
140   |   Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

With continued scaling of NAND flash memory process technology and multiple 
bits programmed per cell, NAND flash reliability and endurance are degrading. 
In our research, we experimentally measure, characterize, analyze, and model error 
patterns in nanoscale flash memories. Based on the understanding developed 
using real flash memory chips, we design techniques for more efficient and 
effective error management than traditionally used costly error correction codes.

In this article, we summarize our major error characterization results 
and mitigation techniques for NAND flash memory. We first provide a 
characterization of errors that occur in 30- to 40-nm flash memories, showing 
that retention errors, caused due to flash cells leaking charge over time, are 
the dominant source of errors. Second, we describe retention-aware error 
management techniques that aim to mitigate retention errors. The key idea is 
to periodically read, correct, and reprogram (in-place) or remap the stored data 
before it accumulates more retention errors than can be corrected by simple 
ECC. Third, we briefly touch upon our recent work that characterizes the 
distribution of the threshold voltages across different cells in a modern 20- to 
24-nm flash memory, with the hope that such a characterization can enable the 
design of more effective and efficient error correction mechanisms to combat 
threshold voltage distortions that cause various errors. We conclude with a brief 
description of our ongoing related work in combating scaling challenges of 
both NAND flash memory and DRAM memory.

Introduction 
During the past decade, the capacity of NAND flash memory has increased 
more than 1000 times as a result of aggressive process scaling and multilevel 
cell (MLC) technology. This continuous capacity increase has made flash 
economically viable for a wide variety of applications, ranging from consumer 
electronics to primary data storage systems. However, as flash density 
increases, NAND flash memory cells are more subject to various device and 
circuit level noise, leading to decreasing reliability and endurance. The P/E 
cycle endurance of MLC NAND flash memory has dropped from ∼10K for 
5x-nm (that is, 50- to 59-nm) flash to around ∼3K for current 2x-nm (that 
is, 20- to 29-nm) flash.[1][5] The reliability and endurance are expected to 
continue to decrease when 1) more than two bits are programmed per cell, 
and 2) flash cells scale beyond the 20-nm technology generations. This trend 
is forcing flash memory designers to apply even stronger error correction 
codes (ECC) to tolerate the increasing error rates, which comes at the cost of 
additional complexity and overhead.[4]
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In our research at Carnegie Mellon University, we aim to develop new 
techniques that overcome reliability and endurance challenges of flash memory 
to enable its scaling beyond the 20-nm technology generations. To this end, we 
experimentally measure, characterize, analyze, and model error patterns that 
occur in existing flash chips, using an experimental flash memory testing and 
characterization platform we have developed.[2] Based on the understanding 
we develop from our experiments, we aim to develop error management 
techniques that aim to mitigate the fundamental types of errors that are likely 
to increase as flash memory scales. Our goal is to design techniques that are 
more effective and more efficient than stronger error correction codes (ECCs), 
which has been the traditional way of improving endurance and reliability 
of flash memory. In this article, we provide an overview of the results of 
our recent error characterization experiments[3][6] and describe some error 
mitigation techniques.[4]

In particular, we have recently experimentally characterized complex flash 
errors that occur at 30- to 40-nm flash technologies[3], categorizing them 
into four types: retention errors, program interference errors, read errors, and 
erase errors. Our characterization shows the relationship between various 
types of errors and demonstrates empirically using real 3x-nm flash chips that 
retention errors are the most dominant error type. Our results demonstrate 
that different flash errors have distinct patterns: retention errors and program 
interference errors are program/erase-(P/E)-cycle-dependent, memory-
location-dependent, and data-value-dependent. Since the observed error 
patterns are due to fundamental circuit and device behavior inherent in flash 
memory, we expect our observations and error patterns to also hold in flash 
memories beyond 30-nm technology node.

Based on our experimental characterization results that show that the retention 
errors are the most dominant errors, we have developed a suite of techniques 
to mitigate the effects of such errors, called Flash Correct-and-Refresh (FCR).[4] 
The key idea is to periodically read each page in flash memory, correct its 
errors using simple ECC, and either remap (copy/move) the page to a different 
location or reprogram it in its original location by recharging the floating gates 
before the page accumulates more errors than can be corrected with simple 
ECC. Our simulation experiments using real I/O workload traces from a 
variety of file system, database, and search applications show that FCR can 
provide 46x flash memory lifetime improvement at only 1.5 percent energy 
overhead, with no additional hardware cost.

Finally, we also briefly describe major recent results of our measurement 
and characterization of the threshold voltage distribution of different 
logical states in MLC NAND flash memory.[6] Our data shows that the 
threshold voltage distribution of flash cells that store the same value can 
be approximated, with reasonable accuracy, as a Gaussian distribution. The 
threshold voltage distribution of flash cells that store the same value gets 
distorted as the number of P/E cycles increases, causing threshold voltages of 
cells storing different values to overlap with each other, which can lead to the 
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incorrect reading of values of some cells as flash cells accumulate P/E cycles. 
We find that this distortion can be accurately modeled and predicted as 
an exponential function of the P/E cycles, with more than 95-percent 
accuracy. Such predictive models can aid the design of more sophisticated 
error correction methods, such as LDPC codes[7], which are likely needed 
for reliable operation of future flash memories. Even though we will not 
describe these models in detail in this article, the interested reader can refer 
to Cai et al.[6] for more detail. 

As flash memory continues to scale to smaller feature sizes, we hope that the 
characterization, understanding, models, and mechanisms provided in this 
work (and in our aforementioned previous works[3][4][6]) would enable the 
design of new and more effective error tolerance mechanisms that can make 
use of the observed characteristics and the developed models.

