
140 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Contributors

Intel® Technology Journal | Volume 17, Issue 1, 2013

With continued scaling of NAND flash memory process technology and multiple
bits programmed per cell, NAND flash reliability and endurance are degrading.
In our research, we experimentally measure, characterize, analyze, and model error
patterns in nanoscale flash memories. Based on the understanding developed
using real flash memory chips, we design techniques for more efficient and
effective error management than traditionally used costly error correction codes.

In this article, we summarize our major error characterization results
and mitigation techniques for NAND flash memory. We first provide a
characterization of errors that occur in 30- to 40-nm flash memories, showing
that retention errors, caused due to flash cells leaking charge over time, are
the dominant source of errors. Second, we describe retention-aware error
management techniques that aim to mitigate retention errors. The key idea is
to periodically read, correct, and reprogram (in-place) or remap the stored data
before it accumulates more retention errors than can be corrected by simple
ECC. Third, we briefly touch upon our recent work that characterizes the
distribution of the threshold voltages across different cells in a modern 20- to
24-nm flash memory, with the hope that such a characterization can enable the
design of more effective and efficient error correction mechanisms to combat
threshold voltage distortions that cause various errors. We conclude with a brief
description of our ongoing related work in combating scaling challenges of
both NAND flash memory and DRAM memory.

Introduction
During the past decade, the capacity of NAND flash memory has increased
more than 1000 times as a result of aggressive process scaling and multilevel
cell (MLC) technology. This continuous capacity increase has made flash
economically viable for a wide variety of applications, ranging from consumer
electronics to primary data storage systems. However, as flash density
increases, NAND flash memory cells are more subject to various device and
circuit level noise, leading to decreasing reliability and endurance. The P/E
cycle endurance of MLC NAND flash memory has dropped from ∼10K for
5x-nm (that is, 50- to 59-nm) flash to around ∼3K for current 2x-nm (that
is, 20- to 29-nm) flash.[1][5] The reliability and endurance are expected to
continue to decrease when 1) more than two bits are programmed per cell,
and 2) flash cells scale beyond the 20-nm technology generations. This trend
is forcing flash memory designers to apply even stronger error correction
codes (ECC) to tolerate the increasing error rates, which comes at the cost of
additional complexity and overhead.[4]

“...we summarize our major error

characterization results and mitigation

techniques for NAND flash memory.”

“...as flash density increases, NAND

flash memory cells are more subject

to various device and circuit level

noise,...”

ERRoR ANAlysIs AND RETENTIoN-AwARE ERRoR MANAgEMENT
FoR NAND FlAsh MEMoRy

Yu Cai
Carnegie Mellon University

Gulay Yalcin
Barcelona supercomputing Center

Onur Mutlu
Carnegie Mellon University

Erich F. Haratsch
lsI Corporation

Adrian Cristal
Barcelona supercomputing Center

Osman S. Unsal
Barcelona supercomputing Center

Ken Mai
Carnegie Mellon University

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 141

Intel® Technology Journal | Volume 17, Issue 1, 2013

In our research at Carnegie Mellon University, we aim to develop new
techniques that overcome reliability and endurance challenges of flash memory
to enable its scaling beyond the 20-nm technology generations. To this end, we
experimentally measure, characterize, analyze, and model error patterns that
occur in existing flash chips, using an experimental flash memory testing and
characterization platform we have developed.[2] Based on the understanding
we develop from our experiments, we aim to develop error management
techniques that aim to mitigate the fundamental types of errors that are likely
to increase as flash memory scales. Our goal is to design techniques that are
more effective and more efficient than stronger error correction codes (ECCs),
which has been the traditional way of improving endurance and reliability
of flash memory. In this article, we provide an overview of the results of
our recent error characterization experiments[3][6] and describe some error
mitigation techniques.[4]

In particular, we have recently experimentally characterized complex flash
errors that occur at 30- to 40-nm flash technologies[3], categorizing them
into four types: retention errors, program interference errors, read errors, and
erase errors. Our characterization shows the relationship between various
types of errors and demonstrates empirically using real 3x-nm flash chips that
retention errors are the most dominant error type. Our results demonstrate
that different flash errors have distinct patterns: retention errors and program
interference errors are program/erase-(P/E)-cycle-dependent, memory-
location-dependent, and data-value-dependent. Since the observed error
patterns are due to fundamental circuit and device behavior inherent in flash
memory, we expect our observations and error patterns to also hold in flash
memories beyond 30-nm technology node.

Based on our experimental characterization results that show that the retention
errors are the most dominant errors, we have developed a suite of techniques
to mitigate the effects of such errors, called Flash Correct-and-Refresh (FCR).[4]
The key idea is to periodically read each page in flash memory, correct its
errors using simple ECC, and either remap (copy/move) the page to a different
location or reprogram it in its original location by recharging the floating gates
before the page accumulates more errors than can be corrected with simple
ECC. Our simulation experiments using real I/O workload traces from a
variety of file system, database, and search applications show that FCR can
provide 46x flash memory lifetime improvement at only 1.5 percent energy
overhead, with no additional hardware cost.

Finally, we also briefly describe major recent results of our measurement
and characterization of the threshold voltage distribution of different
logical states in MLC NAND flash memory.[6] Our data shows that the
threshold voltage distribution of flash cells that store the same value can
be approximated, with reasonable accuracy, as a Gaussian distribution. The
threshold voltage distribution of flash cells that store the same value gets
distorted as the number of P/E cycles increases, causing threshold voltages of
cells storing different values to overlap with each other, which can lead to the

“Our goal is to design techniques

that are more effective and more

efficient than stronger error correction

codes (ECCs), which has been

the traditional way of improving

endurance and reliability of flash

memory.”

“Our characterization shows the

relationship between various types of

errors and demonstrates empirically

using real 3x-nm flash chips that

retention errors are the most dominant

error type.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

142 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

incorrect reading of values of some cells as flash cells accumulate P/E cycles.
We find that this distortion can be accurately modeled and predicted as
an exponential function of the P/E cycles, with more than 95-percent
accuracy. Such predictive models can aid the design of more sophisticated
error correction methods, such as LDPC codes[7], which are likely needed
for reliable operation of future flash memories. Even though we will not
describe these models in detail in this article, the interested reader can refer
to Cai et al.[6] for more detail.

As flash memory continues to scale to smaller feature sizes, we hope that the
characterization, understanding, models, and mechanisms provided in this
work (and in our aforementioned previous works[3][4][6]) would enable the
design of new and more effective error tolerance mechanisms that can make
use of the observed characteristics and the developed models.

Flash Memory Background
NAND flash memory can be of two types: single level cell (SLC) flash and
multilevel cell (MLC) flash. Only one bit of information can be stored in an
SLC flash cell, while multiple bits (2 to 4 bits) can be stored in an MLC flash
cell.[8][9][10] MLC flash represents n bits by using 2n non-overlapping threshold
voltage (Vth) windows. The threshold voltage of a given cell is mainly affected
by the number of electrons trapped on the floating gate. Figure 1 shows the bit
mapping to Vth and the relative proportion of electrons on the floating gates of
a 2-bit MLC flash.

