
DASH: Deadline-Aware High-Performance

Memory Scheduler for Heterogeneous Systems

with Hardware Accelerators

Hiroyuki Usui, Lavanya Subramanian

Kevin Chang, Onur Mutlu

DASH source code is available at GitHub
https://github.com/CMU-SAFARI/HWASim

Current SoC Architectures

 Heterogeneous agents: CPUs and HWAs

 HWA : Hardware Accelerator

 Main memory is shared by CPUs and HWAs  Interference

2

CPU CPU CPU CPU

Shared Cache
HWA HWA HWA

DRAM Controller

DRAM

How to schedule memory requests from CPUs and HWAs
to mitigate interference?

DASH Scheduler: Executive Summary
 Problem: Hardware accelerators (HWAs) and CPUs share the same

memory subsystem and interfere with each other in main memory

 Goal: Design a memory scheduler that improves CPU performance while
meeting HWAs’ deadlines

 Challenge: Different HWAs have different memory access characteristics
and different deadlines, which current schedulers do not smoothly handle

 Memory-intensive and long-deadline HWAs significantly degrade CPU
performance when they become high priority (due to slow progress)

 Short-deadline HWAs sometimes miss their deadlines despite high priority

 Solution: DASH Memory Scheduler

 Prioritize HWAs over CPU anytime when the HWA is not making good progress

 Application-aware scheduling for CPUs and HWAs

 Key Results:

1) Improves CPU performance for a wide variety of workloads by 9.5%

2) Meets 100% deadline met ratio for HWAs

 DASH source code freely available on the GitHub

3

Outline

 Introduction

 Problem with Existing Memory Schedulers for
Heterogeneous Systems

 DASH: Key Ideas

 DASH: Scheduling Policy

 Evaluation and Results

 Conclusion

4

Outline

 Introduction

 Problem with Existing Memory Schedulers for
Heterogeneous Systems

 DASH: Key Ideas

 DASH: Scheduling Policy

 Evaluation and Results

 Conclusion

5

Existing QoS-Aware Scheduling Scheme

 Dynamic Prioritization for a CPU-GPU System [Jeong et al., DAC 2012]

 Dynamically adjust GPU priority based on its progress

 Lower GPU priority if GPU is making a good progress to achieve its
target frame rate

 We apply this scheme for a wide variety of HWAs

 Compare HWA’s current progress against expected progress

 Current Progress :
(The number of finished memory requests for a period)
(The number of total memory requests for a period)

 Expected Progress :
(Elapsed cycles in a period)
(Total cycles in a period)

 Every scheduling unit, dynamically adjust HWA priority

 If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU

 If (Current Progress) > (Expected Progress) : HWA < CPU

 If (Current Progress) <= (Expected Progress) : HWA = CPU

6

Problems in Dynamic Prioritization

 Dynamic Prioritization for a CPU-HWA system

 Compares HWA’s current progress against expected progress

 Current Progress :
(The number of finished memory requests for a period)
(The number of total memory requests for a period)

 Expected Progress :
(Elapsed cycles in a period)
(Total cycles in a period)

 Every scheduling unit, dynamically adjust HWA priority

 If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU

 If (Current Progress) > (Expected Progress) : HWA < CPU

 If (Current Progress) <= (Expected Progress) : HWA = CPU

7

1. An HWA is prioritized over CPU cores only when it is closed to HWA’s deadline

2. This scheme does not consider the diverse memory access characteristics of
CPUs and HWAs
• It treats each CPU and each HWA equally

The HWA often misses deadlines

Missing opportunities to improve system performance

Outline

 Introduction

 Problem with Existing Memory Schedulers for
Heterogeneous Systems

 DASH: Key Ideas

 DASH: Scheduling Policy

 Evaluation and Results

 Conclusion

8

Key Idea 1: Distributed Priority

 Problem 1: An HWA is prioritized over CPU cores only when it is close
to HWA’s deadline