Flash Memory Background
NAND flash memory can be of two types: single level cell (SLC) flash and 
multilevel cell (MLC) flash. Only one bit of information can be stored in an 
SLC flash cell, while multiple bits (2 to 4 bits) can be stored in an MLC flash 
cell.[8][9][10] MLC flash represents n bits by using 2n non-overlapping threshold 
voltage (Vth) windows. The threshold voltage of a given cell is mainly affected 
by the number of electrons trapped on the floating gate. Figure 1 shows the bit 
mapping to Vth and the relative proportion of electrons on the floating gates of 
a 2-bit MLC flash.

L1 L2 L3L0

11 10 01 00

Erased Partially programmed Fully programmed

Vth

LSB/MSB REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

Figure 1: Threshold voltage distribution example of 2-bit 
MLC flash
(source: yu Cai, Erich F. haratsch, onur Mutlu,  
and Ken Mai, 2012[3])

A NAND flash memory chip is composed of thousands of blocks. Each block 
is a storage array of floating gate transistors. A flash block usually has 32 to 64  
wordlines. The cells on the same wordline can be divided into two groups: 
even and odd, depending on the physical location. For SLC flash, each group 
corresponds to just one logical page, that is, even pages and odd pages. As an 
MLC flash cell stores multiple bits, the bits corresponding to the same logical 
location of a cell in a group form one logical page. For example, all the most 
significant bits (MSBs) of the cells of an even group form one MSB-even 
page. Similarly, other types of pages are MSB-odd page, LSB-even page, and 
LSB-odd page. The page number assignments for each bit of the flash memory 
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are shown in Figure 2(a), ranging from 0 to 127 for the selected flash in this 
article. The size of each page is generally between 2 KB and 8 KB (16k and 
64k bitlines). The stack of flash cells in the bitline direction forms one string. 
The string is connected to a bit line through SGD (the select gate at the drain 
end) and connect to the common source diffusion through SGS (the select gate 
at the source end) as shown in Figure 2(b). Flash memories generally support 
three fundamental operations as follows: 
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Figure 2: NAND flash organization and operations: (a) Partial block organization and 
program operation on page 118; (b) Read operation
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])

Erase
During the erase operation, a high positive erase voltage (for example, 20V) is 
applied to the substrate of all the cells of the selected block and the electrons 
stored on the floating gate are tunnelled out through Fowler-Nordheim (FN) 
mechanisms.[9] After a successful erase operation, all charge on the floating 
gates is removed and all the cells are configured to the L0 (11) state. The erase 
operation is at the granularity of one block.

Program
During the program operation, a high positive voltage is applied to the 
wordline, where the page to be programmed is located. The other pages 
sharing the same wordline are inhibited (from being programmed) by 
applying 2V to their corresponding bitlines to close SGD and boost the 
potential of corresponding string channel. The voltage bias for programming 
page 118 is shown in Figure 2(a) as an example. The programming process 
is typically realized by the incremental step pulse programming (ISPP) 
algorithm.[11] ISPP first injects electrons into floating gates to boost the Vth of 
programmed cells through FN mechanisms and then performs a verification 
to check whether the Vth has reached the desired level. If Vth is still lower 
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than the desired voltage, the program-and-verify iteration will continue 
until the cell’s Vth has reached the target level. Note that the NAND flash 
program operation can only add electrons into the floating gate and cannot 
remove them from the gate. As a result, the threshold voltage can only shift 
toward the right in Figure 1 during programming. The program operation is 
executed at page granularity.

Read
The read operation is also at the page granularity and the voltage bias is shown 
in Figure 2(b). The SGD, SGS, and all deselected wordlines are turned on. 
The wordline of selected read page is biased to a series of predefined reference 
voltages and the cell’s threshold voltage can be determined to be between the 
most recent two read reference voltages when the cell conducts current.

Flash Memory Error Classification
We test the NAND flash memory using the cycle-by-cycle programming model 
shown in Figure 3. During each P/E cycle, the selected flash block is first 
erased. Then data are programmed into the block on a page granularity. Once 
a page has been programmed, it cannot be reprogrammed again unless the 
whole block is erased for the next P/E cycle. The stored data will be alive in the 
block until it becomes invalid. Before the stored data becomes invalid, it can 
be accessed multiple times. Once a page is programmed, we can test how long 
it retains data by reading the data value of the page after a retention interval, 
and comparing it to the original programmed value. Whether or not the data 
is retained correctly between two accesses depends on the time distance of 
two consecutive accesses. We repeat the above per-P/E-cycle procedure for 
thousands of cycles until the flash memory block becomes unreliable and 
reaches the end of its lifetime. Errors could happen in any stage of this testing 
process. We classify the observed errors into four different types, from the flash 
controller’s point of view:

Start

P/E cycle 0

P/E cycle i

P/E cycle n

End of life

Retention1
(t1 days)

Read
Page

Erase
Block

Program
Page (Page0–Page 128)

Retention j
(tj days)

Read
Page

Figure 3: NAND flash programming model for error 
characterization
(source: yu Cai, Erich F. haratsch, onur Mutlu,  
and Ken Mai, 2012[3])
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 ● An erase error happens when an erase operation fails to reset the cells to 
the erased state. This is mainly due to manufacturing process variations or 
defects caused by trapped electrons in the tunnel oxide after stress due to 
repeated P/E cycles.

 ● A program interference error happens when the data stored in a page changes 
(unintentionally) while a neighboring page is being programmed due to 
parasitic capacitance-coupling.

 ● A retention error happens when the data stored in a cell changes over time. 
The main reason is that the charge programmed in the floating gate may 
dissipate gradually through the leakage current.

 ● A read error happens when the data stored in a cell changes as a neighboring 
cell on the same string is read over and over. 

Error Characterization Methodology
The following section describes the error characterization methodology.

Experimental Hardware
To characterize the error patterns, we built a hardware test platform that 
allows us to issue commands to raw flash chips without ECC.[2] The test 
platform mainly consists of three components: a HAPS–52 board with Xilinx 
Virtex-5 FPGAs used as NAND flash controller, a USB daughter board used 
to connect to the host machine, and a custom flash daughter board. The 
flash memory under test is a 2-bit MLC NAND flash device manufactured 
in 3x-nm technology. The device is specified to survive 3000 P/E cycles stress 
under 10-year data retention time if ECC with 4-bit error correction per 
512 bits is applied. Details of the experimental flash test platform we use to 
collect our data are provided in [2]. 

