
SAFARI Technical Report No. 2011-003 (July 20, 2011)

Congestion Control for Scalability in Bufferless On-Chip Networks

George Nychis† Chris Fallin† Thomas Moscibroda§
gnychis@ece.cmu.edu cfallin@ece.cmu.edu moscitho@microsoft.com

Srinivasan Seshan† Onur Mutlu†
srini@cs.cmu.edu onur@cmu.edu

†Carnegie Mellon University §Microsoft Research

SAFARI Technical Report No. 2011-003

July 20, 2011

Abstract

In this paper, we present network-on-chip (NoC) design and contrast it to traditional network design, highlighting
both similarities and differences between NoCs and traditional networks. As an initial case study, we examine network
congestion in bufferless NoCs. We show that congestion manifests itself differently in a NoC than in a traditional
network. This both reduces system throughput in congested workloads for smaller NoC sizes (16 and 64 nodes), and
limits the scalability of the bufferless NoC in larger configurations (256 to 4096 nodes) even when data is mapped
with locality in mind. We propose a source throttling-based congestion control mechanism with application-level
awareness. This mechanism improves system performance by up to 28% (15% on average in congested workloads)
in smaller NoCs, and achieves linear throughput scaling in NoCs up to 4096 cores. Thus, we show an effective
application of a network-level concept, congestion control, to a class of networks – bufferless on-chip networks – that
has not been studied before by the networking community.

1 Introduction
One of the most important trends in computer architecture in recent years is the move towards multiple CPU cores on
a single chip. Common chip multiprocessor (CMP) sizes today range from 2 to 8 cores, and chips with hundreds or
thousands of cores are likely to be commonplace in the future [6,39].1 While this trend has helped address several key
roadblocks in computer architecture (e.g. power dissipation and single-core complexity), it has created many possible
new ones. One particular new challenge is the design of the interconnect between cores. Since this interconnect carries
all inter-cache and memory traffic, it plays a critical role in both CMP performance and efficiency.

Unfortunately, the traditional bus-based and other centrally-controlled designs used on small-CMPs do not scale
to the large or medium scale CMPs that are in development. As a result, the architecture research community is
moving away from traditional centralized interconnect scheduling, to distributed scheduling and routing [9], both on
2D meshes and over a variety of non-uniform topologies [19, 28]. The resulting designs are far more network-like
than traditional processor interconnects and are described as a network-on-chip (NoC). These designs must deal with
many network-like problems such as interconnect scalability, routing [35], congestion, and prioritization [10, 11, 20]
that have traditionally not been studied in the architecture community.

While not like traditional processor interconnects, these NoCs are also not like existing networks or even like
the traditional multi-chip interconnects used in large-scale multiprocessors [7, 32]. On-chip hardware implementation
constraints lead to a different tradeoff space for NoCs compared to most traditional off-chip networks: chip area/space,
power consumption, and implementation complexity are first-class considerations. These constraints make it hard to

1Intel has built their Single-chip Cloud Computer CMP with 48 cores [23], research chips with 80 cores [22] exist, one company has announced
a 100-core processor [49], and most recently a 1,000 core research system has been developed [50].

1

SAFARI Technical Report No. 2011-003 (July 20, 2011)

scale NoCs with buffers [35], use sophisticated routing and arbitration [8], and over-provision the network. Although
large-scale supercomputers have used processor-memory interconnects for many years (e.g., the SGI Origin [32]),
the tradeoffs in terms of latency, power, and complexity are different and network design considerations change as a
function of the on-chip environment, as we will discuss in § 3.3. These and other characteristics give NoCs a unique
flavor, and have important ramifications on solutions to traditional networking problems in a novel context.

In this paper, we explore the adaptation of network techniques and methodolgy for addressing two particular
issues in next-generation bufferless NoC design: congestion management and scalability. Bufferless NoCs have
recently gained serious consideration in the architecture community due to chip area and power constraints2. While
the bufferless NoC has been shown to operate efficiently under moderate workloads and limited network sizes (16 and
64 cores) [35], we find that with higher-intensity workloads and larger network sizes (e.g., 256 to 4096 cores), the
network operates inefficiently and does not scale effectively. As a consequence, application-level system performance
can suffer heavily. One work has proposed to solve this issue by simply switching to a buffered mode when congestion
occurs [25]. However, we wish to study the causes of inefficiency in bufferless NoCs and retain their advantages if
possible.

Through evaluation, we find that congestion is a major factor in limiting the efficiency and scalability of the
bufferless NoC. Unlike traditional networks, congestion is experienced in a fundamentally different way due to both
unique NoC properties and bufferless properties. While traditional networks suffer from congestion collapse at high
utilization, a NoC does not collapse due to the self-throttling nature of cores (i.e., the pipeline stalls). However,
congestion causes the system to run sub-optimally, and increasingly inefficiently with scale, due to unique bufferless
properties such as deflections and starvation (inability to inject in the network).

