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Cores in chip-multiprocessors (CMPs) share multiple memory subsystem resources. If resource sharing
is unfair, some applications can be delayed significantly while others are unfairly prioritized. Previous
research proposed separate fairness mechanisms for each resource. Such resource-based fairness mecha-
nisms implemented independently in each resource can make contradictory decisions, leading to low fair-
ness and performance loss. Therefore, a coordinated mechanism that provides fairness in the entire shared
memory system is desirable.

This article proposes a new approach that provides fairness in the entire shared memory system,
thereby eliminating the need for and complexity of developing fairness mechanisms for each resource.
Our technique, Fairness via Source Throttling (FST), estimates unfairness in the entire memory system. If
unfairness is above a system-software-set threshold, FST throttles down cores causing unfairness by lim-
iting the number of requests they create and the frequency at which they do. As such, our source-based
fairness control ensures fairness decisions are made in tandem in the entire memory system. FST enforces
thread priorities/weights, and enables system-software to enforce different fairness objectives in the memory
system.

Our evaluations show that FST provides the best system fairness and performance compared to
three systems with state-of-the-art fairness mechanisms implemented in both shared caches and memory
controllers.
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1. INTRODUCTION

Chip-multiprocessor (CMP) systems commonly share a large portion of the memory
subsystem between different cores. Main memory and shared caches are two examples
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Fig. 1. Disparity in slowdowns due to unfairness in the memory system.

of shared resources. Memory requests from different applications executing on differ-
ent cores of a CMP can interfere with and delay each other in the shared memory
subsystem. Compared to a scenario where each application runs alone on the CMP,
this intercore interference causes the execution of simultaneously running applica-
tions to slow down. However, sharing memory system resources affects the execution
of different applications very differently because the resource management algorithms
employed in the shared resources are unfair [Mutlu and Moscibroda 2007]. As a result
some applications are unfairly slowed down significantly more than others.

Figure 1 shows examples of vastly differing effects of resource-sharing on simulta-
neously executing applications on a 2-core CMP system (Section 4 describes our ex-
perimental setup). When bzip2 and art run simultaneously with equal priorities, the
intercore interference caused by the sharing of memory system resources slows down
bzip2 by 5.2X compared to when it is run alone while art slows down by only 1.15X.
In order to achieve system level fairness or quality of service (QoS) objectives, the
system software (operating system or virtual machine monitor) expects proportional
progress of equal-priority applications when running simultaneously. Clearly, dispar-
ities in slowdown like those shown in Figure 1 due to sharing of the memory system
resources between simultaneously running equal-priority applications is unacceptable
since it would make priority-based thread scheduling policies ineffective [Fedorova
et al. 2007; Mutlu and Moscibroda 2007].

To mitigate this problem, previous papers [Hsu et al. 2006; Iyer 2004; Iyer et al.
2007; Kim et al. 2004; Mutlu and Moscibroda 2008, 2007; Nesbit et al. 2006, 2007]
on fair memory system design for multicore systems mainly focused on partitioning
a particular shared resource (cache space, cache bandwidth, or memory bandwidth)
to provide fairness in the use of that shared resource. However, none of these prior
papers directly target a fair memory system design that provides fair sharing of all
resources together. We define a memory system design as fair if the slowdowns of
equal-priority applications running simultaneously on the cores sharing that memory
system are the same (this definition has been used in several prior papers [Cazorla
et al. 2004; Gabor et al. 2006; Luo et al. 2001a; Mutlu and Moscibroda 2007; Snavely
and Tullsen 2000]). As shown in previous research [Bitirgen et al. 2008], employing
separate uncoordinated fairness techniques together does not necessarily result in a
fair memory system design. This is because fairness mechanisms in different resources
can contradict each other. Our goal in this article is to develop a low-cost architectural
technique that allows system software fairness policies to be achieved in CMPs by
enabling fair sharing of the entire memory system, without requiring multiple compli-
cated, specialized, and possibly contradictory fairness techniques for different shared
resources.

Basic Idea. To achieve this goal, we propose a fundamentally new mechanism that
(1) gathers dynamic feedback information about the unfairness in the system and (2)
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uses this information to dynamically adapt the rate at which the different cores in-
ject requests into the shared memory subsystem such that system-level fairness ob-
jectives are met. To calculate unfairness at runtime, a slowdown value is estimated
for each application in hardware. Slowdown is defined as Tigeq/Twone, Where Tgngreq
is the number of cycles it takes to run simultaneously with other applications and
Teuone 18 the number of cycles it would have taken the application to run alone. Un-
fairness is calculated as the ratio of the largest slowdown to the smallest slowdown
of the simultaneously running applications. If the unfairness in the system becomes
larger than the unfairness threshold set by the system software, the core that inter-
feres most with the core experiencing the largest slowdown is throttled down. This
means that the rate at which the most interfering core injects memory requests into
the system is reduced, in order to reduce the intercore interference it generates. If the
system software’s fairness goal is met, all cores are allowed to throttle up to improve
system throughput while system unfairness is continuously monitored. The fairness
metric/goal, unfairness threshold, and throttling rates are all configurable by system
software. This configurable hardware substrate enables the system software to achieve
different QoS/fairness policies: it can determine the balance between fairness and sys-
tem throughput, dictate different fairness objectives, and enforce thread priorities in
the entire memory system.

Summary of Evaluation. We evaluate our technique on both 2-core and 4-core CMP sys-
tems in comparison to three previously-proposed state-of-the-art shared hardware re-
source management mechanisms. Experimental results across ten multiprogrammed
workloads on a 4-core CMP show that our proposed technique improves average sys-
tem performance by 25.6%/14.5% while reducing system unfairness by 44.4%/36.2%
compared respectively to a system with no fairness techniques employed and a system
with state-of-the-art fairness mechanisms implemented for both shared cache capacity
[Nesbit et al. 2007] and the shared memory controller [Mutlu and Moscibroda 2008].

Contributions. We make the following contributions:

1. We introduce a low-cost, hardware-based and system-software-configurable mech-
anism to achieve fairness goals specified by system software in the entire shared
multicore memory system.

2. We introduce a mechanism that collects dynamic feedback on the unfairness of
the system and adjusts request rates of the different cores to achieve the desired
fairness/performance balance. By performing source-based fairness control, this
work eliminates the need for complicated individual resource-based fairness mech-
anisms that are implemented independently in each resource and that require co-
ordination.

3. We qualitatively and quantitatively compare our proposed technique to multiple
prior works in fair shared cache partitioning and fair memory scheduling. We find
that our proposal, while simpler, provides significantly higher system performance
and better system fairness compared to previous proposals.

2. BACKGROUND AND MOTIVATION

We first present brief background on how we model the shared memory system of
CMPs. We then motivate our approach to providing fairness in the entire shared
memory system by showing how employing resource-based fairness techniques does
not necessarily provide better overall fairness.
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Fig. 2. Shared CMP memory system.

2.1. Shared CMP Memory Systems

In this article, we assume that the last-level (L.2) cache and off-chip DRAM bandwidth
are shared by multiple cores on a chip as in many commercial CMPs [AMD 2009;
Wechsler 2006; Intel 2008; Tendler et al. 2001]. Each core has its own L1 cache. Miss
Status Holding/information Registers (MSHRs) [Kroft 1981] keep track of all requests
to the shared L2 cache until they are serviced. When an L1 cache miss occurs, an access
request to the L2 cache is created by allocating an MSHR entry. Once the request is
serviced by the L2 cache or DRAM system as a result of a cache hit or miss respectively,
the corresponding MSHR entry is freed and used for a new request. Figure 2 gives a
high level view of such a shared memory system. The number of MSHR entries for a
core indicates the total number of outstanding requests allowed to the L.2 cache and
DRAM system. Therefore increasing/decreasing the number of MSHR entries for a core
can increase/decrease the rate at which memory requests from the core are injected
into the shared memory system.

2.2. Motivation

Most prior papers on providing fairness in shared resources focus on partitioning of
a single shared resource. However, by partitioning a single shared resource, the de-
mands on other shared resources may change such that neither system fairness nor
system performance is improved. In the following example, we describe how constrain-
ing the rate at which an application’s memory requests are injected to the shared
resources can result in higher fairness and system performance than employing fair
partitioning of a single resource.

Figure 3 shows the memory-related stall time! of applications A and B either
running alone on one core of a 2-core CMP (parts (a)—(d)), or, running concurrently
with equal priority on different cores of a 2-core CMP (parts (e)—(j)). For simplicity of
explanation, we assume an application stalls when there is an outstanding memory
request, focus on requests going to the same cache set and memory bank, and assume

1Stall-time is the amount of execution time in which the application cannot retire instructions. Memory-
related stall time caused by a memory request consists of: 1) time to access the L2 cache, and if the access is
a miss 2) time to wait for the required DRAM bank to become available, and finally 3) time to access DRAM.
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Fig. 3. Access pattern and memory-related stall time of requests when application A running alone (a, b),
application B running alone (¢, d), A and B running concurrently with no fairness control (e, f), fair cache
(g, h), and fair source throttling (i, j).
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all shown accesses to the shared cache occur before any replacement happens. Appli-
cation A is very memory-intensive, while application B is much less memory-intensive
as can be seen by the different memory-related stall times they experience when
running alone (Figures 3(a)—(d)). As prior work has observed [Mutlu and Moscibroda
2008], when a memory-intensive application with already high memory-related
stall time interferes with a less memory-intensive application with much smaller
memory-related stall time, delaying the former improves system fairness because
the additional delay causes a smaller slowdown for the memory-intensive application
than for the nonintensive one. Doing so can also improve throughput by allowing the
less memory-intensive application to quickly return to its compute-intensive portion
while the memory-intensive application continues waiting on memory.

Figures 3(e) and (f) show the initial L2 cache state, access order and memory-related
stall time when no fairness mechanism is employed in any of the shared resources. Ap-
plication A’s large number of memory requests arrive at the L2 cache earlier, and as
a result, the small number of memory requests from application B are significantly
delayed. This causes large unfairness because the compute-intensive application B is
slowed down significantly more than the already-slow memory-intensive application
A. Figures 3(g) and (h) show that employing a fair cache increases the fairness in uti-
lization of the cache by allocating an equal number of ways from the accessed set to the
two equal-priority applications. This increases application A’s cache misses compared
to the baseline with no fairness control. Even though application B gets more hits as
a result of fair sharing of the cache, its memory-related stall time does not reduce due
to increased interference in the main memory system from application A’s increased
misses. Application B’s memory requests are still delayed behind the large number
of memory requests from application A. Application A’s memory-related stall time in-
creases slightly due to its increased cache misses, however, since application A already
had a large memory-related stall time, this slight increase does not incur a large slow-
down for it. As a result, fairness improves slightly, but system throughput degrades
because the system spends more time stalling rather than computing compared to no
fair caching.

