
Dynamic Predication of Indirect Jumps
José A. Joao*, Onur Mutlu‡, Hyesoon Kim*, and Yale N. Patt*

*Department of Electrical and Computer Engineering
The University of Texas at Austin
{joao,hyesoon,patt}@ece.utexas.edu

‡Microsoft Research
onur@microsoft.com

Abstract—Indirect jumps are used to implement increasingly-
common programming language constructs such as virtual func-
tion calls, switch-case statements, jump tables, and interface calls.
Unfortunately, the prediction accuracy of indirect jumps has
remained low because many indirect jumps have multiple targets
that are difficult to predict even with specialized hardware.

This paper proposes a new way of handling hard-to-predict
indirect jumps: dynamically predicating them. The compiler
identifies indirect jumps that are suitable for predication along
with their control-flow merge (CFM) points. The microarchitec-
ture predicates the instructions between different targets of the
jump and its CFM point if the jump turns out to be hard-
to-predict at run time. We describe the new indirect jump
predication architecture, provide code examples showing why
it could reduce the performance impact of jumps, derive an
analytical cost-benefit model for deciding which jumps and
targets to predicate, and present preliminary evaluation results.

I. INTRODUCTION

Indirect branches are becoming more common as an increas-
ing number of programs is written in object-oriented languages
such as Java, C#, and C++. To support polymorphism [4],
which significantly eases the development of large software
projects, these languages include virtual function calls that are
implemented using indirect jump instructions in the instruc-
tion set architecture (ISA). Previous research has shown that
modern object-oriented languages result in significantly more
indirect branches than traditional languages [3]. In addition to
virtual function calls, indirect branches are commonly used in
the implementation of programming language constructs such
as switch-case statements, jump tables, and interface calls [2].

Unfortunately, current pipelined processors are not good at
predicting the target address of an indirect jump if multiple
different targets are exercised at run-time. Such hard-to-predict
indirect jumps not only limit processor performance and cause
wasted energy consumption but also contribute significantly
to the performance difference between traditional and object-
oriented languages [14]. The goal of this paper is to develop
a new technique to reduce the performance impact of indirect
jump mispredictions.

II. BASIC IDEA

We propose a new way of handling hard-to-predict indirect
jumps: dynamically predicating them. Our technique stems
from the observation that program control-flow paths starting
from different targets of some indirect jump instructions
usually merge at some point in the program, which we call the
control-flow merge (CFM) point. The compiler identifies such
indirect jump instructions (called hammock indirect jumps)
along with their CFM points and conveys them to the mi-
croarchitecture through modifications in the ISA. When the
hardware fetches such a jump, it estimates whether or not the
jump is hard to predict using a confidence estimator [7]. If the

Manuscript submitted: 29 April 2007. Manuscript accepted: 17 May 2007.
Final manuscript received: 25 May 2007.

jump is hard-to-predict, the microarchitecture predicates the
instructions between N targets of the indirect branch and the
CFM point.1 When the processor reaches the CFM points on
all N different target paths, it inserts select-μops to reconcile
the data values produced on each path and continues execution
on the control-independent path. When the indirect jump is
resolved, the instructions -if any- that correspond to the correct
target address do not need to be flushed from the pipeline. If
the jump would have actually been mispredicted, its dynamic
predication saves a pipeline flush, improving performance.

III. CONDITIONAL VS. INDIRECT JUMPS
Our approach is inspired by the dynamic predication of

conditional branches [11], [10], which was proposed to reduce
the performance impact of branch mispredictions. However,
there are two fundamental differences between the dynamic
predication of conditional branches and indirect jumps:2

1. There are exactly two possible paths after a conditional
branch. In contrast, the number of possible paths after an
indirect branch is dependent on the number of possible targets,
which can be very large. For example, an indirect jump
used to implement a switch statement in the SPEC CPU2006
perlbench benchmark has 57 static targets. Predicating a larger
number of target paths increases the likelihood that the correct
path will be in the pipeline when the branch is resolved,
but it also requires more complex hardware and increases the
amount of wasted work due to predication since only one path
is correct. Therefore, one important question in the dynamic
predication of indirect jumps is how to identify how many and
which targets of a jump should be predicated.