Flash Error Testing Procedure
To test the P/E-cycle-dependence of errors, we stress-cycle flash memory blocks 
up to a certain number of erase cycles and check if the data is retained. This is 
achieved by iteratively erasing a block and programming pseudorandom data 
into it at room temperature. 

We test whether the data is retained after T amount of time, to characterize 
retention errors. T is called the retention test time and is varied in the range of 
1 day, 3 days, 3 weeks, 3 months, 1 year, and 3 years. We consider T = {1 day, 
3 days} to be short-term retention tests, while the remaining values of T are 
long-term retention tests. Short-term retention errors are characterized under 
room temperature. Long-term retention errors are characterized by baking the 
flash memory in the oven under 125° C. According to the classic temperature-
activated Arrhenius law[12], the baking time at 125° C corresponds to about 
450 times of the lifetime at room temperature (25° C). 

We refer the reader to Cai et al.[3] for our testing and characterization 
methodology for program interference and read errors.
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Error Characterization Results
We provide our experimental measurements of the errors in the state-of-the-art 
3x-nm MLC NAND flash memory we have tested using our infrastructure. 
NAND flash errors show strong correlation with the number of P/E cycles, 
location of the physical cells, and the data values programmed into the cells. 
The following subsections analyze detailed error properties and briefly describe 
the causes of the observed phenomena. Our main focus in this article is 
retention errors, but our previous work analyzes all types of errors in detail[3], 
and we refer the reader to [3] for characterization and analysis of program 
interference, read, and erase errors.

Error Rate Analysis for Different Error Types
Figure 4 shows the bit error rate due to various types of NAND flash errors. 
The x-axis shows the number of P/E cycles and the y-axis depicts the raw 
bit error rate. Error rates are obtained characterized from the beginning of 
the flash chip’s life until the region of >100x times of its specified lifetime 
(3000 P/E cycles for the chips we tested). We make several observations about 
error properties. 

First, all types of errors are highly correlated with P/E cycles. At the beginning 
of the flash lifetime, the error rate is relatively low and the raw bit error rate 
is below 10-4, within the specified lifetime (3K cycles). As the P/E cycles 
increase, the error rate increases exponentially. The P/E cycle-dependence 
of errors can be explained by the deterioration of the tunnel oxide under 
cycling stress. During erase and program operations, the electric field strength 
across the tunnel oxide is very high (for example, several million volts per 
centimeter). Such high electric field strength can lead to structural defects 
that trap electrons in the oxide layer. Over time, more and more defects 
accumulate and the insulation strength of the tunnel oxide degrades. As a 
result, charge can leak through the tunnel oxide and the threshold voltage of 
the cells can change more easily. This leads to more errors for all types of flash 
operations.

Second, there is a significant error rate difference between various types of 
errors. The long-term retention errors are the most dominant; their rate is 
highest. The program interference error rate ranks the second and is usually 
between error rates of 1-day and 3-day retention errors. The read error rate is 
slightly less than 1-day retention error rate, while the erase error rate is only 
around 7 percent of the read error rate.

Third, retention error rates are highly dependent on retention test time. If 
the time before we test for retention errors is longer, the floating gate of flash 
memory is more likely to lose more electrons through leakage current. This 
eventually leads to Vth shift across Vth windows and causes errors (see [6] for 
more detail). From our experimental data, we can see that the retention error 
rate increases linearly with the retention test time. For example, the 3-year 
retention error rate is almost three orders of magnitude higher than one-day 
retention error rate. 
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Figure 4: Rates of various types of errors as P/E cycles increase
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])

Retention Error Analysis
Value dependence of retention errors: We find that the retention errors are value 
dependent; their frequency is asymmetric with respect to the value stored in 
the flash cell. Figure 5 demonstrates this asymmetric nature of retention errors 
by showing how often each possible value transition was observed due to an 
error. We characterized all possible error transitions, in the format AB→CD, 
where AB are the two bits stored in the cell before retention test, while CD are 
the two bits recorded in the cell after retention test. If the errors are not value 
dependent, the fraction of erroneous changes between each of the different 
value pairs should be equal. But, we find that this is not the case. The most 
common retention errors are 00→01, 01→10, 01→11 and 10→ 11, with 
their relative percentage over all retention errors being 46 percent, 44 percent, 
5 percent, and 2 percent, respectively. The relative percentages among various 
error transitions are almost constant for different P/E cycles. 

To understand the reasons for value dependence, we need to observe Figure 
1 in conjunction with the value transition observed in the most common 
retention errors. We find that the most common retention errors (00→01, 
01→10, 01→11, and 10→ 11) are all cases in which Vth shifts towards the left 
(see Figure 1). This can be explained by an understanding of the retention error 
mechanisms. During retention test, the electrons stored on the floating gate 
gradually leak away under stress induced leakage current (SILC). When the 
floating gate loses electrons, its Vth shifts left from the state with more electrons 
to the state with fewer programmed electrons (as seen in Figure 1, states to 
the left have fewer electrons trapped on the gate than states to the right). It 
is significantly less likely for the cells to shift right in the opposite direction 
because this requires the addition of more electrons. As the states of 00 and 01 
hold the largest number of electrons on the floating gates, SILC is higher in 
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these states and therefore it is more likely for the Vth of the cells in these two 
states to shift left, which leads to the observation that most common errors are 
due to shifting from these states (00→01, 01→10, 01→11). 
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Figure 5: Value dependence of retention errors
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])

