
1 Carnegie Mellon University
2 Intel Corporation

Chris Fallin1 Chris Wilkerson2 Onur Mutlu1

The Heterogeneous Block Architecture

A Flexible Substrate for Building
Energy-Efficient High-Performance Cores

Executive Summary
n  Problem: General purpose core design is a compromise between

performance and energy-efficiency
n  Our Goal: Design a core that achieves high performance and high

energy efficiency at the same time
n  Two New Observations: 1) Applications exhibit fine-grained

heterogeneity in regions of code, 2) A core can exploit this
heterogeneity by grouping tens of instructions into atomic blocks
and executing each block in the best-fit backend

n  Heterogeneous Block Architecture (HBA): 1) Forms atomic blocks of
code, 2) Dynamically determines the best-fit (most efficient)
backend for each block, 3) Specializes the block for that backend

n  Initial HBA Implementation: Chooses from Out-of-order, VLIW or
In-order backends, with simple schedule stability and stall heuristics

n  Results: HBA provides higher efficiency than four previous designs
at negligible performance loss; HBA enables new tradeoff points

2

Backend	 1	

Backend	 2	

Backend	 3	

Sh
ar
ed

	 F
ro
nt
en

d	

“S
pe

ci
al
iza

7o
n”
	

Picture of HBA

3

Out-‐of-‐order	

VLIW/IO	

Sh
ar
ed

	 F
ro
nt
en

d	

“S
pe

ci
al
iza

7o
n”
	

Out-‐of-‐order	

VLIW/IO	

Talk Agenda
n  Background and Motivation
n  Two New Observations
n  The Heterogeneous Block Architecture (HBA)
n  An Initial HBA Design
n  Experimental Evaluation
n  Conclusions

4

Competing Goals in Core Design
n  High performance and high energy-efficiency

q  Difficult to achieve both at the same time

n  High performance: Sophisticated features to extract it
q  Out-of-order execution (OoO), complex branch prediction,

wide instruction issue, …
n  High energy efficiency: Use of only features that provide

the highest efficiency for each workload
q  Adaptation of resources to different workload requirements

n  Today’s high-performance designs: Features may not yield
high performance, but every piece of code pays for their
energy penalty

5

Principle: Exploiting Heterogeneity
n  Past observation 1: Workloads have different characteristics

at coarse granularity (thousands to millions of instructions)
q  Each workload or phase may require different features

n  Past observation 2: This heterogeneity can be exploited by
switching “modes” of operation
q  Separate out-of-order and in-order cores
q  Separate out-of-order and in-order pipelines with shared

frontend

n  Past coarse-grained heterogeneous designs
q  provide higher energy efficiency
q  at slightly lower performance vs. a homogeneous OoO core

6

Talk Agenda
n  Background and Motivation
n  Two New Observations
n  The Heterogeneous Block Architecture (HBA)
n  An Initial HBA Design
n  Experimental Evaluation
n  Conclusions

7

Two Key Observations
n  Fine-Grained Heterogeneity of Application Behavior

q  Small chunks (10s or 100s of instructions) of code have
different execution characteristics
n  Some instruction chunks always have the same instruction

schedule in an out-of-order processor
n  Nearby chunks can have different schedules

n  Atomic Block Execution with Multiple Execution Backends

q  A core can exploit fine-grained heterogeneity with
n  Having multiple execution backends
n  Dividing the program into atomic blocks
n  Executing each block in the best-fit backend

8

Fine-Grained Heterogeneity
n  Small chunks of code have different execution characteristics

9

Coarse-Grained
Heterogeneity

phase 1:
regular
�oating-
point

{high ILP

stall

low ILP

phase 2:
pointer-
chasing

Fine-Grained
Heterogeneity

}

(1K-1M insns) (10-100 insns)

fadd r1,r2,r3
fadd r4,r5,r6
add r13,r14,8
fmul r0,r1,r4
...
...
ld r1,(r13)
 ^-MISSES LLC
add r13,r14,8
fadd r2,r1,r7
fadd r4,r5,r6
...
...
fadd r4,r1,r2
fadd r4,r4,r3
fadd r4,r4,r7
...

tim
e (instructions)

}
high ILP,
stable
instruction
schedule

} high ILP,
varying
instruction
schedule

{
} low ILP,

stable
instruction
schedule

phase 3:
...

