A Large-Scale Study of Flash Memory Errors in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu

> **facebook** Carnegie Mellon University

Overview

First study of flash reliability:

- at a large scale
- in the field

Overview SSD lifecycle We **do not** observe the Read effects of *read disturbance* disturbance errors in the field.

Temperature

Overview

SSD lifecycle

Access pattern dependence

We quantify the effects of the *page cache* and *write amplification* in the field.

Temperature

Outline

- background and motivation
- server SSD architecture
- error collection/analysis methodology
- SSD reliability trends
- summary

Background and motivation

Flash memory

- persistent
- high performance
- hard disk alternative
- used in solid-state drives (SSDs)

Flash memory

- persistent
- high performance
- hard disk alternative
- used in solid-state drives (SSDs)
- prone to a variety of errors
 - wearout, disturbance, retention

Our goal

Understand SSD reliability:

- at a large scale
 - millions of device-days, across four years
- in the field
 - realistic workloads and systems

Server SSD architecture

SSD controller

- translates addresses
- schedules accesses
- performs wear leveling

Summer of the second se

• • •

User data

0

01001100 01001101 11010010 01000000 10011100 1011111 10101111 11000101

ECC metadata

Types of errors *Small errors*

- IO's of flipped bits per KB
- silently corrected by SSD controller

Large errors

- 100's of flipped bits per KB
- corrected by host using driver
- referred to as SSD failure

Types of errors Small errors

We examine *large errors* (SSD failures) in this study.

er

~100's of flipped bits per KB
corrected by host using driver
refer to as SSD failure

Error collection/ analysis methodology

SSD data measurement

- metrics stored on SSDs measured across SSD lifetime

SSD characteristics

- 6 different system configurations
 - 720GB, 1.2TB, and 3.2TB SSDs
 - servers have 1 or 2 SSDs
 - this talk: representative systems
- 6 months to 4 years of operation
 15TB to 50TB read and written

Bit error rates (BER)

- BER = bit errors per bits transmitted
- 1 error per 385M bits transmitted to
 1 error per 19.6B bits transmitted
 - averaged across all SSDs in each system type
- Iox to Iooox lower than prior studies
 - large errors, SSD performs wear leveling

A few SSDs cause most errors

Normalized SSD number

A few SSDs cause most errors

Normalized SSD number

A few SSDs cause most errors

Normalized SSD number

Analytical methodology

not feasible to log every error
instead, analyze lifetime counters
snapshot-based analysis

Errors	54,326	0	2	10
Data written	10TB	2TB	5TB	6TB

Errors 54,326 0 2 10 Data 10TB 2TB 5TB 6TB 2014-11-1

SSD reliability trends

Storage lifecycle background: the **bathtub curve** for disk drives

Storage lifecycle background: the **bathtub curve** for disk drives

Storage lifecycle background: the bathtub curve for disk drives

Use **data written to flash** *to examine SSD lifecycle*

(time-independent utilization metric)

SSD lifecycle

Access distinct from hard disk drive lifecycle.

Temperature

Read disturbance

- reading data can disturb contents
- failure mode identified in *lab setting*
- under adversarial workloads

Read disturbance

Does read disturbance affect SSDs in the field?

g

Examine SSDs with high **flash R/W** ratios and **most data read** to understand read effects

(isolate effects of read vs. write errors)

3.2TB, 1 SSD (average R/W = 2.14)

1.2TB, 1 SSD (average R/W = 1.15)

SSD lifecycle

We **do not** observe the effects of **read disturbance** errors in the field.

Temperature

Average temperature (°C)

High temperature: may throttle or shut down

0

 $\langle \mathcal{S} \rangle$

Average temperature (°C)

Temperature

Access pattern effects

System buffering

data served from OS caches
decreases SSD usage

Write amplification

- updates to small amounts of data
- increases erasing and copying

Access pattern effects

System buffering data served from OS caches decreases SSD usage Write amplification updates to small amounts of data increases erasing and copying

System caching reduces the impact of SSD writes

Access pattern effects

System buffering data served from OS caches decreases SSD usage

Write amplification

updates to small amounts of data
increases erasing and copying

Flash devices use a translation layer to locate data

 $\mathbf{0}\mathbf{S}$

Translation layer

Logical address space

0S

<offset₁, size₁><offset₂, size₂>

Physical address space

J. S. Marin Marine S. M.

Sparse data layout more translation metadata potential for higher write amplification

Dense data layout less translation metadata potential for *lower* write amplification

Use **translation data size** to examine effects of data layout

(relates to application access patterns)

Write amplification in the field

SSD lifecycle

Access pattern dependence

We quantify the effects of the *page cache* and *write amplification* in the field.

Temperature

More results in paper

- Block erasures and discards
- Page copies
- Bus power consumption

Summary

Large scale In the field

Temperature

Summary

SSD lifecycle

Access pattern dependence

We quantify the effects of the *page cache* and *write amplification* in the field.

Temperature

A Large-Scale Study of Flash Memory Errors in the Field

Justin Meza Qiang Wu Sanjeev Kumar Onur Mutlu

> **facebook** Carnegie Mellon University

Backup slides

System characteristics

SSD capacity	PCIe	Average age (years)	SSDs per server	Average written (TB)	Average read (TB)
720GB	V1, X4	2.4	1	27.2	23.8
			2	48.5	45.1
1.2TB	V2, X4	1.6	1	37.8	43.4
			2	18.9	30.6
3.2TB	V2, X4	0.5	1	23.9	51.1
			2	14.8	18.2

DRAM buffer

stores address translations

A MARINA MARINA

may buffer writes

Average temperature (°C)