In Figure 3, if the unfair slowdown of application B due to application A is detected
at runtime, system fairness can be improved by limiting A’s memory requests and re-
ducing the frequency at which they are issued into the shared memory system. This is
shown in the access order and memory-related stall times of Figures 3(i) and (j). If the
frequency at which application A’s memory requests are injected into the shared mem-
ory system is reduced, the memory access pattern can change as shown in Figure 3(i).
We use the term throttled requests to refer to those requests from application A that
are delayed when accessing the shared L2 cache due to A’s reduced injection rate. As
a result of the late arrival of these throttled requests, application B’s memory-related
stall time significantly reduces (because A’s requests no longer interfere with B’s) while
application A’s stall time increases slightly. Overall, this ultimately improves both
system fairness and throughput compared to both no fairness control and just a fair
cache. Fairness improves because the memory-intensive application is delayed such
that the less intensive application’s memory related-stall time does not increase signif-
icantly compared to when running alone. Delaying the memory-intensive application
does not slow it down too much compared to when running alone, because even when
running alone it has high memory-related stall time. System throughput improves
because the total amount of time spent computing rather than stalling in the entire
system increases, as can be seen by comparing the stall times in Figures 3(f) and (h) to
Figure 3(j).

The key insight is that both system fairness and throughput can improve by de-
tecting high system unfairness at runtime and dynamically limiting the number of or
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delaying the issuing of memory requests from the aggressive applications. In essence,
we propose a new approach that performs source-based fairness in the entire memory
system rather than individual resource-based fairness that implements complex and
possibly contradictory fairness mechanisms in each resource. Sources (i.e., cores) can
collectively achieve fairness by throttling themselves based on dynamic unfairness
feedback, eliminating the need for implementing possibly contradictory/conflicting
fairness mechanisms and complicated coordination techniques between them.

3. FAIRNESS VIA SOURCE THROTTLING

To enable fairness in the entire memory system, we propose Fairness via Source Throt-
tling (FST). The proposed mechanism consists of two major components: (1) runtime
unfairness evaluation and (2) dynamic request throttling.

3.1. Runtime Unfairness Evaluation Overview

The goal of this component is to dynamically obtain an estimate of the unfairness in
the CMP memory system. We use the following definitions in determining unfairness:

(1) We define a memory system design as fair if the slowdowns of equal-priority appli-
cations running simultaneously on the cores of a CMP are the same, similarly to
previous works [Cazorla et al. 2004; Gabor et al. 2006; Luo et al. 2001a; Mutlu and
Moscibroda 2007; Snavely and Tullsen 2000].

(2) We define slowdown as Tspagred/Tatone Where Tgugreq is the number of cycles it takes
to run simultaneously with other applications and Ty, is the number of cycles it
would have taken the application to run alone on the same system.

The main challenge in the design of the runtime unfairness evaluation component
is obtaining information about the number of cycles it would have taken an application
to run alone, while it is running simultaneously with other applications. To do so, we
estimate the number of extra cycles it takes an application to execute due to intercore
interference in the shared memory system, called T,,.ss. Using this estimate, Tyone 18
calculated as Tgugeqd — Texcess- The following equations show how Individual Slowdown
(IS) of each application and Unfairness of the system are calculated.

IS - Tghared Unfairness = MAX({IS,, IS, ...,ISy_1}
- ’ © MIN{ISy, IS:, ..., ISy 1}

quone
1
Section 3.3 explains in detail how the runtime unfairness evaluation component is
implemented and in particular how Ti.ss is estimated. Assuming for now that this
component is in place, we next explain how the information it provides is used to
determine how each application is throttled to achieve fairness in the entire shared
memory system.

3.2. Dynamic Request Throttling

This component is responsible for dynamically adjusting the rate at which each
core/application? makes requests to the shared resources. This is done on an inter-
val basis, as shown in Figure 4.

An interval ends when each core has executed a certain number of instructions from
the beginning of that interval. During each interval (for example Interval 1 in Figure 4)
the runtime unfairness evaluation component gathers feedback used to estimate the
slowdown of each application. At the beginning of the next interval (Interval 2), the

2Since each core runs a separate application, we use the words core and application interchangeably in this
article.
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Fig. 4. FST’s interval-based estimation and throttling.

feedback information obtained during the prior interval is used to make a decision
about the request rates of each application for that interval. More precisely, slowdown
values estimated during Interval 1 are used to estimate unfairness for the system.
That unfairness value is used to determine the request rates for the different applica-
tions for the duration of Interval 2. During the next interval (Interval 2), those request
rates are applied, and unfairness evaluation is performed again. The algorithm used to
adjust the request rate of each application using the unfairness estimate calculated in
the prior interval is shown in Algorithm 1. To ease explanations, Algorithm 1 is sim-
plified for dual-core configurations. Section 3.5 presents the more general algorithm
for more than two cores.

We define multiple possible levels of aggressiveness for the request rate of each
application. The dynamic request throttling component makes a decision to in-
crease/decrease or keep constant the request rate of each application at interval bound-
aries. We refer to increasing/decreasing the request rate of an application as throttling
the application up/down.

ALGORITHM 1: Dynamic Request Throttling
if Estimated Unfairness > Unfairness Threshold then
Throttle down application with the smallest slowdown
Throttle up application with the largest slowdown
Reset Successive Fairness Achieved Intervals

else
if Successive Fairness Achieved Intervals = threshold then
Throttle all applications up
Reset Successive Fairness Achieved Intervals
else
Increment Successive Fairness Achieved Intervals
end if
end if

At the end of each interval, the algorithm compares the unfairness estimated in the
previous interval to the unfairness threshold that is defined by system software. If
the fairness goal has not been met in the previous interval, the algorithm reduces the
request rate of the application with the smallest individual slowdown value and in-
creases the request rate of the application with the largest individual slowdown value.
This reduces the number and frequency of memory requests generated for and inserted
into the memory resources by the application with the smallest estimated slowdown,
thereby reducing its interference with other cores. The increase in the request rate of
the application with the highest slowdown allows it to be more aggressive in exploit-
ing Memory-Level Parallelism (MLP) [Chou et al. 2004; Glew 1998] and as a result
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reduces its slowdown. If the fairness goal is met for a predetermined number of in-
tervals (tracked by a Successive Fairness Achieved Intervals counter in Algorithm 1),
the dynamic request throttling component attempts to increase system throughput by
increasing the request rates of all applications by one level. This is done because our
proposed mechanism strives to increase throughput while maintaining the fairness
goals set by the system software. Increasing the request rate of all applications might
result in unfairness. However, the unfairness evaluation during the interval in which
this happens detects this occurrence and dynamically adjusts the requests rates again.

Throttling Mechanisms. Our mechanism increases/decreases the request rate of each
application in multiple ways: (1) Adjusting the number of outstanding misses an ap-
plication can have at any given time. To do so, an MSHR quota, which determines
the maximum number of MSHR entries an application can use at any given time,
is enforced for each application. Reducing MSHR entries for an application reduces
the pressure caused by that application’s requests on all shared memory system re-
sources by limiting the number of concurrent requests from that application contend-
ing for service from the shared resources. This reduces other simultaneously running
applications’ memory-related stall times and gives them the opportunity to speed up.
(2) Adjusting the frequency at which requests in the MSHRs are issued to access L2.
Reducing this frequency for an application reduces the number of memory requests per
unit time from that application that contend for shared resources. This allows memory
requests from other applications to be prioritized in accessing shared resources even
if the application that is throttled down does not have high MLP to begin with and
is not sensitive to reduction in the number of its MSHRs. We refer to this throttling
technique as frequency throttling. We use both of these mechanisms to reduce the in-
terference caused by the application that experiences the smallest slowdown on the
application that experiences the largest slowdown.

3.3. Unfairness Evaluation Component Design

Tshareq 18 simply the number of cycles it takes to execute an application in an inter-
val. Estimating T, is more difficult, and FST achieves this by estimating Ty.ss for
each core, which is the number of cycles the core’s execution time is lengthened due
to interference from other cores in the shared memory system. To estimate Toycess,
the unfairness evaluation component keeps track of intercore interference each core
incurs.

Tracking Intercore Interference. We consider three sources of intercore interference: (1)
cache, (2) DRAM bus and bank conflict, and (3) DRAM row-buffer.® Our mechanism
uses an InterferencePerCore bit-vector whose purpose is to indicate whether or not
a core is delayed due to intercore interference. In order to track interference from
each source separately, a copy of InterferencePerCore is maintained for each inter-
ference source. A main copy which is updated by taking the union of the different
Interference PerCore vectors is eventually used to update T,..ss as described below.
When FST detects intercore interference for core i at any shared resource, it sets bit
i of the InterferencePerCore bit-vector, indicating that the core was delayed due to
interference. At the same time, it also sets an InterferingCoreld field in the corre-
sponding interfered-with memory request’s MSHR entry. This field indicates which

30n-chip interconnect can also experience intercore interference [Das et al. 2009]. Feedback information
similar to that obtained for the three sources of intercore interference we account for can be collected for the
on-chip interconnect. That information can be incorporated into our technique seamlessly, which we leave
as part of future work.
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Table I. Hardware Cost of FST on a 4-Core CMP System

l Cost for N cores [ Cost for N=4 ‘

ExcessCycles counters N x N x 16 bits/counter 256 bits

Interference pollution filter per core 2048 entries x N x 24,576 bits
(1 pollution bit + (logz N) bit processor id)/entry
InterferingCoreld per MSHR entry 32 entries/corex N x 2 interference sources x 512 bits
(logs N) bits/entry
Interference PerCore bit-vector (3 interference sources + 1 main copy) x 64 bits
N x N x 1 bit
Shadow row-buffer address register N x # of DRAM banks (B) x 32 bits/address 1024 bits
Successive Fairness Achieved Intervals
Intervals To Wait To Throttle Up per core (2 x N + 1) x 16 bits/counter 144 bits
Inst Count Each Interval per core
Core id per tag store entry in K MB L2 16384 blocks/Megabyte x K x (loge N) bit/block 65,536 bits
Total hardware cost for N-core system Sum of the above 11.24 KB
Percentage area overhead S KB) x 100/ (K x 1024 11.24KB/2048KB
(as fraction of the baseline K MB L2 cache) urn (KB) x (Ko ) =0.55%

core interfered with this request and is later used to reset the corresponding bit in the
Interference PerCore vector when the interfered-with request is scheduled/serviced. We
explain this process in more detail for each resource below in Sections 3.3.1-3.3.3. If
a memory request has not been interfered with, its InterferingCoreld will be the same
as the core id of the core it was generated by.

Updating T,y.ss- FST stores the number of extra cycles it takes to execute a given
interval’s instructions due to intercore interference (T, cess) in an ExcessCycles counter
per core. Every cycle, if the Interference PerCore bit of a core is set, FST increments the
corresponding core’s ExcessCycles counter. Section 3.3.5 shows how this can be done
less frequently.

Algorithm 2 shows how FST calculates ExcessCycles for a given core i. The following
subsections explain in detail how each source of intercore interference is taken into
account to set Interference PerCore. Table I summarizes the required storage needed
to implement the mechanisms explained here.