L1 L2 L3L0

11 10 01 00

Erased Partially programmed Fully programmed

Vth

LSB/MSB REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

Figure 1: Threshold voltage distribution example of 2-bit
MLC flash
(source: yu Cai, Erich F. haratsch, onur Mutlu,
and Ken Mai, 2012[3])

A NAND flash memory chip is composed of thousands of blocks. Each block
is a storage array of floating gate transistors. A flash block usually has 32 to 64
wordlines. The cells on the same wordline can be divided into two groups:
even and odd, depending on the physical location. For SLC flash, each group
corresponds to just one logical page, that is, even pages and odd pages. As an
MLC flash cell stores multiple bits, the bits corresponding to the same logical
location of a cell in a group form one logical page. For example, all the most
significant bits (MSBs) of the cells of an even group form one MSB-even
page. Similarly, other types of pages are MSB-odd page, LSB-even page, and
LSB-odd page. The page number assignments for each bit of the flash memory

“...we hope that the characterization,

understanding, models, and

mechanisms provided in this work

(and in our aforementioned previous

works) would enable the design of

new and more effective error tolerance

mechanisms that can make use of

the observed characteristics and the

developed models.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 143

Intel® Technology Journal | Volume 17, Issue 1, 2013

are shown in Figure 2(a), ranging from 0 to 127 for the selected flash in this
article. The size of each page is generally between 2 KB and 8 KB (16k and
64k bitlines). The stack of flash cells in the bitline direction forms one string.
The string is connected to a bit line through SGD (the select gate at the drain
end) and connect to the common source diffusion through SGS (the select gate
at the source end) as shown in Figure 2(b). Flash memories generally support
three fundamental operations as follows:

0V 2V 0V 2V

even odd even page numberodd

(b)

SGD

126
122

124
118

8
2

4
0

9
3

5
1

127
123

125
119

8
2

4
0

126

122
124
118

MSB
LSB

Vinhib (10V)

Vinhib (10V)

Vinhib (10V)

2V

Vpgm (20V)

0V

(a)

9
3

5
1

127

123
125
119

WL32

WL31

WL1

WL0

SGS

SGD

SGS

Vcc

Vcc

Vpass (6V)

Vpass (6V)

Vpass (6V)

Vread (REF)

Figure 2: NAND flash organization and operations: (a) Partial block organization and
program operation on page 118; (b) Read operation
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])

Erase
During the erase operation, a high positive erase voltage (for example, 20V) is
applied to the substrate of all the cells of the selected block and the electrons
stored on the floating gate are tunnelled out through Fowler-Nordheim (FN)
mechanisms.[9] After a successful erase operation, all charge on the floating
gates is removed and all the cells are configured to the L0 (11) state. The erase
operation is at the granularity of one block.

Program
During the program operation, a high positive voltage is applied to the
wordline, where the page to be programmed is located. The other pages
sharing the same wordline are inhibited (from being programmed) by
applying 2V to their corresponding bitlines to close SGD and boost the
potential of corresponding string channel. The voltage bias for programming
page 118 is shown in Figure 2(a) as an example. The programming process
is typically realized by the incremental step pulse programming (ISPP)
algorithm.[11] ISPP first injects electrons into floating gates to boost the Vth of
programmed cells through FN mechanisms and then performs a verification
to check whether the Vth has reached the desired level. If Vth is still lower

“Flash memories generally support

three fundamental operations...”

Intel® Technology Journal | Volume 17, Issue 1, 2013

144 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

than the desired voltage, the program-and-verify iteration will continue
until the cell’s Vth has reached the target level. Note that the NAND flash
program operation can only add electrons into the floating gate and cannot
remove them from the gate. As a result, the threshold voltage can only shift
toward the right in Figure 1 during programming. The program operation is
executed at page granularity.

Read
The read operation is also at the page granularity and the voltage bias is shown
in Figure 2(b). The SGD, SGS, and all deselected wordlines are turned on.
The wordline of selected read page is biased to a series of predefined reference
voltages and the cell’s threshold voltage can be determined to be between the
most recent two read reference voltages when the cell conducts current.

Flash Memory Error Classification
We test the NAND flash memory using the cycle-by-cycle programming model
shown in Figure 3. During each P/E cycle, the selected flash block is first
erased. Then data are programmed into the block on a page granularity. Once
a page has been programmed, it cannot be reprogrammed again unless the
whole block is erased for the next P/E cycle. The stored data will be alive in the
block until it becomes invalid. Before the stored data becomes invalid, it can
be accessed multiple times. Once a page is programmed, we can test how long
it retains data by reading the data value of the page after a retention interval,
and comparing it to the original programmed value. Whether or not the data
is retained correctly between two accesses depends on the time distance of
two consecutive accesses. We repeat the above per-P/E-cycle procedure for
thousands of cycles until the flash memory block becomes unreliable and
reaches the end of its lifetime. Errors could happen in any stage of this testing
process. We classify the observed errors into four different types, from the flash
controller’s point of view:

Start

P/E cycle 0

P/E cycle i

P/E cycle n

End of life

Retention1
(t1 days)

Read
Page

Erase
Block

Program
Page (Page0–Page 128)

Retention j
(tj days)

Read
Page

Figure 3: NAND flash programming model for error
characterization
(source: yu Cai, Erich F. haratsch, onur Mutlu,
and Ken Mai, 2012[3])

“We classify the observed errors into

four different types, from the flash

controller’s point of view:.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 145

Intel® Technology Journal | Volume 17, Issue 1, 2013

 ● An erase error happens when an erase operation fails to reset the cells to
the erased state. This is mainly due to manufacturing process variations or
defects caused by trapped electrons in the tunnel oxide after stress due to
repeated P/E cycles.

 ● A program interference error happens when the data stored in a page changes
(unintentionally) while a neighboring page is being programmed due to
parasitic capacitance-coupling.

 ● A retention error happens when the data stored in a cell changes over time.
The main reason is that the charge programmed in the floating gate may
dissipate gradually through the leakage current.

 ● A read error happens when the data stored in a cell changes as a neighboring
cell on the same string is read over and over.

Error Characterization Methodology
The following section describes the error characterization methodology.

Experimental Hardware
To characterize the error patterns, we built a hardware test platform that
allows us to issue commands to raw flash chips without ECC.[2] The test
platform mainly consists of three components: a HAPS–52 board with Xilinx
Virtex-5 FPGAs used as NAND flash controller, a USB daughter board used
to connect to the host machine, and a custom flash daughter board. The
flash memory under test is a 2-bit MLC NAND flash device manufactured
in 3x-nm technology. The device is specified to survive 3000 P/E cycles stress
under 10-year data retention time if ECC with 4-bit error correction per
512 bits is applied. Details of the experimental flash test platform we use to
collect our data are provided in [2].

Flash Error Testing Procedure
To test the P/E-cycle-dependence of errors, we stress-cycle flash memory blocks
up to a certain number of erase cycles and check if the data is retained. This is
achieved by iteratively erasing a block and programming pseudorandom data
into it at room temperature.

We test whether the data is retained after T amount of time, to characterize
retention errors. T is called the retention test time and is varied in the range of
1 day, 3 days, 3 weeks, 3 months, 1 year, and 3 years. We consider T = {1 day,
3 days} to be short-term retention tests, while the remaining values of T are
long-term retention tests. Short-term retention errors are characterized under
room temperature. Long-term retention errors are characterized by baking the
flash memory in the oven under 125° C. According to the classic temperature-
activated Arrhenius law[12], the baking time at 125° C corresponds to about
450 times of the lifetime at room temperature (25° C).

We refer the reader to Cai et al.[3] for our testing and characterization
methodology for program interference and read errors.

“A retention error happens when

the data stored in a cell changes over

time.”