2. The target of a conditional branch is always available
at compile time. On the other hand, all targets of an indirect
jump may not be available at compile-time due to techniques
like dynamic linking and dynamic class loading. Hence, a
static compiler might not be able to convey to hardware
which targets of an indirect jump can profit from dynamic
predication. Another important question, therefore, is who (the
compiler or the hardware) should determine the targets that
should be dynamically predicated.

IV. WHY COULD IT WORK?
We first examine code examples to provide insights into

why dynamic predication of indirect jumps can improve per-
formance.

A. Virtual Function Call Example
Figure 1 shows a virtual function call (Inside) that is

responsible for 24% of all indirect jump mispredictions (using
a commonly-implemented branch target buffer-based indirect
jump predictor) in the SPEC 2006 FP benchmark povray
(a C++ ray tracing application). This function call has two

1N is determined per jump using compile- or run-time cost-benefit analysis.
2For the purposes of this paper we assume a conditional jump is always a

direct jump. A conditional indirect jump can be treated as an indirect jump
with one extra target, i.e. the next sequential instruction.

IEEE Computer Architecture Letters Vol. 6, 2007

Posted to IEEE & CSDL on 6/4/2007
DOI 10.1109/L-CA.2007.7 1556-6056/07/$25.00 © 2007 Published by the IEEE Computer Society

predominant targets and is implemented using an indirect call
instruction that is mispredicted 17.1% of the time. When target
Inside_Plane is taken (72% of all instances) 31 or 32
dynamic instructions are executed until the return instruction,
whereas when target Inside_Quadric is taken (23% of
all instances) 48 or 49 dynamic instructions are executed.
Both target paths merge at the return point of the virtual
function call. These two targets are interleaved in a difficult-
to-predict manner at run time. Dynamically predicating the
two target paths when the target is difficult-to-predict could
eliminate most target mispredictions at the cost of executing
useless instructions on one path. Note that the number of
wasted instructions would still be smaller than the number
of wasted instructions on a pipeline/window flush resulting
from a misprediction (which is at least equal to the instruction
window size of the processor in the steady state), assuming
the processor parameters shown in Table I.
1: #define Inside(x,y) ((*((y)->Methods->Inside_Meth)) (x,y))
2:
3: bool pov::Inside_Object(double*, pov::Object_Struct*) {
4: // ...
5: i = Inside(IPoint,Object)); // indirect call
6: return i; // CFM point of the target paths
7: }
8:
9: static int Inside_Plane (VECTOR IPoint, OBJECT *Obj) {
10: // 31 or 32 dynamic instructions
11: }
12:
13: static int Inside_Quadric (VECTOR IPoint, OBJECT *Obj) {
14: // 48 or 49 dynamic instructions
15: }

Fig. 1. A suitable indirect jump example from povray

B. Switch-Case Statement Example

Figure 2 shows a switch-case statement that is responsible
for 3% of all indirect jump mispredictions in the SPEC
2006 benchmark gcc. This is one of the many switch-case
statements used to perform common subexpression elimination
on the input program. This indirect jump has three static targets
that are respectively taken in 42%, 40%, and 18% of the
execution instances. Because this statement is dependent on
irregular input data, a BTB-based predictor mispredicts the
target of the indirect jump 80% of the time! Since the three
target paths merge at the end of the switch statement, this
indirect jump is amenable to dynamic predication. In fact
dynamically predicating all three target paths when the indirect
jump is seen would eliminate all mispredictions at the cost of
executing useless instructions. Note, however, that the number
of useless instructions is relatively small in each target path
(especially for targets 1 and 3) so the amount of wasted work
would be small compared to the amount of wasted work on a
full pipeline/window flush due to a misprediction.

We found many similar switch-case statements with
few dynamically-exercised targets in gcc, perlbench,
perlbmk, and sjeng. Also, virtual functions similar to the
one shown in Figure 1 exist in SPEC 2000/2006 program
portions written in C++ and object-oriented-style C (e.g.
in gcc, gap, eon, sjeng, povray). Building on the
insights we develop from code structures suitable for dynamic
predication, we next develop an analytical cost-benefit model
that can be used to decide when it is profitable to dynamically
predicate an indirect jump compared to predicting it.