Good fit for
Wide VLIW

Good fit for
Wide OoO

Good fit for
Narrow
In-order

Instruction Schedule Stability Varies at Fine Grain

n  Observation 1: Some regions of code are scheduled in the
same instruction scheduling order in an OoO engine across
different dynamic instances

n  Observation 2: Stability of instruction schedules of (nearby)
code regions can be very different

n  An experiment:
q  Same-schedule chunk: A chunk of code that has the same

schedule it had in its previous dynamic instance
q  Examined all chunks of <=16 instructions in 248 workloads
q  Computed the fraction of “same schedule chunks” in each

workload

10

Instruction Schedule Stability Varies at Fine Grain

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

F
ra

ct
io

n
 o

f
D

y
n

am
ic

 C
o

d
e

C
h

u
n

k
s

Benchmark (Sorted by Y-axis Value)

different-schedule chunks

same-schedule chunks

1.	 Many	 chunks	 have	 the	 same	 schedule	 in	 their	 previous	 instances	
à	 Can	 reuse	 the	 previous	 instruc8on	 scheduling	 order	 the	 next	 8me	
2.	 Stability	 of	 instruc8on	 schedule	 of	 chunks	 can	 be	 very	 different	
à	 Need	 a	 core	 that	 can	 dynamically	 schedule	 insts.	 in	 some	 chunks	

3.	 Temporally-‐adjacent	 chunks	 can	 have	 different	 schedule	 stability	
à	 Need	 a	 core	 that	 can	 switch	 quickly	 between	 mul8ple	 schedulers	

Two Key Observations
n  Fine-Grained Heterogeneity of Application Behavior

q  Small chunks (10s or 100s of instructions) of code have
different execution characteristics
n  Some instruction chunks always have the same schedule
n  Nearby chunks can have different schedules

n  Atomic Block Execution with Multiple Execution Backends

q  A core can exploit fine-grained heterogeneity with
n  Having multiple execution backends
n  Dividing the program into atomic blocks
n  Executing each block in the best-fit backend

12

Atomic Block Execution w/ Multiple Backends

n  Fine grained heterogeneity can be exploited by a core that:

q  Has multiple (specialized) execution backends

q  Divides the program into atomic (all-or-none) blocks

q  Executes each atomic block in the best-fit backend

13

Atomicity	 enables	 specializa8on	 of	 a	 block	 for	 a	 backend	
(can	 freely	 reorder/rewrite/eliminate	 instruc8ons	 in	 an	 atomic	 block)	

Talk Agenda
n  Background and Motivation
n  Two New Observations
n  The Heterogeneous Block Architecture (HBA)
n  An Initial HBA Design
n  Experimental Evaluation
n  Conclusions

14

HBA: Principles
n  Multiple different execution backends

q  Customized for different block execution requirements: OoO,
VLIW, in-order, SIMD, …

q  Can be simultaneously active, executing different blocks
q  Enables efficient exploitation of fine-grained heterogeneity

n  Block atomicity
q  Either the entire block executes or none of it
q  Enables specialization (reordering and rewriting) of

instructions freely within the block to fit a particular backend

n  Exploit stable block characteristics (instruction schedules)
q  E.g., reuse schedule learned by the OoO backend in VLIW/IO
q  Enables high efficiency by adapting to stable behavior

15

HBA Operation at High Level

16

Backend	 1	

Backend	 2	

Backend	 3	 Sh
ar
ed

	 F
ro
nt
en

d	

“S
pe

ci
al
iza

7o
n”
	

Applica7on	

Block	 1	

Block	 2	

Block	 3	 In
st

ru
ct

io
n

se
qu

en
ce

HBA Design: Three Components (I)
n  Block formation and fetch
n  Block sequencing and value communication
n  Block execution

17

HBA Design: Three Components (II)

18

Branch	
predictor	

Block	 Cache	

Block	
Forma7on	

Block	
Liveout	
Rename	

Global	 RF	

Su
bs
cr
ip
7o

n	
M
at
rix
	

Se
qu

en
ce
r	

Block	 Execu7on	
Unit	

Block	 Execu7on	
Unit	

Block	 Execu7on	
Unit	

Block	 Execu7on	
Unit	

Block Core Block Frontend

Block	 Execu7on	
Unit	

Block	 Execu7on	
Unit	

...