 Key Idea 1: Distributed Prioritization for a CPU-HWA system

 Compares HWA’s current progress against expected progress

 Current Progress :
(The number of finished memory requests for a period)
(The number of total memory requests for a period)

 Expected Progress :
(Elapsed cycles in a period)
(Total cycles in a period)

 Dynamically adjust HWA priority based on its progress every scheduling unit

 If Expected Progress > EmergentThreshold (=0.9) : HWA > CPU

 If (Current Progress) > (Expected Progress) : HWA < CPU

 If (Current Progress) <= (Expected Progress) : HWA > CPU

9

Prioritize HWAs over CPU anytime when the HWA is not making good progress

Example: Scheduling HWA and CPU Requests

10

Alone Execution Timeline time

 Scheduling requests from 2 CPU applications and a HWA

 CPU-A : memory non-intensive application

 CPU-B : memory intensive application

Period = 20T

COMP.

H H H HH HDRAM H H H H

COMPUTATION

Req x10

HWA

Deadline for 10 Requests

T

COMP. COMP. COMP.

A A A

Req x1 Req x1 Req x1

DRAM

CPU-A Computation

COMP.

B B B B

Req x7
STALL COMP.

BDRAM

CPU-B

B B

DASH: Distributed Priority

11

 Distributed Priority (Scheduling unit = 4T)

COMP.

Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HDRAM

COMP.

Req x10

HWA

STALL

HWA>CPU
Current : 0 / 10
Expected : 0 / 20

DASH: Distributed Priority

12

 Distributed Priority (Scheduling unit = 4T)

COMP. COMP.

Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HDRAM BA

COMPUTATION

Req x10

B B

HWA

STALL

HWA<CPU
Current : 4 / 10
Expected : 5 / 20

DASH: Distributed Priority

13

 Distributed Priority (Scheduling unit = 4T)

COMP. COMP.

Req x1 Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HH HDRAM H HBA

COMPUTATION

Req x10

B B

HWA

STALL STALL

HWA>CPU
Current : 4 / 10
Expected : 8 / 20

DASH: Distributed Priority

14

 Distributed Priority (Scheduling unit = 4T)

COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HH HDRAM H HBA

COMPUTATION

Req x10

B B A B B B

HWA

STALL STALL

HWA<CPU
Current : 8 / 10
Expected : 12 / 20

DASH: Distributed Priority

15

 Distributed Priority (Scheduling unit = 4T)

COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

COMPUTATION

Req x10

B B A B B B A B

HWA

STALL STALL

HWA>CPU
Current : 8 / 10
Expected : 16 / 20

Problem2: Application-unawareness

 Problem 2 (Application-unawareness): Existing
memory schedulers for heterogeneous systems do no
consider the diverse memory access characteristics of CPUs
and HWAs

 Application-unawareness causes two problems

 Problem 2.1: When a HWA has high priority (i.e., not
measuring up to its expected progress), it interferes with all
CPU cores for a long time

 Problem 2.2: A HWA with a short period misses its deadlines
due to fluctuations in available memory bandwidth (due to
priority changes of other HWAs)

16

Problem 2.1 and Its Solution

 Problem 2.1 Restated: When HWA is low priority, it is
deprioritized too much  It becomes high priority as a result

and destroys CPU progress

 Goal: Avoid making the HWA high priority as much as possible

17

When low priority, no HWA request served

High Priority

When high priority, HWA causes all CPUs to stall

COMP. COMP.

Req x1 Req x1

CPU-A

COMP.

Req x7
STALLCPU-B

COMP.