V. COST-BENEFIT MODEL

Figure 3 shows a control flow graph for an indirect jump
with 3 targets, where targets A and B are dynamically pred-
icated. Assuming target A is the correct target, instructions
on the path from target B to the CFM point are the overhead

1: switch (code) { // indirect jump
2: case PC: case CC0: case CONST: // 10 cases - target 1
3: // 2 instructions
4: break;
5: case REG: // target 2
6: // 15-23 dynamic instructions
7: break:
8: case default: // target 3
9: break;
10: }
11: // CFM point of the indirect jump
12: // ...

Fig. 2. A suitable indirect jump example from gcc

of predication. On the other hand, if target C is the correct
target, all the dynamically predicated instructions are useless
and have to be flushed when the indirect jump is resolved.

icall [R1]

A B C

CFM

Fig. 3. Control Flow
Graph for an indirect
jump with 3 targets.

In general, every time a jump with M
targets is dynamically predicated with
N targets (N ≤ M), the processor
incurs the overhead of fetching and ex-
ecuting the instructions on the incorrect
targets. The average fetch overhead of
predicating one particular indirect jump
in terms of instructions is the sum of the
overhead when one of the predicated
paths is correct and the overhead when
all of the predicated paths are incorrect.
When a particular target i is correct -
which happens with probability fi-, the
instructions on all the other predicated

paths are useless (Overheadi). When none of the predicated
targets is correct, we assume the processor continues fetching
the maximum number of instructions (fetch width) every
cycle, until the jump is resolved and the pipeline is flushed.
Equation 1 gives the overhead of indirect jump predication.

dpred overhead =

NX

i=1

(fi ∗ Overheadi) +

MX

i=N+1

(fi ∗ Max fetch) (1)

Overheadi =

NX

j=1,j �=i

nj (2)

Max fetch = jump resolution cycles ∗ fetch width (3)

jump resolution cycles: Machine-specific branch resolution latency in cycles

We use profiling results for each indirect jump that include
the number of targets (M), the probability of each target (fi),
and the average number of dynamic instructions between the
indirect jump and the CFM point for each target (ni).

An indirect jump candidate is selected if the overhead of
predication is less than the overhead of indirect jump predic-
tion (Equation 4). The overhead of indirect jump prediction is
the expected number of wrong-path instructions fetched.

Select if dpred overhead < Max fetch ∗ misprediction rate (4)

misprediction rate: Jump-specific or average branch misprediction rate

VI. SUPPORT FOR INDIRECT JUMP PREDICATION

A. Compiler and ISA Support
The candidates for indirect jump predication are selected

using control-flow analysis and profiling. Control-flow analysis
finds the CFM points for each indirect jump. The CFM
point for an indirect call is the instruction after the call.
The CFM point for a switch statement is the first instruction
after the statement ends. Then, we profile the benchmarks to
characterize the indirect jumps and obtain the data to use
the analytical model from Section V to choose the indirect
jumps that satisfy Equation 4. In this paper we restrict the
implementation to 2-target predication, and we choose the two
most frequently executed targets for each indirect jump.

IEEE Computer Architecture Letters Vol. 6, 2007

The indirect jumps selected for dynamic predication are
marked in the executable binary with a different opcode,
and include the CFM point encoded relative to the indirect
jump and the statically selected targets. Even though these
special instructions increase the code size, the number of static
jumps selected for dynamic predication in the current set of
benchmarks is not significant (see Table II).
B. Hardware Support

The hardware required to dynamically predicate indirect
jumps is similar to that of the diverge-merge processor
(DMP) [10]. The main difference is in the definition of
predicates: the predicate for a predicated path is TRUE if the
actual target of the indirect jump is the starting address of
the corresponding path. If more than two targets are predi-
cated, additional contexts are required, including PC (program
counter), GHR (global history register), RAS (return address
stack), and RAT (register alias table - see [10] for context
definition). Additionally, the select-μop generation has to use
the predicates for all the paths that merge at the CFM point.