Block	 ROB	 &	
Atomic	 Re7re	

Shared	
LSQ	 L1D Cache

1. Frontend forms blocks dynamically 2. Blocks are dispatched and
 communicate via global registers

3. Heterogeneous block execution
units execute different types of
blocks in a specialized way

Talk Agenda
n  Background and Motivation
n  Two New Observations
n  The Heterogeneous Block Architecture (HBA)
n  An Initial HBA Design
n  Experimental Evaluation
n  Conclusions

19

An Example HBA Design: OoO/VLIW
n  Block formation and fetch
n  Block sequencing and value communication
n  Block execution

n  Two types of backends
q  OoO scheduling
q  VLIW/in-order scheduling

20

Out-‐of-‐order	

VLIW/IO	

Sh
ar
ed

	 F
ro
nt
en

d	

“S
pe

ci
al
iza

7o
n”
	

Out-‐of-‐order	

VLIW/IO	

Block Formation and Fetch
n  Atomic blocks are microarchitectural and dynamically formed
n  Block info cache (BIC) stores metadata about a formed block

q  Indexed with PC and branch path of a block (ala Trace Caches)
q  Metadata info: backend type, instruction schedule, …

n  Frontend fetches instructions/metadata from I-cache/BIC
n  If miss in BIC, instructions are sent to OoO backend
n  Otherwise, buffer instructions until the entire block is fetched

n  The first time a block is executed on the OoO backend, its’
OoO version is formed (& OoO schedule/names stored in BIC)
q  Max 16 instructions, ends in a hard-to-predict or indirect branch

21

An Example HBA Design: OoO/VLIW
n  Block formation and fetch
n  Block sequencing and value communication
n  Block execution

n  Two types of backends
q  OoO scheduling
q  VLIW/in-order scheduling

22

Out-‐of-‐order	

VLIW/IO	

Sh
ar
ed

	 F
ro
nt
en

d	

“S
pe

ci
al
iza

7o
n”
	

Out-‐of-‐order	

VLIW/IO	

Block Sequencing and Communication
n  Block Sequencing

q  Block based reorder buffer for in-order block sequencing
q  All subsequent blocks squashed on a branch misprediction
q  Current block squashed on an exception or intra-block

misprediction
q  Single-instruction sequencing from non-optimized code upon

an exception in a block to reach the exception point

n  Value Communication
q  Across blocks: via the Global Register File
q  Within block: via the Local Register File
q  Only liveins and liveouts to a block need to be renamed and

allocated global registers [Sprangle & Patt, MICRO 1994]

n  Reduces energy consumption of register file and bypass units

23

An Example HBA Design: OoO/VLIW
n  Block formation and fetch
n  Block sequencing and value communication
n  Block execution

n  Two types of backends
q  OoO scheduling
q  VLIW/in-order scheduling

24

Out-‐of-‐order	

VLIW/IO	

Sh
ar
ed

	 F
ro
nt
en

d	

“S
pe

ci
al
iza

7o
n”
	

Out-‐of-‐order	

VLIW/IO	

Block Execution
n  Each backend contains

q  Execution units, scheduler, local register file

n  Each backend receives
q  A block specialized for it (at block dispatch time)
q  Liveins for the executing block (as they become available)

n  A backend executes the block
q  As specified by its logic and any information from the BIC

n  Each backend produces
q  Liveouts to be written to the Global RegFile (as available)
q  Branch misprediction, exception results, block completion

signal to be sent to the Block Sequencer

n  Memory operations are handled via a traditional LSQ
25

An Example HBA Design: OoO/VLIW
n  Block formation and fetch
n  Block sequencing and value communication
n  Block execution

n  Two types of backends
q  OoO scheduling
q  VLIW/in-order scheduling

26

Out-‐of-‐order	

VLIW/IO	

Sh
ar
ed

	 F
ro
nt
en

d	

“S
pe

ci
al
iza

7o
n”
	

Out-‐of-‐order	

VLIW/IO	

OoO and VLIW Backends

27

n  Two customized backend types (physically, they are unified)

Out-of-order VLIW/In-order

•  Dynamic scheduling with matrix scheduler
•  Renaming performed before the backend
 (block specialization logic)
•  No renaming or matrix computation logic
 (done for previous instance of block)
•  No need to maintain per-instruction order

•  Static scheduling
•  Stall-on-use policy
•  VLIW blocks specialized by OoO
 backends
•  No per-instruction order

OoO Backend

28

Block Dispatch

Liveins (reg, val)

Liveouts (reg, val)

Resolved Branches

Dispatch Queue

Scheduler
(no CAM)

Block Completion

Generic Interface Dynamically-scheduled implementation

Se
le
c7
on

	 lo
gi
c	

Local	
RF	

Ex
ec
u7

on
	 U
ni
ts
	

Co
ns
um

er
	 w
ak
eu

p	
ve
ct
or
s	 srcs

ready?
srcs
ready?
srcs
ready?
srcs
ready?
srcs
ready?
srcs
ready?