H H H HH HDRAM H HBA

COMPUTATION

Req x10

B B

HWA

STALL STALL

HWA delays both A and B

Key Idea 2.1: Application-aware Scheduling for CPUs

18

Key Idea 2.1: HWA priority over CPUs should depend on CPU memory
intensity

• Not all CPUs are equal
• Memory-intensive cores are much less vulnerable to memory access latency
• Memory-non-intensive cores are much more vulnerable to latency

• While HWA has low priority, HWA is prioritized over memory-intensive
cores

A HB B B B

A > B > H when HWA is low priority

DRAM

Distributed Priority

A H HH

A > H > B

Application-aware Scheduling

B B

A: Memory-non-intensive, B: Memory-intensive

DASH: Application-aware Scheduling

 Distributed Priority (Scheduling unit = 4T)
COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

Req x10

B B A B B B A B

HWA

STALL STALL

High Priority Low Priority High Priority Low Priority High Priority

DASH: Application-aware Scheduling

20

 Distributed Priority (Scheduling unit = 4T)
COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

Req x10

B B A B B B A B

HWA

STALL STALL

 Application-aware Scheduling (Scheduling unit = 4T)

COMP.

Req x1

CPU-A

COMP.

Req x7
CPU-B

COMP.

H H H HDRAM

Req x10

HWA

STALL

STALL

High Priority Low Priority High Priority Low Priority High Priority

HWA>CPU-A&B
Current : 0 / 10 Expected : 0 / 20

High Priority

DASH: Application-aware Scheduling

21

 Distributed Priority (Scheduling unit = 4T)
COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

Req x10

B B A B B B A B

HWA

STALL STALL

 Application-aware Scheduling (Scheduling unit = 4T)

COMP.

Req x1

CPU-A

COMP.

Req x7
CPU-B

COMP.

H H H HDRAM

Req x10

HWA

A HH H

COMP.STALL

STALL

High Priority Low Priority High Priority Low Priority High Priority

High Priority Low Priority

CPU-A > HWA > CPU-B
Current : 4 / 10 Expected : 4 / 20

DASH: Application-aware Scheduling

22

 Distributed Priority (Scheduling unit = 4T)
COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

Req x10

B B A B B B A B

HWA

STALL STALL

 Application-aware Scheduling (Scheduling unit = 4T)

COMP.

Req x1

CPU-A

COMP.

Req x7
CPU-B

COMP.

H H H HDRAM

Req x10

HWA

A HH H A HH H

COMP.STALL COMP.

STALL

High Priority Low Priority High Priority Low Priority High Priority

High Priority Low Priority Low Priority

CPU-A > HWA > CPU-B
Current : 7 / 10 Expected : 8 / 20

DASH: Application-aware Scheduling

23

 Distributed Priority (Scheduling unit = 4T)
COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

Req x10

B B A B B B A B

HWA

STALL STALL

 Application-aware Scheduling (Scheduling unit = 4T)

COMP.

Req x1

CPU-A

COMP.

Req x7
CPU-B

COMP.

H H H HDRAM

Req x10

HWA

A HH H A HH H A B B B

COMP.STALL COMP. COMP.

STALL

High Priority Low Priority High Priority Low Priority High Priority

CPU-A > HWA > CPU-B
Current : 10 / 10 Expected : 12 / 20

High Priority Low Priority Low Priority Low Priority

DASH: Application-aware Scheduling

24

 Distributed Priority (Scheduling unit = 4T)
COMP. COMP. COMP. COMP.

Req x1 Req x1 Req x1

CPU-A

COMP.

Req x7
STALL COMP.CPU-B

COMP.

H H H HH HDRAM H H HB HA

Req x10

B B A B B B A B

HWA

STALL STALL

 Application-aware Scheduling (Scheduling unit = 4T)

COMP.

Req x1

CPU-A

COMP.

Req x7
CPU-B

COMP.

H H H HDRAM

Req x10

HWA

A HH H A HH H A B B B B B B B

COMP.STALL COMP. COMP.

STALL COMP.