VII. EXPERIMENTAL METHODOLOGY

A. Simulation Methodology
We use a Pin-based [12] cycle-accurate x86 simulator to

evaluate indirect jump predication. Our baseline processor
parameters are shown in Table I. The baseline uses a 4K-entry
BTB to predict indirect jumps [13]. The experiments are run
using 5 SPEC CPU2000 INT benchmarks, 3 SPEC CPU2006
INT/C benchmarks, 1 SPEC CPU2006 FP/C++ benchmark
and 1 other C++ benchmark. We chose those benchmarks
in SPEC 2000 INT and 2006 INT/C++ suites that gain at
least 5% performance with a perfect indirect jump predictor.
Each benchmark is run for 200 million x86 instructions with
the reference input set. All binaries are compiled with Intel’s
production compiler (ICC) using -O3 optimizations.

TABLE I
BASELINE PROCESSOR CONFIGURATION.

Front End 64KB, 4-way I-cache; 8-wide fetch, decode, rename;
64KB perceptron predictor [8]; min. 30-cycle mispred. penalty

Execution Core 512-entry reorder buffer; 8 all-purpose functional units
Caches 64KB D-L1; 1MB, 32-way, 10-cycle unified L2; 64B lines
Memory 300-cycle min. latency; bus at 4:1 freq. ratio; stream prefetcher
Dyn. Predication 2KB enhanced JRS confidence estimator [7] (12-bit history,
Support threshold 14); 32 predicate registers; 1 CFM register [10]

VIII. EXPERIMENTAL EVALUATION

A. Indirect Jump Selection
Figure 4 shows the percentage of indirect jump mispredic-

tions that can be avoided by dynamic predication of indirect
jumps selected according to the analytical model in Section V,
using up to the indicated number of statically-selected targets.
38% of mispredictions can be avoided by predicating only
2 targets. On average, predicating even only 2 targets gives
66% of the misprediction coverage of predicating an unlimited
number of targets. Therefore, we use 2-target predication for
our preliminary performance evaluations.

B. Preliminary Evaluation
The Dynamic-pred bars on Figure 5 show the performance

improvement of indirect jump dynamic predication for the 2
most frequently-executed targets, selected based on profiling.
Even though this implementation is the simplest realistic
implementation of indirect jump predication, it still improves
IPC by 6.7% on average, without increasing the hardware
complexity beyond that of DMP [10].

Table II shows more details for each benchmark. Note
that, even with 2-target predication, 45.1% of the dynamically
predicated indirect jumps are potentially useful because they

0

10

20

30

40

50

60

70

80

90

100

P
er

ce
nt

 o
f

M
is

pr
ed

ic
te

d
In

di
re

ct
 B

ra
nc

he
s

(%
)

2 targets
3 targets
4 targets
5 targets
6 targets
7 targets
8+ targets

gc
c

cra
fty eo

n
pe

rlb
mk

ga
p

pe
rlb

en
ch

gc
c0

6
sje

ng
po

vr
ay

ric
ha

rd
s

am
ea

n

Fig. 4. Ideal coverage of indirect jump mispredictions vs. number of targets.

0

10

20

30

40

50

60

70

80

90

100

IP
C

 d
el

ta
 (

%
)

Dynamic-pred
Perf-conf
Perf-target
Perf-conf-target
Perf-IBP
TTC
TTC+Dyn-pred

gc
c

cra
fty eo

n
pe

rlb
mk

ga
p

pe
rlb

en
ch

gc
c0

6
sje

ng
po

vr
ay

ric
ha

rd
s

hm
ea

n

Fig. 5. Performance of indirect jump dynamic predication.

are mispredicted and one of the predicated targets is the correct
target. The reduction in the number of pipeline flushes is
significant, 18.8% on average, and is the main reason for
the observed performance improvement. Even though dynamic
predication requires fetching more than one path, the total
number of fetched instructions is reduced by 9.5% on average
(due to eliminated pipeline flushes), which would result in
energy savings in the front end of the processor. Although
the number of executed instructions includes the select-μops
inserted at the CFM points, the processor executes 2.8% fewer
instructions with dynamic predication of indirect jumps.

C. Potential of Improved Dynamic Predication
We performed four idealized experiments to explore the

potential of indirect jump dynamic predication. The results
on Figure 5 show increasing potential performance benefit.

• Perf-conf uses a perfect confidence estimator: each in-
stance of an indirect jump is dynamically predicated if
and only if the jump was mispredicted.