Liveout?	

Branch?	

Writeback bus
Counter	

Livein bus

To shared EUs

VLIW/In-Order Backend

29

Block Dispatch

Liveins (reg, val)

Liveouts (reg, val)

Resolved Branches

Dispatch Queue

Issue Logic

Block Completion

Generic Interface Statically-scheduled implementation

Re
ad
y-‐
bi
t	 S

co
re
bo

ar
d	

Local	
RF	

Ex
ec
u7

on
	 U
ni
ts
	

Liveout?	

Branch?	

Writeback bus
Counter	

Livein bus

To shared EUs

Backend Switching and Specialization

n  OoO to VLIW: If dynamic schedule is the same for N
previous executions of the block on the OoO backend:
q  Record the schedule in the Block Info Cache
q  Mark the block to be executed on the VLIW backend

n  VLIW to OoO: If there are too many false stalls in the block
on the VLIW backend
q  Mark the block to be executed on the OoO backend

30

Talk Agenda
n  Background and Motivation
n  Two New Observations
n  The Heterogeneous Block Architecture (HBA)
n  An Initial HBA Design
n  Experimental Evaluation
n  Conclusions

31

Experimental Methodology
n  Models

q  Cycle-accurate execution-driven x86-64 simulator
 – ISA remains unchanged
q  Energy model with modified McPAT [Li+ MICRO’09]

 – various leakage parameters investigated

n  Workloads
q  184 different representative execution checkpoints
q  SPEC CPU2006, Olden, MediaBench, Firefox, Ffmpeg, Adobe

Flash player, MySQL, lighttpd web server, LaTeX, Octave, an
x86 simulator

32

Simulation Setup

33

Four Core Comparison Points
n  Out-of-order core with large, monolithic backend

n  Clustered out-of-order core with split backend [Farkas+ MICRO’97]

q  Clusters of <scheduler, register file, execution units>

n  Coarse-grained heterogeneous design [Lukefahr+ MICRO’12]

q  Combines out-of-order and in-order cores
q  Switches mode for coarse-grained intervals based on a

performance model (ideal in our results)
q  Only one mode can be active: in-order or out-of-order

n  Coarse-grained heterogeneous design, with clustered OoO
core

34

Key Results: Power, EPI, Performance

n  HBA greatly reduces power and energy-per-instruction (>30%)
n  HBA performance is within 1% of monolithic out-of-order core
n  HBA’s performance higher than coarse-grained hetero. core
n  HBA is the most power- and energy-efficient design among the

five different core configurations

35

Averaged across 184 workloads

Energy Analysis (I)

n  HBA reduces energy/power by concurrently

q  Decoupling Execution Backends to Simplify the Core (Clustering)

q  Exploiting Block Atomicity to Simplify the Core (Atomicity)

q  Exploiting Heterogeneous Backends to Specialize (Heterogeneity)

n  What is the relative energy benefit of each when applied
successively?

36

Energy Analysis (II)

37

 0

 0.5

 1

 1.5

 2

O
o
O

C
lu

stered

C
o
arse

C
o
arse,

C
lu

stered

H
B

A
/O

o
O

H
B

A

E
n
er

g
y
/I

n
st

ru
ct

io
n
 (

n
J)

Frontend
RAT
ROB

RS (Scheduler)
RF

Exec (ALUs)
Bypass Buses

LSQ
L1
L2

+Clustering: 8%

+Atomicity: 17%
+Heterogeneity: 6%

HBA	 effec8vely	 takes	 advantage	 of	 clustering,	 atomic	 blocks,	 	
and	 heterogeneous	 backends	 to	 reduce	 energy	

Averaged across 184 workloads

Comparison to Best Previous Design
n  Coarse-grained heterogeneity + clustering the OoO core

38

 0

 0.5

 1

 1.5

 2

O
o
O

C
lu

stered

C
o
arse

C
o
arse,

C
lu

stered

H
B

A
/O

o
O

H
B

A

E
n
er

g
y
/I

n
st

ru
ct

io
n
 (

n
J)