3.3.1. Cache Interference. In order to estimate intercore cache interference, for each
core i we need to track the last-level cache misses that are caused by any other core
Jj. To do so, FST uses a pollution filter for each core to approximate such misses. The
pollution filter is a bit-vector that is indexed with the lower order bits of the accessed
cache line’s address.* In the bit-vector, a set entry indicates that a cache line belonging
to the corresponding core was evicted by another core’s request. When a request from
core j replaces one of core i’s cache lines, core i’s filter is accessed using the evicted
line’s address, and the corresponding bit is set. When a memory request from core i
misses the cache, its filter is accessed with the missing address. If the corresponding
bit is set, the filter predicts that this line was previously evicted due to intercore in-
terference and the bit in the filter is reset. When such a prediction is made, once the
interfered-with request is scheduled to DRAM the Interference PerCore bit correspond-
ing to core i is set to indicate that core i is experiencing extra execution cycles due to
cache interference. Once the interfered-with memory request is finished receiving ser-
vice from the memory system and the corresponding cache line is filled, core i’s filter
is accessed and the bit is reset and so is core i’s Interference PerCore bit.

4We empirically determined the pollution filter for each core to have 2K-entries in our evaluations.
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ALGORITHM 2: Estimation of T, for core i
Every cycle
if intercore cache or DRAM bus or DRAM bank or
DRAM row-buffer interference then
set Interference PerCore bit i
set InterferingCoreld in delayed memory request
end if
if Interference PerCore bit i is set then

Increment ExcessCycles for core i
end if

Every L2 cache fill for a miss due to interference OR

Every time a memory request which is a row-buffer miss due to interference is
serviced
reset Interference PerCore bit of core i
InterferingCoreld of core i =i (no interference)

Every time a memory request is scheduled to DRAM
if Core i has no requests waiting on any bank which is busy servicing another core j (j != 1)
then
reset Interference PerCore bit of core i
end if

3.3.2. DRAM Bus and Bank Conflict Interference. Intercore DRAM bank conflict interfer-
ence occurs when core i’s memory request cannot access the bank it maps to, because
a request from some other core j is being serviced by that memory bank. DRAM bus
conflict interference occurs when a core cannot use the DRAM because another core is
using the DRAM bus. These situations are easily detectable at the memory controller,
as described in Mutlu and Moscibroda [2007]. When such interference is detected, the
Interference PerCore bit corresponding to core i is set to indicate that core i is stalling
due to a DRAM bus or bank conflict. This bit is reset when no request from core i is
being prevented access to DRAM by the other cores’ requests.

3.3.3. DRAM Row-Buffer Interference. This type of interference occurs when a potential
row-buffer hit of core i when running alone is converted to a row-buffer miss/conflict
due to a memory request of some core j when running together with others. This can
happen if a request from core j closes a DRAM row opened by a prior request from core
i that is also accessed by a subsequent request from core i. To track such interference,
a Shadow Row-buffer Address Register (SRAR) is maintained for each core for each
bank. Whenever core i’s memory request accesses some row R, the SRAR of core i
is updated to row R. Accesses to the same bank from some other core j do not affect
the SRAR of core i. As such, at any point in time, core i’s SRAR will contain the last
row accessed by the last memory request serviced from that core in that bank. When
core i’s memory request suffers a row-buffer miss because another core j’s row is open
in the row-buffer of the accessed bank, the SRAR of core i is consulted. If the SRAR
indicates a row-buffer hit would have happened, then intercore row-buffer interference
is detected. As a result, the Interference PerCore bit corresponding to core i is set. Once
the memory request is serviced, the corresponding Interference PerCore bit is reset.’

5To be more precise, the bit is reset “row buffer hit latency” cycles before the memory request is serviced. The
memory request would have taken at least “row buffer hit latency” cycles had there been no interference.
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3.3.4. Slowdown due to Throttling. When an application is throttled, it experiences some
slowdown due to the throttling. This slowdown is different from the intercore inter-
ference induced slowdown estimated by the mechanisms of Sections 3.3.1 to 3.3.3.
Throttling-induced slowdown is a function of an application’s sensitivity to 1) the num-
ber of MSHRs that are available to it, 2) the frequency of injecting requests into the
shared resources. Using profiling, we determine for each throttling level /, the cor-
responding slowdown (due to throttling) f of an application A. At runtime, any esti-
mated slowdown for application A when running at throttling level [ is multiplied by f.
We find that accounting for this slowdown using this profiling information improves
the system performance gained by FST by 4% on 4-core systems, as we evaluate in
Section 5.10.

Slowdown due to throttling can also be tracked by maintaining a counter for the
number of cycles each application A stalls because it can not obtain an MSHR entry
because of its limited MSHR quota. We separately keep track of the number of such
cycles and refer to them as those excess cycles which are due to throttling (as opposed
to excess cycles due to interference from other applications). We discuss how this in-
formation is used later in a more general form of dynamic request throttling presented
in Section 3.5, Algorithm 3.

3.3.5. Implementation Details. Section 3.3 describes how separate copies of
Interference PerCore are maintained per interference source. The main copy which is
used by FST for updating T¢,..ss is physically located close by the L2 cache. Note that
shared resources may be located far away from each other on the chip. Any possible
timing constraints on the sending of updates to the InterferencePerCore bit-vector
from the shared resources can be eliminated by making these updates periodically.
In Section 5.5 we show that making updates as infrequently as even once every 1000
cycles provides negligible loss of fidelity compared to ideally making updates every
cycle.

3.4. System Software Support

Different Fairness Objectives. System-level fairness objectives and policies are gener-
ally decided by the system software (the operating system or virtual machine moni-
tor). FST is intended as architectural support for enforcing such policies in shared
memory system resources. The fairness goal to be achieved by FST can be configured
by system software. To achieve this, we enable the system software to determine the
nature of the condition that triggers Algorithm 1. In the explanations of Section 3.2,
the triggering condition is

Triggering Condition (1) : Estimated Unfairness > Unfairness Threshold.

System software might want to enforce different triggering conditions depending on
the system’s fairness/QoS requirements. To enable this capability, FST implements dif-
ferent triggering conditions from which the system software can choose. For example,
the fairness goal the system software wants to achieve could be to keep the maximum
slowdown of any application below a threshold value. To enforce such a goal, the sys-
tem software can configure FST such that the triggering condition in Algorithm 1 is
changed to

Triggering Condition (2) : Estimated Slowdown; > Max. Slowdown Threshold.

Alternatively, per application slowdown thresholds can be specified. In this case,
if any application slows down beyond its own specified threshold, Algorithm 1 will be
triggered.
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Thread Weights. So far, we have assumed all threads are of equal importance. FST
can be seamlessly adjusted to distinguish between and provide differentiated services
to threads with different priorities. We add the notion of thread weights to FST, which
are communicated to it by the system software using special instructions. Higher
slowdown values are more tolerable for less important or lower weight threads. To
incorporate thread weights, FST uses weighted slowdown values calculated as:

Weighted Slowdown; = Measured Slowdown; x Weight;.

By scaling the real slowdown of a thread with its weight, a thread with a higher
weight appears as if it slowed down more than it really did, causing it to be favored
by FST. Section 5.4 quantitatively evaluates FST with one different fairness goal and
threads with different weights.

Thread Migration and Context Switches. FST can be seamlessly extended to work in the
presence of thread migration and context switches. When a context switch happens
or a thread is migrated, the interference state related to that thread is cleared. When
a thread restarts executing after a context switch or migration, it starts at maximum
throttle. The interference caused by the thread and the interference it suffers are
dynamically re-estimated and FST adapts to the new set of co-executing applications.

3.5. General Dynamic Request Throttling

Scalability to More Cores. When the number of cores is greater than two, a more gen-
eral form of Algorithm 1 is used. The design of the unfairness evaluation component
for the more general form of Algorithm 1 is slightly different. This component gathers
the following extra information for the more general form of dynamic request throt-
tling presented in Algorithm 3: a) for each core i, FST maintains a set of N-1 counters,
where N is the number of simultaneously running applications. We refer to these V-1
counters that FST uses to keep track of the amount of the intercore interference caused
by any other core j in the system for i as ExcessCycles;;. This information is used to
identify which of the other applications in the system generates the most interference
for core i, b) FST maintains the total intercore interference an application on core
1 experiences due to interference from other cores in a Total ExcessCyclesInterference;
counter per core, and c¢) as described in the last paragraph of Section 3.3.4, those excess
cycles that are caused as a result of an application being throttled down are accounted
for separately in a Total ExcessCyclesT hrottling; counter per core.

Algorithm 3 shows the generalized form of Algorithm 1 that uses the extra informa-
tion described above to make more accurate throttling decisions in a system with more
than two cores. The four most important changes are as follows:

First, when the algorithm is triggered due to unfair slowdown of core i, FST com-
pares the ExcessCycles;; counter values for all cores j# i to determine which other core
is interfering most with core i. The core found to be the most interfering is throttled
down. We do this in order to reduce the slowdown of the core with the largest slowdown
value, and improve system fairness.

Second, the first line of the algorithm shows how we change the condition that
triggers throttling. Throttling is triggered if both the estimated unfairness (Max.
Slowdown/Min. Slowdown) and the ratio between the slowdowns of core with the
largest slowdown (A ppg,.,) and the core generating the most interference (A ppinserfering)
are greater than Unfairness Threshold. Doing so helps reduce excessive throttling
when two applications significantly interfere with each other and alternate between
being identified as Appgow and Appiserfering. Consider the case where application A
and B alternate between being A ppg,,, (which has Max. Slowdown) and A ppinserfering;
and some other (possibly memory nonintensive) application C is the application with
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ALGORITHM 3: Dynamic Request Throttling - General Form

if Estimated Unfairness > Unfairness Threshold AND Appgs., slowdown/A ppiwerfering
slowdown > Unfairness Threshold then
if Appy,.’s excess cycles due to interference from A ppinserfering > APPsiow’s
Total ExcessCyclesThrotiling; then
Throttle down application that causes most interference (A ppjerfering) for application
with largest slowdown
end if
Throttle up application with the largest slowdown (A ppgo.)
Reset Successive Fairness Achieved Intervals
Reset Intervals To Wait To Throttle Up for A ppinserfering-

/] Preventing bank service denial

if A pPinserfering throttled lower than Switchy,. AND causes greater than Interference;,

amount of A ppg,,’s total interference then
Temporarily stop prioritizing A ppierfering due to row hits in memory controller

end if

if A PP rowHitNotPrioritized has not been A ppinserfering for SwitchBacky, intervals then
Allow it to be prioritized in memory controller based on row-buffer hit status of its
requests

end if

for all applications except A ppinerfering and A ppgo,, do
if Intervals To Wait To Throttle Up = thresholdl then
throttle up
Reset Intervals To Wait To Throttle Up for this app.
else
Increment Intervals To Wait To Throttle Up for this app.
end if
end for

else
if Successive Fairness Achieved Intervals = threshold2 then
Throttle up application with the smallest slowdown
Reset Successive Fairness Achieved Intervals
else
Increment Successive Fairness Achieved Intervals
end if
end if

Min. Slowdown. With the throttling condition of Algorithm 1 in place, applications
A and B would continuously be throttled up and down in successive intervals with-
out the Estimated Unfairness ever dropping below the specified Unfairness Threshold.
This is because, in the intervals when either is detected to be Appg,., Estimated
Unfairness will be high because of application C’s small slowdown. By comparing the
slowdowns of applications A and B before throttling is performed overall throughput
is improved by avoiding excessive throttling which would not improve the system’s
Estimated Unfairness.

