysis (I) 

n  HBA reduces energy/power by concurrently 

q  Decoupling Execution Backends to Simplify the Core (Clustering) 

q  Exploiting Block Atomicity to Simplify the Core (Atomicity) 

q  Exploiting Heterogeneous Backends to Specialize (Heterogeneity) 

n  What is the relative energy benefit of each when applied 
successively? 
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Energy Analysis (II) 
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Comparison to Best Previous Design 
n  Coarse-grained heterogeneity + clustering the OoO core 
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Per-Workload Results 

n  HBA reduces energy on almost all workloads 
n  HBA can reduce or improve performance (analysis in paper) 
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Power-Performance Tradeoff Space 

n  HBA enables new design points in the tradeoff space 
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Cost of Heterogeneity 
n  Higher core area 

q  Due to more backends  
q  Can be optimized with good design (unified backends) 
q  Core area cost increasingly small in an SoC  

n  only 17% in Apple’s A7 

q  Analyzed in the paper but our design is not optimized for area 

n  Increased leakage power 
q  HBA benefits reduce with higher transistor leakage 
q  Analyzed in the paper 

41 



More Results and Analyses in the Paper 
n  Performance bottlenecks  
n  Fraction of OoO vs. VLIW blocks 
n  Energy optimizations in VLIW mode 
n  Energy optimizations in general 
n  Area and leakage 

n  Other and detailed results available in our technical report 
 

Chris Fallin, Chris Wilkerson, and Onur Mutlu, 
"The Heterogeneous Block Architecture" 

SAFARI Technical Report, TR-SAFARI-2014-001,  
Carnegie Mellon University, March 2014.  
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Conclusions 
n  HBA is the first heterogeneous core substrate that enables 

q  concurrent execution of fine-grained code blocks                   
q  on the most-efficient backend for each block 

n  Three characteristics of HBA 
q  Atomic block execution to exploit fine-grained heterogeneity 
q  Exploits stable instruction schedules to adapt code to backends 
q  Uses clustering, atomicity and heterogeneity to reduce energy 

n  HBA greatly improves energy efficiency over four core designs 

n  A flexible execution substrate for exploiting fine-grained 
heterogeneity in core design 
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Building on This Work … 
n  HBA is a substrate for efficient core design 

n  One can design different cores using this substrate: 
q  More backends of different types (CPU, SIMD, reconfigurable 

logic, …) 
q  Better switching heuristics between backends 
q  More optimization of each backend 
q  Dynamic code optimizations specific to each backend 
q  … 
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Why Atomic Blocks? 
n  Each block can be pre-specialized to its backend 

(pre-rename for OoO, pre-schedule VLIW in hardware, 
reorder instructions, eliminate instructions) 

n  Each backend can operate independently 
 
n  User-visible ISA can remain unchanged despite multiple 

execution backends 
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Nearby Chunks Have Different Behavior 

48 

 0

 0.2

 0.4

 0.6

1 8 16 24 32

F
re

q
u

en
cy

Chunks Retired Before Chunk-Type Switch



In-Order vs. Superscalar vs. OoO 
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Baseline EPI Breakdown 
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Retired Block Types (I) 
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Retired Block Types (II) 
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Retired Block Types (III) 
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BIC Size Sensitivity 
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Livein-Liveout Statistics 
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