High Priority Low Priority High Priority Low Priority High Priority

High Priority Low Priority Low Priority Low Priority Low Priority

Saved Cycles

Problem 2.2 and Its Solution
 Problem 2.2: A HWA with a short-deadline-period misses its deadlines

due to fluctuations in available memory bandwidth (due to priority
changes of other HWAs)

 Key Idea 2.2: Estimate the worst-case memory access latency and give
a short-deadline-period HWA the highest priority for
(WorstCaseLatency) * (NumberOfRequests) cycles close to its deadline

 WorstCaseLatency = tRC : the minimum time between two DRAM row
ACTIVATE commands

25

deadline

Low Priority

(WorstCaseLatency)*(#OfRequests) cycles

High Priority

Period start

HWA-A HWA-B

Period 63,041 Cycles 5,447 Cycles

Bandwidth 8.32 GB/s 475 MB/s

HWA-A: meets all its deadlines
HWA-B: misses a deadline every 2000 periods

DASH: Summary of Key Ideas

1. Distributed priority

2. Application-aware scheduling

3. Worst-case memory access latency based prioritization

26

Outline

 Introduction

 Problem with Existing Memory Schedulers for
Heterogeneous Systems

 DASH: Key Ideas

 DASH: Scheduling Policy

 Evaluation and Results

 Conclusion

27

DASH: Scheduling Policy

 DASH scheduling policy

1. Short-deadline-period HWAs with high priority

2. Long-deadline-period HWAs with high priority

3. Memory non-intensive CPU applications

4. Long-deadline-period HWAs with low priority

5. Memory-intensive CPU applications

6. Short-deadline-period HWAs with low priority

28

DASH: Scheduling Policy

 DASH scheduling policy

1. Short-deadline-period HWAs with high priority

2. Long-deadline-period HWAs with high priority

3. Memory non-intensive CPU applications

4. Long-deadline-period HWAs with low priority

5. Memory-intensive CPU applications

6. Short-deadline-period HWAs with low priority

29

Switch
probabilistically

Outline

 Introduction

 Problem with Existing Memory Schedulers for
Heterogeneous Systems

 DASH: Key Ideas

 DASH: Scheduling Policy

 Evaluation and Results

 Conclusion

30

Experimental Methodology (1/2)

 New Heterogeneous System Simulator

 We have released this at GitHub (https://github.com/CMU-SAFARI/HWASim)

 Configurations

 8 CPUs (2.66GHz), 32KB/L1, 4MB Shared/L2

 4 HWAs

 DDR3 1333 DRAM x 2 channels

 Workloads

 CPUs: 80 multi-programmed workloads

 SPEC CPU2006, TPC, NAS parallel benchmark

 HWAs:

 Image processing

 Image recognition [Lee+ ICCD 2009] [Viola and Jones CVPR 2001]

 Metrics

 CPUs : Weighted Speedup

 HWAs : Deadline met ratio (%)

31

Experimental Methodology (2/2)

 Parameters of the HWAs

 Configurations of 4 HWAs

32

Period Bandwidth Deadline
Group

IMG : Image Processing 33 ms 360MB/s Long

HES : Hessian 2 us 478MB/s Short

MAT : Matching (1) 20fps 35.4 us 8.32 GB/s Long

MAT : Matching (2) 30fps 23.6 us 5.55 GB/s Long

RSZ : Resize 46.5 – 5183 us 2.07 – 3.33 GB/s Long

DET : Detect 0.8 – 9.6 us 1.60 – 1.86 GB/s Short

Configuration

Config-A IMG x 2, HES, MAT(2)

Config-B HES, MAT(1), RSZ, DET

Evaluated Memory Schedulers
 FRFCFS-St, TCM-St: FRFCFS or TCM with static priority for HWAs

 HWAs always have higher priority than CPUs

 FRFCFS-St: FRFCFS [Zuravleff and Robinson US Patent 1997, Rixner et al. ISCA 2000] for CPUs