“To characterize the error patterns, we

built a hardware test platform that

allows us to issue commands to raw

flash chips without ECC.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

146 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Error Characterization Results
We provide our experimental measurements of the errors in the state-of-the-art
3x-nm MLC NAND flash memory we have tested using our infrastructure.
NAND flash errors show strong correlation with the number of P/E cycles,
location of the physical cells, and the data values programmed into the cells.
The following subsections analyze detailed error properties and briefly describe
the causes of the observed phenomena. Our main focus in this article is
retention errors, but our previous work analyzes all types of errors in detail[3],
and we refer the reader to [3] for characterization and analysis of program
interference, read, and erase errors.

Error Rate Analysis for Different Error Types
Figure 4 shows the bit error rate due to various types of NAND flash errors.
The x-axis shows the number of P/E cycles and the y-axis depicts the raw
bit error rate. Error rates are obtained characterized from the beginning of
the flash chip’s life until the region of >100x times of its specified lifetime
(3000 P/E cycles for the chips we tested). We make several observations about
error properties.

First, all types of errors are highly correlated with P/E cycles. At the beginning
of the flash lifetime, the error rate is relatively low and the raw bit error rate
is below 10-4, within the specified lifetime (3K cycles). As the P/E cycles
increase, the error rate increases exponentially. The P/E cycle-dependence
of errors can be explained by the deterioration of the tunnel oxide under
cycling stress. During erase and program operations, the electric field strength
across the tunnel oxide is very high (for example, several million volts per
centimeter). Such high electric field strength can lead to structural defects
that trap electrons in the oxide layer. Over time, more and more defects
accumulate and the insulation strength of the tunnel oxide degrades. As a
result, charge can leak through the tunnel oxide and the threshold voltage of
the cells can change more easily. This leads to more errors for all types of flash
operations.

Second, there is a significant error rate difference between various types of
errors. The long-term retention errors are the most dominant; their rate is
highest. The program interference error rate ranks the second and is usually
between error rates of 1-day and 3-day retention errors. The read error rate is
slightly less than 1-day retention error rate, while the erase error rate is only
around 7 percent of the read error rate.

Third, retention error rates are highly dependent on retention test time. If
the time before we test for retention errors is longer, the floating gate of flash
memory is more likely to lose more electrons through leakage current. This
eventually leads to Vth shift across Vth windows and causes errors (see [6] for
more detail). From our experimental data, we can see that the retention error
rate increases linearly with the retention test time. For example, the 3-year
retention error rate is almost three orders of magnitude higher than one-day
retention error rate.

“...all types of errors are highly

correlated with P/E cycles.”

“The long-term retention errors are the

most dominant; their rate is highest.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 147

Intel® Technology Journal | Volume 17, Issue 1, 2013

B
it

 E
rr

o
r

R
at

e

100

1022

1024

1026

1028

102 103 104 105

P/E Cycles

3-year Retention Errors

Erase Errors

Read Errors

3-month Retention Errors

1-day Retention Errors

3-week Retention Errors

3-day Retention Errors

Program Interference Errors

1-year Retention Errors

Figure 4: Rates of various types of errors as P/E cycles increase
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])

Retention Error Analysis
Value dependence of retention errors: We find that the retention errors are value
dependent; their frequency is asymmetric with respect to the value stored in
the flash cell. Figure 5 demonstrates this asymmetric nature of retention errors
by showing how often each possible value transition was observed due to an
error. We characterized all possible error transitions, in the format AB→CD,
where AB are the two bits stored in the cell before retention test, while CD are
the two bits recorded in the cell after retention test. If the errors are not value
dependent, the fraction of erroneous changes between each of the different
value pairs should be equal. But, we find that this is not the case. The most
common retention errors are 00→01, 01→10, 01→11 and 10→ 11, with
their relative percentage over all retention errors being 46 percent, 44 percent,
5 percent, and 2 percent, respectively. The relative percentages among various
error transitions are almost constant for different P/E cycles.

To understand the reasons for value dependence, we need to observe Figure
1 in conjunction with the value transition observed in the most common
retention errors. We find that the most common retention errors (00→01,
01→10, 01→11, and 10→ 11) are all cases in which Vth shifts towards the left
(see Figure 1). This can be explained by an understanding of the retention error
mechanisms. During retention test, the electrons stored on the floating gate
gradually leak away under stress induced leakage current (SILC). When the
floating gate loses electrons, its Vth shifts left from the state with more electrons
to the state with fewer programmed electrons (as seen in Figure 1, states to
the left have fewer electrons trapped on the gate than states to the right). It
is significantly less likely for the cells to shift right in the opposite direction
because this requires the addition of more electrons. As the states of 00 and 01
hold the largest number of electrons on the floating gates, SILC is higher in

“We find that the retention errors are

value dependent; their frequency is

asymmetric with respect to the value

stored in the flash cell.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

148 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

these states and therefore it is more likely for the Vth of the cells in these two
states to shift left, which leads to the observation that most common errors are
due to shifting from these states (00→01, 01→10, 01→11).

E
rr

o
r

C
o

u
n

t

1000000

100000

10000

1000

100

10

1

0 1500 3000 6000 12000 24000 48000 100000 300000

P/E Cycles

01 1000 01

00 01

00 10

00 11

01 00

01 10

01 11

10 00

10 01

10 11

11 00

11 01

11 10

Figure 5: Value dependence of retention errors
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])

Location dependence of retention errors: We also characterized the relation between
retention errors and their physical locations. The experimental results are shown
in Figure 6. The x-axis shows the wordline number of a block and the y-axis
shows the bit error rates of pages on the corresponding wordline (observed after
50K P/E cycles). Each wordline contains four pages, including LSB-even, LSB-
odd, MSB-even, and MSB-odd. The bit error rates of these four types of pages
are shown in Figure 6. Several major observations are in order.

R
aw

 b
it

 e
rr

o
r

ra
te

100

1021

1022

1023

1024

5 10 15 20 25 30

Wordline Index

LSB-Even Page

MSB-Even Page

MSB-Odd Page

LSB-Odd Page

Figure 6: Retention error rate vs. physical location
(source: yu Cai, Erich F. haratsch, onur Mutlu, and Ken Mai, 2012[3])

“We also characterized the relation

between retention errors and their

physical locations.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 149

Intel® Technology Journal | Volume 17, Issue 1, 2013

First, the error rate of the MSB page is higher than that of the corresponding
LSB page. In our experimental data, the MSB-even page error rate is
1.88 times higher than the LSB-even page error rate and the MSB-odd page
error rate is 1.67 times higher than the LSB-odd page error rate on average.
This phenomenon can be explained by understanding the bit mapping within
the flash memory. Dominant retention errors are mainly due to the shifting
of Vth between two adjacent threshold voltage levels, that is shifting of Vth
from the ith level to the (i–1)th level. From the bit mapping in Figure 1,
we can see that such a Vth shift can cause an LSB error only at the border
REF2 between state L2 (01) and state L1 (10) because these are the only
two adjacent threshold voltage levels where LSB differs. On the other hand,
such a Vth shift can cause an MSB error on any border (REF1, REF2, REF3)
between any two adjacent states because MSB differs between all possible
adjacent threshold voltage levels. Hence, since the likelihood of a change
in MSB when a Vth shift happens between adjacent states is higher than the
likelihood of a change in LSB, it is more common to see retention errors in
MSB than in LSB.

