
DRAM-Aware Last-Level Cache Replacement

Chang Joo Lee Eiman Ebrahimi Veynu Narasiman Onur Mutlu‡ Yale N. Patt

High Performance Systems Group
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, Texas 78712-0240

‡Department of Electrical and Computer Engineering
Carnegie Mellon University
Pittsburgh, PA 15213-3890

TR-HPS-2010-007
December 2010

This page is intentionally left blank.

DRAM-Aware Last-Level Cache Replacement

Abstract
The cost of last-level cache misses and evictions depend significantly on three major performance-related character-

istics of DRAM-based main memory systems: bank-level parallelism, row buffer locality, and write-caused interference.
Bank-level parallelism and row buffer locality introduce different latency costs for the processor to service misses:par-
allel or serial, fast or slow. Write-caused interference can cause writebacks of dirty cache lines to delay the service of
subsequent reads and other writes, making the cost of an eviction different for different cache lines.

This paper makes a case for DRAM-aware last-level cache design. We show that designing the last-level-cache
replacement policy to be aware of major DRAM characteristics can significantly enhance entire system performance. We
show that evicting cache lines that minimize the cost of misses and write-caused interference significantly outperforms
conventional DRAM-unaware replacement policies on both single-core and multi-core systems, by 11.4% and 12.3%
respectively.

1. Introduction

Main memory performance is crucial to high performance microprocessors since resource-limited on-chip

caches cannot always store all the data necessary for running applications. Therefore, it is very important to

understand the main memory system characteristics (e.g., DRAM characteristics in today’s systems) to design

high performance microprocessors. In this paper, we make a case for DRAM-aware last-level cache design:

we show that designing last-level cache replacement policyto be aware of major DRAM characteristics can

significantly enhance entire system performance by minimizing the performance impact of cache misses and

writebacks. We consider three major performance-related characteristics of modern DRAM systems that can

significantly influence the memory system performance of modern processors: bank-level parallelism, row

buffer locality, and write-caused interference.

First, a DRAM chip consists of multiple banks that can be accessed independently. Memory requests

to different banks can receive service concurrently. The notion of servicing multiple requests in parallel in

different DRAM banks is called DRAMBank-Level Parallelism (BLP).

Second, data in a DRAM bank can only be accessed from the bank’s row bufferwhich essentially serves

as a buffer for the last accessed memory row in that bank. Subsequent accesses to the same row can be

performed by simply accessing the row buffer, which reducesthe latency of the memory access compared to

when actually accessing the DRAM cells. This concept is referred to asrow buffer locality.

Third, write requests interfere with read requests in modern DRAM systems, causing idle cycles on the

DRAM data bus. Once a write is serviced, subsequent reads andeven some writes (e.g., writes to different

rows in the same bank) cannot be started for a certain time even after the write is fully serviced [3]. We call

thiswrite-caused interference.

Due to DRAM BLP and row buffer locality, different outstanding last-level cache misses may not have

the same cost from the processor’s point of view. BLP allows the latencies of multiple requests to different

banks to overlap, and therefore the processor does not experience each request’s memory latency serially. As

a result, a request that is serviced concurrently with requests in other banks is less costly than a request that

is serviced alone, i.e., with no request in any other bank. Row buffer locality allows requests to the same row

3

in a bank to be serviced faster. In contrast, the latency of a request that does not “hit” in the row buffer is

significantly longer.

Additionally, the eviction of all cache lines does not incurthe same cost because of write-caused inter-

ference. When a dirty line is evicted by a replacement policy, the modified data must be written back to

the DRAM system. The generated write request interferes with read requests that are more critical to the

processor’s forward progress. As such, interfering write requests should be serviced as quickly as possible

to reduce this write-caused interference. Depending on theaddresses of outstanding writes, writes can be

serviced quickly or very slowly. For instance, multiple writes to the same row in the same bank are serviced

very fast (due to row buffer locality), whereas multiple writes to different rows in the same bank are serviced

very slowly because they conflict with each other in the row buffer. As a result, to service writes quickly,

generating writes to the same row successively is preferable.

Our Observation: As described above, due to DRAM characteristics, not all misses and evictions of the

last-level cache incur the same cost. Therefore, it is important for a last-level cache replacement policy to take

into account these DRAM characteristics when it makes replacement decisions. However, many previous last-

level cache studies mainly focus on deciding which data to store in order to minimize the number of off-chip

accesses, solely based on future reuse [1, 16, 2]. A recent replacement policy proposal tries to increase the

clustering of last-level cache misses with the hope that they will be serviced in parallel so that the processor

does not experience each request’s memory latency serially[17], but it does not consider DRAM banks or

row buffers. In fact, no previous cache replacement policy explicitly considers the main memory system’s

characteristics/state to improve overall system performance.

Our goal in this paper is to design DRAM-aware last-level cache replacement policies that aim to minimize

the cost of misses and evictions by taking DRAM performance characteristics into account. We propose two

policies that work synergistically. The first is a DRAM latency and parallelism-aware replacement policy.

The key idea is to favor the eviction of cache lines that when re-fetched will be serviced quickly or in parallel

with other misses in the DRAM system. The second is a DRAM write-interference-aware replacement policy.

It evicts dirty cache lines that can be written back fast so that writes to DRAM do not interfere with DRAM

reads for long periods. Our evaluation shows that the combination of our two policies significantly improves

system performance by 11.4% and 12.3% on single and 4-core systems respectively.

Contributions To our knowledge, this is the first paper that proposes last-level cache replacement polices

that take into account the characteristics of state-of-the-art DRAM systems. We make the following contribu-

tions:

1. We propose a new cache replacement policy that favors the eviction of cache lines that can be brought

into the cache quickly with low performance impact in the future (if needed again) because they are likely to

hit in a row buffer or likely to be serviced in parallel with other misses accessing different DRAM banks.

4

2. We propose a new cache replacement policy that favors evicting dirty lines that can be written back to

DRAM efficiently by writing to the same row buffer as other outstanding write requests.

3. For both single-core and multi-core systems, we show thateach of the proposed policies significantly

improves system performance and that the two mechanisms work synergistically. We compare our proposal to

the state-of-the-art MLP-aware cache replacement policy that is unaware of DRAM state/characteristics and

find that our techniques provide significantly higher performance due to comprehensive awareness of DRAM

characteristics.

2. Background: DRAM Characteristics

In this section, we briefly discuss three DRAM characteristics based on the Double Data Rate 3 (DDR3)

SDRAM JEDEC standard. We refer readers to the DDR standard documentations and product datasheets [3,

11] for further information. Note that we accurately model all these performance-related timing constraints

in our DRAM model for the evaluations described in Section 4.

2.1. Row Buffer Locality

Each DRAM bank is arranged in rows and columns of DRAM cells. The size of a row is several Kbytes (1

∼ 2 Kbytes in each bank per DRAM chip) in modern DRAM systems. Toperform a complete access to a data

element, three steps are required. First, a precharge command is sent to precharge the bank’s bitlines. Second,

an activate command is sent to open the source/destination row through the sense amplifier (row buffer) in the

bank. Finally, a read or write command is scheduled to accessthe appropriate column from the row data in

the row buffer. Every access can be performed only by readingfrom or writing into the row buffer. Therefore,

if a subsequent access to the bank is mapped to a different row, these three steps (i.e., precharge, activate, and

read/write) must be performed again. We call such an access arow conflict. On the other hand, a subsequent

access which is to the same row as the previous row can be performed simply by accessing the appropriate

column from the currently open row. We call such an access arow hit. Since a row hit requires only the third

of the three steps, its DRAM service time is much less than that of a row conflict.

Figure 1 illustrates exactly how the DRAM system works for these accesses. In Figure 1(a), three reads

(A, B, and C) are waiting for DRAM scheduling. They are all mapped to the same row (Row 1) in Bank 0.