 Prioritizes row-buffer hits and older requests

 TCM-St: TCM [Kim+ MICRO 2010] for CPUs

 Always prioritizes memory-non-intensive applications

 Shuffles thread ranks of memory-intensive applications

 FRFCFS-Dyn: FRFCFS with dynamic priority for HWAs [Jeong et al., DAC 2012]

 HWA’s priority is dynamically adjusted based on its progress

 FRFCFS-Dyn0.9: EmergentThreshold = 0.9 for all HWAs (Only after 90% of the HWA’s period
elapsed, the HWA has higher priority than CPUs)

 FRFCFS-DynOpt: Each HWA has different EmergentThreshold to meet its deadline

 DASH: Distributed Priority + Application-aware scheduling for CPUs + HWAs

 TCM is used for CPUs to classify memory intensity of CPUs

 EmergentThreshold = 0.8 for all HWAs

33

Config-A Config-B

IMG HES MAT HES MAT RSZ DET

0.9 0.2 0.2 0.5 0.4 0.7 0.5

Performance and Deadline Met Ratio
 Weighted Speedup for CPUs

 Deadline Met Ratio (%) for HWAs

34

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH

FRFCFS-DynOpt

FRFCFS-Dyn0.9

TCM-St

FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET

FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

Performance and Deadline Met Ratio
 Weighted Speedup for CPUs

 Deadline Met Ratio (%) for HWAs

35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH

FRFCFS-DynOpt

FRFCFS-Dyn0.9

TCM-St

FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET

FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

1. DASH achieves 100% deadline met ratio

Performance and Deadline Met Ratio
 Weighted Speedup for CPUs

 Deadline Met Ratio (%) for HWAs

36

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH

FRFCFS-DynOpt

FRFCFS-Dyn0.9

TCM-St

FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET

FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

+9.5%

1. DASH achieves 100% deadline met ratio
2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt

that meets the most of HWAs’ deadlines (Optimized for HWAs)

Performance and Deadline Met Ratio
 Weighted Speedup for CPUs

 Deadline Met Ratio (%) for HWAs

37

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

DASH

FRFCFS-DynOpt

FRFCFS-Dyn0.9

TCM-St

FRFCFS-St

Weighted Speedup

IMG HES MAT RSZ DET

FRFCFS-St 100 100 100 100 100

TCM-St 100 100 100 100 100

FRFCFS-Dyn0.9 100 99.4 46.01 97.98 97.14

FRFCFS-DynOpt 100 100 99.997 100 99.99

DASH 100 100 100 100 100

+9.5%

1. DASH achieves 100% deadline met ratio
2. DASH achieves better performance (+9.5%) than FRFCFS-DynOpt

that meets the most of HWAs’ deadlines (Optimized for HWAs)
3. DASH achieves comparable performance to FRFCFS-Dyn0.9

that frequently misses HWAs’ deadlines (Optimized for CPUs)

DASH Scheduler: Summary
 Problem: Hardware accelerators (HWAs) and CPUs share the same

memory subsystem and interfere with each other in main memory

 Goal: Design a memory scheduler that improves CPU performance while
meeting HWAs’ deadlines

 Challenge: Different HWAs have different memory access characteristics
and different deadlines, which current schedulers do not smoothly handle

 Memory-intensive and long-deadline HWAs significantly degrade CPU
performance when they become high priority (due to slow progress)

 Short-deadline HWAs sometimes miss their deadlines despite high priority

 Solution: DASH Memory Scheduler

 Prioritize HWAs over CPU anytime when the HWA is not making good progress

 Application-aware scheduling for CPUs and HWAs

 Key Results:

1) Improves CPU performance for a wide variety of workloads by 9.5%

2) Meets 100% deadline met ratio for HWAs

 DASH source code freely available on the GitHub

38

DASH: Deadline-Aware High-Performance

Memory Scheduler for Heterogeneous Systems

with Hardware Accelerators

Hiroyuki Usui, Lavanya Subramanian

Kevin Chang, Onur Mutlu

DASH source code is available at GitHub
https://github.com/CMU-SAFARI/HWASim

Backup Slides

40

Probabilistic Switching of Priorities

 Each Long-deadline-period HWA 𝑥 has probability 𝑃𝑏(𝑥)