Location dependence of retention errors: We also characterized the relation between 
retention errors and their physical locations. The experimental results are shown 
in Figure 6. The x-axis shows the wordline number of a block and the y-axis 
shows the bit error rates of pages on the corresponding wordline (observed after 
50K P/E cycles). Each wordline contains four pages, including LSB-even, LSB-
odd, MSB-even, and MSB-odd. The bit error rates of these four types of pages 
are shown in Figure 6. Several major observations are in order.
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Figure 6: Retention error rate vs. physical location
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])
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First, the error rate of the MSB page is higher than that of the corresponding 
LSB page. In our experimental data, the MSB-even page error rate is 
1.88 times higher than the LSB-even page error rate and the MSB-odd page 
error rate is 1.67 times higher than the LSB-odd page error rate on average. 
This phenomenon can be explained by understanding the bit mapping within 
the flash memory. Dominant retention errors are mainly due to the shifting 
of Vth between two adjacent threshold voltage levels, that is shifting of Vth 
from the ith level to the (i–1)th level. From the bit mapping in Figure 1, 
we can see that such a Vth  shift can cause an LSB error only at the border 
REF2 between state L2 (01) and state L1 (10) because these are the only 
two adjacent threshold voltage levels where LSB differs. On the other hand, 
such a Vth shift can cause an MSB error on any border (REF1, REF2, REF3) 
between any two adjacent states because MSB differs between all possible 
adjacent threshold voltage levels. Hence, since the likelihood of a change 
in MSB when a Vth shift happens between adjacent states is higher than the 
likelihood of a change in LSB, it is more common to see retention errors in 
MSB than in LSB.  

Second, the retention error rate of odd pages is always higher than that 
of the corresponding even pages. For example, the error rate of MSB-odd 
pages is 2.4 times higher than that of MSB-even pages, and the error rate of 
LSB-odd pages is 1.61 times higher than that of LSB-even pages, on average. 
This result can be explained by the over-programming introduced by inter-
page interference. Generally, the pages inside a flash block are programmed 
sequentially, and a block is programmed in order, that is, from page 0 to 
page 127. For the same wordline, even pages are programmed first followed 
by odd pages. When odd pages are programmed, a high positive program 
voltage is applied to the control gates of all the cells on the wordline, 
including the cells of the even page, which has already been programmed. 
Thus, the even page comes under programming current disturbance and 
some additional electrons could be attracted into the floating gates of the 
even page. As a result of this, the Vth of cells of the even pages shift slightly to 
the right. Consequently, the cells of the even pages hold more electrons than 
the cells of the odd pages, even if they are programmed to the same logic 
value and are in the same threshold voltage window (in some sense, the cells 
of the even pages are thus more resistant to leakage because they hold more 
electrons). When electrons leak away over time during the retention test, as 
a result, it is more likely for the cells of even pages to still keep their original 
threshold voltage window and hold the correct value. In contrast, since the 
cells of the odd pages hold fewer electrons, they are more likely to transition 
to a different threshold voltage window and hence acquire an incorrect value 
as electrons leak over time. 

Third, the bit error rates of all the four types of pages have the same trend related 
to physical wordlines. For example, the error rates of the four types of pages are 
all high on wordline #31 and are all low on wordline #7. We conclude that error 
rates are correlated with wordline locations. This could possibly be due to process 
variation effects, which could be similar across the same wordline.
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The major takeaway from our measurement and characterization results is that 
the rate of retention errors, which are the most common form of flash errors, 
is asymmetric in both original cell value and the location of the cell in flash bit 
organization. This observation can potentially be used to devise error protection 
or correction mechanisms that have varying strength based on cell value and 
location. 

Mitigating Retention Errors:  
Flash Correct-and-Refresh
We describe a set of new techniques, called Flash Correct-and-Refresh 
(FCR), that exploit the dominance and characteristics of retention errors to 
significantly increase NAND flash lifetime while incurring minimal overhead. 
The basic idea of the FCR schemes is to periodically read, correct, and refresh 
(reprogram or remap) the stored data before it accumulates more retention 
errors than can be handled by ECC. Thus, we can achieve a low uncorrectable 
bit error rate (UBER) while still using a simple, low-overhead ECC. Two 
key questions central to designing a system that uses FCR techniques are: 
(1) how to refresh the data in flash memory and (2) when to refresh the data. 
We address the first question with two techniques for how to refresh the 
data: remapping (in the section “Remapping-based FCR Mechanisms”) and 
reprogramming in-place (in the section “In-Place Reprogramming-based FCR 
Mechanisms”). We then tackle the second question with two techniques for 
when to refresh: periodically and adaptively based on the number of P/E cycles 
(Section 6.3).

Remapping-based FCR Mechanisms
Unlike DRAM cells, which can be refreshed in-place[13], flash cells generally 
must first be erased before they can be programmed. To remove the slow erase 
operation from the critical path of write operations, current wear-leveling 
algorithms remap the data to another physical location rather than erasing the 
data and then programming in-place. The flash controller maintains a list of 
free blocks that have been erased in background through garbage collection 
and are ready for programming. Whenever a write operation is requested, the 
controller’s wear-leveling algorithm selects a free block and programs it directly, 
remapping the logical block address to the new physical block.

The key idea of remapping-based FCR is to leverage the existing wear-
leveling mechanisms to periodically read, correct, and remap to a different 
physical location each valid flash block in order to prevent it from 
accumulating too many retention errors. Figure 7 shows the operational flow 
of remapping-based FCR: (1) During each refresh interval, a block with 
valid data that needs to be refreshed is selected. (2) The valid data in the 
selected block is read out page by page and moved to the SSD controller. 
(3) The ECC engine in the SSD controller corrects all the errors in the read 
data, including retention errors that have accumulated since the last refresh. 
After ECC, the data are error free. (4) A new free block is selected and the 

“The major takeaway from our 

measurement and characterization 

results is that the rate of retention 

errors, which are the most common 

form of flash errors, is asymmetric 

in both original cell value and 

the location of the cell in flash bit 

organization.”