We develop a novel congestion-control mechanism suited to the unique properties of the NoC and bufferless
routing. By monitoring the starvation of the cores, we can detect impending congestion in the network more effec-
tively than by monitoring network latency. Because different applications respond very differently to congestion and
increases/decreases in network throughput, the network must be application-aware. We define an application-level
metric which can be estimated in the network, and allows for proper source throttling to alleviate congestion. By
controlling congestion, we improve system performance, and allow the network to scale more effectively. We make
the following contributions:
• We present the key differences of the NoC and bufferless NoCs from traditional networks to guide our study and

future networking research in NoCs.
• From a study of scalability and congestion, we find that the bufferless NoC’s scalability and efficiency are

limited by congestion. In small networks, congestion due to network-intensive workloads limits application-level
throughput. In large networks, even with locality (i.e., mapping an application’s data nearby in the network), the
per-node performance reduces as the network becomes more congested at larger design points.

• We propose a novel low-complexity and high-performance congestion control mechanism in a bufferless NoC that
is motivated by ideas from both networking and computer architecture. To our knowledge, this is the first work
that examines congestion in bufferless NoCs and provides an effective solution.

• Using comprehensive evaluations with a large number of real application workloads, we begin by evaluating
improved network efficiency for small (4x4 and 8x8) bufferless NoCs in which all nodes access data in shared
cache slices across the chip. We show our mechanism improves system performance by up to 28% (19%) in a
16-core (64-core) system with a 4x4 (8x8) mesh NoC, and improves performance by 15% on average in congested
workloads.

• Focusing on larger networks (in our case, 256 to 4096 cores), we evaluate the role of congestion control in conjunc-
tion with locality-aware data mapping to provide scalability in per-node performance. We show that even when
data is mapped locally (near its owning application) in the cache slices, congestion control is necessary to achieve
scalability in a bufferless NoC. At the high end (4096 cores), congestion control yields a 50% per-node throughput
improvement over the locality-mapped baseline, yielding a linear system throughput trend (constant per node) as
network size increaess.

2Existing prototypes show that NoCs can consume a substantial portion of system power (30% in the Intel 80-core Terascale chip [22], 40% in
the MIT RAW chip [46]).

2

SAFARI Technical Report No. 2011-003 (July 20, 2011)

T2 (deflection)

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

CPU
L1

L2 bank

Router
Memory

ControllerTo DRAM

0

0

1 2

3

12

T0 T1

T2

T1

S1

S2

D

ageFlit from S2:
ageFlit from S1:

BLESS (X,Y)-Routing Example:
 T0: An L1 miss at S1 generates an
 injection of a flit destined to D,
 and it is routed in the X-dir.

 T1: An L1 miss occurs at S2,
 destined to D, and it is routed in
 the Y-dir, as S1's flit is routed in
 the X-dir to the same node.

 T2: S2's flit is deflected due to
 contention at the router with
 S1's (older) flit for the link to D.

 T3+: S2's flit is routed back in the
 X-dir, then the Y-dir directly to D
 with no contention. (not shown)

Figure 1: 9 core CMP architecture with BLESS routing example.

2 Background
We first provide a brief background on on-chip architectures and bufferless NoCs. We refer the reader to [5, 8] for
an in-depth discussion. Section 3 describes key characteristics of on-chip networks that are different from traditional
networks.

2.1 NoCs in Multi-Core Architectures
In a chip multiprocessor (CMP) architecture, the NoC generally connects the processor nodes and their private caches
with the shared cache banks and memory controllers (see Figure 1). A NoC might also carry other control traffic,
such as interrupt requests, but it primarily exists to service cache miss requests. In this architecture, a high-speed
router exists at each node, which connects the core to its neighbors by links. The width of a link varies, but 128
bits is a typical value. Nodes interchange packets, which correspond to a cache coherence protocol specific to the
implementation; typical packets are small request and control messages, such as cache block read requests, and larger
data packets containing cache block data. Packets are partitioned into flits, units that are the width of a link and thus
serve as the atomic unit of traffic. Links typically have a latency of only one or two cycles, and are pipelined, so that
they can accept a new flit every cycle.

A variety of on-chip topologies have been proposed in the literature (e.g., [19, 27, 28, 30]), but the most typical
topology is the two-dimensional (2D) Mesh [8], which is implemented in several commercial [49, 51] and research
prototype [22, 23, 46] many-core processors. In this topology, each router has 5 input and 5 output channels/ports;
one from each neighbor and one from the network interface (NI). Furthermore, depending on the router architecture
and the arbitration policies (i.e., the number of pipelined arbitration stages), each packet spends between 1 cycle (in a
highly optimized best case [35]) and 4 cycles at each router before being forwarded to the next link.

Because router complexity is a critical design consideration in on-chip networks, current implementations tend to
use simple routing algorithms. The most common routing paradigm is x-y routing, i.e., a flit is first routed along the
x-direction until the destination’s y-coordinate is reached; then routed to the destination in y-direction.