Frontend
RAT
ROB

RS (Scheduler)
RF

Exec (ALUs)
Bypass Buses

LSQ
L1
L2

+Coarse-grained hetero: 9%
+Clustering: 9%

HBA: 15%
lower EPI

HBA	 provides	 higher	 efficiency	 (+15%)	 at	 higher	 performance	 (+2%)	
than	 coarse-‐grained	 heterogeneous	 core	 with	 clustering	

Averaged across 184 workloads

Per-Workload Results

n  HBA reduces energy on almost all workloads
n  HBA can reduce or improve performance (analysis in paper)

39

 0.5

 1

 1.5

 2

 0 50 100 150R
el

at
iv

e
v
s.

 B
as

el
in

e

Benchmark (Sorted by Rel. HBA Performance)

IPC
EPI

S-curve of all 184 workloads

Power-Performance Tradeoff Space

n  HBA enables new design points in the tradeoff space

40

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

R
el

.
A

v
g
.
C

o
re

 P
o
w

er
 (

v
s.

 4
-w

id
e

O
o
O

)

Rel. IPC (vs. 4-wide OoO)

HBA(16,OoO)
HBA(16)

HBA(8)
HBA(4)

HBA(16,2-wide)

1-wide in-order
2-wide in-order

256-ROB, 4-wide OoO, clustered

Coarse-grained (256-ROB)

HBA(64)

1024-ROB, 4-wide OoO, clustered

4-wide in-order

128-ROB, 4-wide OoO

256-ROB, 4-wide OoO

Coarse-grained (128-ROB)

More Efficient

In-Order
Out-of-Order
Coarse-grained Hetero
HBA

Relative Performance (vs. Baseline OoO)

 GOAL

Averaged across 184 workloads

Cost of Heterogeneity
n  Higher core area

q  Due to more backends
q  Can be optimized with good design (unified backends)
q  Core area cost increasingly small in an SoC

n  only 17% in Apple’s A7

q  Analyzed in the paper but our design is not optimized for area

n  Increased leakage power
q  HBA benefits reduce with higher transistor leakage
q  Analyzed in the paper

41

More Results and Analyses in the Paper
n  Performance bottlenecks
n  Fraction of OoO vs. VLIW blocks
n  Energy optimizations in VLIW mode
n  Energy optimizations in general
n  Area and leakage

n  Other and detailed results available in our technical report

Chris Fallin, Chris Wilkerson, and Onur Mutlu,
"The Heterogeneous Block Architecture"

SAFARI Technical Report, TR-SAFARI-2014-001,
Carnegie Mellon University, March 2014.

42

Talk Agenda
n  Background and Motivation
n  Two New Observations
n  The Heterogeneous Block Architecture (HBA)
n  An Initial HBA Design
n  Experimental Evaluation
n  Conclusions

43

Conclusions
n  HBA is the first heterogeneous core substrate that enables

q  concurrent execution of fine-grained code blocks
q  on the most-efficient backend for each block

n  Three characteristics of HBA
q  Atomic block execution to exploit fine-grained heterogeneity
q  Exploits stable instruction schedules to adapt code to backends
q  Uses clustering, atomicity and heterogeneity to reduce energy

n  HBA greatly improves energy efficiency over four core designs

n  A flexible execution substrate for exploiting fine-grained
heterogeneity in core design

44

Building on This Work …
n  HBA is a substrate for efficient core design

n  One can design different cores using this substrate:
q  More backends of different types (CPU, SIMD, reconfigurable

logic, …)
q  Better switching heuristics between backends
q  More optimization of each backend
q  Dynamic code optimizations specific to each backend
q  …

45

1 Carnegie Mellon University
2 Intel Corporation

Chris Fallin1 Chris Wilkerson2 Onur Mutlu1

The Heterogeneous Block Architecture

A Flexible Substrate for Building
Energy-Efficient High-Performance Cores

Why Atomic Blocks?
n  Each block can be pre-specialized to its backend

(pre-rename for OoO, pre-schedule VLIW in hardware,
reorder instructions, eliminate instructions)

n  Each backend can operate independently

n  User-visible ISA can remain unchanged despite multiple

execution backends

47

Nearby Chunks Have Different Behavior

48

 0

 0.2

 0.4

 0.6

1 8 16 24 32

F
re

q
u

en
cy

Chunks Retired Before Chunk-Type Switch

In-Order vs. Superscalar vs. OoO

49

 0

 0.2

 0.4

 0.6

 0.8

 1

In
-O

rd
er

S
u
p
erscalar

O
u
t-o

f-O
rd

er

A
v
g
.
P

er
fo

rm
an

ce
 (

IP
C

)