“The basic idea of the FCR schemes 

is to periodically read, correct, and 

refresh (reprogram or remap) the 

stored data before it accumulates more 

retention errors than can be handled 

by ECC.”
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Read Page Data Page Num 11

Select next Block

Yes

No

Program
Corrected Data
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Alloc. Block/page
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Figure 7: operation of a remapping-based 
flash correct-and-refresh scheme
(source: yu Cai, gulay yalcin, onur Mutlu, 
Erich F. haratsch, Adrian Cristal, osman 
Unsal, and Ken Mai, 2012[4])
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error free data are programmed to the new location, and the logical address 
is remapped. Note that the proposed address remapping techniques leverage 
existing hardware and software of contemporary wear-leveling and garbage 
collection algorithms.

Unfortunately, periodic remapping of every block introduces additional 
erase cycles. This is because after the flash data are corrected and remapped 
to the new location, the original block is marked as outdated. Thus, 
the block will eventually be erased and reclaimed by garbage collection. 
The more frequent the remap operations, the more the additional erase 
operations, which wears out flash memory faster. As such, there might be 
an inflection point beyond which increasing the refresh rate in remapping-
based FCR can lead to reduced lifetime. To avoid this potential problem, we 
next introduce enhanced FCR methods, which minimize unnecessary remap 
operations.

In-Place Reprogramming-based FCR Mechanisms
To reduce the overhead associated with periodic remapping, we describe a 
technique for periodic in-place reprogramming of the block most of the time, 
without a preceding erase operation, which can greatly reduce the overhead of 
periodic remapping. This in-place reprogramming takes advantage of the key 
observation that retention errors arise from the loss of electrons on the floating 
gate over time and the flash cell with retention errors can be reprogrammed to its 
original correct value without an erase operation using the incremental step pulse 
programming (ISPP) scheme used to program flash memory. We first provide 
background on ISPP.

ISPP
Before a flash cell can be programmed, the cell must be erased (that is, 
all charge is removed from the floating gate, setting the threshold voltage 
to the lowest value). When a NAND flash memory cell is programmed, 
a high positive voltage applied to the control gate causes electrons to be 
injected into the floating gate. The threshold voltage of a NAND flash cell 
is programmed by injecting a precise amount of charge onto the floating 
gate through ISPP.[11] During ISPP, floating gates are programmed iteratively 
using a step-by-step program-and-verify approach. After each programming 
step, the flash cell threshold voltage is boosted up. Then, the threshold 
voltage of the programmed cells are sensed and compared to the target 
values. If the cell’s threshold voltage level is higher than the target value, 
the program-and-verify iteration will stop. Otherwise the flash cells are 
programmed once again and more electrons are added to the floating gates 
to boost the threshold voltage. This program-and-verify cycle continues 
iteratively until all the cells’ threshold voltages reach the target values. Using 
ISPP, flash memory cells can only be programmed from a state with fewer 
electrons to a state with more electrons and cannot be programmed in the 
opposite direction.

“...the flash cell with retention 
errors can be reprogrammed to its 
original correct value without an 
erase operation using the incremental 

step pulse programming (ISPP) scheme 

used to program flash memory.”
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Retention Error Mechanisms
Retention errors are caused by the loss of electrons from the floating gate 
over time. As such, a cell with retention errors moves from a state with 
more electrons to a state with fewer electrons. Figure 8(a) shows the relative 
relationship between the stored data value and its corresponding threshold 
voltage distribution for a typical MLC flash storing 2-bits per cell. The leftmost 
state is the erased state (state 11) with the smallest threshold voltage, and there 
is no charge on the floating gate. The states located on the right in Figure 
8(a) are programmed with more electrons and have higher threshold voltages 
than the states located relatively to the left. Over time, as the electrons on 
the floating gate leak away, the threshold voltage of a cell shifts to the left, as 
shown in Figure 8(b). If the threshold voltage of a cell shifts too far to the left 
(that is, it loses too many electrons from the floating gate), it will cross the read 
reference voltage between adjacent states and can be misinterpreted during a 
read as the wrong value. 

In-Place Reprogramming Can Fix Retention Errors
A cell with a retention error can be reprogrammed to the value it had 
before the floating gate lost charge by recharging additional electrons onto 
the floating gate through ISPP, as shown in Figure 8(c). Note that this does 
not require an erase operation because the only objective is to add more 
electrons (not to remove them), which can be accomplished by simple 
programming. 

(a) Threshold voltage distribution vs number of electrons in flash cell
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REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

(b) Retention errors cause threshold voltage shift to the left

11 10 01 00

VT

REF1 REF2 REF3

(c) ISPP shifts threshold voltage to the right and can fix retention errors

VT

11 10 01 00

Figure 8: Retention errors are caused by threshold voltage 
shift to the left and can be fixed by programming in-place 
using ISPP
(source: yu Cai, gulay yalcin, onur Mutlu, Erich F. haratsch, 
Adrian Cristal, osman Unsal, and Ken Mai, 2012[4])

“Over time, as the electrons on the 

floating gate leak away, the threshold 

voltage of a cell shifts to the left...”
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6.2.4 Basic In-Place Reprogramming-based FCR Mechanism
A basic FCR mechanism that uses in-place reprogramming works as follows. 
Periodically, a block is selected to be refreshed and read page-by-page into 
the flash controller. By selecting a suitable refresh interval, we can ensure 
that the total error number is below the correction capability of the ECC. 
Then we can reprogram the flash cells in the same location with the error-
corrected data, without erasing the whole block. If the new corrected value 
corresponds to a state with more charge than the old value, then the cell can 
be in-place reprogrammed to the correct value. If the corrected value is exactly 
the same as the original value, in-place reprogramming will not change the 
stored data value, as ISPP will stop programming the cell as soon as it detects 
that the target value has already been reached. Note that most of the cells are 
reprogrammed with exactly the same data value as error rates are generally 
significantly below 1 percent. 