2.2 Bufferless NoCs and Routing
The question of buffering is central to networking; and there has recently been great effort in the community to
determine the right amount of buffering in new types of networks, including for example data center networks [2].
The same discussions are ongoing also in on-chip networks [13, 25, 34, 35]. Specifically, recent work has shown
that it is possible to completely eliminate buffers from the routers of on-chip networks routers. In such bufferless
NoCs, application performance degrades minimally for low-to-moderate network intensity workloads, while some
work shows that power consumption decreases by 20-40%, router area on die is reduced by 75%, and implementation
complexity also decreases [13, 35]. While other evaluations have shown that optimizations to traditional buffered-
router designs can make buffers more area- and energy-efficient [34], bufferless design techniques such as those
in [13] address inefficiencies in bufferless design. In a bufferless NoC, the general system architecture does not differ

3

SAFARI Technical Report No. 2011-003 (July 20, 2011)

from traditional buffered NoCs. However, the lack of buffers requires different injection and routing algorithms in the
network. Figure 1 gives an example of injection, routing and arbitration.

As in a buffered NoC, injection and routing in a bufferless NoC (e.g., BLESS [35]) happen synchronously across
all cores on a clock cycle. When a core must send a packet to another core, (e.g., S1 to D at T0 in Figure 1), the core is
able to inject each flit of the packet into the network as long as one of its output links is free. Injection requires a free
output link since there is no buffer to hold the packet in the router. If no output link is free, the flit remains queued at
the processor level. An age field is initialized to 0 in the header and incremented at each hop. A flit is then routed to
a neighbor based on the routing algorithm (X,Y-Routing in our example), and the arbitration policy. With no buffers,
flits must pass through the router pipeline without stalling or waiting. Deflection is used to resolve port-contention
when two or more flits request the same output port.

Flits are arbitrated to output ports based on direction and age through the Oldest-First arbitration policy [35]. If
flits contend for the same output port, (in our example, the two contending for the link to D at time T2), ages are
compared, and the oldest flit obtains the port. The other contending flit(s) are deflected (misrouted [8]) – e.g., the
flit from S2 in our example. Ties in age are broken by other header fields to form a total order among all flits in the
network. Because a node in a 2D mesh network has as many output ports as input ports, routers never block. Though
some designs [21] drop packets under contention, this design does not, and therefore ACKs are not needed. Despite
simplicity, the policy is very efficient in terms of performance, and is livelock-free [35].

Note that many past systems have used this type of deflection routing (it is frequently known as hot-potato rout-
ing [3]). However, it is particularly well-suited for NoCs, and in this context, presents a set of challenges distinct from
those in traditional networks.

3 Characteristics of NoCs
With an understanding of NoC and bufferless NoC design, an important question that remains is: in what sense do
on-chip networks differ from other types of networks? These differences provide insight into what makes a NoC
interesting from a networking research point of view. The unique properties of NoCs guide our study, inform our
understanding of scalability, and guide the design of our congestion control mechanism. We present key properties
of both general and bufferless NoCs, and also contrast them with off-chip processor-memory interconnects as used in
large multiprocessors.

3.1 NoC Architecture Properties
First, we provide unique characteristics of general NoC architecture as compared to traditional networks. Such char-
acteristics are driven by program behavior and the first-class considerations in chip design: chip area/space consider-
ations, implementation complexity, and power.
• Topology: The topology is statically known, and usually very regular (e.g., a mesh). A change in topology will

impact various aspects, such as routing and traffic-load.
• Latency: Links and (heavily-pipelined) routers have latency much lower than traditional networks: 1-2 cycles.
• Routing: Arbitration and routing logic are designed for minimal complexity and low latency, because these router

stages typically must take no more than a few cycles.
• Coordination: Global coordination and network-wide optimizations, at least at a coarse grain, are possible and

often less expensive than truly distributed adaptive mechanisms, due to a relatively small known topology, and
low latency. Note that fine-grained control (e.g., packet routing) must remain a truly local decision. At a scale of
thousands of cycles or more, however, a central controller can feasibly observe the network state and adjust the
system accordingly.

• Links: Links are expensive, both in terms of hardware complexity and on-chip area. Therefore, links cannot easily
be overprovisioned like in other types of networks.

• Latency vs. Bandwidth: This tradeoff is very different in NoCs. Low latency is important for efficient operation,
and typically the allowable window of in-flight data is much smaller than in a large-scale network.

• Network Flows: Because many architectures will split the shared cache across several or all nodes in the system, a
program will typically send traffic to many nodes, often in parallel. Multithreaded programs also exhibit complex
communication patterns. There, the concept of a “network flow” is removed or greatly diminished.

4

SAFARI Technical Report No. 2011-003 (July 20, 2011)

• Traffic Patterns: Private cache miss behavior of applications, including locality-of-reference, phase behavior with
local and temporal bursts, and importantly, self-throttling [8], drive traffic patterns in a NoC.

• Throughput: NoCs lack a direct correlation between network throughput, and overall system throughput. As we
will show (§5), for the same network throughput, changing which L1 cache misses are serviced in the network can
change system throughput (measured as instructions per cycle per node) by up to 18%.

• Power: Because NoCs physically reside on one chip, the entire network shares a power and thermal budget.
Moreover, for CMPs, the NoC should not be the primary consumer of power: it is desirable to leave most of the
power budget for cores, cache slices, and other components that more directly affect system performance. The
existence of a constrained power budget distinguishes NoCs from traditional networks.