Currently Row 5 is open in the row buffer of Bank 0. Read A has togo through all three steps since it is a row

conflict. The total service time for Read A is the sum of the latencies for the three steps (tRP + tRCD + CL),

as shown in Figure 1(b). After this latency, the data required by Read A is put onto the data bus. The DDR3

DRAM’s prefetch bufferallows to enable a burst mode of up to eight (burst length,BL = 8) by bringing (eight)

consecutive columns from the row buffer to the prefetch buffer. Therefore eight bursts of data are sent to the

data bus. The subsequent two reads can simply access the row opened by Read A. Even though accessing

a given column within a row takes only column address strobe latency (CL), consecutive row-hit reads are

5

serviced even faster. This is because the DDR3 system allowsrow-hit latencies (CLs) to overlap in order to

support back-to-back data transfers among row-hit reads (even among row-hit reads in different banks). Note

that such back-to-back data transfers are supported among row-hit writes as well.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

tBL
tBL

tBL

tRP: Precharge period
tRCD: Activate−to−read/write delay in the bank
CL: Read column address strobe (CAS) latency
tBL: Burst length time
tCCD: CAS−to−CAS delay

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���

���
���
���

���
���
���

���
���
���

Activate
(0, 1) (0, 1) (0, 1)

CLtRP tRCD

Data A Data C

CL
tCCD CL

(0, 1)

tCCD

Precharge 0
Read A Read B Read C

Read A: Row conflict Data B

Read B: Row hit Read C: Row hit
(b) DRAM timing

Command &
address bus

Data bus

Service time
in bank 0

Read A

DRAM read buffer

Read B
Read C

Row 3Row 5Row
buffer

Bank 0 Bank 1 DRAM

(a) DRAM state

Read A (0, 1): mapped to row 1 in bank 0
Read B (0, 1): mapped to row 1 in bank 0
Read C (0, 1): mapped to row 1 in bank 0

DRAM
controller

Figure 1. Row conflict and row hit in modern DRAM system

Since row hits can be serviced (3∼ 9 times) faster than row conflicts, many DRAM controllers prioritize

row hits over row conflicts in scheduling decisions [18]. To take advantage of this, we propose a cache

management policy that takes row buffer locality into account by evicting cache lines that are likely to be row

hits rather than lines that would be very costly row conflictswhen they need to be re-fetched later.

2.2. Bank-Level Parallelism (BLP)

A DRAM chip consists of multiple (4∼ 8) independent banks and accesses to different banks can be

serviced concurrently. Figure 2 shows the DRAM behavior of two row conflict accesses to different banks.

Read A is mapped to Row 1 in Bank 0 and the Read B is mapped to Row 1in Bank 1 as shown in Figure 2(a).

Even though they are row conflicts (i.e., the current open rows are different from the rows they access), their

DRAM service times can significantly be overlapped as shown in Figure 2(b). Therefore the effective stall

time of the processor for these two requests is much less thanthe sum of the two access latencies. Note that

if two row conflicts are mapped to the same bank, they are serviced completely serially and the processor

experiences the sum of two row-conflict accesses.1

Read A

DRAM read buffer

Read B

Read B (1, 1): mapped to row 1 in bank 1

DRAM

Read A (0, 1): mapped to row 1 in bank 0

(a) DRAM state

controller

Row
buffer

Bank 1Bank 0
Row 5 Row 3

DRAM

tBL
tBL

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Command &
address bus �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

����������������������
����������������������
����������������������

����������������������
����������������������
����������������������

Precharge 0
Precharge 1

Activate
(0, 1)

Read A
Activate (1, 1)

(0, 1) (1, 1)

CLtRP tRCD

Read B

Data BData ARead A: Row conflict

Read B: Row conflict

Overlapped DRAM service time

(b) DRAM timing

CLtRRD tRCD
Data bus

in bank 0
Service time

in bank 1

Service time

tRP: Precharge period
tRCD: Activate−to−read/write delay
CL: CAS latency
tBL: Burst length time
tRRD: Activate−to−activate period

in different banks

Figure 2. DRAM bank-level parallelism

To exploit DRAM BLP, we propose that the cache replacement policy should favor keeping in the cache

1To be precise, the total service time of two consecutive row conflicts in the same bank is more than the sum of two row con-
flict latencies due to other DRAM timing constraints such as activate-to-activate command period (tRC) and activate-to-precharge
command period (tRAS).

6

those lines whose latencies are unlikely to be overlapped with other concurrent accesses in different banks.

2.3. Write-Caused Interference

Write-caused interference in DRAM comes from read-to-write, write-to-read, and write-to-precharge la-

tency penalties. We first describe read-to-write and write-to-read latencies.

Read-to-write and write-to-read penalties: Read-to-write latency is the minimum latency from a read

data burst to a write data burst. This latency is required to change the data bus I/O pins’ state from read state

to write state. Therefore, during this latency the bus has tobe idle. This latency must be satisfied regardless

of whether the read and the write access the same bank or different banks. In DDR3 DRAM systems, read-

to-write latency istwo DRAM clock cycles.

Write-to-read (tWTR) latency is the minimum latency from a write burst to a subsequent read command.

In addition to the time required for the I/O state change fromwrite to read, this latency also includes the

time required to guarantee that written data in the DRAM’s prefetch buffer can be safely written to the row

buffer (i.e., sense amplifier). ThereforetWTR is much larger (e.g.,six DRAM clock cyclesfor DDR3-1600)

than read-to-write latency and introduces more DRAM data bus idle cycles. The prefetch buffer is shared

by row buffers in all DRAM banks therefore the modified data inthe prefetch buffer must be written back

to the corresponding bank’s row buffer before a read overwrites the data in the prefetch buffer. As a result,

write-to-read latency must be satisfied regardless of whether the write and the read are to the same bank or

different banks.

Due to read-to-write and write-to-read penalties, switching service between reads and writes frequently in

the DRAM system results in many idle cycles. This problem canbe mitigated by a write buffer policy [7].

However a write buffer policy cannot solve the problem completely due to the write buffer’s limited size and

the write-to-precharge latency.

Write-to-precharge latency (write recovery time,tWR) comes into play when a subsequent precharge

command is scheduled to open a different row after a write to abank. This write-to-precharge latency specifies

the minimum latency from a write data burst to a precharge command in the same DRAM bank. This latency

is very large (12 DRAM clock cyclesfor DDR3-1600) because the written data in the DRAM’s prefetch

buffer must be written back to the corresponding DRAM row through the row buffer before precharging the

DRAM bank. This must be done to avoid the loss of modified data.

Figure 3 illustrates write-to-precharge penalty in a DRAM bank. Write A and Read B access different rows

in the same bank (Bank 0). Therefore, after Write A is serviced, a precharge command is required to open the

row for Read B (i.e., row conflict). Subsequent to the scheduling of Write A, the precharge command must

wait until write-to-precharge latency is satisfied before it can be scheduled. Note that this penalty must be

satisfied regardless of whether the subsequent precharge command is for a read or a write. The resulting idle

bus cycles istWR + tRP + tRCD +CL DRAM clock cycles unless there are other requests that are being read

7

or written in different banks.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Command &
address bus �

�
�
�

�
�
�
�

Data bus

CWL BL

tWR

Data BData A

(0, 2) Precharge 0 (0, 3) (0, 3)

BLCLtRCDtRP

ActivateWrite A Read B

Data bus idle cycles

(b) DRAM timing

DRAM write buffer

Write ARead B

DRAM read buffer

DRAM

Row
buffer

Bank 1
Row 2 Row 3
Bank 0

Read B (0, 3): mapped to row 3 in bank 0
Write A (0, 2): mapped to row 2 in bank 0

Scheduling order: Write A, Read B

(a) DRAM state

controller
DRAM

tRCD: Activate−to−read/write latency

tRP: Precharge period

CL: Read CAS latency
CWL: Write CAS latency
tBL: Burst length time
tWR: Write Recovery time

(write−to−precharge)

Figure 3. Write-to-precharge penalty in DRAM system

Since the write-to-precharge latency must also be satisfiedfor a precharge for a subsequent write, row

conflicts among writes degrade DRAM throughput for writes. For example, a write to Row 1 after a write to

Row 3 in the same bank must still satisfy this write-to-precharge penalty before the precharge command for

the write to Row 1 can be scheduled. This problem cannot be solved by the DRAM write buffer. If writes

in the write buffer access different rows in the same bank, the total amount of write-to-precharge penalty

becomes very large. This eventually results in an even greater delay in the service of reads, thereby degrading

application performance.

The source of DRAM writes is dirty line evictions from the last-level cache. A write-caused interference-

aware dirty line replacement policy can control the mix of write requests in the DRAM write buffer so that

writes can be serviced faster. We describe this policy in Section 3.2.

3.. DRAM-Aware Cache Replacement

Our mechanisms aim to minimize the cost of last-level cache misses and evictions of dirty lines by taking

DRAM characteristics into account and evicting the least costly cache lines from the last-level cache. We pro-

pose two policies: Latency and Parallelism-Aware (LPA) replacement policy and Write-caused Interference-

Aware (WIA) replacement policy. We discuss these two mechanisms in the following sections in detail.

