# **The Dirty-Block Index**

#### Vivek Seshadri

#### Abhishek Bhowmick • Onur Mutlu Phillip B. Gibbons • Michael A. Kozuch • Todd C. Mowry



# Summary

- Problem: Dirty bit organization in caches does not match queries
  - Inefficiency and performance loss
- The Dirty-Block Index (DBI)
  - Remove dirty bits from cache tag store
  - DRAM row-oriented organization of dirty bits
- Efficiently respond to queries
  - Get all dirty blocks of a DRAM row; Is block B dirty?
- Enables efficient implementation of many optimizations
  - DRAM-aware writeback, bypassing cache lookup, reducing ECC cost, ...
- Improves performance while reducing overall cache area
  - 28% performance over baseline, 6% over state-of-the-art (8-core)
  - 8% cache area reduction

# **Information: Organization and Query**



**Mismatch leads to inefficiency** 

#### **Mismatch between Organization and Query**



#### **Metadata: Information About a Cache Block**



## **Block-Oriented Metadata Organization**



## **Block-Oriented Metadata Organization**



## **Block-Oriented Metadata Organization**



## **Focus of This Work**



# Outline

#### ✓ Introduction

- Shortcomings of Block-Oriented Organization
- The Dirty-Block Index (DBI)
- Optimizations Enabled by DBI
- Evaluation
- Conclusion

## **DRAM-Aware Writeback**

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]



2. Row buffer hits are faster and more efficient than row misses

## **DRAM-Aware Writeback**

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

Last-Level Cache

#### ----> Dirty Block

Proactively write back all other dirty blocks from the same DRAM row



Significantly increases the DRAM write row hit rate Get all dirty blocks of DRAM row 'R'

#### **Shortcoming of Block-Oriented Organization**

# Get all dirty blocks of DRAM row 'R'

#### **Shortcoming of Block-Oriented Organization**

## Get all dirty blocks of DRAM row 'R'

Set of blocks co-located in DRAM ~8KB = 128 cache blocks



#### **Shortcoming of Block-Oriented Organization**

# Get all dirty blocks of DRAM row 'R'

Requires many expensive (possibly unnecessary) tag lookups

Cache Tag Store

## Inefficient

Significantly increases tag store contention

## Many Cache Optimizations/Operations

#### DRAM-aware Writeback Bulk DMA

Cache Flushing

#### **DRAM Write Scheduling**

#### Bypassing Cache Lookup Metadata for Dirty Blocks

Load Balancing Memory Accesses

## **Queries for the Dirty Bit Information**

# Get all dirty blocks that belong to a coarse-grained region

Cache Flushing

Block-based dirty bit organization is inefficient for both queries

# Load Bals block 'B' dirty?sses

# Outline

#### ✓ Introduction

- ✓ Shortcomings of Block-Oriented Organization
- The Dirty-Block Index (DBI)
- Optimizations Enabled by DBI
- Evaluation
- Conclusion





## **DBI Semantics**

- A block in the cache is dirty *if and only if* 1. The DBI has a valid entry for the DRAM row that contains the block, and
- 2. The dirty bit for the block in the bit vector of the corresponding DBI entry is set

## **DBI Semantics by Example**



### **Benefits of DBI**

# Get all dirty blocks of DRAM row 'R' A single lookup to Row R in the DBI Compared to 128 lookups with existing organization

# Is block 'B' dirty? DBI is faster than the tag store

# Outline

#### ✓ Introduction

- ✓ Shortcomings of Block-Oriented Organization
- ✓ The Dirty-Block Index (DBI)
- Optimizations Enabled by DBI
- Evaluation
- Conclusion



Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]



# **2** Bypassing Cache Lookups

Mostly-No Monitors [HPCA 2003], SkipCache [PACT 2012]

If an access is likely to miss, we can bypass the tag lookup!

Reduces access latency/energy; Reduces tag store contention



# **3** Reducing ECC Overhead

ECC-Cache [IAS 2009], Memory-mapped ECC [ISCA 2009], ECC-FIFO [SC 2009] Dirty block – Requires error correction Clean block – Requires only error detection





ECC-Cache [IAS 2009], Memory-mapped ECC [ISCA 2009], ECC-FIFO [SC 2009] Dirty block – Requires error correction Clean block – Requires only error detection



# **DBI – Other Optimizations**

- Load balancing memory accesses in hybrid memory
- Better DRAM write scheduling
- Fast cache flushing
- Bulk DMA coherence

#### (Discussed in paper)

. . .

# Outline

#### ✓ Introduction

- ✓ Shortcomings of Block-Oriented Organization
- ✓ The Dirty-Block Index (DBI)
- Optimizations Enabled by DBI
- Evaluation
- Conclusion

# **Evaluation Methodology**

- 2.67 GHz, single issue, OoO, 128-entry instruction window
- Cache Hierarchy
  - 32 KB private L1 cache, 256 KB private L2 cache
  - -2MB/core Shared L3 cache
- DDR3-1066 DRAM
  - -1 channel, 1 rank, 8 banks, 8KB row buffer, FR-FCFS, open row policy
- SPEC CPU2006, STREAM
- Multi-core
  - -102 2-core, 259 4-core, and 120 8-core workloads
  - Multiple metrics for performance and fairness

## Mechanisms

- Dynamic Insertion Policy (Baseline) (ISCA 2007, PACT 2008)
- DRAM-Aware Writeback (DAWB) (TR-HPS-2010-2 UT Austin)
- Virtual Write Queue (ISCA 2010)
- Skip Cache (PACT 2012)
- Dirty-Block Index
  - + No Optimization
  - + Aggressive Writeback
  - + Cache Lookup Bypass
  - + Both Optimizations (DBI+Both)



# **Effect on Writes and Tag Lookups**



## **System Performance**



## **Other Results in Paper**

- Detailed cache area analysis (with and without ECC)
- DBI power consumption analysis
- Effect of individual optimizations
- Other multi-core performance/fairness metrics
- Sensitivity to DBI parameters
- Sensitivity to cache size/replacement policy

# Conclusion

- The Dirty-Block Index
  - Key Idea: DRAM-row oriented dirty-bit organization
- Enables efficient implementation of several optimizations
  - DRAM-Aware writeback, cache lookup bypass, Reducing ECC cost
  - 28% performance over baseline, 6% over best previous work
  - 8% reduction in overall cache area
- Wider applicability
  - Can be applied to other caches
  - Can be applied to other metadata (e.g., coherence)

# **The Dirty-Block Index**

#### Vivek Seshadri

#### Abhishek Bhowmick • Onur Mutlu Phillip B. Gibbons • Michael A. Kozuch • Todd C. Mowry



## **Backup Slides**

### **Cache Coherence**

#### **Exclusive unmodified Shared Unmodified** →Invalid Ε S D Μ 0

**Exclusive modified** Shared modified

# **Operation of a Cache with DBI**



### **DBI Design Parameters**

## DBI Granularity (g)

#### Number of blocks tracked by each entry



### **DBI Design Parameters – Example**



## **Effect on Writes and Tag Lookups**



#### **System Performance**