Problem: Accumulated Program Errors
While this basic mechanism can effectively fix retention errors, it introduces 
a problem because there is another error mechanism in flash cells that is 
caused by program operations, which are required to perform in-place 
reprogramming. When a flash cell is being programmed, additional electrons 
may be injected into the floating gates of its neighbor cells due to coupling 
capacitance.[14] The threshold voltage distribution of the neighbor cells will 
shift right as they gain more electrons, as shown in Figure 9(a). If the threshold 
voltage shifts right by too much, it will be misread as an error value that 
represents a state located to the right. This is called a program interference error 
(or simply a program error). Although it is a less common error mechanism 
than retention errors as we have shown in Figure 4, periodic reprogramming 
can exacerbate the effects of program errors. 

Two potential issues are: (1) As ISPP cannot remove electrons from the 
floating gate, program errors cannot be fixed by in-place reprogramming; 
(2) Reprogramming of a page can introduce additional program errors due to 
the additional program operations. Figure 9(b) illustrates both issues in the 
context of in-place programming. First, the original data is programmed into 
the page. This initial programming can cause some program errors (for example, 
value 11 is programmed as 10 on the second cell from the left). After some 
time, retention errors start to appear in the stored data (for example, the first 
cell changes from state 00 to 01). Note that there are generally many more 
retention errors than program errors. When the page is reprogrammed in-place, 
it is first read out and corrected using ECC. The error-corrected data (which is 
the same as the original data) is then written back (programmed) into the page. 
This corrects all the retention errors by recharging the cells that lost charge. 
However, this reprogramming does not correct the program error (in the second 
cell) because this correction requires the removal of charge from the second cell’s 
floating gate, which is not possible without an erase operation. Furthermore, 
additional program errors can appear (for example, in the sixth cell) because the 
in-place program operation can cause additional disturbance. 

“When a flash cell is being 

programmed, additional electrons 

may be injected into the floating gates 

of its neighbor cells due to coupling 

capacitance.”
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(a) Program interference causes threshold voltage shift to the right

(b) Example of reprogramming a page with retention and program errors

11 10 01 00

VT

REF1 REF2 REF3

Original data to
be programmed

Program errors after
initial programming

Retention errors
after some time

Errors after in-place
reprogramming

00 11 01 00 10 11 00

00 10 01 00 10 11 00

01 10 10 00 11 11 01

00 10 01 00 10 10 00

Figure 9: In-place reprograming can correct retention 
errors but not program errors because in-place 
programming can only add more electrons into the floating 
gate and cannot remove them. Note that red values with 
dotted circles are retention errors and blue ones with solid 
circles are program errors 
(source: yu Cai, gulay yalcin, onur Mutlu, Erich F. haratsch, 
Adrian Cristal, osman Unsal, and Ken Mai, 2012[4])

Hybrid FCR
To mitigate the errors accumulated due to periodic reprogramming, we 
propose a hybrid reprogramming/remapping-based FCR technique to control 
the number of reprogram errors. The key idea is to monitor the right-shift 
error count present in each block. If this count is below a certain threshold 
(likely most of the time) then in-place reprogramming is used to correct 
retention errors. If the count exceeds the threshold, indicating that the block 
has too many accumulated program errors, then the block is remapped to 
another location, which corrects both retention and program errors. In our 
evaluation, we set the threshold to 30 percent of the maximum number of 
errors that could be corrected by ECC, which is conservative. Figure 10 
provides a flowchart of this hybrid FCR mechanism. Note that this hybrid 
FCR mechanism greatly reduces the additional erase operations present in 
remapping based FCR because it remaps a block (requires an erase operation) 
only when the number of accumulated program errors is high, which is rare 
due to the low program error rate. 

“To mitigate the errors accumulated 

due to periodic reprogramming, 

we propose a hybrid reprogramming/

remapping-based FCR technique 

to control the number of reprogram 

errors.”
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Figure 10: Hybrid FCR workflow: if reprogramming error count is less 
than a threshold, in-place reprogram the block; otherwise, remap to a 
new block
(source: yu Cai, gulay yalcin, onur Mutlu, Erich F. haratsch, Adrian 
Cristal, osman Unsal, and Ken Mai, 2012[4])

Adaptive-Rate FCR
So far we assumed that FCR mechanisms, be it based on in-place reprogramming 
or remapping, are invoked periodically. This need not be the case. In fact, we 
observe that the rate of (retention) errors is very low during the beginning 
of flash lifetime, as shown in Figure 4. Until more than 1000 P/E cycles, the 
retention error rate is lower than the acceptable raw BER that can be corrected 
by the simplest BCH code (not shown, but described in detail in [4]), which 
is a commonly used ECC type in flash memories. Hence, at the beginning of 
its lifetime, flash memory does not need to be refreshed. Retention error rate 
increases as the number of P/E cycles increases. We leverage this key observation 
to reduce the number of unnecessary refresh operations. 

The main idea of adaptive-rate FCR is to adapt the refresh rate to the number 
of P/E cycles a block has incurred. Initially, refresh rate for a block starts out 
at zero (no refresh). Once ECC becomes incapable of correcting retention 
errors, the block’s refresh rate increases to tolerate the increased retention error 
rate. Hence, refresh rate is gradually increased over each flash block’s lifetime 
to adapt to the increased P/E cycles. The whole lifetime of a flash block can 
be divided into intervals with different refresh rates ranging, for example, 
from no refresh (initially), yearly refresh, monthly refresh, weekly refresh, to 
daily refresh. The frequency of refresh operations at a given P/E cycle count 
is determined by the acceptable raw BER provided by the used ECC and 
the BER that corresponds to the P/E cycle count (which can be known by 
the controller[4]). Note that this mechanism requires keeping track of P/E 
cycles incurred for each block, but this information is already maintained to 
implement current wear-leveling algorithms.

“...refresh rate is gradually increased 

over each flash block’s lifetime to adapt 

to the increased P/E cycles.”
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Additional Considerations 
We briefly discuss some additional factors that affect the implementation and 
operation of the proposed FCR mechanisms. 