3.1. Latency and Parallelism-Aware Replacement

Due to row buffer locality and bank-level parallelism, not all misses incur the same cost from the proces-

sor’s point of view. The Latency and Parallelism-Aware (LPA) replacement policy favors evicting cache lines

that are likely to be row hits or exploit BLP when they are brought into the cache again later.

3.1.1. Why Should We Consider DRAM Characteristics?To answer this key question, we describe the

shortcomings of the Memory-Level Parallelism (MLP)-awarecache replacement policy [17] which are due to

this technique being unaware of DRAM state/characteristics. The MLP-aware cache replacement policy [17]

assumes that clustered cache misses are lower cost than isolated misses. It makes the implicit assumption that

the service times of all clustered cache misses are overlapped with each other. Therefore, this policy prefers

to evict cache lines that are serviced concurrently with other misses. However, in many cases, concurrent

outstanding misses are not necessarily serviced in parallel in the DRAM system. When a large number of

8

row-conflict misses are outstanding in the memory system, they are serviced in parallelonly if they are to

different DRAM banks. Consider the following example.

Figure 4 describes how the mix of outstanding last-level cache misses can affect DRAM performance and

processor stall time. Figure 4 (a) shows the initial DRAM andMiss Status/Information Holding Register

(MSHR) state. There are four outstanding misses present in the MSHRs. Row 1 and Row 2 are open in the

row buffer of Bank 0 and Bank 1 respectively. Four misses are waiting in the DRAM read buffer to be serviced

by DRAM. Figures 4 (b) and (c) demonstrate two scenarios.

Figure 4(b) shows the DRAM service time and processor statuswhen two reads (Reads A and D from

Misses A and D) are row conflicts in Bank 0 and two other reads (Reads B and C) are row hits in Bank 1.

Since the accesses to Bank 1 are row hits (and therefore low latency), their latencies are overlapped with Read

A in Bank 0 (a row conflict). However, Read D is completely serviced alone. The processor must experience

the sum of the two row-conflict latencies serially.

�
�
�
�

�
�
�
�

Compute

�
�
�
�

�
�
�
�

Compute

�
�
�
�

�
�
�
�

Compute

�
�
�
�

�
�
�
�

Compute

Read A
Read B
Read C
Read D

Miss A	
Miss B
Miss C
Miss D

Row
buffer

Bank 0
Row 1

���
���
���

���
���
���

�������
�������
�������

�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

���
���
���

���
���
���

�������
�������
�������

�������
�������
�������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Read A: row 1 in bank 0
Read B: row 2 in bank 1
Read C: row 2 in bank 1
Read D: row 3 in bank 1

Read A: row 1 in bank 0

Read C: row 2 in bank 1
Read B: row 2 in bank 1

Read D: row 5 in bank 0

(b) Example of last−level cache misses that result in undesirable DRAM utilization

Read A: Row conflict Read D: Row conflict

Read A: Row conflict

Service time
in bank 0

Read B: Row hit Read C: Row hitService time
in bank 1

Stall

Compute

Stall Stall
Processor

Read B: Row hit Read C: Row hit Read D: Row conflict

Stall

Compute

Stall Stall

Service time
in bank 0

Service time
in bank 1

Processor

(c) Example of last−level cache misses that result in better DRAM utilization

Bank 1
Row 2

DRAM read buffer

Last−level cache

MSHRs

DRAM

controller
DRAM

(a) DRAM and MSHR state

Figure 4. DRAM and processor performance for two different m ixtures of outstanding misses

On the other hand, Figure 4(c) shows the DRAM service time andprocessor status when Read D is mapped

to Bank 1 instead of Bank 0 and is still a row conflict (other requests are the same as Figure 4(b)). Read D

still takes a long time since it is a row conflict. However, a significant portion of its latency is overlapped with

the row-conflict latency of Read A. Therefore this composition of requests results in a significant reduction of

processor stall time compared to the previous case.

This example signifies that in contrast to what MLP-aware mechanisms assume, simply having many

misses outstanding in the MSHRs does not necessarily mean that those misses are serviced in parallel. Even

though Read D is outstanding with three other misses in both Figures 4(b) and (c), its latency is not at all

overlapped in the former case yet significantly overlapped in the latter. As such, depending on the mix of

clustered misses, their memory service time (or cost) varies significantly.

In addition to isolated misses, clustered misses to different rows in the same bank also incur very high cost.

On the other hand, row-hit misses can always be considered low cost due to their low latencies regardless

of BLP (recall that multiple row hits’ data is transferred back-to-back as discussed in Section 2.1). Rather

than simply aiming at clustered memory requests, an intelligent cache control mechanism should be aware of

9

DRAM characteristics to take advantage of low latency and high parallelism in the DRAM system.

Key insight: To minimize miss cost, a DRAM-aware cache replacement policy can control the mix of

requests such that 1) row-hit misses rather than row-conflict misses occur more frequently and 2) row-conflict

misses that can be serviced in parallel rather than seriallyin the DRAM system happen more frequently. Our

mechanism does exactly this by measuring these characteristics.

3.1.2. How to Measure DRAM CharacteristicsRow-hit/row-conflict information can be simply conveyed

using one bit in each request from the DRAM controller to the last-level cache. To measure the degree of

BLP quantitatively, we define two BLP metrics: 1)Aggregate BLPof an application’s total execution, and 2)

individual BLPof a request that is serviced from CycleN to CycleM . In the definitions that follow,BLPi is

defined as the number of DRAM banks that are servicing a request in Cyclei. 2 Additionally,BUSYi is set to

one when at least one bank is servicing a request in Cyclei and reset when no bank is servicing any requests.

Aggregate BLP =

P

i BLPi
P

i BUSYi

Individual BLP =

PM
i=N BLPi

M − N + 1

Aggregate BLP indicates how many banks were busy servicing requests on average while an application

was running. It is greater than or equal to 1 and less than or equal to the total number of DRAM banks. Indi-

vidual BLP of a request indicates how many banks were busy servicing requests in parallel while the request

was being serviced (including the bank servicing that request). Note that these metrics can be measured in

the DRAM controller at runtime since the DRAM controller already keeps track of which requests are being

serviced in which bank.

�
�
�
�

�
�
�
�

DRAM controller

DRAM

Low cost
estimation
Row−hit

Low−cost bit inserted
Line PC

All requestsRow conflicts

estimation
BLP

MSHRs

Last−level cache

Low−cost

logic
estimation

Figure 5. Low-cost estimation for LPA

3.1.3. MechanismThe Latency and Parallelism-Aware (LPA) re-

placement policy leverages the observation that if memory requests of

an application show high BLP or row buffer locality in a certain execu-

tion phase, similar BLP or row buffer behavior will likely occur in the

future. For example, current high BLP requests show high BLPwhen

they are refetched later. Previous research [17] also showsthat the mem-

ory behavior of applications repeats. Therefore LPA assumes that cache

lines arelow-costif they show high BLP or row buffer locality when

they are serviced in the DRAM system. Figure 5 illustrates the logic

that performs this function.

LPA evicts cache lines that are predicted as low-cost. Low-cost cache

lines are identified by a one-bitlow-cost fieldin each line. LPA always prioritizes low-cost lines over less

2More precisely, a DRAM bank can service multiple row hits at the same time to support back-to-back data transfers as discussed
in Section 2.1. However, we assume that only the last requestis being serviced in this case to simplify the metric.

10

recently used lines in the set for eviction. If multiple low-cost lines exist, the least recently used (LRU) line

among those is selected as the victim. If there is no low-costline, the LRU line is evicted.

To take into account temporal locality in reused cache lines, the low-cost bit of a cache line that is reused

in the cache is reset. This ensures that LPA performs better than LRU replacement for SPEC benchmarks that

work well with LRU replacement. This is because by resettingthe low-cost bit of lines that exhibit reuse, LPA

retains them in the cache. Additionally, the effective memory latency of misses to low-cost lines that did not

exhibit reuse is significantly reduced by taking advantage of row buffer locality and BLP using LPA.

Low-cost estimation using BLP information: To estimate the BLP of a request (or cache line), we need

two pieces of BLP information at runtime: the aggregate BLP during a predetermined execution interval of the

application and the request’s individual BLP. The DRAM controller measures this information and sends it to

the estimation logic. Algorithm 1 shows how the low-cost estimation works. The estimation logic works only

when the aggregate BLP is greater thanaggregate BLP threshold. During a high BLP period, the estima-

tion logic marks as low-cost those requests that had much higher individual BLP (aggregate BLP offset

greater) than the aggregate BLP during that interval.