Second, the retention error rate of odd pages is always higher than that
of the corresponding even pages. For example, the error rate of MSB-odd
pages is 2.4 times higher than that of MSB-even pages, and the error rate of
LSB-odd pages is 1.61 times higher than that of LSB-even pages, on average.
This result can be explained by the over-programming introduced by inter-
page interference. Generally, the pages inside a flash block are programmed
sequentially, and a block is programmed in order, that is, from page 0 to
page 127. For the same wordline, even pages are programmed first followed
by odd pages. When odd pages are programmed, a high positive program
voltage is applied to the control gates of all the cells on the wordline,
including the cells of the even page, which has already been programmed.
Thus, the even page comes under programming current disturbance and
some additional electrons could be attracted into the floating gates of the
even page. As a result of this, the Vth of cells of the even pages shift slightly to
the right. Consequently, the cells of the even pages hold more electrons than
the cells of the odd pages, even if they are programmed to the same logic
value and are in the same threshold voltage window (in some sense, the cells
of the even pages are thus more resistant to leakage because they hold more
electrons). When electrons leak away over time during the retention test, as
a result, it is more likely for the cells of even pages to still keep their original
threshold voltage window and hold the correct value. In contrast, since the
cells of the odd pages hold fewer electrons, they are more likely to transition
to a different threshold voltage window and hence acquire an incorrect value
as electrons leak over time.

Third, the bit error rates of all the four types of pages have the same trend related
to physical wordlines. For example, the error rates of the four types of pages are
all high on wordline #31 and are all low on wordline #7. We conclude that error
rates are correlated with wordline locations. This could possibly be due to process
variation effects, which could be similar across the same wordline.

“...the error rate of the MSB page is

higher than that of the corresponding

LSB page.”

“...the retention error rate of odd

pages is always higher than that of the

corresponding even pages.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

150 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

The major takeaway from our measurement and characterization results is that
the rate of retention errors, which are the most common form of flash errors,
is asymmetric in both original cell value and the location of the cell in flash bit
organization. This observation can potentially be used to devise error protection
or correction mechanisms that have varying strength based on cell value and
location.

Mitigating Retention Errors:
Flash Correct-and-Refresh
We describe a set of new techniques, called Flash Correct-and-Refresh
(FCR), that exploit the dominance and characteristics of retention errors to
significantly increase NAND flash lifetime while incurring minimal overhead.
The basic idea of the FCR schemes is to periodically read, correct, and refresh
(reprogram or remap) the stored data before it accumulates more retention
errors than can be handled by ECC. Thus, we can achieve a low uncorrectable
bit error rate (UBER) while still using a simple, low-overhead ECC. Two
key questions central to designing a system that uses FCR techniques are:
(1) how to refresh the data in flash memory and (2) when to refresh the data.
We address the first question with two techniques for how to refresh the
data: remapping (in the section “Remapping-based FCR Mechanisms”) and
reprogramming in-place (in the section “In-Place Reprogramming-based FCR
Mechanisms”). We then tackle the second question with two techniques for
when to refresh: periodically and adaptively based on the number of P/E cycles
(Section 6.3).

Remapping-based FCR Mechanisms
Unlike DRAM cells, which can be refreshed in-place[13], flash cells generally
must first be erased before they can be programmed. To remove the slow erase
operation from the critical path of write operations, current wear-leveling
algorithms remap the data to another physical location rather than erasing the
data and then programming in-place. The flash controller maintains a list of
free blocks that have been erased in background through garbage collection
and are ready for programming. Whenever a write operation is requested, the
controller’s wear-leveling algorithm selects a free block and programs it directly,
remapping the logical block address to the new physical block.

The key idea of remapping-based FCR is to leverage the existing wear-
leveling mechanisms to periodically read, correct, and remap to a different
physical location each valid flash block in order to prevent it from
accumulating too many retention errors. Figure 7 shows the operational flow
of remapping-based FCR: (1) During each refresh interval, a block with
valid data that needs to be refreshed is selected. (2) The valid data in the
selected block is read out page by page and moved to the SSD controller.
(3) The ECC engine in the SSD controller corrects all the errors in the read
data, including retention errors that have accumulated since the last refresh.
After ECC, the data are error free. (4) A new free block is selected and the

“The major takeaway from our

measurement and characterization

results is that the rate of retention

errors, which are the most common

form of flash errors, is asymmetric

in both original cell value and

the location of the cell in flash bit

organization.”

“The basic idea of the FCR schemes

is to periodically read, correct, and

refresh (reprogram or remap) the

stored data before it accumulates more

retention errors than can be handled

by ECC.”

Select Block

Read Page Data Page Num 11

Select next Block

Yes

No

Program
Corrected Data

Error Correction

Alloc. Block/page

Last Page?

Figure 7: operation of a remapping-based
flash correct-and-refresh scheme
(source: yu Cai, gulay yalcin, onur Mutlu,
Erich F. haratsch, Adrian Cristal, osman
Unsal, and Ken Mai, 2012[4])

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 151

Intel® Technology Journal | Volume 17, Issue 1, 2013

error free data are programmed to the new location, and the logical address
is remapped. Note that the proposed address remapping techniques leverage
existing hardware and software of contemporary wear-leveling and garbage
collection algorithms.

Unfortunately, periodic remapping of every block introduces additional
erase cycles. This is because after the flash data are corrected and remapped
to the new location, the original block is marked as outdated. Thus,
the block will eventually be erased and reclaimed by garbage collection.
The more frequent the remap operations, the more the additional erase
operations, which wears out flash memory faster. As such, there might be
an inflection point beyond which increasing the refresh rate in remapping-
based FCR can lead to reduced lifetime. To avoid this potential problem, we
next introduce enhanced FCR methods, which minimize unnecessary remap
operations.

In-Place Reprogramming-based FCR Mechanisms
To reduce the overhead associated with periodic remapping, we describe a
technique for periodic in-place reprogramming of the block most of the time,
without a preceding erase operation, which can greatly reduce the overhead of
periodic remapping. This in-place reprogramming takes advantage of the key
observation that retention errors arise from the loss of electrons on the floating
gate over time and the flash cell with retention errors can be reprogrammed to its
original correct value without an erase operation using the incremental step pulse
programming (ISPP) scheme used to program flash memory. We first provide
background on ISPP.

ISPP
Before a flash cell can be programmed, the cell must be erased (that is,
all charge is removed from the floating gate, setting the threshold voltage
to the lowest value). When a NAND flash memory cell is programmed,
a high positive voltage applied to the control gate causes electrons to be
injected into the floating gate. The threshold voltage of a NAND flash cell
is programmed by injecting a precise amount of charge onto the floating
gate through ISPP.[11] During ISPP, floating gates are programmed iteratively
using a step-by-step program-and-verify approach. After each programming
step, the flash cell threshold voltage is boosted up. Then, the threshold
voltage of the programmed cells are sensed and compared to the target
values. If the cell’s threshold voltage level is higher than the target value,
the program-and-verify iteration will stop. Otherwise the flash cells are
programmed once again and more electrons are added to the floating gates
to boost the threshold voltage. This program-and-verify cycle continues
iteratively until all the cells’ threshold voltages reach the target values. Using
ISPP, flash memory cells can only be programmed from a state with fewer
electrons to a state with more electrons and cannot be programmed in the
opposite direction.