Third, we observe that there are situations where an application suffers slow-
down that is incurred as a result of throttling from previous intervals and not due to
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intercore interference. To address this, we detect such cases. We restrict throttling
down of A ppinserfering to cases where the slowdown that A ppg,, is suffering is mainly
caused by intercore interference and is not a result of Appg,, having been throttled
down in previous intervals. If the excess cycles that Appg,, suffers due to not be-
ing able to acquire MSHR entries is greater than the excess cycles caused for it by
A PDinterfering, We do not throttle down A ppiyerfering as this would result in a loss of
throughput. In these cases the detected unfairness is resolved by throttling up A ppsow
and reducing its slowdown by allowing it to acquire more MSHR entries.

Fourth, cores that are neither the core with the largest slowdown (A ppg,, ) nor the
core generating the most interference (A ppjnserfering) for the core with the largest slow-
down are throttled up every thresholdl intervals. This is a performance optimization
that allows cores to be aggressive if they are not the main contributors to the unfair-
ness in the system.

Preventing Bank Service Denial due to FR-FCFS Memory Scheduling. First ready-first come
first serve (FR-FCFS) [Rixner et al. 2000] is a commonly used memory scheduling
policy which we use in our baseline system. This algorithm prioritizes requests that
hit in the DRAM bank row buffers over all other requests. The FR-FCFS policy has
the potential to starve an application with low row-buffer locality in the presence of
an application with high row-buffer locality (as discussed in prior work [Nesbit et al.
2006; Moscibroda and Mutlu 2007; Mutlu and Moscibroda 2007, 2008]). Even when
the interfering application is throttled down, the potential for continued DRAM bank
interference exists when FR-FCFS memory scheduling is used, due to the greedy row-
hit-first nature of the scheduling algorithm: a throttled-down application with high
row-buffer locality can deny service to another application continuously. To overcome
this, we supplement FST with a heuristic that prevents this denial of service. Once an
application has already been throttled down lower than Switchy,-%, if FST detects that
this throttled application is generating greater than Interference;, % of Appg,.,’s to-
tal interference, it will temporarily stop prioritizing the interfering application based
on row-buffer hit status in the memory controller. We refer to this application as
AppRowHitNotPrioritized- If AppRowHitNotPrwritized has not been the most interfering apph'
cation for SwitchBack,,- number of intervals, its prioritization over other applications
based on row-buffer hit status will be re-allowed in the memory controller. This is done
because if an application with high row-buffer locality is not allowed to take advantage
of row buffer hits for a long time, its performance will suffer.®

3.6. Hardware Cost and Implementation Details

Table I shows the breakdown of FST’s required storage. The total storage cost required
by our implementation of FST is 11.24KB which is only 0.55% the size of the L2 cache
being used. FST does not require any structure or logic that is on the critical path since
all updates to interference-tracking structures can be made periodically at relatively
large intervals to eliminate any timing constraints (see Section 5.5).

Figure 5 shows the shared CMP memory system we model for evaluation of FST
including additional structures for tracking interference added to the baseline memory
system shown in Figure 2. The two boxes on the right of the figure contain interference
tracking structures and counters, and the shaded bit positions in the L2 cache lines
and MSHR entries on the left are additions to these structures required by FST.

6We do this so that we can have minimal changes to the most commonly used scheduling algorithm. FST
can be combined with other forms of memory scheduling, which is part of future research and out of the
scope of this article.
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Fig. 5. Changes made to the memory system.

3.7. Lightweight FST

In this section, we describe an alternative FST implementation that requires less hard-
ware cost and is more scalable in terms of hardware requirements to a larger number
of cores. In this alternative implementation, we do not keep track of how much in-
terference is caused by each application for any other application which requires N?
ExcessCycles counters (where N is the number of applications), as described in the pre-
vious subsection. Instead, we propose maintaining two counters for each core i. One
counter tracks the total number of ExcessCycles that the application executing on core
i generated for any other concurrently-executing application. We refer to this counter
as ExcessCyclesGenerated;. The other counter tracks the total number of ExcessCycles
that any other concurrently-executing application creates for the application on core
i. We refer to this counter as ExcessCyclesSuffered;. This requires a total of 2N 16-bit
counters to be maintained and allows for a more scalable solution with larger numbers
of cores: the number of required counters is linear instead of quadratic in the number
of cores.

For the lightweight FST implementation to work with the counters described above,
we modify Algorithm 3 as follows. With lightweight FST, the core executing the ap-
plication that has the largest slowdown A ppg,, is still throttled up when throttling
is triggered. However, as opposed to throttling down the core executing the appli-
cation which causes the most interference for Appgow (ApPpinterfering) in Algorithm 3),
we throttle down the core that is executing the application which is generating the
most interference for any other concurrently-executing application since A ppinserfering
is not known due to the reduced number of counters. This is the core with the highest
ExcessCyclesGenerated; counter in a given interval. We evaluate the performance of our
lightweight FST in Section 5.7.
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Table Il. Baseline System Configuration

Out of order processor, 15 stages,
Decode/retire up to 4 instructions
Issue/execute up to 8 micro instructions
256-entry reorder buffer

Execution Core

Fetch up to 2 branches; 4K-entry BTB
Front End p ; M
ront R 64K-entry Hybrid branch predictor

L1 I-cache: 32KB, 4-way, 2-cycle, 64B line

L1 D-cache: 32KB, 4-way, 2-cycle, 64B line

On-chip Caches Shared unified L.2: 1MB (2MB for 4-core), 8-way (16-way for 4-core),
16-bank, 15-cycle (20-cycle for 4-core), 1 port, 64B line size

On-chip, FR-FCF'S scheduling policy [Rixner et al. 2000]
128-entry MSHR and memory request buffer

667MHz bus cycle, DDR3 1333MHz [MICRON]
8B-wide data bus

DRAM and Bus Latency: 15-15-15ns ‘RP-*RCD-CL)

8 DRAM banks, 16KB row buffer per bank
Round-trip L2 miss latency:

Row-buffer hit: 36ns, conflict: 66ns

DRAM Controller

4. METHODOLOGY

Processor Model. We use an in-house cycle-accurate x86 CMP simulator for our eval-
uation. We faithfully model all port contention, queuing effects, bank conflicts, and
other major DDR3 DRAM system constraints in the memory subsystem. Table II
shows the baseline configuration of each core and the shared resource configuration
for the 2 and 4-core CMP systems we use.

Workloads. We use the SPEC CPU 2000/2006 benchmarks for our evaluation. Each
benchmark was compiled using ICC (Intel C Compiler) or IFORT (Intel Fortran Com-
piler) with the -O3 option. We ran each benchmark with the reference input set for 200
million x86 instructions selected by Pinpoints [Patil et al. 2004] as a representative
portion for the 2-core experiments. Due to long simulation times, 4-core experiments
were done with 50 million instructions per benchmark.

We classify benchmarks as highly memory-intensive/with medium memory inten-
sity/nonintensive for our analyses and workload selection. We refer to a benchmark as
highly memory-intensive if its L2 Cache Misses per 1K Instructions (MPKI) is greater
than ten. If the MPKI value is greater than one but less than ten, we say the bench-
mark has medium memory-intensity. If the MPKI value is less than one, we refer to it
as nonintensive. This classification is based on measurements made when each bench-
mark was run alone on the 2-core system. Table III shows the characteristics of the
benchmarks that appear in the evaluated workloads when run on the 2-core system.

Workload Selection. We used 18 two-application and 10 four-application multipro-
grammed workloads for our 2-core and 4-core evaluations respectively. The 2-core
workloads were chosen such that at least one of the benchmarks is highly memory
intensive. For this purpose we used either art from SPEC2000 or [bm from SPEC2006.
For the second benchmark of each 2-core workload, applications of different memory
intensity were used in order to cover a wide range of different combinations. Of
the 18 benchmarks combined with either art or [bm, seven benchmarks have high
memory intensity, six have medium intensity, and five have low memory intensity. The
ten 4-core workloads were randomly selected with the condition that the evaluated
workloads each include at least one benchmark with high memory intensity and at
least one benchmark with medium or high memory intensity.
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Table IlI.

Characteristics of 29 SPEC 2000/2006 benchmarks: IPC and MPKI (L2 cache
Misses Per 1K Instructions).

Benchmark || Type | IPC | MPKI || Benchmark [ Type | IPC | MPKI

art FP0O | 0.10 | 90.89 mile FP06 | 0.30 | 29.33
soplex FP06 | 0.28 | 21.24 leslie3d FP06 | 0.41 | 20.88
Ibm FP0O6 | 0.45 | 20.16 bwaves FP0O6 | 0.46 | 18.71
GemsFDTD FP06 | 0.46 | 15.63 lucas FP0OO | 0.61 | 10.61
astar INTO6 | 0.37 10.19 omnetpp INTO06 | 0.36 10.11
mgrid FP0O | 0.52 6.5 gee INTO06 | 0.45 6.26
zeusmp FP06 | 0.82 4.69 || cactusADM FP06 | 0.60 4.51
bzip2 INTO6 | 1.14 2.61 || xalancbmk || INT06 | 0.71 1.68
h264ref INTO6 | 1.46 1.28 vortex INTOO | 1.01 1.24
parser INTOO | 1.24 091 apsi FPOO | 1.81 0.85
ammp FP0OO | 1.8 0.75 perlbench INTO6 | 1.49 0.68
mesa FPOO | 1.82 0.61 gromacs FP06 | 1.06 0.29
namd FP06 | 2.25 0.18 crafty INTOO | 1.82 0.1
calculix FP06 | 2.28 0.05 gamess FP06 | 2.32 0.04
povray FP06 | 1.88 0.02

Table IV. FST Parameters

Fairness | Successive Fairness | Intervals Wait | Interval
Threshold | Achieved Intervals | To Throttle Up | Length Switchy, | Interferences, | SwitchBack:y,
Threshold 5% 70%

14 4 2 25Kinsts

3 intervals

FST parameters used in evaluation. Table IV shows the values we use in our evaluation
unless stated otherwise. There are eight aggressiveness levels used for the request
rate of each application: 2%, 3%, 4%, 5%, 10%, 25%, 50%, and 100%. These levels
denote the scaling of the MSHR quota and the request rate in terms of percentage. For
example, when FST throttles an application to 5% of its total request rate on a system
with 128 MSHRs, two parameters are adjusted. First, the application is given a 5%
quota of the total number of available MSHRs (in this case, 6 MSHRs). Second, the
application’s memory requests in the MSHRs are issued to access the L2 cache at 5%
of the maximum possible frequency (i.e., once every 20 cycles).