3.2 Bufferless NoC Architecture Properties
Bufferless NoCs have all of the unique characteristics found in general NoC architecture, as well as its own set of
unique properties. Such properties are driven by the routing, arbitration, and lack of buffers:
• Loss: Given that a packet can only be injected if there is at least one free output port, and is otherwise guaranteed

a link once in the network, the network is dropless.
• Retransmission: Without packet loss, there is no need for a retransmission scheme. Once a packet enters the

network, it is guaranteed livelock-free delivery [35]. If packet loss or corruption does occur, it is due to catastrophic
failure (e.g. a bit-flip or other transient fault) and is not ordinarily within the scope of the network.

• (N)ACKs: In a loss-free network, ACKs or NACKs are not needed, which would only utilize scarce link resources.
• In-Network Latency: In-network latency in a bufferless NoC is very stable and low, even under high congestion

with deflections (§4). Flits are quickly routed in the network, without incurring delay in router buffers.
• Injection Latency: Unlike in traditional networks, the injection latency (time from head-of-queue to entering the

network) can be significant (§4). Without a free output link, the design will prevent a core from injecting. Note
that in the worst case, this can lead to starvation, which is a fairness issue. (We will show in §7 that our mechanism
addresses this concern.)

3.3 On-Chip vs. Off-Chip Interconnect
A large body of work studies interconnects in large supercomputer or cluster-computer arrangements. Typically, sys-
tems using these networks fall into two categories: cache-coherent shared memory systems (also known as ccNUMA,
or cache-coherence non-uniform memory architecture [7, 32]), and message-passing systems [1]. The application
domain is limited to highly-parallel problems, because while many-core systems are motivated by physical scaling
trends in chip manufacturing, the main reason to build out a parallel system across many individual processors is to
enable fine-grained parallel computation. Additionally, on-chip placement yields new constraints for NoCs that are
not present in large off-chip interconnects for parallel systems. On-chip and off-chip interconnects can be compared
as follows:
• Latency: On-chip and off-chip interconnect must provide very low latency relative to traditional networks (e.g.

local or global IP networks) because they often form the backbone of a memory system or lie on the critical path
of communication-intensive parallel applications. For example, Myrinet and Infiniband, two common off-chip
supercomputer interconnects, achieve latencies less than 10µs, an order of magnitude smaller than TCP for small
messages [15]. However, on-chip networks typically provide latencies lower still than this: even a 100-cycle
cross-chip latency corresponds to only 50 ns on a 2 GHz processor.

• Power: Off-chip interconnect design is typically less concerned with network power than on-chip design for
two reasons. The first is environment: off-chip interconnects are used mainly in supercomputing applications
where power is a secondary concern to performance, and matters only insofar as cooling and packaging remains
feasible. The second is more fundamental: on-chip interconnect exists on a single chip with a global power budget.
Additionally, NoCs exist at a smaller scale: while link power is still significant, it does not dominate network
power, and so router power is a more significant component of total power and a greater target for optimization.

• Complexity: On-chip interconnect topology is more limited by wire-routing and layout than off-chip interconnect.
Clusters of supercomputer nodes can be arranged in three dimensions, and flexible fiber or copper cables can form

5

SAFARI Technical Report No. 2011-003 (July 20, 2011)

relatively complex topologies. In contrast, flattening a more complex topology onto a 2D chip is often difficult.
Folded tori [8] and flattened butterfly [28] NoCs have been proposed, but hypercubes (such as the Cosmic Cube [41]
off-chip interconnect) are more difficult on chip. Additionally, router complexity is a greater concern in on-chip
networks due to both tighter latency constraints (e.g., only a few cycles to make each routing decision) and limited
area for control logic. This can limit both router radix, with implications for more complex topologies, and the
routing schemes used.

• Traffic patterns: Traffic patterns seen in on-chip and off-chip interconnects can sometimes differ. Supercomputer
applications running on large systems with off-chip interconnects are often designed with communication cost in
mind. In the ideal case, computation will have as much locality as possible, and only truly necessary coordination
will use the interconnect. In addition, nodes in a system with off-chip interconnect almost always have a local
memory hierarchy that is used by the local computations – e.g., local memory controllers and DRAM banks [7].
In contrast, on-chip networks typically serve as the shared-memory backbone to a general-purpose multicore or
manycore CPU, and many shared-memory applications are interconnect-agnostic. Even when the operating system
and/or applications are NUMA (non-uniform memory access) aware and attempt to minimize interconnect cost,
on-chip designs place more burden on the interconnect by routing all accesses to the last-level cache and to memory
controllers over the network.

4 Limitations of Bufferless NoCs
In this section, we will show how the distinctive traits of NoCs place traditional networking problems in new contexts,
resulting in new challenges. While prior work [13, 35] has shown significant reductions in power and chip-area from
eliminating buffers in the network, that work has focused primarily on low-to-medium network load in conventionally
sized (4x4 and 8x8) NoCs. Higher levels of network load remain a challenge, and improving performance in these
cases increases the applicability of the efficiency gains. Furthermore, as the size of the CMP increases (e.g., to 64x64),
these efficiency gains from bufferless NoCs will become increasingly important. However, we will show that new
scalability challenges arise with larger network sizes that must be managed in an intelligent way.