“...the flash cell with retention
errors can be reprogrammed to its
original correct value without an
erase operation using the incremental

step pulse programming (ISPP) scheme

used to program flash memory.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

152 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Retention Error Mechanisms
Retention errors are caused by the loss of electrons from the floating gate
over time. As such, a cell with retention errors moves from a state with
more electrons to a state with fewer electrons. Figure 8(a) shows the relative
relationship between the stored data value and its corresponding threshold
voltage distribution for a typical MLC flash storing 2-bits per cell. The leftmost
state is the erased state (state 11) with the smallest threshold voltage, and there
is no charge on the floating gate. The states located on the right in Figure
8(a) are programmed with more electrons and have higher threshold voltages
than the states located relatively to the left. Over time, as the electrons on
the floating gate leak away, the threshold voltage of a cell shifts to the left, as
shown in Figure 8(b). If the threshold voltage of a cell shifts too far to the left
(that is, it loses too many electrons from the floating gate), it will cross the read
reference voltage between adjacent states and can be misinterpreted during a
read as the wrong value.

In-Place Reprogramming Can Fix Retention Errors
A cell with a retention error can be reprogrammed to the value it had
before the floating gate lost charge by recharging additional electrons onto
the floating gate through ISPP, as shown in Figure 8(c). Note that this does
not require an erase operation because the only objective is to add more
electrons (not to remove them), which can be accomplished by simple
programming.

(a) Threshold voltage distribution vs number of electrons in flash cell

11 10 01 00

VT

REF1 REF2 REF3

2 2 2 2 2 2 22 2 2

(b) Retention errors cause threshold voltage shift to the left

11 10 01 00

VT

REF1 REF2 REF3

(c) ISPP shifts threshold voltage to the right and can fix retention errors

VT

11 10 01 00

Figure 8: Retention errors are caused by threshold voltage
shift to the left and can be fixed by programming in-place
using ISPP
(source: yu Cai, gulay yalcin, onur Mutlu, Erich F. haratsch,
Adrian Cristal, osman Unsal, and Ken Mai, 2012[4])

“Over time, as the electrons on the

floating gate leak away, the threshold

voltage of a cell shifts to the left...”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 153

Intel® Technology Journal | Volume 17, Issue 1, 2013

6.2.4 Basic In-Place Reprogramming-based FCR Mechanism
A basic FCR mechanism that uses in-place reprogramming works as follows.
Periodically, a block is selected to be refreshed and read page-by-page into
the flash controller. By selecting a suitable refresh interval, we can ensure
that the total error number is below the correction capability of the ECC.
Then we can reprogram the flash cells in the same location with the error-
corrected data, without erasing the whole block. If the new corrected value
corresponds to a state with more charge than the old value, then the cell can
be in-place reprogrammed to the correct value. If the corrected value is exactly
the same as the original value, in-place reprogramming will not change the
stored data value, as ISPP will stop programming the cell as soon as it detects
that the target value has already been reached. Note that most of the cells are
reprogrammed with exactly the same data value as error rates are generally
significantly below 1 percent.

Problem: Accumulated Program Errors
While this basic mechanism can effectively fix retention errors, it introduces
a problem because there is another error mechanism in flash cells that is
caused by program operations, which are required to perform in-place
reprogramming. When a flash cell is being programmed, additional electrons
may be injected into the floating gates of its neighbor cells due to coupling
capacitance.[14] The threshold voltage distribution of the neighbor cells will
shift right as they gain more electrons, as shown in Figure 9(a). If the threshold
voltage shifts right by too much, it will be misread as an error value that
represents a state located to the right. This is called a program interference error
(or simply a program error). Although it is a less common error mechanism
than retention errors as we have shown in Figure 4, periodic reprogramming
can exacerbate the effects of program errors.

Two potential issues are: (1) As ISPP cannot remove electrons from the
floating gate, program errors cannot be fixed by in-place reprogramming;
(2) Reprogramming of a page can introduce additional program errors due to
the additional program operations. Figure 9(b) illustrates both issues in the
context of in-place programming. First, the original data is programmed into
the page. This initial programming can cause some program errors (for example,
value 11 is programmed as 10 on the second cell from the left). After some
time, retention errors start to appear in the stored data (for example, the first
cell changes from state 00 to 01). Note that there are generally many more
retention errors than program errors. When the page is reprogrammed in-place,
it is first read out and corrected using ECC. The error-corrected data (which is
the same as the original data) is then written back (programmed) into the page.
This corrects all the retention errors by recharging the cells that lost charge.
However, this reprogramming does not correct the program error (in the second
cell) because this correction requires the removal of charge from the second cell’s
floating gate, which is not possible without an erase operation. Furthermore,
additional program errors can appear (for example, in the sixth cell) because the
in-place program operation can cause additional disturbance.

“When a flash cell is being

programmed, additional electrons

may be injected into the floating gates

of its neighbor cells due to coupling

capacitance.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

154 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

(a) Program interference causes threshold voltage shift to the right

(b) Example of reprogramming a page with retention and program errors

11 10 01 00

VT

REF1 REF2 REF3

Original data to
be programmed

Program errors after
initial programming

Retention errors
after some time

Errors after in-place
reprogramming

00 11 01 00 10 11 00

00 10 01 00 10 11 00

01 10 10 00 11 11 01

00 10 01 00 10 10 00

Figure 9: In-place reprograming can correct retention
errors but not program errors because in-place
programming can only add more electrons into the floating
gate and cannot remove them. Note that red values with
dotted circles are retention errors and blue ones with solid
circles are program errors
(source: yu Cai, gulay yalcin, onur Mutlu, Erich F. haratsch,
Adrian Cristal, osman Unsal, and Ken Mai, 2012[4])

Hybrid FCR
To mitigate the errors accumulated due to periodic reprogramming, we
propose a hybrid reprogramming/remapping-based FCR technique to control
the number of reprogram errors. The key idea is to monitor the right-shift
error count present in each block. If this count is below a certain threshold
(likely most of the time) then in-place reprogramming is used to correct
retention errors. If the count exceeds the threshold, indicating that the block
has too many accumulated program errors, then the block is remapped to
another location, which corrects both retention and program errors. In our
evaluation, we set the threshold to 30 percent of the maximum number of
errors that could be corrected by ECC, which is conservative. Figure 10
provides a flowchart of this hybrid FCR mechanism. Note that this hybrid
FCR mechanism greatly reduces the additional erase operations present in
remapping based FCR because it remaps a block (requires an erase operation)
only when the number of accumulated program errors is high, which is rare
due to the low program error rate.

“To mitigate the errors accumulated

due to periodic reprogramming,

we propose a hybrid reprogramming/

remapping-based FCR technique

to control the number of reprogram

errors.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 155

Intel® Technology Journal | Volume 17, Issue 1, 2013

Choose a block to
be refreshed

Yes

No

No

Yes

Right shift errors
,Threshold

Last LSB/MSB
page pair?

Read LSB and
MSB page pair

Error
Correction

Cell threshold
voltage comparison

Reprogram
in-place

LSB/MSB
page pair num11

Re-map to the
new block

Figure 10: Hybrid FCR workflow: if reprogramming error count is less
than a threshold, in-place reprogram the block; otherwise, remap to a
new block
(source: yu Cai, gulay yalcin, onur Mutlu, Erich F. haratsch, Adrian
Cristal, osman Unsal, and Ken Mai, 2012[4])

Adaptive-Rate FCR
So far we assumed that FCR mechanisms, be it based on in-place reprogramming
or remapping, are invoked periodically. This need not be the case. In fact, we
observe that the rate of (retention) errors is very low during the beginning
of flash lifetime, as shown in Figure 4. Until more than 1000 P/E cycles, the
retention error rate is lower than the acceptable raw BER that can be corrected
by the simplest BCH code (not shown, but described in detail in [4]), which
is a commonly used ECC type in flash memories. Hence, at the beginning of
its lifetime, flash memory does not need to be refreshed. Retention error rate
increases as the number of P/E cycles increases. We leverage this key observation
to reduce the number of unnecessary refresh operations.