Starting estimation only when aggregate BLP is high prevents requests from being marked as low-cost dur-

ing low BLP phases where there is no large performance benefitfrom BLP. Marking only those requests that

show very high individual BLP compared to the aggregate BLP allows the logic to select only those lines for

eviction that are likely to exploit high BLP (i.e., it allowsthe logic to distinguish very low-cost lines from oth-

ers). We empirically determined the values foraggregate BLP threshold andaggregate BLP offset.
Algorithm 1 Low-cost estimation using BLP information

for eachrow-conflict request whose service is completeddo
if aggregate BLP> aggregate BLP threshold then

if individual BLP of the request> (aggregate BLP +aggregate BLP offset) then
mark the request as low-cost

end if
end if

end for

Low-cost estimation using row-hit/row-conflict information: We observe that some application prop-

erties can effect the row buffer locality demonstrated in the microarchitecture. The insight here is that the

majority of row-hits occur from a few static load instructions. An example is a load instruction that accesses

array data elements in a loop. In fact, we find that only 10 static loads are responsible for 65% of all row hits

(in the 16 memory intensive SPEC benchmarks shown in Section4). As such, to estimate whether a cache

line is likely to be a row hit, we collect the average row-hit rate of the load instruction that caused the miss.

Algorithm 2 describes how low-cost estimation is performedbased on frequent row-hits. We measure the

average row-hit rate of a load using a small table (a 16-entry4-way associative cache structure) each entry of

which is associated with a load PC. Each entry keeps track of the total number of requests serviced and the

11

total number of row hits for the load. Whenever a request is serviced, the table is looked up with the load’s

PC. If a match is found, its counters are updated as follows: 1) the counter for the total number of requests is

incremented, and 2) if the request was a row hit, the counter for the number of row hits is incremented. If no

match is found, the LRU entry is replaced with a new entry and its counters are initialized.
Algorithm 2 Low-cost estimation using row-hit/row-conflict information

for each request whose service is completeddo
match found← look up load PC table (request’s PC)
if match foundthen

(total number of row hits, total number of requests)← load PC table (request’s PC)
load PC table (request’s PC)← (total number of row hits + (request row hit ? 1 : 0), total number of requests +
1)
adjusted aggregate row hit rate←MAX(aggregate row hit rate,aggregate row hit rate min)
if total number of requests> request threshold and row hit rate> adjusted aggregate row hit ratethen

Mark the request as low-cost
end if

else
get entry from load PC table (request’s PC)
load PC table (request’s PC)← ((request row hit ? 1 : 0), 1)

end if
end for

Predicting whether a miss is low-cost or not is made using theinformation looked up from the load PC table

precisely before updating the table. If no match is found, the new cache line is estimated as high-cost (i.e., the

low-cost bit is not set). If a match is found, the average row-hit rate for the load is calculated by dividing the

number of row hits by the number of serviced requests. Prediction is made based on this calculated average

row-hit rate and the aggregate row-hit rate for all requestsserviced during the corresponding interval.

A fetched line is only considered for low-cost estimation when the row-hit rate information for the corre-

sponding PC is collected for more thanrequest threshold, not to mark lines for which the corresponding

load has only had a few requests serviced. This prevents making a wrong decision about whether the load will

likely generate many row hits. The logic marks the line as low-cost only if the row-hit rate of the load that

fetched the line is greater than theadjustedaggregate row-hit rate for all fetched lines. The adjusted aggregate

row hit rate imposes a minimum value of aggregate row-hit rate (aggregate row hit rate min) to avoid

falsely marking lines as low-cost simply because their row-hit rate, although quite low, is larger than a very

low aggregate row-hit rate. We empirically determined the set of parameter values used for our evaluation.

3.2. Write-Caused Interference-Aware Replacement

Not all dirty line evictions for the last-level cache incur the same cost. This is because row-conflict writes

are much more expensive than row-hit writes as we showed in Section 2.3. The Write-Caused Interference-

Aware (WIA) replacement policy’s goal is to increase concurrently outstanding row-hit writes. Note that

the source of DRAM writes is the last-level cache’s writebacks, i.e., dirty line evictions. A write-caused

interference-aware replacement policy finds and evicts dirty cache lines that cause row-hit write accesses to

12

DRAM. To do this it finds dirty cache lines that are mapped to the same row as outstanding writes in the write

buffer. The resulting row-hit writes can significantly improve the service time of the writes. The following

example shows how such a replacement policy can improve DRAMperformance.

3.2.1. Row-Conflict Writes Are ExpensiveFigure 6(a) shows the initial state of the DRAM read/write

buffers and a set of the last-level cache. A row-hit read (Read A) and a row-hit write (Write B) are waiting to

be scheduled to DRAM. Two dirty lines (C and D) are at the leastrecently used (LRU) positions of the shown

last-level cache set. Dirty line C is mapped to a different row from Write B whereas Dirty line D is mapped

to the same row as Write B.

Write B (0, 0): mapped to row 0 in bank 0
Read A (0, 0): mapped to row 0 in bank 0

Dirty C (0, 1): mapped to row 1 in bank 0
Dirty D (0, 0): mapped to row 0 in bank 0

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Precharge 0 (0, 1)
Write C

(0, 1)
Activate

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

CWL

Data B

Write B
(0, 0)

tBL

Data C

tWR tRP tRCD CWL

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Saved cycles

Write D
(0, 0)

tBL
tCCD

CWL
CWL

Data DData B
(a) Cache/DRAM buffer initial state

Data bus

CL

Data A

Command
& address bus

tBL

Less recently used

Last−level cache

CleanCleanClean A Dirty C

Less recently used

Last−level cache

Dirty DCleanCleanClean A

(0, 0)
Read A

evicted

Clean Dirty CClean Dirty D

Less recently used

Last−level cache

Set

DRAM write buffer

Write BRead A

DRAM read buffer

Bank 1
Row 0 Row 3
Bank 0

controller
DRAM

DRAM

Row
buffer

Dirty C
Write buffer full

Command
& address bus

Data bus

CL tBL

(0, 0)
Read A

(0, 0) evicted
Dirty D

Data A

Write buffer full
Write B

(b) Cache state and DRAM timing for LRU replacement (Dirty C is evicted)

(c) Cache and DRAM timing for write−caused interference−aware policy (Dirty D is evicted)

Figure 6. Conventional vs. write-caused interference-awa re replacement policies

Figure 6(b) shows the resulting cache state and the DRAM timing when a conventional LRU policy is used

in the cache. The LRU line (Dirty line C) is evicted by the fetched line for Read A. Therefore a write (Write

C) is generated for Row 1 and is inserted into the write buffer. Writes are serviced in the order of Writes B

and C. Because Write C accesses a different row from Write B (row conflict), precharging is required to open

Row 1. Since a write was serviced before, write-to-precharge penalty must be satisfied before the precharge

command for Write C is scheduled. This increases the idle cycles on the DRAM data bus since the write data

for Write C must wait fortWR + tRP + tRCD + CWL cycles after the write burst for Write B.

On the other hand, as shown in Figure 6(c), if Dirty D is evicted instead of Dirty C, the two writes (Writes B

and C) are serviced back-to-back, thereby resulting in significant DRAM service time reduction. This example

illustrates that a simple cache replacement policy which evicts row-hit writeback requests can improve service

time for writes. Our Write-caused Interference-Aware (WIA) replacement policy is designed to achieve this.

3.2.2. MechanismWIA evicts row-hit dirty lines when a replacement happens inthe last-level cache. Ide-

ally, row-hit dirty lines can be found by comparing the row address of each dirty line in the set (which is

considered for replacement) with the address of every writein the DRAM write buffer. However, the hard-

ware/design cost of this is not acceptable since it requiresan associative search of the write buffer with the

address of each dirty line in the cache set. To simplify implementation and hardware cost, we use a row

13

address register for each DRAM bank to keep track of the address of the last evicted dirty line mapped to that

bank. In our address mapping, the last-level set index field includes the DRAM bank index field.3 Therefore

all lines in a set belong to one DRAM bank. This requires one associative search: the stored row address in

a register is compared to the address of each dirty line in thecache set. This can be performed by the tag

comparison logic in the cache. The tag comparison structureshould be modified to support comparing the

stored row address with the row addresses of all lines in the set. Figure 7 illustrates this.