Metrics. To measure CMP system performance, we use Harmonic mean of Speedups
(Hspeedup) [Luo et al. 2001a], and Weighted Speedup (Wspeedup) [Snavely and Tullsen
2000]. These metrics are commonly used in measuring multiprogram performance in
computer architecture [Eyerman and Eeckhout 2008]. In order to demonstrate fair-
ness improvements, we report Unfairness (see Section 3.1), as defined in Gabor et al.
[2006] and Mutlu and Moscibroda [2007], and Maximum Slowdown, which is the max-
imum individual slowdown that any application in a workload experiences. The Max-
imum Slowdown metric provides understanding about at most how much any of the
applications in a given workload is slowed down due to sharing of memory system
resources [Kim et al. 2010a]. Since Hspeedup provides a balanced measure between
fairness and system throughput as shown in previous work [Luo et al. 2001a], we use
it as our primary evaluation metric. In the metric definitions below: N is the number
of cores in the CMP system, I PC%" is the IPC measured when an application runs
alone on one core in the CMP system (other cores are idle), and IPC*%¢ is the IPC

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 7, Publication date: April 2012.



FST: A Configurable and High-Performance Fairness Substrate for Multicore Memory Systems 7:19

2.5 3.0 0.7 1.4

0.61 1.24

g

(=]
N
n

0.51 1.04

n
N
=}

0.41 0.8
== No Fairness Technique
0.6 e= Fair Cache

04l=— NFQ + Fair Cache
==PAR-BS + Fair Cache

==FST

0.31

—
(=]

1.07

0.24

Value of metric
Value of metric

j=4

n
j=4
n

0.1 0.2

0.0- 0.0 0.0 0.0

(a) Unfairness (b) Max Slowdown (c) Hspeedup (d) Wspeedup

Fig. 6. Average performance of FST on the 2-core system.
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5. EXPERIMENTAL EVALUATION

We evaluate our proposed techniques on both 2-core (Section 5.1) and 4-core systems
(all other sections). We compare FST to four other systems in our evaluations: 1)
a baseline system with no fairness techniques employed in the shared memory sys-
tem, using LRU cache replacement and FR-FCFS memory scheduling [Rixner et al.
2000], both of which have been shown to be unfair [Kim et al. 2004; Moscibroda and
Mutlu 2007; Nesbit et al. 2006]. We refer to this baseline as NoFairness, 2) a sys-
tem with only fair cache capacity management using the virtual private caches tech-
nique [Nesbit et al. 2007], called FairCache, 3) a system with a network fair queu-
ing (NFQ) fair memory scheduler [Nesbit et al. 2006] combined with fair cache ca-
pacity management [Nesbit et al. 2007], called NFQ+FairCache, 4) a system with
a parallelism-aware batch scheduling (PAR-BS) fair memory scheduler [Mutlu and
Moscibroda 2008] combined with fair cache capacity management [Nesbit et al. 2007],
called PAR-BS+FuairCache.

5.1. 2-core System Results

Figure 6 shows system performance and unfairness averaged (using geometric mean)
across 18 workloads evaluated on the 2-core system. Figure 7 shows the Hspeedup per-
formance of FST and other fairness techniques normalized to that of a system without
any fairness technique for each of the 18 evaluated 2-core workloads. F'ST provides the
highest system performance (in terms of Hspeedup) and the best unfairness among all
evaluated techniques. We make several key observations:

1. Fair caching’s unfairness reduction comes at the cost of a large degradation in sys-
tem performance. Also average maximum slowdown which indicates the highest
slowdown any application in a workload experiences due to sharing of memory
system resources is increased slightly. These two phenomena occur because fair
caching changes the memory access patterns of applications. Since the memory ac-
cess scheduler is unfair, the fairness benefits of the fair cache itself are reverted by
the memory scheduler.

2. NFQ+FairCache together reduces system unfairness by 30.2% compared to NoFair-
ness and reduces maximum slowdown by 10.9%. However, this degrades Wspeedup
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Fig. 7. Hspeedup of 18 2-core workloads normalized to no fairness control.

(by 12.3%). The combination of PAR-BS and fair caching improves both system per-
formance and fairness compared to the combination of NFQ and a fair cache. The
main reason is that PAR-BS preserves both DRAM bank parallelism and row-
buffer locality of each thread better than NFQ, as shown in previous work [Mutlu
and Moscibroda 2008]. Compared to the baseline with no fairness control, em-
ploying PAR-BS and a fair cache reduces unfairness and maximum slowdown by
41.3%/24.5% and improves Hspeedup by 11.5%. However, this improvement comes
at the expense of a large (7.8%) Wspeedup degradation.
NFQ+FairCache and PAR-BS+FairCache both significantly degrade system
throughput (Wspeedup) compared to employing no fairness mechanisms. This is
due to two reasons both of which lead to the delaying of memory nonintensive ap-
plications (Recall that prioritizing memory nonintensive applications is better for
system throughput [Mutlu and Moscibroda 2008; Nesbit et al. 2006]). First, the fair-
ness mechanisms that are employed separately in each resource interact negatively
with each other, leading to one mechanism (e.g. fair caching) increasing the pres-
sure on the other (fair memory scheduling). As a result, even though fair caching
might benefit system throughput by giving more resources to a memory noninten-
sive application, increased misses of the memory-intensive application due to fair
caching causes more congestion in the memory system, leading to both the memory-
intensive and nonintensive applications to be delayed. Second, even though the
combination of a fair cache and a fair memory controller can prioritize a memory
nonintensive application’s requests, this prioritization can be temporary. The de-
prioritized memory-intensive application can still fill the shared MSHRs with its
requests, thereby denying the nonintensive application entry into the memory sys-
tem. Hence, the nonintensive application stalls because it cannot inject enough re-
quests into the memory system. As a result, the memory nonintensive application’s
performance does not improve while the memory-intensive application’s perfor-
mance degrades (due to fair caching), resulting in system throughput degradation.
3. FST reduces system unfairness and maximum slowdown by 46.1%/32.3% while also
improving Hspeedup by 20% and degrades Wspeedup by 1.8% compared to NoFair-
ness. Unlike other fairness mechanisms, FST improves both system performance
and fairness, without large degradation to Wspeedup. This is due to two major
reasons. First, FST provides a coordinated approach in which both the cache and
the memory controller receive less frequent requests from the applications causing
unfairness. This reduces the starvation of the applications that are unfairly slowed
down as well as interference of requests in the memory system, leading to better
system performance for almost all applications. Second, because FST uses MSHR
quotas to limit requests injected by memory-intensive applications that cause un-
fairness, these memory-intensive applications do not deny other applications’ entry
into the memory system. As such, unlike other fairness techniques that do not
consider fairness in memory system buffers (e.g., MSHRs), FST ensures that
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Table V. Summary of Results on the 2-Core System

Unfairness | Maximum Slowdown | Hspeedup | Wspeedup
FSTA over No Fairness Mechanism —46.1% —32.3% 20% —1.8%
FSTA over Fair Cache -31.3% —32.6% 30.2% 16.1%
FSTA over NFQ + Fair Cache —22.8% —24.1% 19.7% 11.9%
FSTA over PAR-BS + Fair Cache —8.2% —10.4% 7.5% 6.4%
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Fig. 8. Average performance of FST on the 4-core system.
unfairly slowed-down applications are prioritized in the entire memory system,
including all the buffers, caches, and schedulers.

Table V summarizes our results for the 2-core evaluations. Compared to the
previous technique that provides the highest system throughput (i.e. NoFairness),
FST provides a significantly better balance between system fairness and perfor-
mance. Compared to the previous technique that provides the best fairness (PAR-
BS+FairCache), FST improves both system performance and fairness. We conclude
that FST provides the best system fairness as well as the best balance between system
fairness and performance.

5.2. 4-core System Results

5.2.1. Overall Performance. Figure 8 shows unfairness and system performance av-
eraged across the ten evaluated 4-core workloads (results in all sections that follow
are evaluated on the same system and same set of benchmarks). FST provides the
best fairness (in terms of both smallest unfairness and smallest maximum slowdown)
and Hspeedup among all evaluated techniques,” while providing Wspeedup that is
within 3.5% that of the best previous technique. Overall, FST reduces unfairness
and maximum slowdown by 44.4%/41%° and increases system performance by 30.4%
(Hspeedup) and 6.9% (Wspeedup) compared to NoFairness. Compared to NFQ, the pre-
vious technique with the highest system throughput (Wspeedup), FST reduces unfair-
ness and max slowdown by 22%/16.1% and increases Hspeedup by 4.2%. FST’s large
performance improvement is mainly due to the large reduction in unfairness.’

"In this subsection we also include data points for NFQ alone and PAR-BS alone with no FairCache to
show how the uncoordinated combination of fairness techniques at different shared resources can result in
degradation of both performance and fairness compared to when only one is employed.

8Similarly, FST also reduces the coefficient of variation, an alternative unfairness metric [Zhang et al. 2009],
by 45%.

9Since relative slowdowns of different applications are most important to improving unfairness and perfor-
mance using FST, highly accurate Teycess estimations are not necessary for such improvements. However, we
find that with the mechanisms proposed in this article the application which causes the most interference
for the most-slowed-down application is on average identified correctly in 70% of the intervals.
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Fig. 9. Normalized speedup of 10 4-core workloads.
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Fig. 10. Unfairness of 10 4-core workloads.

Note that the overall trends in the 4-core system are similar to those in the 2-core
system except that previous fairness mechanisms do not significantly improve fairness
in the 4-core system. As explained in detail in Section 5.2.2, this happens because pre-
vious fairness mechanisms prioritize nonintensive applications in individual resources
regardless of whether or not those applications are actually being slowed down.

Figure 9 shows the harmonic speedup performance of FST and other fairness tech-
niques normalized to that of a system without any fairness technique for each of the
ten workloads. Figure 10 shows the system unfairness of all the techniques for each of
the ten workloads. We make two major conclusions. First, FST improves system per-
formance (both Hspeedup and Wspeedup) and fairness compared to no fairness control
for all workloads. Second, FST provides the highest Hspeedup compared to the previ-
ous technique with the highest average system performance (NFQ) on seven of the ten
workloads, and provides the best fairness compared to the previous technique with the
best system fairness (PAR-BS) on seven of the ten workloads.