• Perf-target always includes the correct target in the pair
of predicated targets, which improves performance by
a significant 14.7%. Therefore, we plan to explore at
least two ways of improving dynamic predication: (a)
better methods of selecting targets to predicate using
dynamic information instead of solely using statically-
selected targets; (b) predicating more than two targets
to increase the probability of having the correct target
(which also increases the overhead of dynamic predica-
tion). Figure 4 shows that there is potential to further
reduce the number of indirect jump mispredictions by
dynamically predicating up to 5 targets. Our future work
will focus on hardware and software heuristics to select
how many and which targets to dynamically predicate.

• Perf-conf-target combines perfect confidence and perfect
target, i.e. it perfectly predicates the selected indirect
jumps (while preserving the overhead of the extra pred-
icated path). The 4.6% performance improvement pro-
vided by this model over Perf-target shows that having

IEEE Computer Architecture Letters Vol. 6, 2007

TABLE II
CHARACTERISTICS OF THE EVALUATED BENCHMARKS

gcc crafty eon perlbmk gap perlbench gcc06 sjeng povray richards AVG

baseline IPC 1.01 1.41 1.89 1.08 1.02 0.73 0.58 1.16 1.71 1.04 1.04
indirect jump mispredictions per kilo instructions (MPKI) 6.30 1.10 2.60 11.30 3.30 15.40 6.10 2.90 2.30 6.10 5.74
indirect jumps selected for 2-target dynamic predication 21 2 4 6 19 4 14 1 1 1 -

% of useful dyn. pred. instances, i.e. mispr. IJ predicated w/ correct target 55.4 31.3 44.7 32.8 44.7 30.4 75.9 28.2 40.9 67.0 45.1
% potentially useful dyn. pred. instances, i.e. mispr. IJ predic. w/o corr. target 23.1 60.3 27.2 52.1 29.8 66.7 8.4 32.8 13.1 19.9 33.3

average select-μops per dyn. pred. instance 3.2 5.9 9.3 6.9 5.8 6.2 7.9 8.0 10.0 6.0 6.9
Δ pipeline flushes (%) due to indirect jump dynamic predication -27.6 -2.6 -28.4 -21.8 -8.3 -21.4 -28.1 -3.6 -15.1 -37.8 -18.8

Δ fetched instructions (%) due to indirect jump dynamic predication -16.61 -1.27 -9.78 -10.88 -4.23 -13.36 -12.80 -1.75 -5.19 -14.08 -9.53
Δ executed instructions (%) due to indirect jump dynamic predication -6.47 -0.44 -4.43 1.72 -1.55 -2.85 -15.20 0.97 1.50 2.47 -2.79

Δ energy (%) due to indirect jump dynamic predication -10.20 -1.05 -6.13 -6.59 -2.82 -8.92 -12.40 -1.03 -2.29 -8.42 -6.63

a better confidence estimator becomes more important
when the correct target is selected for predication.

• Perf-IBP perfectly predicts all indirect jumps. The 30.7%
performance improvement shows the importance of indi-
rect jump mispredictions as a performance limiter in these
set of benchmarks. We expect indirect jumps to hinder
performance even more significantly in large commercial
code bases written using object-oriented programming.

Overall, these ideal experiments suggest that the perfor-
mance provided by dynamic predication of indirect jumps can
further be improved significantly.

The last two bars in Figure 5 show the IPC improvement of
(1) a 32-entry tagged target cache (TTC) [5] and (2) both TTC
and dynamic predication implemented together. TTC improves
IPC by 5.1% and dynamic predication of indirect jumps
provides a 3.6% performance benefit over TTC.3 A specialized
indirect jump predictor like TTC requires significant additional
hardware. In contrast, if DMP [10] is already implemented for
conditional branches, adding dynamic predication of indirect
jumps requires very small hardware modifications. In fact,
we believe that it is not cost-effective to implement dynamic
predication only for indirect jumps. On the contrary, dynamic
predication hardware is a substrate that can be (and perhaps
should be) used for both conditional and indirect jumps.
Therefore, our proposal could eliminate or reduce the need
to implement a specialized indirect jump predictor.

IX. RELATED WORK

Compiler-based predication [1] has been used to reduce
the branch misprediction penalty due to conditional branches
by converting control dependencies to data dependencies.
Dynamic predication was first proposed to eliminate the mis-
prediction penalty due to simple hammock branches [11] and
later extended to handle a large set of complex control-flow
graphs [10]. These previous approaches were not applicable
to indirect branches. We build on the diverge-merge proces-
sor [10] to reduce the misprediction penalty of indirect jumps.