We explore the limitations of bufferless NoCs from these dimensions – network load and network size – with
the goal of understanding scalability and efficiency of the bufferless NoC. First, in § 4.1, we show that as network
workload increases, application-level throughput reduces due to congestion in the network. This congestion manifests
itself differently than in traditional buffered networks by starving cores from injecting traffic in to the network: that
is, admission is a greater bottleneck than in-network deflection. In § 4.2, we monitor the effect of the congestion
on application-level throughput as we scale the size of the network from 16 to 4096 cores. Even with data locality
(i.e., intelligent data mapping to cache slices), we find that the congestion significantly reduces the scalability of the
bufferless NoC. These two fundamental motivations lead to congestion control for bufferless NoCs.

4.1 Limitation of Workload Intensity
We begin by studying the effects of high workload intensity in the bufferless NoC. To do so, we simulate 700 real-
application workloads in a 4x4 NoC (see methodology in §7.1). Our workloads span a range of network utilizations
exhibited by real applications; by sweeping over workload intensity, we hope to understand the impact of network load
on both network and application-layer performance.

Effect of Congestion at the Network-Level: Starting at the network layer, we evaluate the effects of workload
intensity on network-level metrics in the small-scale NoC. Figure 2(a) shows average network latency for each of the
700 workloads. Notice how per-flit network latency generally remains stable (within 2x from baseline to maximum
load), even when the network is under heavy load. This is in stark contrast to traditional buffered networks, in which
the per-packet network latency increases significantly as the load in the network increases. However, as we will
show in §4.2, network latency increases more with load in larger NoCs as other scalability bottlenecks come into
consideration.

Deflection routing shifts many effects of congestion from within the network to network admission. In a highly-
congested network, it may no longer be possible to efficiently inject packets into the network, because the router
encounters free slots less often. Such a situation is known as starvation. We define starvation rate (σ) as the fraction
of cycles (in some window of W cycles) in which a node tries to inject a flit but cannot:

6

SAFARI Technical Report No. 2011-003 (July 20, 2011)

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1av
g.

 n
et

 la
te

nc
y

(c
yc

le
s)

average network utilization

(a) Avg. net. latency in cycles (Each point
represents one of the 700 workloads).

0.0

0.1

0.2

0.3

0.4

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

st
ar

va
tio

n
ra

te

average network utilization

(b) As the network becomes more utilized, the
overall starvation rate rises significantly.

 0

 5

 10

 15

 20

 0 0.2 0.4 0.6 0.8 1in
st

ru
ct

io
n

th
ro

ug
hp

ut

average network utilization

unthrottling applications

(c) We unthrottle applications in a 4x4 net-
work to show suboptimal performance when
run freely.

Figure 2: The effect of congestion at the network and application level.

σ =
1

W

W

∑
i

starved(i) ∈ [0,1] (1)

Figure 2(b) shows that starvation rate grows superlinearly with network utilization. The starvation rates at higher
network utilizations are significant. Near 80% utilization, the average core in our 4x4 network is blocked from injecting
a flit into the network 30% of the time.

These two trends – relatively stable in-network latency, and high queueing latency at network admission – lead to
the conclusion that network congestion is better measured in terms of starvation than in terms of latency. When we
introduce our congestion-control mechanism in § 6, we will use this metric to drive decisions in controlling network
usage.

Effect of Congestion on Application-level Throughput: As a NoC is an integral component of a complete
multicore system, it is important to evaluate the effect of congestion at the application layer. In other words, network-
layer effects matter only insofar as they affect the performance of CPU cores. We define system throughput as the
application-level instruction throughput: for N cores, System Throughput = ∑

N
i IPCi, where IPCi gives instructions

per cycle at core i.
To show the effect of congestion on the application-level throughput, we take a network-heavy sample workload

and throttle all applications at a throttling rate swept up from 0. This throttling rate controls how often a router
that desires to inject a flit is blocked from doing so. Throttling a fixed workload thus allows us to vary the network
utilization over a continuum and observe the full range of network congestion. Figure 2(c) plots the resulting system
throughput as a function of average network utilization.

This static-throttling experiment yields two key insights. First, network utilization does not reach 1, i.e., the
network is never fully saturated even when unthrottled. The reason is that applications running on cores are naturally
self-throttling: A thread running on a core can only inject a relatively small number of requests into the network before
stalling to wait for the missing replies. Once stalled, a thread cannot inject further requests. This self-throttling nature
of applications helps to prevent congestion collapse, even at the highest possible load in the network.

Second, and importantly for congestion control, this experiment shows that injection throttling can yield increased
application-level throughput, even though it explicitly blocks injection some fraction of the time, because it reduces
network congestion significantly. In Figure 2(c), a gain of 14% is achieved with a simple static throttling point.

However, static and homogeneous throttling across all cores does not yield the best possible improvement. In
fact, as we will show in §5, throttling the wrong applications can significantly reduce system performance. This will

7

SAFARI Technical Report No. 2011-003 (July 20, 2011)

motivate the need for application-awareness. Dynamically throttling the proper applications yields more significant
system throughput improvements (e.g., up to 28% improvement as seen in §7), based on their relative benefit they
attain from injecting into the network. This is a key insight to our congestion control mechanism.