5.2.2. Case Study. To provide more insight into the performance and fairness im-
provements of FST, we analyze one 4-core workload in detail. This workload is a
mix of applications of different levels of memory intensity. Art and leslie are both
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Fig. 12. Case study: system behavior.

highly memory-intensive, while gamess and gromacs are nonintensive (as shown in
Table IIT). When these applications are run simultaneously on a 4-core system with
no fairness control, the two memory-intensive applications (especially art) generate a
large amount of memory traffic. Ar#’s large number of memory requests to the shared
resources unfairly slows down all other three applications, while art does not slow
down significantly. Figures 11 and 12 show individual benchmark performance and
system performance/fairness, respectively (note that Figure 11 shows speedup over
alone run which is the inverse of individual slowdown, defined in Section 3.1). Several
observations are in order.

(1) NFQ+FairCache significantly degrades system performance by 12.3% (Hspeedup)
and 7.1% (Wspeedup) compared to no fairness control. This combination slows
down the memory-intensive applications too much, resulting in a 16.7% in-
crease in maximum slowdown compared to employing no fairness technique. The
largest slowdowns are experienced by the memory-intensive art and leslie be-
cause they both get less cache space due to FairCache, and are deprioritized in
DRAM due to NFQ prioritizing infrequent requests (with earlier virtual finish
times) from gamess and gromacs. On the other hand, when NFQ alone is em-
ployed, the memory nonintensive applications’ performance is slightly improved
by prioritizing them in DRAM at small reductions to the performance of the
memory-intensive applications. NFQ alone improves system performance by
6.7%/3.1% (HS/WS) and reduces unfairness/maximum slowdown by 12.7%/10.9%.
However, NFQ does not address interference caused in the shared cache so its
gains are limited.
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(2) With PAR-BS+FairCache and PAR-BS, art is heavily deprioritized with unfair
improved performance for the less memory intensive applications resulting in
improved overall system throughput (Wspeedup). These two techniques are an
example of where unfair treatment of applications in a workload may increase
system throughput at the cost of large increases to unfairness and maximum slow-
down (51.5%/39% and 40.4%/31.6% for PAR-BS+FairCache and PAR-BS respec-
tively) and degradation of average system turnaround time (Hspeedup) compared
to not using any fairness technique. These techniques overly deprioritize memory
intensive applications (specifically art) because they do not explicitly detect when
such applications cause slowdowns for others. They simply prioritize noninten-
sive applications all the time regardless of whether or not they are actually slowed
down in the memory system. In contrast, our approach explicitly detects when
memory-intensive applications are causing unfairness in the system. If they are
not causing unfairness, FST does not deprioritize them. As a result, their perfor-
mance is not unnecessarily reduced. This effect is observed by examining the most
memory-intensive application’s (art’s) performance with FST. With FST, art has
higher performance than with any of the other fairness techniques.

(3) FST increases system performance by 17.5%/11.6% (HS/WS) while reducing un-
fairness/maximum slowdown by 21.4%/19.5% compared to no fairness control. In
this workload, the memory-intensive art and leslie cause significant interference
to each other in all shared resources and to gromacs in the shared cache. Un-
like other fairness techniques, FST dynamically tracks the interference and the
unfairness in the system in a fine-grained manner. When the memory-intensive
applications are causing interference and increasing unfairness, FST throttles the
offending hog application(s). In contrast, when the applications are not interfering
significantly with each other, FST allows them to freely share resources in order
to maximize each application’s performance. The fine-grained dynamic detection
of unfairness and enforcement of fairness mechanisms only when they are needed
allow FST to achieve higher system performance (Hspeedup) and a better balance
between fairness and performance than other techniques.

To provide insight into the dynamic behavior of FST, Figure 13 shows the percent-
age of time each core spends at each throttling level. FST significantly throttles down
art and leslie much of the time (but not always) to reduce the intercore interference
they generate for each other and the less memory intensive applications. As a result,
art and leslie spend almost 25%/30% of their execution time at 10% or less of their full
aggressiveness. Also, a lot of the time art can prevent bank service to the continuous
accesses of leslie to the same bank. FST detects this and disallows art’s requests
to be prioritized based on row-buffer hits for 74% of all intervals, preventing art
from causing bank service denial, as described in Section 3.5. Note that art spends
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Fig. 14. Effects of different throttling mechanisms for FST.

approximately 55% of its time at throttling level 100, which shows that FST detects
times when art is not causing large interference and does not penalize it. Figure 13
also shows that FST detects interference caused by not only art but also other applica-
tions. leslie, gromacs, and even gamess are detected to generate intercore interference
for other applications in certain execution intervals. As such, FST dynamically
adapts its fairness control decisions to the interference patterns of applications rather
than simply prioritizing memory nonintensive applications. Therefore, unlike other
fairness techniques, FST does not overly deprioritize art in the memory system.

We conclude that FST provides a higher-performance approach to attaining fair-
ness than coarsely tracking the memory-intensity of applications and deprioritizing
memory-intensive applications without dynamic knowledge of interference and un-
fairness. FST achieves this by tracking unfairness in the system and making fair-
ness/throttling decisions based on that tracking in a finer-grained manner.

5.3. Effect of Throttling Mechanisms

As described in Section 3.2, FST uses the combination of two mechanisms to throttle an
application up/down and increase/decrease its request rate from the shared resources.
(1) Applying an MSHR quota to each application, (2) Adjusting the frequency at which
requests in the MSHRs are issued to access L2. Section 3.5 explains how to prevent
bank service denial from FR-FCFS memory scheduling within FST. Figure 14 shows
the effect of each of the different throttling mechanisms, the effect of bank service
denial prevention (BSDP), and FST on the 4-core system. Several observations are in
order:

(1) Employing BSDP always improves performance regardless of the throttling mech-
anism that is used. BSDP’s improvements are due to the resolution of a problem
we refer to as the over-throttling problem. As explained in Section 3.5 memory
intensive applications that also have high row-buffer locality can cause signif-
icant interference even if they are throttled when the memory controller uses
an FR-FCFS scheduling algorithm. When this occurs (using the terminology of
Section 3.5), FST detects an already throttled down application to be A ppinserfering
and continuously throttles it down further because the estimated unfairness re-
mains high and A ppg,., stays the same. We call this over-throttling of A ppiterfering.
BSDP resolves this issue by eliminating the cause of bank service denial due to
FR-FCFS scheduling.

In Figure 14, the fourth and fifth bars from the left in each subgraph show the
importance of BSDP. Without BSDP, enabling MSHR quotas destroys fairness
(subfigures (a) and (b)) and degrades system performance in terms of harmonic
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Table VI. Sensitivity of Alone Performance (IPC) to # of MSHRs

# of MSHRs 1 2 3 5 6 12 32 64 128
sphinx3 (IPC) || 0.13 | 0.23 | 0.28 | 0.29 | 0.29 | 0.30 | 0.30 | 0.30 | 0.30
milc (IPC) 0.10 | 0.22 | 0.36 | 0.38 | 0.39 | 0.40 | 0.40 | 0.40 | 0.40
Ibm (IPC) 0.04 | 0.10 | 0.22 | 0.26 | 0.30 | 0.39 | 0.45 | 0.46 | 0.48

mean of speedups (sub-figure (c)) as a result of unfair treatment of memory-
intensive applications in some workloads. The large increase in unfairness is
mainly due to workloads that contain the application art. Art is a highly memory-
intensive workload with high row-buffer locality. As such, as we described in
Section 3.5 it can cause bank service denial for concurrently executing appli-
cations even when it is throttled down. Additionally, art’s performance is very
sensitive to the number of MSHR entries at its disposal. As a result, it can get over-
throttled as described above when MSHR quotas are employed for throttling. The
fourth and fifth bars from the left in Figure 14 show that while the overthrottling
problem that exists for the workloads including art does not result in an average
loss of system throughput (Wspeedup, subfigure (d)) across all the workloads, it
does have a large impact on system fairness and average system turnaround time
(as shown by subfigures (a)—(c)). We conclude that BSDP is necessary for signifi-
cant improvements to system fairness when MSHR quotas are employed.

Without BSDP, the combination of MSHR quota and frequency throttling perform
worse than using MSHR quota alone. The reason for this is the overthrottling
of memory-intensive benchmarks in the absence of BSDP. When both throttling
mechanisms are employed, the negative effect of overthrottling dominates average
performance in our evaluated workloads. This leads to the combination of the
two throttling mechanisms performing worse than MSHR alone in the absence of
BSDP.

Using MSHR quotas is more effective than using frequency throttling alone when
BSDP is employed. Using MSHR quotas together with BSDP achieves 97% of the
performance improvement and 95% of the fairness improvement provided by FST.
However, as Table VI shows that different applications are affected differently by
small adjustments to their MSHR quota values. Applications with high memory-
level-parallelism such as [bm are sensitive to the number of MSHRs they have
available to them: small changes to their MSHR quota results in large slowdowns.
On the other hand, applications such as sphinx3 and milc do not make use of many
MSHRs even when running alone as they do not have high degrees of memory-
level parallelism. For such memory-intensive applications with low MLP, applying
MSHR quotas as the throttling mechanism reduces the request rates only at the
smallest throttling levels (MSHR quotas of 1 or 2). Therefore, using the second
throttling mechanism (frequency throttling) that reduces the frequency at which
requests are sent to L2 provides better, fine-grained control of request injection
rate.

We conclude that using all mechanisms of FST is better than each throttling mech-

anism alone in terms of both fairness and performance.

5.4. Evaluation of System Software Support

Enforcing Thread Priorities. As explained in Section 3.4, FST can be configured by sys-

tem software to assign different weights to different threads. As an example of how
FST enforces thread weights, we ran four identical copies of the GemsFDTD bench-
mark on a 4-core system and assigned them thread weights of 1, 1, 4 and 8 (recall
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that a higher-weight thread is one the system software wants to prioritize). Figure 15
shows that with no fairness technique each copy of GemsFDTD has an almost identical
slowdown as the baseline does not support thread weights and treats the applications
identically in the shared memory system. However, FST prioritizes the applications
proportionally to their weights, favoring applications with higher weight in the shared
memory system. FST also slows down the two copies with the same weight by the
same amount. We conclude that FST approximately enforces thread weights, thereby
easing the development of system software which naturally expects a CMP to respect
thread weights in the shared memory system.

Enforcing an Alternative Fairness Objective (Maximum Tolerable Slowdown). Section 3.4 ex-
plained how FST can be configured to achieve a maximum slowdown threshold as
determined by system software, that dictates the maximum tolerable slowdown of any
individual application executing concurrently on the CMP. Figure 16 shows an exam-
ple of how FST enforces this fairness objective when four applications are run together
on a 4-core system. The figure shows each application’s individual slowdown in four
different experiments where each experiment uses a different maximum slowdown
threshold (ranging from 2 to 3) as set by the system software. As tighter goals are set
by the system software, FST throttles the applications accordingly to achieve (close
to) the desired maximum slowdown. The fairness objective is met until the maximum
slowdown threshold becomes too tight and is violated (for mgrid and parser), which
happens at threshold value 2. We conclude that FST can enforce different system-
software-determined fairness objectives.

