
Flipping Bits in Memory
Without Accessing Them

Yoongu Kim
Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu

DRAM Disturbance Errors

DRAM Chip

Row of Cells
Row
Row
Row
Row

Wordline

VLOWVHIGH
Victim Row

Victim Row
Aggressor Row

Repeatedly opening and closing a row
induces disturbance errors in adjacent rows

OpenedClosed

2

Quick Summary of Paper
• We expose the existence and prevalence of

disturbance errors in DRAM chips of today
– 110 of 129 modules are vulnerable

– Affects modules of 2010 vintage or later

• We characterize the cause and symptoms
– Toggling a row accelerates charge leakage in

adjacent rows: row-to-row coupling

• We prevent errors using a system-level approach
– Each time a row is closed, we refresh the charge

stored in its adjacent rows with a low probability

3

1. Historical Context

2. Demonstration (Real System)

3. Characterization (FPGA-Based)

4. Solutions

4

A Trip Down Memory Lane

1968 IBM’s patent on DRAM

• Suffered bitline-to-cell coupling

Intel commercializes DRAM (Intel 1103)1971
C

el
l

8um

B
it

lin
e

6um

B
it

lin
e “... this big fat metal line with

full level signals running right
over the storage node (of cell).”

– Joel Karp (1103 Designer)
Interview: Comp. History Museum

2014

2013

5

A Trip Down Memory Lane

Intel’s patents mention “Row Hammer”2014

We observe row-to-row coupling2013

Earliest DRAM with row-to-row coupling2010

• Suffered bitline-to-cell coupling

Intel commercializes DRAM (Intel 1103)1971

IBM’s patent on DRAM1968

6

Lessons from History

• Coupling in DRAM is not new
– Leads to disturbance errors if not addressed

– Remains a major hurdle in DRAM scaling

• Traditional efforts to contain errors
– Design-Time: Improve circuit-level isolation

– Production-Time: Test for disturbance errors

• Despite such efforts, disturbance errors
have been slipping into the field since 2010

7

1. Historical Context

2. Demonstration (Real System)

3. Characterization (FPGA-Based)

4. Solutions

8

How to Induce Errors

DDR3

DRAM Modulex86 CPU

X

111111111

111111111

111111111

111111111

111111111

1111111111. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

Y

How to Induce Errors

DDR3

DRAM Modulex86 CPU

Y

X

111111111

111111111

111111111

111111111

111111111

111111111
loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop

1111

1111

011011110

110001011

101111101

001110111

Number of Disturbance Errors

• In a more controlled environment, we can
induce as many as ten million disturbance errors

• Disturbance errors are a serious reliability issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

11

Security Implications

• Breach of memory protection
– OS page (4KB) fits inside DRAM row (8KB)

– Adjacent DRAM row Different OS page

• Vulnerability: disturbance attack
– By accessing its own page, a program could

corrupt pages belonging to another program

• We constructed a proof-of-concept
– Using only user-level instructions

12

Mechanics of Disturbance Errors

• Cause 1: Electromagnetic coupling
– Toggling the wordline voltage briefly increases the

voltage of adjacent wordlines

– Slightly opens adjacent rows Charge leakage

• Cause 2: Conductive bridges

• Cause 3: Hot-carrier injection

Confirmed by at least one manufacturer

13

1. Historical Context

2. Demonstration (Real System)

3. Characterization (FPGA-Based)

4. Solutions

14

Infrastructure

Test Engine

DRAM CtrlP
C

Ie

FPGA BoardPC

15

Temperature
Controller

PC

HeaterFPGAs FPGAs

Tested DDR3 DRAM Modules

43 54 32

Company A Company B Company C

• Total: 129

• Vintage: 2008 – 2014

• Capacity: 512MB – 2GB

17

Characterization Results

1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper

18

1. Most Modules Are at Risk

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors

Up to

2.7×106

errors

Up to

3.3×105

errors

19

2. Errors vs. Vintage

20

All modules from 2012–2013 are vulnerable

First
Appearance

3. Error = Charge Loss

• Two types of errors
– ‘1’ ‘0’

– ‘0’ ‘1’

• A given cell suffers
only one type

• Two types of cells
– True: Charged (‘1’)

– Anti: Charged (‘0’)

• Manufacturer’s
design choice

• True-cells have only ‘1’ ‘0’ errors

• Anti-cells have only ‘0’ ‘1’ errors

Errors are manifestations of charge loss
21

4. Adjacency: Aggressor & Victim

Most aggressors & victims are adjacent
22

Note: For three modules with the most errors (only first bank)

A
d

ja
ce

n
t

A
d

ja
ce

n
t

A
d

ja
ce

n
t

Non-AdjacentNon-Adjacent

5. Sensitivity Studies

Access-Interval: 55–500ns

❷

❶

❸ Data-Pattern: all ‘1’s, all ‘0’s, etc.