Implementation Cost
The FCR mechanisms do not require hardware changes. They require 
changes in FTL software/firmware to implement the flowcharts shown in 
Figures 7 and 10. FCR can leverage the per-block validity and P/E cycle 
information that is already maintained in existing flash systems to implement 
wear leveling.

Power Supply Continuity
To perform a refresh, the flash memory must be powered. As FCR is 
proposed mainly for enterprise storage applications, these systems are typically 
continuously powered on. Our proposed techniques use daily, weekly, or 
monthly refresh and it is rare for a server to be powered off for such long 
periods.

Response Time Impact
Refresh may interfere with normal flash operations and degrade the response 
time. To reduce this penalty, we can decrease the refresh priority, making it 
run in the background. The SSD can issue refresh operations whenever it is 
idle, and refresh operations can be interrupted to avoid the impact on the 
response time of normal operations. Unlike DRAM, where refresh is triggered 
frequently (for example, every 64 ms) to maintain correctness[13], the refresh 
period of FCR is at least a day, and the SSD can finish refresh operations 
within the refresh period. Recent work has shown that the response time 
overhead is within a few percent for daily refresh.[15] Note that our hybrid and 
adaptive FCR techniques have much lower overhead for refresh operations 
than periodic remapping based FCR.

Additional Erase Cycles
FCR introduces additional erase operations. Our evaluations take into 
account the impact of additional erase operations on flash lifetime and energy 
consumption.

Adapting to Variations in Retention Error Rate
Note that retention error rate is usually constant for a given refresh rate and 
P/E cycle combination. However, there are environmental factors, such as 
temperature, that can change this rate. For example, retention error rate 
would be dependent on temperature. To adapt to dynamic fluctuations in 
retention error rate, our hybrid FCR and adaptive-rate FCR mechanisms 
monitor the changes in the retention error rate at periodic intervals, and 
increase or decrease the refresh (that is, FCR) rate if the error rate in the 
previous interval is greater or less than a threshold. These mechanisms are 
similar in principle to what is employed in DRAM to adapt refresh rate to 
temperature changes.[13]

“The FCR mechanisms do not require 

hardware changes.”

“Unlike DRAM, where refresh is 

triggered frequently (for example, 

every 64 ms) to maintain correctness, 

the refresh period of FCR is at least a 

day...”
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Evaluation of Flash Correct-and-Refresh
We evaluate FCR using Disksim[20] with SSD extensions[21]. All proposed 
techniques are simulated using various I/O traces from real workloads: 
iozone[22], cello99[23], oltp, postmark[24], MSR-Cambridge[25] and a web search 
engine[26]. We configure the simulated flash-based SSD with four channels. 
Each channel has eight flash chips. Each flash chip has 8,192 blocks containing 
128 pages. The page size is 8 KB. The total storage capacity is 256 GB. 
The energy of flash read, program, and erase operations are collected from 
our experimental flash memory platform[2], and are used in the simulation 
infrastructure to obtain the overall energy consumption. The details of 
our experimental evaluation methodology, workloads, and our method for 
estimating lifetime are described in our previous work[4]. We present the major 
results showing the effect of our mechanisms on flash lifetime and energy 
consumption in this article. Much more detailed analyses of our individual 
techniques, analysis of sensitivity to refresh interval length, and results on 
individual workloads are provided in [4].

Effect on Flash Memory Lifetime 
Figure 11 shows the lifetime improvement provided by three different versions 
of FCR compared to the baseline with no refresh. The adaptive-rate FCR 
mechanism is implemented on top of the hybrid FCR substrate. Flash lifetime 
is evaluated under various ECC configurations, ranging from weak 512-bit 
to strong 32-kb BCH codes (described and evaluated in detail in [4]). The 
refresh period of each periodic mechanism is chosen on a per-workload basis 
such that the lifetime provided for a workload by the mechanism is maximized 
(more analysis on the refresh period can be found in [4]). Adaptive-rate 
FCR, which adaptively and realistically chooses the refresh period, provides 
the highest lifetime improvement over the baseline as it corrects retention 
errors while avoiding unnecessary refreshes. The improvements are especially 
significant in read-intensive workloads since these workloads do not have 
high P/E cycles, causing the adaptive-rate FCR to keep the refresh rate very 
low. On average, adaptive-rate FCR provides 46.7x, 4.8x, and 1.5x higher 
flash lifetime compared to no-refresh (on the baseline system using 512-bit 
ECC), remapping-based FCR, and hybrid FCR, respectively. Note that the 
lifetime improvement provided by the much stronger 32-kb ECC is only 
four times that of the lifetime provided by the baseline 512-bit ECC, yet the 
implementation of the former, stronger ECC, requires 71 times the power 
consumption and 85 times the area of the latter, weaker ECC.[4] Contrast this 
with the 46.7x lifetime improvement provided by adaptive-rate FCR on the 
system with 512-bit ECC. Thus, improving lifetime via FCR is much more 
effective and efficient than doing so by increasing the strength of ECC. We 
conclude, based on these results, that adaptive-rate FCR implemented over 
the hybrid FCR mechanism is a promising mechanism for significant lifetime 
enhancement of flash memory at low cost.

“...adaptive-rate FCR provides 46.7x, 

4.8x, and 1.5x higher flash lifetime 

compared to no-refresh”...

“...improving lifetime via FCR is 

much more effective and efficient than 

doing so by increasing the strength of 

ECC.”
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P/E Cycle and Energy Overhead Analysis
FCR techniques can introduce two main overheads: (1) additional P/E cycles 
due to remapping; (2) additional energy consumed by refresh operations. 
A detailed evaluation of the former is provided in [4]. Note that all P/E cycle 
overheads have already been accounted for in the collection of the flash lifetime 
results.