In Algorithm 3, throttling is triggered when estimated system unfairness is greater
than a system-software-specified threshold. Figure 17 shows average system perfor-
mance and fairness when using a system-software-specified maximum slowdown tar-
get (Triggering Condition 2 from Section 3.4) compared to FST with an unfairness
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Fig. 17. Comparing overall results with different system level QoS targets.

target (Triggering Condition 1 from Section 3.4, which is the system-software target
we use in all other experiments in this article). We conclude that similar system per-
formance and fairness benefits can be gained using either system software goal: max-
imum tolerable slowdown or maximum tolerable unfairness.

We evaluate sensitivity to the unfairness threshold which is part of the system soft-
ware support in Section 5.8 separately.

5.5. Effects of Implementation Constraints

Shared resources may be located far away from each other on the chip. In order to
eliminate timing constraints on the sending of updates to the InterferencePerCore
bit-vector from the shared resources, such updates can be made periodically. Every
UpdateThreshold cycles, all shared resources send their local copies of Interference Per
Core to update the main copy at the L2. Once the updates are applied to the main
copy by taking the union of all bit-vectors, FST checks the main copy of Inter-
ference PerCore. If the InterferencePerCore bit of a core is set, FST increments the
ExcessCycles counter corresponding to the core by the Update T hreshold value.

Figure 18 shows the effect of periodic updates and sensitivity to chosen period
lengths on the performance and fairness improvements of FST. The figure shows that
even with updates occurring once every 1000 cycles, system performance is almost
identical and fairness improvements are within 2.5% of FST with updates made ev-
ery cycle. This is because memory system interference generally results in excess
cycles in the order of hundreds of cycles. As such, our mechanism can tolerate up-
dates happening periodically without incurring big losses in fidelity. We conclude
that using periodic updates (even when made at relatively long periods) eliminates
any timing constraints on the sending of updates to the InterferencePerCore bit-
vector and does not significantly effect the performance and fairness improvements
of FST.

5.6. Effects of Different Sources of Interference

Figure 19 shows the effect of taking into account interference from each of the inter-
ference sources we discuss in Section 3.3. The figure shows that from the different
interference sources discussed in Section 3.3, FST’s performance is mostly sensitive to
whether or not DRAM bank interference is included in the estimations. Without tak-
ing into account DRAM bank interference, FST only improves performance by 5.1%
(Hspeedup) and reduces unfairness by 13.8% respectively. On the other hand, if we
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have an FST implementation that does not take into account cache or DRAM row-
buffer interference (i.e., one that takes into account only DRAM bank interference),
we can achieve 97% of the total performance improvements of FST and 94% of its total
unfairness reduction. As we have observed in Section 3.6, a significant portion of the
hardware required to implement FST is required for accounting for cache interference
and DRAM row-buffer interference. As a result, this gives opportunity for a much less
expensive implementation of FST based only on DRAM bank interference.

5.7. Evaluation of Lightweight FST

Figure 20 compares the performance of the lightweight FST implementation described
in Section 3.7 to that of the baseline and the original full-blown FST we have been eval-
uating so far. The figure shows that the lightweight implementation that requires 2IV
cycles for tracking ExcessCycles information provides 98% of the system performance
and 95% of the system fairness benefits of the original FST which requires N? coun-
ters. We conclude that this lightweight version of FST can be a more scalable yet high
performance option to consider for systems with a larger number of cores.

5.8. Sensitivity to Unfairness Threshold

Figure 21 shows how FST’s average fairness and performance changes with different
unfairness thresholds on our evaluated 4-core workloads. Lowering the unfairness
threshold set by the system-software continuously improves fairness and performance
until the unfairness threshold becomes too small. With a very small unfairness thresh-
old (1.05), FST becomes 1) very aggressive at throttling down cores to reach the very
tight unfairness goal, 2) too sensitive to inaccuracies in slowdown estimation and
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Fig. 21. Sensitivity of FST to unfairness threshold.

therefore triggers throttling of sources unnecessarily. As a result, both system perfor-
mance and fairness slightly degrade. On the other hand, as the threshold increases,
unfairness in the system also increases (because throttling is employed less often) and
performance decreases beyond some point (because memory hog applications start
causing starvation to others, leading to lower system utilization). Overall, the un-
fairness threshold provides a knob to the system software, using which the system
software can determine the fairness-performance balance in the system. We find an
unfairness threshold of 1.4 provides the best fairness and performance for our 4-core
workloads.

5.9. Effect of Multiple Memory Controllers

Figure 22 shows the effect of using FST on a system with two memory controllers.
Such a system has higher available off-chip bandwidth and therefore less intercore
interference and less unfairness than a system with one controller. Yet, even in such
a system, FST provides significant improvements in system fairness and performance
compared to the baseline and combination of state-of-the-art fairness mechanisms at
the different resources.

5.10. Evaluation of Using Profile Information

Figure 23 shows the effect of using profile information to account for slowdown due
to throttling as described in Section 3.3.4. The figure shows system performance
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Fig. 22. Effect of FST on a system with two memory controllers.
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Fig. 23. Effect of using profile information for throttling related slowdown.

(Hspeedup shown on the first bar) and system unfairness (shown on the second bar)
of a system using FST with profile information normalized to that of a system us-
ing FST without profile information. On average, using such profile information im-
proves system performance by 4% and leaves system unfairness unchanged across the
4-core workloads. However, such profile information is not completely accurate in ac-
counting for slowdowns due to throttling in all intervals since the factors described in
Section 3.3.4 are obtained by comparing performance of complete runs of each appli-
cation at different throttling levels. Due to the inaccuracies that exist, the use of this
information results in increased system unfairness in two of the workloads.

6. RELATED WORK

To our knowledge, this article provides the first comprehensive and flexible hardware-
based solution that enables system-software-specified fairness goals to be achieved in
the entire shared memory system of a multicore processor, without requiring fairness
mechanisms to be implemented individually in each shared resource.

Prior work in providing fairness in different shared resources of CMP systems fo-
cused on fair caching [Iyer 2004; Iyer et al. 2007; Kim et al. 2004; Nesbit et al. 20071,
fair memory scheduling [Kim et al. 2010b; Mutlu and Moscibroda 2007, 2008; Nesbit
et al. 2006], and fair on-chip interconnects [Das et al. 2009; Grot et al. 2009; Lee et al.
2008]. We have already provided extensive qualitative and quantitative comparisons
showing that our mechanism significantly improves system fairness and performance
compared to systems employing the combination of state-of-the-art fair cache capacity
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management [Nesbit et al. 2007] and fair memory scheduling [Mutlu and Moscibroda
2008; Nesbit et al. 2006].

Bitirgen et al. [2008] propose implementing an artificial neural network that learns
each application’s performance response to different resource allocations. Their tech-
nique searches the space of different resource allocations among coexecuting applica-
tions to find a partitioning in the shared cache and memory controller that improves
performance. In contrast to FST, this mechanism requires that resource-based fair-
ness/partitioning techniques are already implemented in each individual resource. In
addition, it requires relatively more complex, black-box implementation of artificial
neural networks in hardware.

Herdrich et al. [2009] observe that the interference caused by a lower-priority appli-
cation on a higher-priority application can be reduced using existing clock modulation
techniques in CMP systems. However, their proposal does not consider or provide
fairness to equal-priority applications. Zhang et al. [2009] propose a software-based
technique that uses clock modulation and prefetcher on/off control provided by exist-
ing hardware platforms to improve fairness in current multicore systems compared to
other software techniques. Neither of these prior works propose an online algorithm
that dynamically controls clock modulation to achieve fairness. In contrast, FST pro-
vides: 1) hardware-based architectural mechanisms that continuously monitor shared
memory system unfairness at runtime and 2) an online algorithm that, upon detec-
tion of unfairness, throttles interfering applications using two new hardware-based
throttling mechanisms (instead of coarse-grained clock modulation) to reduce the in-
terfering applications’ request rates.

Jahre and Natvig [2009] observe that adjusting the number of available MSHRs can
control the total miss bandwidth available to each thread running on a CMP. However,
this prior work does not show how this observation can be used by an online algorithm
to dynamically achieve a well-defined fairness or performance goal. In contrast to this
prior work, our work (1) provides architectural support for achieving different well-
defined system-software fairness objectives while also improving system performance,
(2) shows that using complementary throttling mechanisms and preventing bank ser-
vice denial due to FR-FCFS, as done by FST, provides better fairness/performance
than simply adjusting the number of available MSHRs (see Section 5.3), (3) shows
that FST’s approach of throttling sources based on unfairness feedback provides bet-
ter system fairness/performance than implementing different fairness mechanisms in
each individual shared resource.

Zhuravlev et al. [2010] take a pure software-based scheduling approach to the
resource contention problem for multicore memory systems. This article proposes de-
tecting which pairs of applications are likely to interfere less with each other and
scheduling them to execute on cores that share as small a number of resources as pos-
sible. Tang et al. [2011] show the negative impacts of memory subsystem resource
sharing on real datacenter applications. They also show that pure software-based in-
telligent thread-to-core mappings can reduce the amount of memory subsystem inter-
ference different applications suffer and improve their performance. The mechanisms
we propose in this work are orthogonal to those proposed by Zhuravlev et al. and
Tang et al. as we address the problem of intercore memory system interference in a
finer-grained fashion using a hardware/software cooperative approach: First, the mix
of applications to be scheduled may be such that whatever software schedule is chosen
high intercore interference will exist among the applications sharing multiple memory
system resources. In such cases, pure software-based scheduling approaches can not be
as effective. However, FST can provide performance and fairness improvements since
it throttles applications fine-grained manner. Second, even if intercore interference
can be somewhat reduced using better scheduling, after a number of applications have
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been scheduled to share some memory system resources, an FST like approach can
further improve system fairness and performance by dynamically controlling memory
system interference at a finer-grained level.

Prior work on SMT processors [Cazorla et al. 2004; Luo et al. 2001a, 2001b; Tullsen
and Eggers 1996] propose fetch policies to improve performance and/or fairness in such
processors. These techniques are not applicable to the problem we address, since they
mainly address sharing of execution pipeline resources and not the shared memory
system. Eyerman and Eeckhout [2009] propose a technique to estimate the execution
times of simultaneously running threads had they been run alone. This work estimates
interference in the execution resources and does not deal with memory system inter-
ference in a detailed manner. As such, our proposed memory interference/slowdown
estimation and source throttling techniques are orthogonal to this prior work.