Key Findings: Congestion contributes to high starvation rates and increased network latency. Starvation rate is a
more accurate indicator of the level of congestion than network latency in a bufferless network. Although congestion
collapse does not occur at high network load, injection throttling can yield a more efficient operating point.

4.2 Limitation of Network Size

 0

 10

 20

 30

 40

 50

 60

16 64 256 1024 4096A
v

g
 N

et
 L

at
en

cy
 (

cy
cl

es
)

Number of Cores

high network utiliz
ation

low network utilization

(a) Average network latency under heavy load
increases with the CMP size.

 0

 0.1

 0.2

 0.3

 0.4

16 64 256 1024 4096

S
ta

rv
at

io
n
 R

at
e

Number of Cores

high network utiliz
ation

low network utilization

(b) Starvation rate significantly increases un-
der congestion as the size of the CMP in-
creases.

 0

 0.2

 0.4

 0.6

 0.8

 1

16 64 256 1024 4096T
h

ro
u
g

h
p

u
t

(I
P

C
/N

o
d
e)

Number of Cores

(c) The increased effects of congestion as the
CMP size increases, limits the scalability of
the NoC.

Figure 3: Scaling behavior: as network size increases, effect of congestion becomes more severe and scalability is limited.

As we motivated in the previous section, scalability of on-chip networks will become critical as core counts
continue to rise. In this section, we evaluate the network at sizes much larger than common 4x4 and 8x8 design
points [13, 35] to understand the scalability bottlenecks. In doing so, we model data locality (i.e., intelligent data
mapping) in the shared cache slices: the simple assumption of uniform data striping across all nodes no longer makes
sense at large scales. Indeed, taking locality as a first step is critical: with simple uniform striping (no locality), we
find that per-node throughput degrades by 73% from a 4x4 network to a 64x64 network with the same per-application
workload intensity.

In order to model locality in a reasonable way, independent of particular cache or memory system implementation
details, we assume an exponential distribution of data-request destinations around each node. In other words, the
private-cache misses from a given CPU core choose shared-cache slices to service their data requests with an expo-
nential distribution, so that most of the cache misses are serviced by nodes within a few hops, and some small fraction
of requests go much further. This approximation also effectively models a small amount of global or long-distance
traffic, which can be expected due to global coordination in a CMP (e.g., OS functionality, application synchroniza-
tion) or access to memory controllers or other global resources (e.g. accelerators). For this initial exploration, we set
the distribution’s parameter λ = 1.0, i.e., the average hop distance is 1/λ = 1.0. This places 95% of requests within 3
hops and 99% within 5 hops.

Effect of Scaling on Network Performance: By increasing the size of the CMP and bufferless NoC, we find
that the impact of congestion on network performance increases with its size. In the previous section, we showed that
despite increased network utilization, the network latency remained relatively stable in a 4x4 network. However, as
shown in Figure 3(a), as the size of the CMP increases, the impact of congestion becomes increasingly severe. While

8

SAFARI Technical Report No. 2011-003 (July 20, 2011)

the 16-core CMP shows an average latency delta of 10 cycles between congested and non-congested workloads, con-
gestion in a 4096-core CMP yields nearly 60 cycles of additional latency per flit on average. This trend occurs despite
a fixed data distribution (λ parameter) – in other words, despite the same average destination distance. Likewise,
shown in Figure 3(b), the impact of starvation in the network increases with CMP size due to congestion. Starvation
rate increases to nearly 40% in a 4096-core system, more than twice as much as in a 16-core system, for the same
per-node demand. This indicates that the network becomes increasingly inefficient under congestion, despite locality
in network traffic destinations, as the size of the CMP increases.

Effect of Scaling on System Performance: Figure 3(c) shows that the decreased efficiency at the network layer
due to congestion, degrades the entire system’s performance (per-node application throughput) as the size of the
network increases. This shows that congestion is limiting the effective scaling of the bufferless NoC and system under
higher intensity workloads. As shown in §4.1 and Figure 2(c), reducing congestion in the network improves system
performance. As we will show through the introduction of a novel congestion control mechanism and evaluation in
§7, reducing the congestion in the network will significantly improve the scalability of the bufferless NoC with high
intensity workloads.

Sensitivity to degree of locality: Finally, Figure 4 shows the sensitivity of system throughput, as measured by
IPC per node, to the degree of locality in a 64x64 network. This evaluation varies the λ parameter of the simple
exponential distribution for each node’s destinations such that 1/λ , or the average hop distance, varies from 1 to 16
hops. As expected, performance is highly sensitive to the degree of locality. For the remainder of this paper, we
assume that λ = 1 (i.e., average hop distance of 1) in locality-based evaluations.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 4 8 16T
hr

ou
gh

pu
t (

IP
C

/N
od

e)

Average Hop Distance

Figure 4: Sensitivity of system throughput (IPC per node) to degree of locality, as modeled by a simple exponential
distribution.

Key Findings: We find that as NoCs scale into hundreds and thousands of nodes, congestion becomes an increas-
ingly significant concern for system performance. We show that per-node throughput drops considerably as network
size increases, even when per-node demand (workload intensity) is held constant, motivating the need for congestion
control to enable efficient scaling.

