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The Many-core Generation
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Why on-chip QOS?

» Shared on-chip resources require QOS support for
fairness, service differentiation, performance, etc.
Memory controllers
Cache banks
Specialized accelerators
On-chip network

» End-point QOS solutions are insufficient

Data has to traverse the on-chip network, a shared
resource

Need QOS support at the interconnect level



NOC QOS Desiderata

Fairness

|solation of flows

Efficient BW utilization

Low overhead:delay, area, energy
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Outline

» Prior Art
Conventional network QOS schemes
On-chip network QOS

» Preemptive Virtual Clock
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» Evaluation methodology
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» Summary



Conventional QOS Disciplines

» Fixed schedule
Pros: algorithmic and implementation simplicity
Cons: inefficient BW utilization; per-flow queuing
Example: Round Robin

» Rate-based

Pros: fine-grained schedule control; efficient

Cons: complex scheduling; per-flow queuing

Example: Weighted Fair Queuing (WFQ) [SIGCOMM ‘89]
» Frame-based

Pros: good throughput at modest complexity

Cons: throughput-complexity trade-off; per-flow queuing

Example: Rotating Combined Queuing (RCQ) [ISCA '96]



Per-tflow queuing
o Area overhead
o Energy overhead

o Delay overhead
o Scheduling complexity




On-chip QOS: Globally Synchronized Frames®*

» Key contribution: move much of the buffer overhead
and scheduling complexity into the source nodes

» Overview
Frame-based approach
Fixed number of injection slots per source in each frame
Multiple frames in flight
Barrier network detects frame completion
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* J. Lee, et al. ISCA 2008
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Preemptive Virtual Clock (PVC)

» Goal: high-performance, cost-effective mechanism
for fairness and service differentiation in NOCs.

» Full QOS support
Fairness, prioritization, performance isolation

» Modest area and energy overhead
Minimal buffering in routers & source nodes
» High Performance
Low latency, good BW efficiency
» Flexible network provisioning

Per-application or per-VM bandwidth allocation
iIndependent of the core/thread count



PVC: Scheduling

» Combines rate-based and frame-based features

» Rate-based: evolved from Virtual Clock [SIGCOMM ’90]
Routers track each flow’s bandwidth consumption
Cheap priority computation
f (provisioned rate, consumed BW)
Problem: history effect

Flow X
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PVC: Scheduling

» Combines rate-based and frame-based features

» Rate-based: evolved from Virtual Clock [SIGCOMM ’90]
Routers track each flow’s bandwidth consumption
Cheap priority computation
f (provisioned rate, consumed BW)
Problem: history effect
» Framing: PVC's solution to history effect
Frame rollover clears all BW counters
Fixed frame length
Packets not bound to any particular frame
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PVC: Scheduling

» Combines rate-based and frame-based features

» Rate-based: evolved from Virtual Clock [SIGCOMM ’90]
Routers track each flow’s bandwidth consumption
Cheap priority computation
f (provisioned rate, consumed BW)
Problem: history effect

C Frame roller

- BW counters reset
- Priorities reset

Flow X
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Framing: GSF vs PVC
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PVC: Freedom from Priority Inversion

» PVC: simple routers w/o per-flow buffering and no
BW reservation

Problem: high priority packets may be blocked by lower
priority packets (priority inversion)
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PVC: Freedom from Priority Inversion

» PVC: simple routers w/o per-flow buffering and no
BW reservation

Problem: high priority packets may be blocked by lower
priority packets (priority inversion)

» Solution: preemption of lower priority packets
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PVC: Preemption Recovery

» Retransmission of dropped packets

» Buffer outstanding packets at the source node
» ACK/NACK protocol via a dedicated network
All packets acknowledged
Narrow, low-complexity network
Lower overhead than timeout-based recovery
64 node network: 30-flit transaction buffer sufficient
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PVC: Router Modifications
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Network
Synthetic experiments
PARSEC experiments

Baseline network
(no QOS)

WFQ network

GSF network

PVC network
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Evaluation Methodology

64 nodes*, 16 byte link width, XY DOR routing
hotspot and uniform random; 1- and 4-flit packets
blackscholes, fluidanimate, vips; sim-medium data set

6 VCs per network port, 5 flits/VC,
1 injection VC, 2 ejection VCs; 3-cycle router pipeline

Per-flow queuing at each router node: 64 queues,
5 flits/queue

2K slots/frame, 6 frames in-flight, 8 cycle frame
reclamation delay;
Router config: same as baseline, but 1 VC reserved

50K cycles/frame, 30 flit source transaction buffer;
Router config: same as baseline, but 1 VC reserved

* Select results for 256 nodes in the paper



Throughput & Fairness (hotspot traffic)
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Throughput & Fairness (hotspot traffic)
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Performance Isolation

Aﬁ":;;r PARSEC threads
. .
[ ] |
[ ] |
[ ] |
[ ] |
[ ] |
[ ] |
[ ] |
m— N




Performance Isolation

Average PARSEC packet latency

(cycles)
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PVC Summary

» Full QOS support
Fairness & service differentiation
Strong performance isolation
» High performance
Complexity-effective routers - low latency
Good bandwidth efficiency (12% thruput loss on Unif. Random)

» Modest area and energy overhead
3.4 KB of storage per node (1.8x baseline)
Up to 18% energy overhead over baseline (Uniform Random)

» Flexible network provisioning
Aggregate multiple threads into a single flow
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PVC Summary
» Full QOS support
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' QOS for NOCs

Aggregate multiple threads into a single flow
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