 Scheduling using 𝑃𝑏(𝑥)

 With a probability 𝑃𝑏 𝑥

 Memory-intensive applications > Long-deadline-period HWA 𝑥

 With a probability 1 − 𝑃𝑏 𝑥

 Memory-intensive applications < Long-deadline-period HWA 𝑥

 Controlling 𝑃𝑏(𝑥)

 Initial : 𝑃𝑏(𝑥) = 0

 Every 𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔𝑈𝑛𝑖𝑡:

 If CurrentProgress > ExpectedProgress : 𝑃𝑏 𝑥 += 1%

 If CurrentProgress < ExpectedProgress : 𝑃𝑏 𝑥 −= 5%

41

Priorities for Multiple Short-deadline-period HWAs

42

LowHWA-a High Low High Low High

HWA-b
Low High

Period(a)
UPL(a)

UPL(b)

Period(b)

• A HWA with shorter deadline period is given higher priority (HWA-a > HWA-b)
• UPL = Urgent Period Length : tRC x NumberOfRequests + α
• During UPL(b), HWA-a will interfere HWA-b for (UPL(a) x 2) cycles at maximum

• 𝑈𝑃𝐿 𝑏 /𝑃𝑒𝑟𝑖𝑜𝑑(𝑎) = 2
• HWA(b) might fail the deadline due to the interference from HWA-a

interfereinterfere

High Priority

Low Priority

Priorities for Multiple Short-deadline-period HWAs

43

LowHWA-a High Low High Low High

HWA-b
Low High

Period(a)
UPL(a)

UPL(b)

Period(b)

• A HWA with shorter deadline period is given higher priority (HWA-a > HWA-b)
• UPL = Urgent Period Length : tRC x NumberOfRequests + α
• During UPL(b), HWA-a will interfere HWA-b for (UPL(a) x 2) cycles at maximum

• 𝑈𝑃𝐿 𝑏 /𝑃𝑒𝑟𝑖𝑜𝑑(𝑎) = 2
• HWA(b) might fail the deadline due to the interference from HWA-a

• HWA-b is prioritized when the time remaining in the period is
(UPL(b) + UPL(a) x 2) cycles

HighHigh

High Priority

Low Priority

Storage required for DASH

 20 bytes for each long-deadline-period HWA

 12 bytes for each short-deadline-period HWA

44

For long-deadline-period HWA

Name Function

Curr-Req Number of requests completed in a deadline period

Total-Req Total Number of requests to be completed in a deadline period

Curr-Cyc Number of cycles elapsed in a deadline period

Total-Cyc Total number of cycles in a deadline period

Pb Probability for the priority switching between memory-intensive
applications and HWA

For a short-deadline-period HWA

Name Function

Priority-Cyc Indicates when the priority is transitioned to high

Curr-Cyc Number of cycles elapsed in a deadline period

Total-Cyc Total number of cycles elapsed in a deadline period

Simulation Parameter Details

 SchedulingUnit : 1000 CPU cycles

 SwitchingUnit : 500 CPU cycles

 ClusterFactor : 0.15

 Fraction of total memory bandwidth allocated to memory-non-
intensive CPU applications

45

Performance breakdown of DASH

46

• DA-D : Distributed Priority
• DA-D+L : DA-D + application-aware priority for CPUs
• DA-D+L+S : DA-D+L + worst-case latency based priority for short-deadline HWAs
• DA-D+L+S+P (DASH) : DA-D+L+S + probabilistic prioritization

Performance breakdown of DASH

47

• DA-D : Distributed Priority
• DA-D+L : DA-D + application-aware priority for CPUs
• DA-D+L+S : DA-D+L + worst-case latency based priority for short-deadline HWAs
• DA-D+L+S+P (DASH) : DA-D+L+S + probabilistic prioritization