Row address

Row address

Set
Last−level cache

address
Writeback

data
Writeback Read

address

Replacement
logic

data
Read

Dirty row hit

Row address

for DRAM bank N−1

for DRAM bank 1

for DRAM bank 0

Dirty row hit search logic
Cache access address

Figure 7. Dirty row-hit search for WIA

Whenever a dirty line is evicted (i.e., a writeback is generated), the

corresponding DRAM bank’s row address register is updated with the

dirty line’s row address. When a replacement happens in a cache set,

WIA looks for a dirty line that is mapped to the same row as the last-

evicted-dirty-line for the corresponding DRAM bank using tag compar-

ison logic in the cache. We found that keeping track of the last evicted

row address is enough to gain most of the benefits of searchingthe row

addresses of all writes in the entire write buffer.

WIA prioritizes row-hit dirty lines (if found) over the LRU line for

eviction. If multiple row-hit dirty lines are found, the LRUamong them

is evicted. If none are found, the LRU line is evicted. We found that

prioritizing row-hit dirty lines over LRU lines for eviction does not hurt performance due to loss of temporal

locality. This is because 1) very few evicted dirty lines by WIA are reused, 2) if the evicted dirty line is

required, the write buffer forwards it to the cache unless itis already written back, and 3) performance benefits

of evicting row-hit dirty lines outweighs the cost of re-fetching (a small number of) these lines from DRAM.

3.3. Combining Latency and Parallelism-Aware and Write-Caused Interference-Aware Policies

LPA and WIA can be combined to reduce both miss and dirty line eviction penalties. We found that

prioritizing row-hit dirty lines (detected by WIA) over low-cost lines (predicted by LPA) for victim decision

performs very well. The reasons are as follows.

First, LPA alone is unaware of the dirty line eviction cost. LPA can increase write-caused interference if

it evicts dirty lines that cause row conflicts to the same bank, because it only predicts whether or not lines

would be low-cost when they are fetched again later. Second,WIA’s detection of row-hit dirty lines is more

accurate than LPA’s prediction of low-cost read misses. This is because WIA looks for dirty lines that can

be serviced very soon with other currently outstanding writes, whereas LPA predicts low-cost read misses

3This mapping can increase DRAM bank conflicts which in turn causes many row conflicts (among reads and writes with different
row addresses). However, a write buffer policy that drains writes only when it is full can mitigate this problem significantly. We use
this write buffer policy as presented in Section 4. Also, we find that only keeping track of the globally last evicted dirtyline’s row
address, disregarding which bank it came from, also works well (1% less improvement than the per-bank based approach). This
option can be used for systems with different address mapping [22].

14

that are required in the future. Finally, WIA’s penalty of wrong decisions is mitigated by possible forwarding

of such cache lines from the write buffer. However, this possibility does not exist with LPA. LPA’s wrong

decision, evicting a useful and costly cache line, will likely have greater negative affect on performance: the

processor must stall for a long time as the cache line needs tobe fetched from main memory.

3.4. Multi-Core System Considerations

LPA Replacement in Multi-Core: In many chip-multiprocessors (CMP), multiple cores share the last-

level cache and main memory resources. When multiple applications run on different cores, their requests

compete with each other for the shared resources. Usingglobal BLP and row hit rate (as opposed to per-

application information) for low-cost estimation of LPA can cause system performance degradation. There

are two reasons. First, this can result in unfair replacement decisions for applications that show high BLP or

row buffer locality. Cache lines of such an application thatgenerates many low-cost requests can be unfairly

evicted too frequently, which results in performance degradation for such an application. Similarly, cache

lines of another application with many high-cost (low row-hit rate and low BLP) misses could be evicted very

rarely. Second, global BLP is not repeatable when multiple applications concurrently run on a CMP system.

This is because it is not guaranteed that the current phase ofapplication A that is executed concurrently with

a phase of application B will be executed concurrently with the same phase of application B again later.

To make LPA effective in CMPs, we estimate low-cost lines on aper-core basis since per-application (or

per-core) memory characteristics do not change significantly even on CMP systems.4 We measure aggregate

BLP/row-hit rate and individual BLP/row hit for each core independently. In the definitions of Section 3.1.2,

BLPi of a core is obtained by considering only the banks that are serving that core’s requests.BUSYi of a

core is one when at least one request of that core is being serviced in a bank. Aggregate BLP of a core and

individual BLP of a core’s requests are calculated using these modifications. Low-cost estimation for core

A’s lines is performed using these aggregate BLP and individual BLP values. In addition, core A’s row-hit

rate is measured by dividing the number of core A’s row-hit requests by the total number of core A’s requests

serviced in the time interval. Finally, one load PC table is required for each core for low-cost estimation using

row-hit information.

When a cache line is inserted into a cache set, LPA determineseach core’s victim by considering only its

lines based on the LPA policy discussed in Section 3.1.3. Among each of the cores’ victims, LPA chooses to

evict the victim of the core to which the LRU line in the entirecache set belongs.

WIA Replacement in Multi-Core: On the other hand, WIA does not need to be core-aware. This is

4Row buffer locality and BLP of an application’s requests canbe destroyed by other applications’ requests in CMP systems.
However, we find that due to FR-FCFS (First Ready-First Come First Serve) scheduling [18], row buffer locality is still reasonably
stable regardless of other concurrently running applications. Furthermore, if an application’s BLP is not broken by concurrently
executing applications, we want the cache replacement policy to preserve it. By doing so, FR-FCFS scheduling can still exploit BLP
in the memory requests presented to it by the shared cache.

15

because writes are not critical to an application’s progress. Writes become critical only when the DRAM

controller cannot service reads due to write-caused interference. Therefore, servicing many writes (from

any core) very quickly so that reads (from any core) can be serviced soon and without delay leads to high

performance. As such, the WIA policy in multi-core stays thesame as we described for single-core systems.

We evaluate our mechanism using these techniques on a 4-coreCMP system in Section 5.2.

3.5. Comparison to Memory-Level Parallelism-Aware Replacement Policy

Qureshi et al. [17] proposed an MLP-aware cache replacementpolicy that prioritizes the eviction of a cache

line that is likely to be concurrently serviced with other misses when it is fetched next. Any concurrent misses

are assumed to be actually serviced in parallel in the main memory system. This mechanism has multiple

important drawbacks compared to our DRAM-aware policies.

First, the MLP-aware policy is not DRAM bank-aware. As we discussed in Section 3.1.1, clustered misses

to different rows in the same bank incur very high cost. Sincethe MLP-aware policy estimates the “MLP cost”

of a cache line using the absolute number of outstanding misses (in the MSHRs), it assumes that even misses

to the same bank will be serviced in parallel, which is not correct. As such, the MLP-aware policy is prone

to mispredicting the cost of misses significantly. Second, the MLP-aware policy does not consider the cost of

writebacks. Instead, it considers only the future miss costof a line when making eviction decisions. This can

hurt performance because it can increase write-caused interference in the DRAM system by causing a large

number of row-conflict writebacks. As we showed in Section 3.2.1 and empirically evaluate in Section 5,

row-conflict writebacks degrade system performance significantly. Third, the hardware/design cost of the

MLP-aware policy is more than our proposal. Since MLP cost isstored in each cache line, multiple bits are

required in each line (3 bits per line). In contrast, our LPA requires only one bit (indicating low-cost) per line.

4. Methodology

4.1. System Model and Metrics

We use a cycle accurate x86 CMP simulator for our evaluation.Our simulator faithfully models all microar-

chitectural details such as bank conflicts, port contention, and buffer/queuing delays. The baseline configura-

tion of processing cores and the memory system for single and4-core CMP systems is shown in Table 1. Our

simulator also models DDR3 DRAM performance-related timing constraints in detail as shown in Table 2.

To measure multi-core system performance, we useIndividual Speedup (IS), Weighted Speedup (WS)[20],

andHarmonic mean of Speedups (HS)[10]. In the equations that follow,N is the number of cores in the

CMP system.IPCalone
i is the IPC measured when applicationi runs alone on one core of the CMP system

(other cores are idle, therefore applicationi can utilize all of the shared resources) andIPC
together
i is the IPC

measured when applicationi runs on one core while other applications are running on the other cores.