5 Need for Application Awareness
Application-level throughput decreases as network congestion increases. Therefore, as is done in traditional networks,
one possible solution is that applications can be throttled to reduce the level of congestion in the network. However,
which applications we throttle can significantly impact per-application and overall system performance. To illustrate
this, we have constructed a workload in a 4× 4-mesh NoC that consists of 8 instances each of mcf and gromacs,
which are memory-intensive and non-intensive benchmarks, respectively [44]. We run the workload in the baseline
configuration, with no throttling, and then statically throttle each application in turn by 90% (injection blocked 90%
of the time) and examine per-application and overall system throughput in each case.

The results provide key insights (Fig. 5). First, which application is throttled has a significant impact on overall
system throughput. When gromacs is throttled, the overall system throughput drops 9%. However, when mcf is
throttled by the same rate, the overall system throughput increases by 18%. Second, instruction throughput is not
an accurate indicator for whom to throttle. Although mcf has lower instruction throughput than gromacs, overall
system throughput increases when mcf is throttled, with little effect on mcf (-3%). Third, applications respond
differently to network throughput variations. When mcf is throttled, its instruction throughput decreases by 3%;
however, when gromacs is throttled by the same rate, its throughput decreases by 14%. Likewise, mcf benefits little

9

SAFARI Technical Report No. 2011-003 (July 20, 2011)

0

0.5

1

1.5

2

overall mcf gromacs

A
v
g
.
In

s.
 T

h
ro

u
g
h
p
u
t

Application

baseline
throttle grom

throttle mcf

Figure 5: System throughput with selective throttling.

from the increased network throughput when gromacs is throttled, but gromacs benefits greatly (25%) when mcf
is throttled.

The reason for this behavior is that each application has a different L1 cache miss rate, and thus requires a certain
volume of traffic to retire a given instruction sequence; this measure depends wholly on the behavior of the program’s
memory accesses. Extra latency for a single flit from an application with a high L1 cache miss rate will not have as
much relative impact on forward progress as the same delay of a flit in an application with few L1 misses, since that
flit represents a greater fraction of forward progress in the latter application. Such awareness has been leveraged in
buffered NoCs [10].

Key Finding: Bufferless NoC congestion control needs application-layer awareness to determine whom to throttle.
Instructions-per-Flit: The above discussion implies that not all flits are created equal. We define Instructions-

per-Flit (IPF) as the ratio of instructions retired in a given period by an application I to flits of traffic F associated
with the application during that period: IPF = I/F . For a given code sequence, set of inputs, and system parameters,
IPF is a fixed value that depends only on the L1 cache miss rate. It is independent of the congestion in the network
and the rate of execution of the application, and is thus a stable measure in a shared system. Table 1 shows that IPF
values (for a set of SPEC CPU2006 benchmarks [44]) can vary considerably: mcf, a memory-intensive benchmark
produces slightly less than 2 flits of traffic for every instruction retired (IPF=0.58), whereas povray yields an IPF
of over 1000, more than 2000 times greater. The latency of a single flit in this high-IPF application thus has greater
impact on performance.

Benchmark IPF Benchmark IPF Benchmark IPF
mcf 0.583 omnetpp 3.150 wrf 69.75
leslie3d 0.814 cactusADM 4.905 sjeng 134.15
soplex 1.186 bzip2 6.281 gcc 155.18
libquantum 1.252 astar 6.376 namd 168.08
lbm 1.429 hmmer 9.362 calculix 253.23
milc 1.751 gromacs 12.41 tonto 256.53
GemsFDTD 2.267 h264ref 14.64 perlbench 425.19
sphinx3 2.253 dealII 37.99 povray 1189.8
xalancbmk 2.396 gobmk 60.73

Table 1: IPF (Instructions-per-Flit) values for our set of workloads.

Fig. 5 illustrates this: mcf’s low IPF value (0.583) indicates that it can be heavily throttled with little impact on
its throughput (-3% @ 90% throttling). It also gains little from additional network throughput (e.g., <+1% when
gromacs is throttled). However, gromacs’ higher IPF value implies that its performance will suffer if it is throttled
(-10%), but can gain from additional network throughput (+25%).

Key Finding: The IPF metric enables application-awareness and can inform per-application throttling decisions.

10

SAFARI Technical Report No. 2011-003 (July 20, 2011)

6 Congestion Control Mechanism
Section 5 defined a metric that determines an application’s network intensity and its response to throttling. As shown
in 5, when the network is congested, we must consider application-layer information to throttle effectively. We im-
prove instruction throughput by throttling applications with low IPF (high network intensity). This works for three
reasons: 1) applications with low IPF are relatively insensitive to throttling compared to applications with high IPF, 2)
conversely, applications with high IPF benefit more at the application-level from increased network throughput than
those with low IPF, and 3) throttling applications with low IPF is more effective at reducing overall congestion, be-
cause these applications are more network-intensive. In order to determine whom to throttle, we need only a ranking
of intensity.

Basic Idea: We propose an interval-based congestion control algorithm that periodically (every 100,000 cycles):
1) detects congestion based on starvation rates in the network, 2) determines IPF of applications, 3) if the network is
congested, throttles the appropriate applications based on the IPF metric. Our algorithm, described in this section, is
summarized in Algorithms 1, 2, and 3.