Distributed priority improves performance (Max +9.5%)

Performance breakdown of DASH

48

• DA-D : Distributed Priority
• DA-D+L : DA-D + application-aware priority for CPUs
• DA-D+L+S : DA-D+L + worst-case latency based priority for short-deadline HWAs
• DA-D+L+S+P (DASH) : DA-D+L+S + probabilistic prioritization

Application-aware priority for CPUs improves performance especially
as the memory intensity increases (Max +7.6%)

Performance breakdown of DASH

49

• DA-D : Distributed Priority
• DA-D+L : DA-D + application-aware priority for CPUs
• DA-D+L+S : DA-D+L + worst-case latency based priority for short-deadline HWAs
• DA-D+L+S+P (DASH) : DA-D+L+S + probabilistic prioritization

Probabilistic prioritization achieves good balance between
performance and fairness

Performance breakdown of DASH

 Deadline Met Ratio

50

Name IMG HES MAT RSZ DET

Deadline group Long Short Long Long Short

FRFCFS-DynOpt 100 100 99.997 100 99.99

DA-D 100 99.999 100 100 99.88

DA-D+L 100 99.999 100 100 99.87

DA-D+L+S 100 100 100 100 100

DA-D+L+S+P 100 100 100 100 100

1. Short-deadline HWAs (HES and DET) misses deadlines on distributed
priority (DA-D) and application-aware priority for CPU (DA-D+L)

2. Worst-case latency based priority (DA-D+L+S) enables short-deadline
HWAs to meet their deadline

Impact of EmergentThreshold

51

CPU performance sensitivity to EmergentThreshold

DASH can meet all deadlines with a high EmergentThreshold value (=0.8)

Impact of EmergentThreshold

52

Emergent
Threshold

Config-A Config-B

HES MAT HES MAT RSZ DET

0-0.1 100 100 100 100 100 100
0.2 100 99.987 100 100 100 100
0.3 99.992 93.74 100 100 100 100
0.4 99.971 73.179 100 100 100 100
0.5 99.945 55.76 99.9996 99.751 100 99.997
0.6 99.905 44.691 99.989 94.697 100 99.96
0.7 99.875 38.097 99.957 86.366 100 99.733
0.8 99.831 34.098 99.906 74.69 99.886 99.004
0.9 99.487 31.385 99.319 60.641 97.977 97.149
1 96.653 27.32 95.798 33.449 55.773 88.425

Deadline-met ratio(%) of FRFCFS-Dyn

Impact of EmergentThreshold

53

Emergent
Threshold

Config-A Config-B

HES MAT HES MAT RSZ DET

0-0.8 100 100 100 100 100 100
0.9 100 99.997 100 99.993 100 100
1 100 68.44 100 75.83 95.93 100

Deadline-met ratio(%) of DASH

Impact of ClusterFactor

54

CPU performance sensitivity to Cluster Factor

ClusterFactor is an effective knob for trading off CPU performance and fairness

Evaluations with GPUs

 8 CPUs + 4 HWA (Config-A) + GPU

 6 GPU traces : 3D mark and game

55

+10.1%

Sensitivity to Number of Agents

56

As the number of agents increases, DASH achieves greater performance improvement

8HWAs : IMG x 2, MAT x 2, HES x 2, RSZ x 1, DET x 1

Sensitivity to Number of Agents

57

Sensitivity to Number of Channels

58

DASH: Application-aware scheduling for HWAs

 Categorize HWAs as long-deadline-period vs. short-
deadline-period statically

 Adjust the priorities of each dynamically

 Short-deadline-period HWA: becomes high priority if time
remaining in period = tRC x NumberOfRequests + α

 Long-deadline-period HWA: becomes high priority if Current
progress ≤ Expected progress

59