In
-O

rd
er

S
u
p
erscalar

O
u
t-o

f-O
rd

er

 0

 2

 4

 6

 8

A
v
g
.
C

o
re

 P
o
w

er
 (

W
)

Baseline EPI Breakdown

50

 0

 1

 2

 2.5

1
-w

id
e

In
-o

rd
er

4
-w

id
e

In
-o

rd
er

4
-w

id
e

O
o
O

E
n

er
g

y
/I

n
st

ru
ct

io
n

 (
n

J)

Frontend
RAT
ROB
RS (Scheduler)
RF
Exec (ALUs)
Bypass Buses
LSQ
L1
L2

Retired Block Types (I)

51

 0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f
R

et
ir

ed
 B

lo
ck

s

Benchmark (Sorted by OoO Fraction)

OoO blocks

VLIW blocks (wide or narrow)

Retired Block Types (II)

52

 0

 0.02

 0.04

 0.06

 5 10 15 20 25 30

S
p
ec

tr
u
m

Frequency (/ 64 block retires)

Frequency Spectrum of Retire-Order Block Types

Retired Block Types (III)

53

 0
 0.1
 0.2
 0.3
 0.4
 0.5

OoO 50% OoO/VLIW VLIW

F
re

q
u
en

cy

Average Block Type

Average Block Type: Histogram per Block

BIC Size Sensitivity

54

 0.8

 0.9

 1

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

p
erfect

R
el

at
iv

e
IP

C

Block Info Cache Size (blocks of 16 uops)

default

Livein-Liveout Statistics

55

 0

 0.1

 0.2

 0.3

 0
 -

-
 1

 2
 -

-
 3

 4
 -

-
 5

 6
 -

-
 7

 8
 -

-
 9

1
0
 -

-
1
1

1
2
 -

-
1
3

1
4
 -

-
1
5

1
6
+

F
re

q
u
en

cy

Liveins per Block

 0

 0.1

 0.2

 0.3

 0
 -

-
 1

 2
 -

-
 3

 4
 -

-
 5

 6
 -

-
 7

 8
 -

-
 9

1
0

 -
-

1
1

1
2

 -
-

1
3

1
4

 -
-

1
5

1
6

+

F
re

q
u

en
cy

Liveouts per Block

Auxiliary Data: Benefits of HBA

56

 0

 0.2

 0.4

 0.6

 0.8

 1

RAT ROB Global RFN
o
rm

a
li

z
e
d
 A

c
c
e
s
s
e
s Baseline

HBA

Auxiliary Data: Benefits of HBA

57

 0

 0.2

 0.4

 0.6

 0.8

 1

Reads Writes

N
o
rm

a
li

z
e
d
 R

A
T

 A
c
c
e
s
s
e
s Baseline

HBA

 0

 0.2

 0.4

 0.6

 0.8

 1

Reads Writes

N
o
rm

a
li

z
e
d
 R

O
B

 A
c
c
e
s
s
e
s Baseline

HBA

Reads Writes

 0

 0.2

 0.4

 0.6

 0.8

 1

N
o
rm

a
li

z
e
d
 R

F
 A

c
c
e
s
s
e
sBaseline

HBA

Some Specific Workloads

58

 0.5

 1

ffm
peg

473.astar

429.m
cf

latex
401.bzip2

graphchi

403.gcc

437.leslie3d

octave

456.hm
m

er

450.soplex

433.m
ilc

R
el

.
v
s.

 B
as

el
in

e

IPC
EPI

Related Works
n  Forming and reusing instruction schedules [DIF, ISCA’97]

[Transmeta’00][Banerjia, IEEE TOC’98][Palomar, ICCD’09]

n  Coarse-grained heterogeneous cores [Lukefahr, MICRO’12]

n  Atomic blocks and block-structured ISA [Melvin&Patt,
MICRO’88, IJPP’95]

n  Instruction prescheduling [Michaud&Seznec, HPCA’01]

n  Yoga [Villavieja+, HPS Tech Report’14]

59