16

4.8 GHz, out of order, 15 (fetch, decode, rename stages) stages,
Execution Core decode/retire up to 4 instructions, issue/execute up to 8 microinstructions;

256-entry reorder buffer; 32-entry load-store queue; 256 physical registers
Fetch up to 2 branches; 4K-entry BTB;Front End
Hybrid branch predictor: 64K-entry gshare/PAs predictor/selector
L1 I/D-cache: 32KB, 4-way, 2-cycle, 64B line size;
Shared last-level cache: 16-way, 8-bank, 15-cycle, 1 read/write port per bank, LRU replacementCaches and on-chip buffers
writeback, inclusive, 64B line size, 1, 2MB for 1, 4-core systems;
32, 128 MSHRs, 32, 128-entry L2 access/miss/fill buffers for1, 4-core systems
1, 2 channels (memory controllers) for 1, 4-core systems;

DRAM and bus 800MHz DRAM bus cycle, Double Data Rate (DDR3 1600MHz) [11],6:1 core to DRAM bus frequency ratio;
8B-wide data bus per channel, BL = 8; 1 rank, 8 banks per channel, 8KB row buffer per bank;
On-chip, open-row, FR-FCFS scheduling policy [18];DRAM controllers
64-entry (8× 8 banks) DRAM read/write buffers per channel, drainwhen full write buffer policy

Table 1. Baseline configuration

Latency Symbol DRAM cycles Latency Symbol DRAM cycles

Precharge tRP 11 Activate-to-read/write tRCD 11
Read column address strobe (CAS) CL 11 Write column address strobe (CAS) CWL 8

Additive AL 0 Activate-to-activate tRC 39
Activate-to-precharge tRAS 28 Read-to-precharge tRT P 6

Burst length tBL 4 CAS-to-CAS tCCD 4
Activate-to-activate (different bank) tRRD 6 Four activate windows tFAW 24

Write-to-read tWT R 6 Write recovery tW R 12
Table 2. DDR3 1600 DRAM timing specifications

ISi =
IPC

together
i

IPCalone
i

, WS =

N
X

i

IPC
together
i

IPCalone
i

, HS =
N

N
X

i

IPCalone
i

IPC
together
i

4.2. Workloads

We use the SPEC CPU 2000/2006 benchmarks for experimental evaluation. Each benchmark was compiled

using ICC (Intel C Compiler) or IFORT (Intel Fortran Compiler) with the -O3 option. We ran each benchmark

with the reference input set for 200 million x86 instructions selected by Pinpoints [15].

Even though we evaluated all the 55 SPEC benchmarks, we report 16 memory intensive benchmarks on

which the performance impact of our mechanisms is significant; the effect of our mechanisms on the remain-

ing applications is negligible. Characteristics of the 16 SPEC benchmarks are shown in Table 3. We consider

memory read (cache miss) and write (writeback) characteristics independently since LPA is designed for

DRAM read efficiency and WIA targets DRAM write efficiency. Toevaluate our mechanism on CMP sys-

tems, we formed combinations of multiprogrammed workloadsfrom all the 55 SPEC 2000/2006 benchmarks.

We ran 17 randomly chosen workload combinations for our 4-core CMP configuration.

4.3. Implementation and Hardware Cost

For evaluations, we periodically measure the aggregate rowhit rate and BLP every 100K processor cycles

for low-cost estimation. We empirically setaggregate BLP threshold andaggregate BLP offset to

2.5 and 0.3 respectively for high BLP estimation. We use a 16-entry 4-way set associative cache structure for

the load PC table and setrequest threshold andaggregate row hit rate min to 30 and 0.6 for row-hit

estimation. BLP and row-hit information required for LPA iscollected only from reads (not writes).

Table 4 shows hardware storage cost for our mechanisms on thesingle and 4-core systems of Table 1. The

17

Reads Writes Reads Writes

Benchmark Type IPC MPKI RHR BLP WPKI RHR BLP Benchmark Type IPC MPKI RHR BLP WPKI RHR BLP

179.art FP00 0.26 90.92 95.43 1.78 9.79 86.75 1.49 482.sphinx3 FP06 0.39 12.94 83.01 1.17 0.63 58.18 1.79
181.mcf INT00 0.06 107.74 70.08 1.32 11.50 15.03 2.89 171.swim FP00 0.35 23.10 36.95 2.31 8.24 78.33 2.55

173.applu FP00 0.93 11.40 90.34 1.56 1.78 81.34 1.74 462.libquantumINT06 0.67 13.51 94.96 1.01 5.87 89.13 1.06
437.leslie3d FP06 0.54 20.88 70.50 1.95 2.72 73.80 2.05 481.wrf FP06 0.72 8.11 72.95 1.47 2.52 76.17 1.70

459.GemsFDTD FP06 0.49 15.63 45.81 2.21 6.91 50.60 2.70 189.lucas FP00 0.61 10.61 61.00 1.36 2.38 34.19 1.08
450.soplex FP06 0.40 21.24 81.64 1.30 3.75 42.48 1.60 436.cactusADM FP06 0.63 4.51 7.42 1.36 1.22 33.31 1.54

471.omnetpp INT06 0.49 10.11 63.45 1.27 4.17 6.88 2.46 176.gcc INT00 0.93 3.24 90.62 1.07 0.54 39.53 1.56
178.galgel FP00 1.42 4.84 54.45 2.99 1.16 11.51 3.03 464.h264ref INT06 1.48 1.28 89.56 1.07 0.28 63.55 1.90

Table 3. Characteristics for 16 SPEC benchmarks: IPC, MPKI (last-level cache misses per 1K instructions), WPKI (last-l evel

writebacks per 1K instructions), Aggregate DRAM row-hit ra te (RHR), Aggregate DRAM BLP

BLP information (aggregate and individual BLP) is not sent from the DRAM controller to the last-level cache

to avoid additional storage and long wires. The BLP estimation is performed in the DRAM controller, and a

one-bit field (high/low BLP bit in Table 4) is carried by each request. Similarly, one bit row-hit/row-conflict

field is also carried by each request for row-hit estimation before being inserted into the cache.
Single-core’s4-core CMP’sStructure Cost equation (bits)
Cost (Bytes) Cost (Bytes)

Aggregate BLP & busy counters and BLP register 16 × 3 × Ncore 6 24
BLP estimation Individual BLP & busy counters 16 × 2 × Nbank 32 64

High/low BLP bit 1 × Nbuffer 4 16
Aggregate row-hit & request counters and row hit rate register 16 × 3 × Ncore 6 24LPA

Load PC table’s tag store (16-entry 4-way) 27 × 16 × Ncore 54 216Row-hit estimation
Load PC table’s data store (row-hit/request counters) 2 × 16 × 16 × Ncore 64 256

row-hit/row-conflict bit 1 × Nbuffer 4 16
Low-cost bit in cache Low-cost bit 1 × Nline 2,048 4,096

WIA Row address registers 32 × Nbank 32 64

Total storage cost for the systems in Table 1 2,250 4,776
Total storage cost as a fraction of the last-level cache capacity 0.2 % 0.2%

Table 4. Hardware cost (Ncore, Nline, Nbank, Nbuffer: number of cores, cache lines, DRAM banks, cache fill buffer entries)

LPA and WIA require only 0.2% of the total last-level cache space on both systems. We assume that the

core ID field is already available in each cache line on the 4-core system. If the core ID field (2 bits) is also

considered, our mechanisms require 12.7KB (0.6% of last-level cache), which is still insignificant. Note that

none of the logic or structures required for the mechanisms is on the critical path.

5. Experimental Evaluation

5.1. Single-Core Results

Figure 8 shows IPC normalized to the baseline LRU for the MLP-aware, Latency and Parallelism-Aware

(LPA), Write-caused Interference-Aware (WIA), and combined LPA-WIA replacement polices. The MLP-

aware policy is implemented with a set-sampling mechanism that selects between (MLP-aware) linear and

LRU policies as proposed by Qureshi et. al [17].

Overall, the best performing policy is the combination of LPA and WIA, which improves performance by

11.4% (6.9% excludingart) on average. In contrast, the MLP-aware policy improves performance by 4.6%

(0.6% excludingart). LPA and WIA complement each other and act synergistically. We make the following

major observations:

18

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

base
MLP
LPA
WIA
LPA-WIA

1.9 1.3
2.3 1.4

2.1 1.5

ar
t

sp
hin

x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

gc
c

ga
lge

l

h2
64

re
f

gm
ea

n

Figure 8. Performance on single-core system

First, both LPA and MLP-aware policies improve performancefor art, sphinx3, mcf, gcc, galgeland

h264ref. However, overall LPA outperforms the MLP-aware policy for most benchmarks. Especially, for

swim, LPA improves performance by 2.3% while the MLP-aware policy degrades performance by 3.8%. The

reason why LPA outperforms the MLP-aware policy overall is that LPA is better at identifying and evicting

low-cost lines that are serviced faster or in parallel in theDRAM system.

Second, both the LPA and MLP-aware policies degrade performance forapplu, libquantum, leslie3d, wrf,

andGemsFDTD. This is because neither are aware of write-caused interference when they evict dirty cache

lines. This signifies the importance of write-caused interference when replacement decisions are made.

Third, the performance degradations due to LPA are recovered by employing WIA together with LPA.