The main idea of adaptive-rate FCR is to adapt the refresh rate to the number
of P/E cycles a block has incurred. Initially, refresh rate for a block starts out
at zero (no refresh). Once ECC becomes incapable of correcting retention
errors, the block’s refresh rate increases to tolerate the increased retention error
rate. Hence, refresh rate is gradually increased over each flash block’s lifetime
to adapt to the increased P/E cycles. The whole lifetime of a flash block can
be divided into intervals with different refresh rates ranging, for example,
from no refresh (initially), yearly refresh, monthly refresh, weekly refresh, to
daily refresh. The frequency of refresh operations at a given P/E cycle count
is determined by the acceptable raw BER provided by the used ECC and
the BER that corresponds to the P/E cycle count (which can be known by
the controller[4]). Note that this mechanism requires keeping track of P/E
cycles incurred for each block, but this information is already maintained to
implement current wear-leveling algorithms.

“...refresh rate is gradually increased

over each flash block’s lifetime to adapt

to the increased P/E cycles.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

156 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Additional Considerations
We briefly discuss some additional factors that affect the implementation and
operation of the proposed FCR mechanisms.

Implementation Cost
The FCR mechanisms do not require hardware changes. They require
changes in FTL software/firmware to implement the flowcharts shown in
Figures 7 and 10. FCR can leverage the per-block validity and P/E cycle
information that is already maintained in existing flash systems to implement
wear leveling.

Power Supply Continuity
To perform a refresh, the flash memory must be powered. As FCR is
proposed mainly for enterprise storage applications, these systems are typically
continuously powered on. Our proposed techniques use daily, weekly, or
monthly refresh and it is rare for a server to be powered off for such long
periods.

Response Time Impact
Refresh may interfere with normal flash operations and degrade the response
time. To reduce this penalty, we can decrease the refresh priority, making it
run in the background. The SSD can issue refresh operations whenever it is
idle, and refresh operations can be interrupted to avoid the impact on the
response time of normal operations. Unlike DRAM, where refresh is triggered
frequently (for example, every 64 ms) to maintain correctness[13], the refresh
period of FCR is at least a day, and the SSD can finish refresh operations
within the refresh period. Recent work has shown that the response time
overhead is within a few percent for daily refresh.[15] Note that our hybrid and
adaptive FCR techniques have much lower overhead for refresh operations
than periodic remapping based FCR.

Additional Erase Cycles
FCR introduces additional erase operations. Our evaluations take into
account the impact of additional erase operations on flash lifetime and energy
consumption.

Adapting to Variations in Retention Error Rate
Note that retention error rate is usually constant for a given refresh rate and
P/E cycle combination. However, there are environmental factors, such as
temperature, that can change this rate. For example, retention error rate
would be dependent on temperature. To adapt to dynamic fluctuations in
retention error rate, our hybrid FCR and adaptive-rate FCR mechanisms
monitor the changes in the retention error rate at periodic intervals, and
increase or decrease the refresh (that is, FCR) rate if the error rate in the
previous interval is greater or less than a threshold. These mechanisms are
similar in principle to what is employed in DRAM to adapt refresh rate to
temperature changes.[13]

“The FCR mechanisms do not require

hardware changes.”

“Unlike DRAM, where refresh is

triggered frequently (for example,

every 64 ms) to maintain correctness,

the refresh period of FCR is at least a

day...”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 157

Intel® Technology Journal | Volume 17, Issue 1, 2013

Evaluation of Flash Correct-and-Refresh
We evaluate FCR using Disksim[20] with SSD extensions[21]. All proposed
techniques are simulated using various I/O traces from real workloads:
iozone[22], cello99[23], oltp, postmark[24], MSR-Cambridge[25] and a web search
engine[26]. We configure the simulated flash-based SSD with four channels.
Each channel has eight flash chips. Each flash chip has 8,192 blocks containing
128 pages. The page size is 8 KB. The total storage capacity is 256 GB.
The energy of flash read, program, and erase operations are collected from
our experimental flash memory platform[2], and are used in the simulation
infrastructure to obtain the overall energy consumption. The details of
our experimental evaluation methodology, workloads, and our method for
estimating lifetime are described in our previous work[4]. We present the major
results showing the effect of our mechanisms on flash lifetime and energy
consumption in this article. Much more detailed analyses of our individual
techniques, analysis of sensitivity to refresh interval length, and results on
individual workloads are provided in [4].

Effect on Flash Memory Lifetime
Figure 11 shows the lifetime improvement provided by three different versions
of FCR compared to the baseline with no refresh. The adaptive-rate FCR
mechanism is implemented on top of the hybrid FCR substrate. Flash lifetime
is evaluated under various ECC configurations, ranging from weak 512-bit
to strong 32-kb BCH codes (described and evaluated in detail in [4]). The
refresh period of each periodic mechanism is chosen on a per-workload basis
such that the lifetime provided for a workload by the mechanism is maximized
(more analysis on the refresh period can be found in [4]). Adaptive-rate
FCR, which adaptively and realistically chooses the refresh period, provides
the highest lifetime improvement over the baseline as it corrects retention
errors while avoiding unnecessary refreshes. The improvements are especially
significant in read-intensive workloads since these workloads do not have
high P/E cycles, causing the adaptive-rate FCR to keep the refresh rate very
low. On average, adaptive-rate FCR provides 46.7x, 4.8x, and 1.5x higher
flash lifetime compared to no-refresh (on the baseline system using 512-bit
ECC), remapping-based FCR, and hybrid FCR, respectively. Note that the
lifetime improvement provided by the much stronger 32-kb ECC is only
four times that of the lifetime provided by the baseline 512-bit ECC, yet the
implementation of the former, stronger ECC, requires 71 times the power
consumption and 85 times the area of the latter, weaker ECC.[4] Contrast this
with the 46.7x lifetime improvement provided by adaptive-rate FCR on the
system with 512-bit ECC. Thus, improving lifetime via FCR is much more
effective and efficient than doing so by increasing the strength of ECC. We
conclude, based on these results, that adaptive-rate FCR implemented over
the hybrid FCR mechanism is a promising mechanism for significant lifetime
enhancement of flash memory at low cost.

“...adaptive-rate FCR provides 46.7x,

4.8x, and 1.5x higher flash lifetime

compared to no-refresh”...

“...improving lifetime via FCR is

much more effective and efficient than

doing so by increasing the strength of

ECC.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

158 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

N
o

rm
al

iz
ed

 L
if

et
im

e

200

180

160

140

0

20

40

60

80

100

120

512b-BCH

46x

4x

1k-BCH 2k-BCH 4k-BCH 8k-BCH 32k-BCH

Base (No-Refresh)

Remapping-Based FCR

Adaptive FCR

Hybrid FCR

Figure 11: lifetime improvement provided by different FCR techniques in comparison to
systems employing varying strength ECC (BCH) codes. Data normalized to lifetime with
no refresh on a system with 512-bit ECC
(source: onur Mutlu, 2012)

P/E Cycle and Energy Overhead Analysis
FCR techniques can introduce two main overheads: (1) additional P/E cycles
due to remapping; (2) additional energy consumed by refresh operations.
A detailed evaluation of the former is provided in [4]. Note that all P/E cycle
overheads have already been accounted for in the collection of the flash lifetime
results.