Test Row 0 Test Row 1 Test Row 2 ···

··· Find Errors
in Module

time

Open

Refresh Periodically

Open

Refresh-Interval: 8–128ms

Fill Module
with Data

23

Note: For three modules with the most errors (only first bank)

N
o

t
A

llo
w

ed

Less frequent accesses Fewer errors

5
5

n
s

5
0

0
n

s

24

❶ Access-Interval (Aggressor)

5. Sensitivity Studies

Access-Interval: 55–500ns

❷

❶

❸ Data-Pattern: all ‘1’s, all ‘0’s, etc.

Test Row 0 Test Row 1 Test Row 2 ···

··· Find Errors
in Module

time

Open

Refresh Periodically

Open

Refresh-Interval: 8–128ms

Fill Module
with Data

25

Note: Using three modules with the most errors (only first bank)

More frequent refreshes Fewer errors

~7x frequent

6
4

m
s

26

❷ Refresh-Interval

5. Sensitivity Studies

Access-Interval: 55–500ns

❷

❶

❸ Data-Pattern: all ‘1’s, all ‘0’s, etc.

Test Row 0 Test Row 1 Test Row 2 ···

··· Find Errors
in Module

time

Open

Refresh Periodically

Open

Refresh-Interval: 8–128ms

Fill Module
with Data

27

RowStripe

~RowStripe

❸ Data-Pattern

111111

111111

111111

111111

000000

000000

000000

000000

000000

111111

000000

111111

111111

000000

111111

000000

Solid

~Solid

Errors affected by data stored in other cells
28

Naive Solutions

❶ Throttle accesses to same row
– Limit access-interval: ≥500ns

– Limit number of accesses: ≤128K (=64ms/500ns)

❷ Refresh more frequently
– Shorten refresh-interval by ~7x

Both naive solutions introduce significant
overhead in performance and power

29

Characterization Results

1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper

30

6. Other Results in Paper
• Victim Cells ≠ Weak Cells (i.e., leaky cells)

– Almost no overlap between them

• Errors not strongly affected by temperature
– Default temperature: 50°C

– At 30°C and 70°C, number of errors changes <15%

• Errors are repeatable
– Across ten iterations of testing, >70% of victim cells

had errors in every iteration

31

6. Other Results in Paper (cont’d)
• As many as 4 errors per cache-line

– Simple ECC (e.g., SECDED) cannot prevent all errors

• Number of cells & rows affected by aggressor
– Victims cells per aggressor: ≤110

– Victims rows per aggressor: ≤9

• Cells affected by two aggressors on either side
– Very small fraction of victim cells (<100) have an

error when either one of the aggressors is toggled

32

1. Historical Context

2. Demonstration (Real System)

3. Characterization (FPGA-Based)

4. Solutions

33

Several Potential Solutions

34

Cost• Make better DRAM chips

Cost, Power• Sophisticated ECC

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters

Our Solution

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can provide an
arbitrarily strong protection against errors

35

Advantages of PARA
• PARA refreshes rows infrequently

– Low power

– Low performance-overhead

• Average slowdown: 0.20% (for 29 benchmarks)

• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost

– Low complexity

• PARA is an effective and low-overhead solution
to prevent disturbance errors

36

Conclusion
• Disturbance errors are widespread in DRAM

chips sold and used today

• When a row is opened repeatedly, adjacent rows
leak charge at an accelerated rate

• We propose a stateless solution that prevents
disturbance errors with low overhead

• Due to difficulties in DRAM scaling, new and
unexpected types of failures may appear

37

Flipping Bits in Memory
Without Accessing Them

Yoongu Kim
Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu

DRAM Disturbance Errors