Additionally, WIA alone improves performance forGemsFDTD, lucas, soplex, cactusADM, andomnetpp

mainly due to its ability in reducing write-caused interference in the DRAM system. As a result, using LPA

and WIA (LPA-WIA) together provides the best performance among all policies.

In the subsections that follow we provide further insight using supporting data about DRAM characteristics.

5.1.1. Why Does the LPA Policy Perform Well?Figure 9 shows the total read traffic (from DRAM to the

processor) and aggregate DRAM BLP. Read traffic is essentially miss traffic and is divided into row hits and

row conflicts. A good cache replacement policy would lead to less read traffic (i.e., fewer misses or higher

cache locality), fewer row conflicts, and higher BLP.

LPA reduces row-conflict read traffic significantly forart, sphinx3, andmcf(by 73.3%, 68.5%, and 14.2%

compared to the baseline) in addition to reducing the overall read traffic as shown in Figure 9(a). This im-

proves performance significantly for these applications. LPA significantly reduces overall read traffic forart

andmcfbecause it mitigates the cache thrashing problem that thesesuffer from. In such applications, evicting

most recently used cache lines improves temporal locality by maintaining at least a portion of the working set

in the cache [16]. LPA benefits from this effect since in theseapplications, the cache lines it predicts as low-

cost and chooses for eviction happen to be recently used. TheMLP-aware policy also reduces row-conflict

read traffic, but much less than LPA.

19

0

2

4

6

8

10

12

14

16

18

20

22

M
ill

io
n

D
R

A
M

 r
ea

ds

row hits
row conflicts

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

Base
MLP

LPA
WIA

LPA-WIA

0.0

0.2

0.4

0.6

0.8

1.0

M
ill

io
n

D
R

A
M

 r
ea

ds

gc
c
ga

lge
l

h2
64

re
f

(a) Traffic

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
gg

re
ga

te
 B

LP

base
MLP
LPA
WIA
LPA-WIA

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

gc
c
ga

lge
l

h2
64

re
f

(b) Aggregate BLP

Figure 9. DRAM read traffic and aggregate BLP

LPA also increases BLP formcf andswimby 12.3% and 10.0% compared to the baseline as shown in

Figure 9(b). The increased BLP and reduced read traffic causeLPA to outperform the MLP-aware policy. The

improved BLP due to LPA translates to performance improvement for swimeven though LPA increases cache

misses (total read traffic) by 8.5%. In contrast, the MLP-aware policy degrades performance ofswimbecause

many of the concurrent misses it estimates to be low-cost actually end up being high-cost bank conflicts

because they map to the same DRAM bank.

LPA significantly outperforms the MLP-aware policy in four applications: art, sphinx3, mcf, andswim.

This is because the MLP-aware policy is not aware of DRAM banks and row buffer locality in the DRAM

system. It relies only on the information about how many misses are outstanding at the same time, as discussed

in Section 3.5. In contrast, our mechanism explicitly measures and estimates the BLP and row-hit rate in the

DRAM system to determine whether a line is likely to be low-cost when re-fetched later.

5.1.2. Why Is Write-Caused Interference Awareness Desirable? Both the MLP-aware and LPA policies

degrade performance forapplu, libquantum, leslie3d, wrf, andGemsFDTD, even though the read traffic (i.e.,

misses or the sum of row hits and row conflicts) and BLP do not change compared to the baseline, as shown

in Figure 9(a) and (b). The reason for the degradation can be found by analyzing the write traffic shown in

Figure 10(a). Even though the total write traffic does not increase, LPA and MLP-aware replacement policies

increase row-conflict writes compared to the baseline. Thisindicates that these policies increase write-caused

interference, causing DRAM performance to degrade due to a large number of idle cycles on the DRAM data

bus. In fact, MLP-aware and LPA policies degradelibquantum’s performance by 27.0% and 22.0%.

When employed with LPA, WIA reduces the number of row conflicts to as many as the baseline LRU

for applu, libquantum, leslie3d, andwrf as shown in Figure 10(a). It also leads to fewer row conflicts than

the baseline forGemsFDTD. Hence, by reducing write-caused interference when employed with LPA, WIA

recovers the performance degradation due to LPA, and sometimes even improves performance compared to

the baseline (forGemsFDTDby 3.3%) as shown in Figure 8.

Additionally, WIA alone (without LPA) improves performance for lucas, cactusADM, soplex,andomnetpp

20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ill

io
n

D
R

A
M

 w
rit

es

row hits
row conflicts

Base
MLP

LPA
WIA

LPA-WIA

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

les
lie

3d

wrf

Gem
sF

DTD

luc
as

so
ple

x

ca
ctu

sA
DM

om
ne

tp
p

0.00

0.05

0.10

0.15

0.20

0.25

M
ill

io
n

D
R

A
M

 r
ea

ds

gc
c
ga

lge
l

h2
64

re
f

(a) Traffic

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
gg

re
ga

te
 B

LP

base
MLP
LPA
WIA
LPA-WIA

ar
t
sp

hin
x3

m
cf

sw
im

ap
plu

lib
qu

an
tu

m

Gem
sF

DTD

les
lie

3d

wrf
luc

as

ca
ctu

sA
DM

so
ple

x

om
ne

tp
p

gc
c
ga

lge
l

h2
64

re
f

(b) Aggregate BLP

Figure 10. DRAM write traffic and aggregate BLP

by increasing row-hit writes (rather than row-conflict writes) compared to the baseline, thereby reducing

write-caused interference. Note that forlucas, cactusADMandomnetpp, WIA also increases aggregate BLP

for writes, reducing their average latency cost. On the other hand, the MLP-aware policy suffers performance

degradation or cannot improve performance for these applications due to its unawareness of write-caused

interference in the DRAM system.

5.1.3. Combining LPA and WIA When combined as described in Section 3.3, the performance benefit

of each mechanism is obtained additively. This can be justified by observing that the improved DRAM

characteristics for reads and writes of each individual mechanism in Figures 9 and 10 do not significantly

change for LPA-WIA. We conclude that our DRAM-aware replacement policies significantly reduce costly

cache misses and evictions, thereby improving performancesignificantly on a single-core system.

5.1.4. Effect on System with PrefetchingIn this section, we discuss the DRAM-aware replacement policy

in a system with prefetching. When the DRAM-aware policy is naively employed with prefetching, there are

two problems that can reduce its effectiveness. First, useful prefetches that are marked as low-cost by LPA

can be evicted (just because they are marked as low-cost) from the last-level cache before they are used. This

reduces the effectiveness of prefetching and therefore canhurt performance compared to the baseline LRU

policy without LPA. Second, useless prefetches that are notmarked as low-cost can stay in the cache for a

long time consuming cache space. This can reduce cache efficiency by evicting useful cache lines.

To overcome these problems, we take prefetch usefulness into account in LPA replacement decisions. The

basic idea is 1) to ignore the low-cost bit of prefetches thatare estimated as useful so that LPA does not evict

useful prefetches that are not used yet even if they are predicted to be low-cost, and 2) to evict prefetches that

are likely-useless earlier so that cache space can be used for demand and useful prefetches.

We measure prefetch accuracy on an interval-basis. In each interval, if the estimated prefetch accu-

racy from the previous interval is greater than theusefulprefetchthreshold, the low-cost bits of prefetched

lines are disregarded by LPA in the current interval. Similarly, when prefetch accuracy is less thanuse-

lessprefetchthreshold, prefetched lines are prioritized for replacement.

21

On the other hand, WIA does not require to be prefetch-aware.This is because writes are not immediately

critical to an application’s progress. Writes become critical only when the DRAM controller cannot service

demands and useful prefetches (i.e., reads) due to write-caused interference. Servicing many writes quickly

so that reads can be serviced without interruption of writesfor a long time leads to high performance.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

IP
C

 n
or

m
al

iz
ed

 to
 b

as
el

in
e

base
pref
MLP
LPA-WIA

Figure 11. DRAM-aware re-

placement with prefetching

Figure 11 shows the average performance of the baseline withno prefetching,

stream prefetching (32 streams, prefetch degree of 4, prefetch distance of 6 cache

lines), MLP-aware, and DRAM-aware replacement (LPA and WIAtogether). We

empirically setusefulprefetchthresholdas 0.5 anduselessprefetchthresholdas

0.2. Prefetch accuracy is measured every 100K processor cycles.

The DRAM-aware replacement policy improves performance by8.2% com-

pared to prefetching whereas the MLP-aware policy improvesperformance only

by 4.4%. This is because the MLP-aware policy is not aware of DRAM charac-

teristics or prefetch usefulness. We conclude that DRAM-aware replacement is

effective in a system with prefetching by taking prefetch usefulness into account.

