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Quick Summary of Paper
• We expose the existence and prevalence of 

disturbance errors in DRAM chips of today
– 110 of 129 modules are vulnerable

– Affects modules of 2010 vintage or later

• We characterize the cause and symptoms
– Toggling a row accelerates charge leakage in 

adjacent rows: row-to-row coupling

• We prevent errors using a system-level approach 
– Each time a row is closed, we refresh the charge 

stored in its adjacent rows with a low probability
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1. Historical Context

2. Demonstration (Real System)

3. Characterization (FPGA-Based)

4. Solutions

4



A Trip Down Memory Lane

1968 IBM’s patent on DRAM

• Suffered bitline-to-cell coupling

Intel commercializes DRAM (Intel 1103)1971
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– Joel Karp (1103 Designer)
Interview: Comp. History Museum
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A Trip Down Memory Lane

Intel’s patents mention “Row Hammer”2014

We observe row-to-row coupling2013

Earliest DRAM with row-to-row coupling2010

• Suffered bitline-to-cell coupling

Intel commercializes DRAM (Intel 1103)1971

IBM’s patent on DRAM1968
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Lessons from History

• Coupling in DRAM is not new
– Leads to disturbance errors if not addressed

– Remains a major hurdle in DRAM scaling

• Traditional efforts to contain errors
– Design-Time: Improve circuit-level isolation

– Production-Time: Test for disturbance errors

• Despite such efforts, disturbance errors 
have been slipping into the field since 2010
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How to Induce Errors

DDR3

DRAM Modulex86 CPU
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1111111111. Avoid cache hits
– Flush X from cache

2. Avoid row hits to X
– Read Y in another row

Y



How to Induce Errors

DDR3

DRAM Modulex86 CPU
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loop:

mov (X), %eax

mov (Y), %ebx

clflush (X)

clflush (Y)

mfence

jmp loop
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Number of Disturbance Errors

• In a more controlled environment, we can 
induce as many as ten million disturbance errors

• Disturbance errors are a serious reliability issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec
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Security Implications

• Breach of memory protection
– OS page (4KB) fits inside DRAM row (8KB)

– Adjacent DRAM row  Different OS page

• Vulnerability: disturbance attack
– By accessing its own page, a program could 

corrupt pages belonging to another program

• We constructed a proof-of-concept
– Using only user-level instructions
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Mechanics of Disturbance Errors

• Cause 1: Electromagnetic coupling
– Toggling the wordline voltage briefly increases the 

voltage of adjacent wordlines

– Slightly opens adjacent rows  Charge leakage

• Cause 2: Conductive bridges

• Cause 3: Hot-carrier injection

Confirmed by at least one manufacturer
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Tested DDR3 DRAM Modules

43 54 32

Company A Company B Company C

• Total: 129

• Vintage: 2008 – 2014

• Capacity: 512MB – 2GB
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Characterization Results

1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper
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1. Most Modules Are at Risk

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to

1.0×107

errors 

Up to

2.7×106

errors 

Up to

3.3×105

errors 
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2. Errors vs. Vintage

20

All modules from 2012–2013 are vulnerable

First
Appearance



3. Error = Charge Loss

• Two types of errors
– ‘1’  ‘0’

– ‘0’  ‘1’

• A given cell suffers 
only one type

• Two types of cells
– True: Charged (‘1’)

– Anti: Charged (‘0’)

• Manufacturer’s 
design choice

• True-cells have only ‘1’  ‘0’ errors

• Anti-cells have only ‘0’  ‘1’ errors

Errors are manifestations of charge loss
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4. Adjacency: Aggressor & Victim

Most aggressors & victims are adjacent
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Note: For three modules with the most errors (only first bank)
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5. Sensitivity Studies

Access-Interval: 55–500ns

❷

❶

❸ Data-Pattern: all ‘1’s, all ‘0’s, etc.

Test Row 0 Test Row 1 Test Row 2 ···

··· Find Errors
in Module

time

Open

Refresh Periodically

Open

Refresh-Interval: 8–128ms

Fill Module
with Data
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Note: For three modules with the most errors (only first bank)
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❶ Access-Interval (Aggressor)



5. Sensitivity Studies

Access-Interval: 55–500ns

❷

❶

❸ Data-Pattern: all ‘1’s, all ‘0’s, etc.

Test Row 0 Test Row 1 Test Row 2 ···

··· Find Errors
in Module

time

Open

Refresh Periodically

Open

Refresh-Interval: 8–128ms

Fill Module
with Data
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Note: Using three modules with the most errors (only first bank)

More frequent refreshes  Fewer errors

~7x frequent

6
4

m
s

26

❷ Refresh-Interval



5. Sensitivity Studies

Access-Interval: 55–500ns

❷

❶

❸ Data-Pattern: all ‘1’s, all ‘0’s, etc.

Test Row 0 Test Row 1 Test Row 2 ···

··· Find Errors
in Module

time

Open

Refresh Periodically

Open

Refresh-Interval: 8–128ms

Fill Module
with Data
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RowStripe

~RowStripe

❸ Data-Pattern
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Errors affected by data stored in other cells 
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Naive Solutions

❶ Throttle accesses to same row
– Limit access-interval: ≥500ns

– Limit number of accesses: ≤128K (=64ms/500ns)

❷ Refresh more frequently
– Shorten refresh-interval by ~7x

Both naive solutions introduce significant 
overhead in performance and power
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Characterization Results

1. Most Modules Are at Risk

2. Errors vs. Vintage

3. Error = Charge Loss

4. Adjacency: Aggressor & Victim

5. Sensitivity Studies

6. Other Results in Paper
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6. Other Results in Paper
• Victim Cells ≠ Weak Cells (i.e., leaky cells)

– Almost no overlap between them

• Errors not strongly affected by temperature
– Default temperature: 50°C

– At 30°C and 70°C, number of errors changes <15%

• Errors are repeatable
– Across ten iterations of testing, >70% of victim cells 

had errors in every iteration
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6. Other Results in Paper (cont’d)
• As many as 4 errors per cache-line

– Simple ECC (e.g., SECDED) cannot prevent all errors

• Number of cells & rows affected by aggressor
– Victims cells per aggressor:  ≤110

– Victims rows per aggressor:  ≤9

• Cells affected by two aggressors on either side
– Very small fraction of victim cells (<100) have an 

error when either one of the aggressors is toggled
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1. Historical Context

2. Demonstration (Real System)

3. Characterization (FPGA-Based)

4. Solutions
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Several Potential Solutions

34

Cost• Make better DRAM chips

Cost, Power• Sophisticated ECC

Power, Performance• Refresh frequently

Cost, Power, Complexity• Access counters 



Our Solution

• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14

– By adjusting the value of p, we can provide an 
arbitrarily strong protection against errors
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Advantages of PARA
• PARA refreshes rows infrequently

– Low power

– Low performance-overhead

• Average slowdown: 0.20% (for 29 benchmarks)

• Maximum slowdown: 0.75%

• PARA is stateless
– Low cost

– Low complexity

• PARA is an effective and low-overhead solution 
to prevent disturbance errors
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Conclusion
• Disturbance errors are widespread in DRAM 

chips sold and used today

• When a row is opened repeatedly, adjacent rows 
leak charge at an accelerated rate

• We propose a stateless solution that prevents 
disturbance errors with low overhead

• Due to difficulties in DRAM scaling, new and 
unexpected types of failures may appear
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