Most current processors use the BTB [13] to predict the
target addresses of indirect jumps. A BTB predicts the last
taken target of the indirect jump as the current target and
is therefore inaccurate at predicting “polymorphic” indirect
jumps that frequently switch between different targets. Spe-
cialized indirect jump predictors [5], [6] were proposed to
predict the target addresses of indirect jumps. Recently, VPC
prediction [9] was proposed to use the existing conditional
branch prediction hardware to predict indirect jump targets.
These previous approaches work well if the target is pre-
dictable based on past history. In contrast, dynamic predication
of indirect jumps can reduce the performance impact of an
indirect jump even if it is hard to predict.

3We found confidence estimation accuracy drops significantly when TTC
is used. The benefit provided by dynamic predication can be increased by
customizing the confidence estimator for TTC. We leave this for future work.

X. CONCLUSION

We introduced the concept of dynamic predication of indi-
rect jumps. Code examples from existing applications suggest
why dynamically predicating hard-to-predict indirect jumps
can work. Our preliminary results show that even with un-
tuned heuristics, dynamic predication of indirect jumps can
provide significant performance improvements. If dynamic
predication hardware is already implemented for conditional
jumps, adding indirect jump predication requires very small
modifications. We believe the importance of indirect jump
predication will increase in the future as more programs
will be written in object-oriented styles to improve ease
of programming and to reduce software development costs.
Our future work will focus on improving the heuristics and
cost-benefit models used to select indirect jumps and target
addresses to predicate.

XI. ACKNOWLEDGMENTS

We thank Aater Suleman, members of the HPS research
group, and the reviewers for their comments and suggestions.
We gratefully acknowledge the support of the Cockrell Foun-
dation, Intel, AMD and the Advanced Technology Program of
the Texas Higher Education Coordinating Board.

REFERENCES

[1] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren, “Conversion of
control dependence to data dependence,” in POPL-10, 1983.

[2] B. Alpern, A. Cocchi, S. Fink, D. Grove, and D. Lieber, “Efficient
implementation of Java interfaces: Invokeinterface considered harmless,”
in OOPSLA, 2001.

[3] B. Calder, D. Grunwald, and B. Zorn, “Quantifying behavioral dif-
ferences between C and C++ programs,” Journal of Programming
Languages, vol. 2, no. 4, pp. 323–351, 1995.

[4] L. Cardelli and P. Wegner, “On understanding types, data abstraction,
and polymorphism,” ACM Computing Surveys, vol. 17, no. 4, Dec. 1985.

[5] P.-Y. Chang, E. Hao, and Y. N. Patt, “Target prediction for indirect
jumps,” in ISCA-24, 1997.

[6] K. Driesen and U. Hölzle, “Accurate indirect branch prediction,” in
ISCA-25, 1998.

[7] E. Jacobsen, E. Rotenberg, and J. E. Smith, “Assigning confidence to
conditional branch predictions,” in MICRO-29, 1996.

[8] D. A. Jiménez and C. Lin, “Dynamic branch prediction with percep-
trons,” in HPCA-7, 2001.

[9] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. S. Cohn,
“VPC Prediction: Reducing the cost of indirect branches via hardware-
based dynamic devirtualization,” in ISCA-34, 2007.

[10] H. Kim, J. A. Joao, O. Mutlu, and Y. N. Patt, “Diverge-merge processor
(DMP): Dynamic predicated execution of complex control-flow graphs
based on frequently executed paths,” in MICRO-39, 2006.

[11] A. Klauser, T. Austin, D. Grunwald, and B. Calder, “Dynamic hammock
predication for non-predicated instruction set architectures,” in PACT,
1998.

[12] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building customized
program analysis tools with dynamic instrumentation,” in PLDI, 2005.

[13] E. H. Sussenguth, “Instruction control sequence,” U.S. Patent 3 559 183,
Jan. 26, 1971.

[14] M. Wolczko, Benchmarking Java with the Richards
benchmark, http://research.sun.com/people/mario/java
benchmarking/richards/richards.html.

IEEE Computer Architecture Letters Vol. 6, 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