Figure 12 shows the additional flash energy consumption of remapping-based
FCR and hybrid FCR averaged over all workloads compared to a system
with no FCR. The refresh energy is estimated under the worst-case scenario
that all data are to be refreshed. Even if we assume we must refresh the
entire SSD each day, the energy overhead is only 7.8 percent and 5.5 percent
for remapping-based FCR and hybrid FCR respectively. When the refresh
interval is three weeks, the energy overhead is almost negligible (less than
0.4 percent). We also observe that hybrid FCR has less energy overhead than
remapping based FCR mainly because hybrid FCR reduces the high-energy
erase/remap operations by performing in-place reprogramming most of the
time.

We also evaluate the energy overhead of adaptive-rate FCR and find that it is
only 1.5 percent (not shown in the figure). Recall that adaptive-rate FCR starts
out with no refresh and gradually increases the refresh rate up to daily refresh
as the P/E cycles accumulate. Yet its energy overhead is significantly lower than
periodic daily refresh. We conclude that adaptive-rate FCR is the most superior
of flash correct-and-refresh mechanisms in terms of both lifetime and energy
consumption.

“When the refresh interval is three

weeks, the energy overhead is almost

negligible...”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 159

Intel® Technology Journal | Volume 17, Issue 1, 2013

0.00%

2.00%

4.00%

6.00%

8.00%

1 Year 3 Months 3 Weeks 3 Days 1 Day

E
n

er
gy

 O
ve

rh
ea

d

7.8%

5.5%

2.6%

1.8%

0.37% 0.26%

Remapping-based Refresh Hybrid Refresh

Figure 12: Energy increase of remapping-based and hybrid FCR vs.
no refresh
(source: onur Mutlu, 2012)

Ongoing Work
In our comprehensive continued effort for enhancing flash memory scaling to
smaller technology nodes, we have been characterizing the effects of different
error mechanisms in flash memory, developing models to predict how they
change over the lifetime of flash memory, and designing error tolerance
mechanisms based on the developed characterization and models.

Recently, we have also experimentally investigated and characterized the
threshold voltage distribution of different logical states in MLC NAND flash
memory.[6] We have developed new models that can predict the shifts in the
threshold voltage distribution based on the number of P/E cycles endured
by flash memory cells. Our key results, presented in [6], show that 1) the
threshold voltage distribution of flash cells that store the same value can be
approximated, with reasonable accuracy, as a Gaussian distribution, 2) under
ideal wear leveling, the flash cell can be modeled as an AWGN (Additive
White Gaussian Noise) channel that takes the input (programmed) threshold
voltage signal and outputs a threshold voltage signal with added Gaussian
white noise, and 3) threshold voltage distribution of flash cells that store
the same value gets distorted (shifts to right and widens around the mean
value) as the number of P/E cycles increases. This distortion can be accurately
modeled and predicted as an exponential function of the P/E cycles, with
more than 95 percent accuracy. Such predictive models can aid the design of
much more sophisticated error correction methods, such as LDPC codes[7],
which are likely needed for reliable operation of future flash memories.
We refer the reader to [6] for more detail.

We are currently investigating another increasingly more significant
obstacle to continued MLC NAND flash scaling, which is the increasing
cell-to-cell program interference due to increasing parasitic capacitances
between the cells’ floating gates. Accurate characterization and modeling
of this phenomenon are needed to find effective techniques to combat
this program interference. In our recent work[16], we leverage the read retry

“We have developed new models that

can predict the shifts in the threshold

voltage distribution based on the

number of P/E cycles endured by flash

memory cells.”

Intel® Technology Journal | Volume 17, Issue 1, 2013

160 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

mechanism found in some flash designs to obtain measured threshold voltage
distributions results from state-of-the-art 2Y-nm (24- to 20-nm) MLC
NAND flash chips. These results are then used to characterize the cell-to-cell
program interference under various programming conditions. We show that
program interference can be accurately modeled as additive noise following
Gaussian-mixture distributions, which can be predicted with 96.8 percent
accuracy using linear regression models. We use these models to develop and
evaluate a read reference voltage prediction technique that reduces the raw
flash bit error rate by 64 percent and increases the flash lifespan by 30 percent.
We refer the reader to [16] for more detail.

Finally, apart from investigating scaling challenges in flash memory, we
are investigating techniques to enable better scaling of DRAM. Improving
DRAM cell density by reducing the cell size, as has been done traditionally,
is becoming significantly more difficult due to increased manufacturing
complexity/cost and reduced cell reliability. We are examining alternative ways
of enhancing the performance and energy-efficiency of DRAM while still
maintaining low cost. A key direction is to co-design the DRAM controller
and DRAM, rethinking the DRAM interface and microarchitecture, such
that DRAM scaling challenges are tolerated at the system level. For example,
we have recently proposed new techniques to reduce DRAM access latency
at low cost by segmenting bitlines and creating a low-latency low-energy
segment within a subbank[17], to increase DRAM parallelism and locality by
enabling pipelined access of subbanks and enabling multiple row buffers to be
concurrently active within a bank[18], to reduce the number of DRAM refreshes
by taking advantage of variation in retention times of DRAM rows in a low-
cost manner[13], and to accelerate bulk data copy and initialization operations
by performing them solely in DRAM with only minor modifications to
DRAM[19]. We have also experimentally characterized retention behavior
of DRAM cells and rows for 248 commodity DRAM chips[27], with the
goal of developing mechanisms that can dynamically profile retention times
of different rows. We observed two significant phenomena: data pattern
dependence, where the retention time of DRAM cells is significantly affected
by the data stored in other DRAM cells, and variable retention time, where the
retention time of some DRAM cells changes over time. We refer the reader to
these respective works for further detail.

Conclusion
Reliability and energy efficiency challenges posed by technology scaling are
a critical problem that jeopardizes both flash memory and DRAM capacity,
cost, performance, lifetime, and efficiency. In this article, we have described
our recent error analysis of flash memory and a new method to improve flash
memory lifetime. We hope other works by us and other researchers in the
field collectively enable the memory and microprocessor industry to develop
cooperative techniques to enable scalable, efficient, and reliable flash memory
(and DRAM) that continues to scale to smaller feature sizes.

“A key direction is to co-design the

DRAM controller and DRAM,

rethinking the DRAM interface and

microarchitecture, such that DRAM

scaling challenges are tolerated at the

system level.”

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 161

Intel® Technology Journal | Volume 17, Issue 1, 2013

References
[1] A. Maislos et al., “A New Era in Embedded Flash Memory,”

FMS 2011.

[2] Y. Cai, et al., “FPGA-Based Solid-State Drive Prototyping
Platform,” FCCM 2011.

[3] Y. Cai et al., “Error Patterns in MLC NAND Flash Memory:
Measurement, Characterization and Analysis,” DATE 2012.

[4] Y. Cai et al., “Flash Correct-and-Refresh: Retention-Aware
Error Management for Increased Flash Memory Lifetime,”
ICCD 2012.

[5] Y. Koh, “NAND Flash Scaling Beyond 20nm,” IMW 2009.

[6] Y. Cai et al., “Threshold Voltage Distribution in MLC NAND
Flash Memory: Characterization, Analysis and Modeling,”
DATE 2013.

[7] R. G. Gallager, Low-Density Parity Check Codes. Cambridge: MIT
Press, 1963.