Figure 12 shows the additional flash energy consumption of remapping-based 
FCR and hybrid FCR averaged over all workloads compared to a system 
with no FCR. The refresh energy is estimated under the worst-case scenario 
that all data are to be refreshed. Even if we assume we must refresh the 
entire SSD each day, the energy overhead is only 7.8 percent and 5.5 percent 
for remapping-based FCR and hybrid FCR respectively. When the refresh 
interval is three weeks, the energy overhead is almost negligible (less than 
0.4 percent). We also observe that hybrid FCR has less energy overhead than 
remapping based FCR mainly because hybrid FCR reduces the high-energy 
erase/remap operations by performing in-place reprogramming most of the 
time. 

We also evaluate the energy overhead of adaptive-rate FCR and find that it is 
only 1.5 percent (not shown in the figure). Recall that adaptive-rate FCR starts 
out with no refresh and gradually increases the refresh rate up to daily refresh 
as the P/E cycles accumulate. Yet its energy overhead is significantly lower than 
periodic daily refresh. We conclude that adaptive-rate FCR is the most superior 
of flash correct-and-refresh mechanisms in terms of both lifetime and energy 
consumption.  

“When the refresh interval is three 

weeks, the energy overhead is almost 

negligible...”
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Ongoing Work
In our comprehensive continued effort for enhancing flash memory scaling to 
smaller technology nodes, we have been characterizing the effects of different 
error mechanisms in flash memory, developing models to predict how they 
change over the lifetime of flash memory, and designing error tolerance 
mechanisms based on the developed characterization and models. 

Recently, we have also experimentally investigated and characterized the 
threshold voltage distribution of different logical states in MLC NAND flash 
memory.[6] We have developed new models that can predict the shifts in the 
threshold voltage distribution based on the number of P/E cycles endured 
by flash memory cells. Our key results, presented in [6], show that 1) the 
threshold voltage distribution of flash cells that store the same value can be 
approximated, with reasonable accuracy, as a Gaussian distribution, 2) under 
ideal wear leveling, the flash cell can be modeled as an AWGN (Additive 
White Gaussian Noise) channel that takes the input (programmed) threshold 
voltage signal and outputs a threshold voltage signal with added Gaussian 
white noise, and 3) threshold voltage distribution of flash cells that store 
the same value gets distorted (shifts to right and widens around the mean 
value) as the number of P/E cycles increases. This distortion can be accurately 
modeled and predicted as an exponential function of the P/E cycles, with 
more than 95 percent accuracy. Such predictive models can aid the design of 
much more sophisticated error correction methods, such as LDPC codes[7], 
which are likely needed for reliable operation of future flash memories. 
We refer the reader to [6] for more detail. 

We are currently investigating another increasingly more significant 
obstacle to continued MLC NAND flash scaling, which is the increasing 
cell-to-cell program interference due to increasing parasitic capacitances 
between the cells’ floating gates. Accurate characterization and modeling 
of this phenomenon are needed to find effective techniques to combat 
this program interference. In our recent work[16], we leverage the read retry 

“We have developed new models that 

can predict the shifts in the threshold 

voltage distribution based on the 

number of P/E cycles endured by flash 

memory cells.”
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mechanism found in some flash designs to obtain measured threshold voltage 
distributions results from state-of-the-art 2Y-nm (24- to 20-nm) MLC 
NAND flash chips. These results are then used to characterize the cell-to-cell 
program interference under various programming conditions. We show that 
program interference can be accurately modeled as additive noise following 
Gaussian-mixture distributions, which can be predicted with 96.8 percent 
accuracy using linear regression models. We use these models to develop and 
evaluate a read reference voltage prediction technique that reduces the raw 
flash bit error rate by 64 percent and increases the flash lifespan by 30 percent. 
We refer the reader to [16] for more detail.

Finally, apart from investigating scaling challenges in flash memory, we 
are investigating techniques to enable better scaling of DRAM. Improving 
DRAM cell density by reducing the cell size, as has been done traditionally, 
is becoming significantly more difficult due to increased manufacturing 
complexity/cost and reduced cell reliability. We are examining alternative ways 
of enhancing the performance and energy-efficiency of DRAM while still 
maintaining low cost. A key direction is to co-design the DRAM controller 
and DRAM, rethinking the DRAM interface and microarchitecture, such 
that DRAM scaling challenges are tolerated at the system level. For example, 
we have recently proposed new techniques to reduce DRAM access latency 
at low cost by segmenting bitlines and creating a low-latency low-energy 
segment within a subbank[17], to increase DRAM parallelism and locality by 
enabling pipelined access of subbanks and enabling multiple row buffers to be 
concurrently active within a bank[18], to reduce the number of DRAM refreshes 
by taking advantage of variation in retention times of DRAM rows in a low-
cost manner[13], and to accelerate bulk data copy and initialization operations 
by performing them solely in DRAM with only minor modifications to 
DRAM[19]. We have also experimentally characterized retention behavior 
of DRAM cells and rows for 248 commodity DRAM chips[27], with the 
goal of developing mechanisms that can dynamically profile retention times 
of different rows. We observed two significant phenomena: data pattern 
dependence, where the retention time of DRAM cells is significantly affected 
by the data stored in other DRAM cells, and variable retention time, where the 
retention time of some DRAM cells changes over time. We refer the reader to 
these respective works for further detail. 

Conclusion
Reliability and energy efficiency challenges posed by technology scaling are 
a critical problem that jeopardizes both flash memory and DRAM capacity, 
cost, performance, lifetime, and efficiency. In this article, we have described 
our recent error analysis of flash memory and a new method to improve flash 
memory lifetime. We hope other works by us and other researchers in the 
field collectively enable the memory and microprocessor industry to develop 
cooperative techniques to enable scalable, efficient, and reliable flash memory 
(and DRAM) that continues to scale to smaller feature sizes.

“A key direction is to co-design the 

DRAM controller and DRAM, 

rethinking the DRAM interface and 

microarchitecture, such that DRAM 

scaling challenges are tolerated at the 

system level.”
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