Several prior papers investigated how to handle prefetch requests in shared re-
sources [Ebrahimi et al. 2009, 2011a; Srinath et al. 2007]. Even though we do not
consider prefetching in this article, our recent work [Ebrahimi et al. 2011a] describes
how our FST proposal can be adapted to systems that employ prefetching. Finally,
FST could be combined with very recent proposals for handling memory interference
for multithreaded applications [Ebrahimi et al. 2011b] and using channel partitioning
[Muralidhara et al. 2011], and we leave this for future work

7. CONCLUSION

We proposed a low-cost architectural technique, Fairness via Source Throttling (FST),
that allows system-software fairness policies to be achieved in CMPs by enabling fair
sharing of the entire memory system. FST eliminates the need for and complexity of
multiple complicated, specialized, and possibly contradictory fairness techniques for
different shared resources. The key idea of our solution is to gather dynamic feedback
information about the slowdowns experienced by different applications in hardware
at runtime and, based on this feedback, collectively adjust the memory request rates
of sources (i.e., cores) to balance applications’ slowdowns. Our solution ensures that
fairness decisions in the entire memory system are made in tandem, thereby signif-
icantly improving both system performance and fairness compared to the state-of-
the-art resource-based fairness techniques implemented independently for different
shared resources. We have also shown FST is configurable by system software, allow-
ing it to enforce thread priorities and achieve different fairness objectives. We conclude
that FST provides a promising low-cost substrate that can not only improve the per-
formance and fairness of future multicore systems but also ease the task of future
multicore system software in managing shared on-chip hardware resources.

ACKNOWLEDGMENTS

Many thanks to Khubaib, Boris Grot, Carl Waldspurger, the HPS research group, and the anonymous re-
viewers for their comments and suggestions. We also thank Benjamin Lee for his feedback in earlier stages
of this work. We acknowledge the Texas Advanced Computing Center (TACC) at The University of Texas at
Austin for providing HPC resources.

REFERENCES
ADVANCED MICRO DEVICES. 2009. AMD’s six-core Opteron processors.
http://techreport.com/articles.x/17005.

BITIRGEN, R., IPEK, E., AND MARTINEZ, J. F. 2008. Coordinated management of multiple interacting re-
sources in chip multiprocessors: A machine learning approach. In Proceedings of the Annual ACM/IEEE
International Symposium on Microarchitecture.

CAZORLA, F. J., RAMIREZ, A., VALERO, M., KNIJNENBURG, P. M. W., SAKELLARIOU, R., AND
FERNANDEZ, E. 2004. QoS for high-performance SMT processors in embedded systems. IEEE Micro.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 7, Publication date: April 2012.



7:34 E. Ebrahimi et al.

CHOU, Y., FAHS, B., AND ABRAHAM, S. 2004. Microarchitecture optimizations for exploiting memory-level
parallelism. In Proceedings of the 31st Annual International Symposium on Computer Architecture.
DAs, R., MUTLU, O., MOSCIBRODA, T., AND DAS, C. R. 2009. Application-aware prioritization mecha-
nisms for on-chip networks. In Proceedings of the Annual ACM/IEEE International Symposium on

Microarchitecture.

EBrAHIMI, E., LEE, C. J., MUTLU, O., AND PATT, Y. 2009. Coordinated control of multiple prefetch-
ers in multi-core systems. In Proceedings of the Annual ACM/IEEE International Symposium on
Microarchitecture.

EBRAHIMI, E., LEE, C. J.,, MUTLU, O., AND PATT, Y. 2010. Fairness via source throttling: A config-
urable and high-performance fairness substrate for multi-core memory systems. In Proceedings of the
International Conference on Architectural Support for Programming Languages and Operating Systems.

EBRAHIML E., LEE, C. J., MUTLU, O., AND PATT, Y. 2011. Prefetch-aware shared-resource management for
multi-core systems. In Proceedings of the Annual International Symposium on Computer Architecture.

EBRAHIMI, E., MIFTAKHUTDINOV, R., FALLIN, C., LEE, C. J., JOAO, J. A., MUTLU, O., AND PATT, Y.
2011. Parallel application memory scheduling. In Proceedings of the Annual ACM/IEEE International
Symposium on Microarchitecture.

EYERMAN, S. AND L. EECKHOUT, L. 2008. System-level performance metrics for multiprogram workloads.
IEEE Micro 28, 3, 42-53.

EYERMAN, S. AND L. EECKHOUT, L. 2009. Per-thread cycle accounting in SMT processors. In Proceedings
of the International Conference on Architectural Support for Programming Languages and Operating
Systems.

FEDOROVA, A., SELTZER, M., AND SMITH, M. D. 2007. Improving performance isolation on chip multi-
processors via an operating system scheduler. In Proceedings of the 16th International Conference on
Parallel Architectures and Compilation Techniques.

GABOR, R., WEISS, S., AND MENDELSON, A. 2006. Fairness and throughput in switch on event multi-
threading. In Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture.

GLEW, A. 1998. MLP yes! ILP no! In ASPLOS Wild and Crazy Idea Session’98.

GROT, B., KECKLER, S. W., AND MUTLU, O. 2009. Preemptive virtual clock: A flexible, efficient, and cost-
effective QoS scheme for networks-on-a-chip. In Proceedings of the Annual ACM/IEEE International
Symposium on Microarchitecture.

HERDRICH, A., ILLIKKAL, R., IYER, R., NEWELL, D., CHADHA, V., AND MOSES, J. 2009. Rate-based
QoS techniques for cache/memory in CMP platforms. In Proceedings of the International Conference on
Supercomputing.

Hsu, L. R., REINHARDT, S. K., IYER, R., AND MAKINENI, S. 2006. Communist, utilitarian and capitalist
cache policies on cmps: Caches as a shared resource. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques.

INTEL. 2008. First the tick, now the tock: Next generation Intel microarchitecure (Nehalem). Intel technical
white paper.

IYER, R. 2004. CQoS: A framework for enabling QoS in shared caches of CMP platforms. In Proceedings of
the International Conference on Supercomputing.

IYER, R., ZHAO, L., GUO, F., ILLIKKAL, R., MAKINENI, S., NEWELL, D., SOLIHIN, Y., HSU, L., AND
REINHARDT, S. 2007. QoS policies and architecture for cache/memory in CMP platforms. In Proceedings
of the ACM SIGMETRICS Joint International Conference on Measurement and Modeling of Computer
Systems.

JAHRE, M. AND NATVIG, L. 2009. A light-weight fairness mechanism for chip multiprocessor memory
systems. In Proceedings of the ACM International Conference on Computing Frontiers.

KiM, S., CHANDRA, D., AND SOLIHIN, Y. 2004. Fair cache sharing and partitioning in a chip multiprocessor
architecture. In Proceedings of the International Conference on Parallel Architectures and Compilation
Techniques.

Kim, Y., HAN, D., MUTLU, O., AND HARCHOL-BALTER, M. 2010a. ATLAS: A scalable and high-performance
scheduling algorithm for multiple memory controllers. In Proceedings of the International Symposium
on High-Performance Computer Architecture.

KiMm, Y., PAPAMICHAEL, M., MUTLU, O., AND HARCHOL-BALTER, M. 2010b. Thread cluster memory
scheduling: Exploiting differences in memory access behavior. In Proceedings of the Annual ACM/IEEE
International Symposium on Microarchitecture.

KROFT, D. 1981. Lockup-free instruction fetch/prefetch cache organization. In Proceedings of the Annual
International Symposium on Computer Architecture.

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 7, Publication date: April 2012.



FST: A Configurable and High-Performance Fairness Substrate for Multicore Memory Systems 7:35

LEE, J. W,, NG, M. C., AND ASANOVIC, K. 2008. Globally-synchronized frames for guaranteed quality-
of-service in on-chip networks. In Proceedings of the Annual International Symposium on Computer
Architecture.

Luo, K., FRANKLIN, M., MUKHERJEE, S., AND SEZNE, A. 2001a. Boosting SMT performance by specula-
tion control. In Proceedings of the International Parallel and Distributed Processing Symposium.

Luo, K., GUMMARAJU, J., AND FRANKLIN, M. 2001b. Balancing throughput and fairness in SMT proces-
sors. In Proceedings of the IEEE International Symposium on Performance Analysis of Systems and
Software.

MIicRrON. Datasheet: 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8 banks,
http://download.micron.com/pdf/datasheets/dram/ddr3.

MosciBRODA, T. AND MUTLU, O. 2007.Memory performance attacks: Denial of memory service in
multi-core systems. In Proceedings of the 16th USENIX Security Symposium.

MURALIDHARA, S. P., SUBRAMANIAN, L., MUTLU, O., KANDEMIR, M., AND MOSCIBRODA, T. 2011. Re-
ducing memory interference in multicore systems via application-aware memory channel partitioning.
In Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture.

MUTLU, O. AND MOSCIBRODA, T. 2007. Stall-time fair memory access scheduling for chip multiprocessors.
In Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture.

MUTLU, O. AND MOSCIBRODA, T. 2008. Parallelism-aware batch scheduling: Enhancing both performance
and fairness of shared DRAM systems. In Proceedings of the Annual International Symposium on
Computer Architecture.

NESBIT, K. J., AGGARWAL, N., LAUDON, J., AND SMITH, J. E. 2006. Fair queuing memory systems. In
Proceedings of the Annual ACM/IEEE International Symposium on Microarchitecture.

NESBIT, K. J., LAUDON, J., AND SMITH, J. E. Virtual private caches. 2007. In Proceedings of the Annual
International Symposium on Computer Architecture.

PaTiL, H., COHN, R., CHARNEY, M., KAPOOR, R., SUN, A., AND KARUNANIDHI, A. 2004. Pinpointing
representative portions of large intel itanium programs with dynamic instrumentation. In Proceedings
of the Annual ACM/IEEE International Symposium on Microarchitecture.

RIXNER, S., DALLY, W. J., KaApasI, U. J., MATTSON, P., AND OWENS, J. D. 2000. Memory access
scheduling. In Proceedings of the Annual International Symposium on Computer Architecture.

SNAVELY, A. AND TULLSEN, D. M. 2000. Symbiotic job scheduling for a simultaneous multithreading
processor. In Proceedings of the International Conference on Architectural Support for Programming
Languages and Operating Systems.

SRINATH, S., MUTLU, O., Kim, H., AND PATT, Y. 2007. Feedback directed prefetching: Improving the
performance and bandwidth-efficiency of hardware prefetchers. In Proceedings of the International
Symposium on High-Performance Computer Architecture.

TANG, L., MARS, J., VACHHARAJANI, N., HUNDT, R., AND SOFFA, M. L. 2011. The impact of memory
subsystem resource sharing on datacenter applications. In Proceedings of the Annual International
Symposium on Computer Architecture.

TENDLER, J., DODSON, S., FIELD, S., LE, H., AND SINHAROY, B. 2001. POWER4 system microarchitec-
ture. IBM technical white paper.

TULLSEN, D. M. AND. EGGERS, S. J. 1996. Exploiting choice: Instruction fetch and issue on an im-
plementable simultaneous multithreading processor. In Proceedings of the Annual International
Symposium on Computer Architecture.

WECHSLER, O. 2006. Inside Intel core microarchitecure. Intel technical white paper.

ZHANG, X., DWARKADAS, S., AND SHEN, K. 2009. Hardware execution throttling for multi-core resource
management. In Proceedings of USENIX.

ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA, A. 2010. Addressing shared resource contention
inmulticore processors via scheduling. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems.

Received March 2011; revised December 2011; accepted January 2012

ACM Transactions on Computer Systems, Vol. 30, No. 2, Article 7, Publication date: April 2012.