[8] T. Hara, et al., “A 146-mm2 8-Gb multi-level NAND flash
memory with 70-nm CMOS technology,” JSSC, Vol. 41,
pp. 161–169, 2006.

[9] Y. Li, et al., “A 16Gb 3-Bit Per Cell(X3) NAND Flash Memory
on 56nm Technology With 8MB/s Write Rate,” JSSC, Vol. 44,
pp. 195–207, 2009.

[10] N. Shibata, et al., “A 70nm 16Gb 16-Level-Cell NAND flash
Memory,” JSSC, Vol. 43, pp. 929–937, 2008.

[11] K. D. Suh, et al., “A 3.3V 32Mb NAND Flash Memory with
Incremental Step Pulse Program Scheme,” JSSC, Vol. 30, No.11,
pp. 1149–1156, 1995.

[12] M. Xu, et al., “Extended Arrhenius law of time-to-breakdown
of ultrathin gate oxides,” Applied Physics Letters, Vol. 82,
pp. 2482–2484, 2003.

[13] J. Liu et al., “RAIDR: Retention-Aware Intelligent DRAM
Refresh,” ISCA 2012.

[14] K. Park et al., “A Zeroing Cell-to-Cell Interference Architecture
with Temporary LSB Storing and Parallel MSB Program Scheme
for MLC NAND Flash Memories,” JSSC 2008.

[15] Y. Pan et al., “Quasi-Nonvolatile SSD: Trading Flash Memory
Nonvolatility to Improve Storage System Performance for
Enterprise Applications,” HPCA 2012.

Intel® Technology Journal | Volume 17, Issue 1, 2013

162 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

[16] Y. Cai et al. “Program Interference in MLC NAND Flash
Memory: Characterization, Modeling, and Application,” Carnegie
Mellon University SAFARI Technical Report, January 2013.

[17] D. Lee et al., “Tiered-Latency DRAM: A Low Latency and Low
Cost DRAM Architecture,” HPCA 2013.

[18] Y. Kim et al., “A Case for Exploiting Subarray-Level Parallelism
(SALP) in DRAM,” ISCA 2012.

[19] V. Seshadri et al., “RowClone: Fast and Efficient In-DRAM Copy
and Initialization of Bulk Data,” Carnegie Mellon University
SAFARI Technical Report, March 2013.

[20] J. Bucy et al., “DiskSim Simulation Environment Reference
Manual,” 2008.

[21] N. Agrawal et al., “Design Tradeoffs for SSD Performance,”
USENIX 2008.

[22] IOzone.org, “IOzone Filesystem Benchmark,” http://iozone.org.

[23] Open Source software at HP Labs, http://tesla.hpl.hp.com/
opensource.

[24] J. Katcher, “Postmark: a New File System Benchmark Technical
Report,” 1997.

[25] SNIA: IOTTA Repository, http://iotta.snia.org/tracetypes/3.

[26] UMass Trace: http://traces.cs.umass.edu/index.php/Storage/
Storage.

[27] J. Liu et al., “An Experimental Study of Data Retention Behavior
in Modern DRAM Devices: Implications for Retention Time
Profiling Mechanisms,” To Appear in ISCA 2013.

Author Biographies
Yu Cai obtained his PhD degrees in Electrical and Computer Engineering
from Carnegie Mellon University (2012). He received an MS degree
in Electronic Engineering from Tsinghua University and a BS degree
in Telecommunication Engineering in Beijing University of Posts and
Telecommunication (BUPT). Currently, he is a staff engineer, SSD Architect
working in the Flash Channel Department of LSI Corporation. Prior to LSI,
he worked at Hong Kong Applied Science and Research Institute (ASTRI),
Lucent Technology, and Microsoft Research Asia (MSRA). His research
interests include data storage, reconfigurable computing, and wireless
communication.

Error Analysis and Retention-Aware Error Management for NAND Flash Memory | 163

Intel® Technology Journal | Volume 17, Issue 1, 2013

Gulay Yalcin is a PhD student at Universitat Politecnica de Catalunya and
a researcher student in Bacelona Supercomputing Center. She holds a BS
degree in Computer Engineering from Hacettepe University and an MS
degree in Computer Engineering from TOBB University of Economics and
Technology. Her research interests are reliability and energy minimization
in computer architecture. For more information please see the web page at
http://www.bscmsrc.eu/people/gulay-yalcin.

Onur Mutlu is the Dr. William D. and Nancy W. Strecker Early Career
Professor at Carnegie Mellon University. He enjoys teaching and researching
important and relevant problems in computer architecture and computer
systems, including problems related to the design of memory systems,
multi-core architectures, and scalable and efficient systems. He obtained his
PhD and MS in ECE from the University of Texas at Austin (2006) and
BS degrees in Computer Engineering and Psychology from the University
of Michigan, Ann Arbor. Prior to Carnegie Mellon, he worked at Microsoft
Research (2006-2009), Intel Corporation, and Advanced Micro Devices.
He was a recent recipient of the IEEE Computer Society Young Computer
Architect Award, CMU College of Engineering George Tallman Ladd
Research Award, Intel Early Career Faculty Honor Award, Microsoft Gold
Star Award, best paper awards at ASPLOS, VTS and ICCD, and a number
of “computer architecture top pick” paper selections by the IEEE Micro
magazine. For more information, please see his web page at http://www.ece
.cmu.edu/∼omutlu.

Erich F. Haratsch is Director of Engineering, Flash Channel Technology at
LSI Corporation. In this role, he leads the development of advanced signal
processing and error correction coding features for solid-state disk controllers.
Prior to joining LSI, Haratsch was a Senior Member of Technical Staff at Agere
Systems, where he developed signal processing architectures for magnetic
recording in hard disk drives. He also developed equalizer and decoder
architectures for Gigabit Ethernet over copper and optical communications
at Bell Labs Research. Haratsch is the author of more than 30 peer-reviewed
journal and conference papers, and holds 35 U.S. patents. He is a Senior
Member of IEEE. Haratsch earned his MS and PhD from the Technical
University of Munich, Germany.

Adrián Cristal is co-manager of the Computer Architecture for Parallel
Paradigms research group at BSC. His interests include high-performance
microarchitecture, multi- and many-core chip multiprocessors,
transactional memory, programming models, and computer architectures
for Big Data. He received a PhD from the Computer Architecture
Department at the Polytechnic University of Catalonia (UPC), Spain, and
he has a BS and an MS in computer science from the University of Buenos
Aires, Argentina.

Intel® Technology Journal | Volume 17, Issue 1, 2013

164 | Error Analysis and Retention-Aware Error Management for NAND Flash Memory

Osman Unsal received the BS, MS, and PhD degrees in Electrical and
Computer Engineering from Istanbul Technical University (Turkey),
Brown University (USA) and University of Massachusetts, Amherst (USA)
respectively. Together with Dr. Adrian Cristal, he co-manages the Computer
Architecture for Parallel Paradigms research group at BSC. His current research
interests include many-core computer architecture, reliability, low-power
computing, programming models and transactional memory.

Ken Mai received his BS, MS, and PhD degrees in electrical engineering
from Stanford University in 1993, 1997, and 2005, respectively. He
joined the Faculty of Carnegie Mellon University in 2005 as an Assistant
Professor in the Electrical and Computer Engineering Department. His
research interests are in high-performance circuit design, secure IC design,
reconfigurable computing, and computer architecture. He was the recipient
of an NSF CAREER award in 2007 and the George Tallman Ladd Research
Award in 2008.