5.2. Multi-Core Results

We evaluate our mechanisms on a 4-core system with a shared last-level cache. Due to space limitation, we

report only average system performance across 17 randomly-selected workloads. Figure 12 shows average

weighted speedup (WS) and harmonic mean of speedups (HS) forthe baseline LRU, MLP-aware, LPA, WIA,

and LPA-WIA replacement policies.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

V
al

ue
 o

f m
et

ric

(a) WS

0.0

0.1

0.2

0.3

0.4

0.5
V

al
ue

 o
f m

et
ric

base
MLP
LPA
WIA
LPA-WIA

(b) HS

Figure 12. Performance on 4-core system

LPA alone improves WS and HS by 4.6% and 8.4% compared

to the baseline LRU by evicting low-cost lines while keepinghigh-

cost lines for the application running on each core. WIA alone also

significantly improves system performance by 4.7%/4.6% (WS/HS).

WIA is more effective in a CMP system than a single-core system.

This is because write-caused interference becomes more severe since

more reads are generated by multiple cores. Therefore it is more im-

portant to service writes quickly so that reads can receive quick ser-

vice without being interfered-with by writes in multi-coresystems.

When combined together, LPA and WIA improve WS and HS by 9.5% and 12.3%. On the other hand, the

MLP-aware policy improves only HS by 3.4%. Its performance benefit is is small mainly due to its unaware-

ness of DRAM characteristics. We conclude that our DRAM-aware mechanisms are also very effective and

improve system performance significantly on multi-core systems.

22

6. Related Work

To our knowledge, this is the first paper that proposes cache replacement that is aware of the characteristics

of the DRAM system. Our approach is to integrate last-level cache and DRAM design tightly. Although

there has been significant amount of work in both DRAM and last-level cache management, these mainly

considered each component in isolation rather than designing one to be aware of the other.

6.1. DRAM Access Scheduling and Buffer Management Policies

Many DRAM scheduling and buffer management policies [18, 13, 14, 12, 6, 8] have been proposed in

previous works. Their mechanisms aim to improve DRAM throughput by taking advantage of row buffer

locality and bank-level parallelism in the DRAM system. Ourlast-level cache policies assume that the un-

derlying DRAM controller exploits these characteristics.Therefore, our mechanisms should work better with

a DRAM controller that better exploits the DRAM characteristics. For example, our mechanisms improve

system performance (HS) by 13.0% on a 4-core system with parallelism-aware memory scheduling [12].

Most previous DRAM scheduling policies [18, 12, 6, 8] do not address how to manage write-caused in-

terference for high DRAM throughput. In contrast, our write-caused interference-aware (WIA) mechanism

evicts dirty lines intelligently from the last-level cacheso that overall write-caused interference can be re-

duced. As such, WIA is orthogonal to these DRAM scheduling and buffer management policies.

Other proposals [9, 13, 19, 7] discuss write buffer management polices and DRAM scheduling for writes.

Our baseline employs one of the most recently proposed policies (that does not consider any write for DRAM

scheduling until the write buffer is full). For memory intensive applications, this policy is reported to tolerate

read-to-write switching penalties better than other alternatives with today’s high-bandwidth DDR DRAM

systems due to their large write-caused interference [7].

As shown in Section 3, our mechanisms allow the underlying DRAM controller and write buffer manage-

ment policies to better exploit row buffer locality and BLP for both reads and writes by evicting less costly

lines that can exploit those characteristics better.

6.2. Last-Level Cache Management

Many cache replacement/insertion policies were proposed to improve temporal/spatial locality [1, 16, 2].

These are all orthogonal to our work and can be combined with our mechanisms to make them DRAM

characteristic-aware.

Jeong and Dubois were the first to propose a replacement policy for a cache with two miss costs (local and

remote memory access) [4, 5]. Qureshi et. al. showed that an MLP-aware replacement policy can signifi-

cantly improve performance by taking into account concurrency level of misses in the memory system [17].

However, none of these policies are aware of DRAM characteristics. We have extensively analyzed and

qualitatively and quantitatively compared our proposals to the MLP-aware policy in Sections 3.5 and 5.

23

Some other studies propose aggressive early writeback policies [9, 7, 21], which proactively send write-

backs of dirty lines to the DRAM before they are replaced. These proactive policies also aim to reduce

write-caused interference to reads. However, these mechanisms require significant additional hardware and

state machines that search for dirty lines to be evicted fromthe last-level cache. In contrast, our proposal is a

simple replacement policy that takes into account the cost of both reads and writes in the DRAM system. As

such, our mechanisms can be combined with this prior work to obtain larger benefits than each alone.

7. Conclusion

This paper makes a case for designing the last-level cache policies in a manner that is aware of DRAM

characteristics. Previous cache replacement policies overwhelmingly optimize for minimizing cache misses

and ignore critical DRAM performance characteristics thataffect the cost of each miss: row buffer locality,

bank-level parallelism, and write-caused interference. We show that taking these DRAM characteristics into

account in the last-level cache replacement policy can significantly improve entire system performance.

Our mechanisms are not limited to DRAM technology-based main memory systems. Other emerging

memory technologies are very likely to employ multiple banks and row buffers to provide high bandwidth

and low latency. They will also likely impose high write-caused interference due to high bus frequency. As

such, the key ideas of our mechanism can be seamlessly applied to emerging memory technologies, and our

proposal can possibly be even more beneficial in such systemsdue to longer read/write latencies.

References
[1] E. G. Hallnor and S. K. Reinhardt. A compressed memory hierarchy using an indirect index cache. InWMPI, 2004.
[2] A. Jaleel, K. Theobald, S. C. S. Jr, and J. Emer. High performance cache replacement using re-reference interval prediction

(rrip). In ISCA-37, 2010.
[3] JEDEC.JEDEC Standard: DDR3 SDRAM STANDARD (JESD79-3D). http://www.jedec.org/standards-documents/docs/jesd-

79-3d.
[4] J. Jeong and M. Dubois. Optimal replacements in caches with two miss costs. InProceedings of the eleventh annual ACM

symposium on Parallel algorithms and architectures, 1999.
[5] J. Jeong and M. Dubois. Cost-sensitive cache replacement algorithms. InHPCA-9, 2003.
[6] C. J. Lee, O. Mutlu, V. Narasiman, and Y. N. Patt. Prefetch-aware DRAM controllers. InMICRO-41, 2008.
[7] C. J. Lee, V. Narasiman, E. Ebrahimi, O. Mutlu, and Y. N. Patt. DRAM-aware last-level cache writeback: Reducing write-caused

interference in memory systems. Technical Report TR-HPS-2010-002, The University of Texas at Autin, Apr. 2010.
[8] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt. Improving memory bank-level parallelism in the presence of prefetching. In

MICRO-42, 2009.
[9] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens. Eager writeback - a technique for improving bandwidth utilization. InMICRO-33,

2000.
[10] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fairness in SMT processors. InISPASS.
[11] Micron. 2Gb DDR3 SDRAM, MT41J512M4 - 64 Meg x 4 x 8 banks. http://download.micron.com/pdf/datasheets/dram/ddr3/.
[12] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling: Enhancing both performance and fairness of shared DRAM

systems. InISCA-35, 2008.
[13] C. Natarajan, B. Christenson, and F. Briggs. A study of performance impact of memory controller features in multi-processor

server environment. InWMPI, pages 80–87, 2004.
[14] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing memory systems. InMICRO-39, 2006.
[15] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi. Pinpointing representative portions of large Intel

Itanium programs with dynamic instrumentation. InMICRO-37, 2004.
[16] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer. Adaptive insertion policies for high-performance caching. In

ISCA-34, 2007.
[17] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt. A casefor mlp-aware cache replacement. InISCA-33, 2006.
[18] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.Owens. Memory access scheduling. InISCA-27, 2000.
[19] J. Shao and B. T. Davis. A burst scheduling access reordering mechanism. InHPCA-13, 2007.
[20] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultaneous multithreading processor. InASPLOS-9, pages

164–171, 2000.
[21] J. Stuecheli, D. Kaseridis, D. Daly, H. C. Hunter, and L.K. John. The virtual write queue: coordinating DRAM and last-level

cache policies. InISCA-37, pages 72–82, 2010.

24

[22] Z. Zhang, Z. Zhu, and X. Zhang. A permutation-based pageinterleaving scheme to reduce row-buffer conflicts and exploit data
locality. In ISCA-27, 2000.

25