Controller Mechanism: A key difference of this mechanism to the majority of currently existing congestion
control mechanisms in traditional networks [24, 26] is that it is a centrally-coordinated algorithm. This is possible
in an on-chip network, and in fact is cheaper in our case (Section 7.4). Since the on-chip network exists within a
CMP that usually runs a single operating system (i.e., no hardware partitioning), the system software can be aware
of all hardware in the system and communicate with each router in some hardware-specific way. As our algorithm
requires some computation that would be impractical to embed in dedicated hardware in the NoC, we find that a
hardware/software combination is the most efficient approach. Because the mechanism is periodic with a relatively
long period, this does not place an undue burden on the system’s CPUs. As described in detail in Section 7.4, the
pieces that integrate tightly with the router are implemented in hardware for practicality and speed.

There are several components of the mechanism’s periodic update: first, it must determine when to throttle, main-
taining appropriate responsiveness without becoming too aggressive; second, it must determine whom to throttle, by
estimating the IPF of each node and ranking the nodes accordingly based on their estimated IPF values; and third, it
must determine how much to throttle in order to optimize system throughput without destroying the performance of
any individual application. We will address each of these elements in turn, and then present a complete algorithm.

6.1 When to Throttle
As described in §4, starvation rate is a superlinear function of network congestion (Fig. 2(b)). We use starvation rate
(σ) as a per-node indicator of congestion in the network. Node i is congested if:

σi > min(βstarve +αstarve/IPFei,γstarve) (2)

where α is a scale factor, and β and γ are lower and upper bounds, respectively, on the threshold (we use αstarve = 0.2,
βstarve = 0.35 and γstarve = 0.8 in our evaluation, determined empirically). It is important to factor in IPF since
network-intensive applications will naturally have higher starvation due to higher injection rates. Note that we use an
IPF estimate, IPFe, based on injection queue length, since queue length increases as starvation (due to congestion)
increases. Finally, throttling is active if at least one node is congested. Active throttling mode picks only certain nodes
to throttle, and scales throttling rate according to intensity.

6.2 Whom to Throttle
When throttling is active, a node is throttled if its intensity is above average. This is determined by observing IPF:
lower IPF indicates greater network intensity, and so nodes with IPF below average are throttled. Since we run a central
coordination algorithm, knowing the mean of all queue lengths is possible without any sort of distributed averaging or
estimation. The Throttling Criterion is:

If throttling is active AND IPFi < mean(IPF).

The simplicity of this rule can be justified by our observation that IPF in most workloads tend to be fairly widely
distributed: there are memory-intensive applications and CPU-bound applications. We find that in most cases, the

11

SAFARI Technical Report No. 2011-003 (July 20, 2011)

separation between application classes is clean, and so the additional complexity of a more intelligent rule is not
justified.

Algorithm 1 Main Control Algorithm (in software)
Every T cycles:
collect queue len[i], σ [i] from each node i

/* determine congestion state */
congested⇐ f alse
for i = 0 to Nnodes−1 do

thresh = min(αstarve ∗queue len[i]+βstarve,γstarve)
if σ [i]> thresh then

congested⇐ true
end if

end for

/* set throttling rates */
Qthresh = mean(queue len)
for i = 0 to Nnodes−1 do

if congested AND queue len[i]> Qthresh then
throttle rate[i] = min(αthr ∗queue len[i]+βthr,γthr)

else
throttle rate[i]⇐ 0

end if
end for

Algorithm 2 Starvation Rate Computation (in hardware)
At node i:
σ [i]⇐ ∑

W
k=0 starved(current cycle− k)/W

Algorithm 3 Injection Throttling (in hardware)
At node i:
if trying to inject in this cycle and an output link is free then

in j count[i] = (in j count[i]+1) mod MAX COUNT
if in j count[i]> throttle rate[i]∗MAX COUNT then

allow injection
starved(current cycle)⇐ f alse

else
block injection
starved(current cycle)⇐ true

end if
end if

6.3 Determining Throttling Rate
We throttle the chosen set of applications proportional to their application intensity. The throttling rate, the fraction of
cycles in which a node cannot inject, is computed as follows:

R = min(βrate +αrate/IPF,γrate) (3)

where IPF is used as a measure of application intensity, and α , β and γ set the scaling factor, lower bound and upper
bound respectively, as in the starvation threshold formula above. Empirically, we determine αrate = 0.30, βrate = 0.45
and γrate = 0.75 work well, and are used in our evaluation.

12

SAFARI Technical Report No. 2011-003 (July 20, 2011)

Network topology 2D mesh, 4x4 or 8x8 size
Routing algorithm FLIT-BLESS [35] (example in §2)
Router (Link) latency 2 (1) cycles
Core model Out-of-order
Issue width 3 insns/cycle, 1 mem insn/cycle
Instruction window size 128 instructions
Cache block 32 bytes
L1 cache private 128KB, 4-way
L2 cache shared, distributed, perfect cache
L2 address mapping Per-block interleave, XOR map-

ping; randomized exponential for
locality/scalability evaluations

Table 2: System Parameters for Evaluation

6.4 Implementation: Estimating IPF
In order to use IPF as a driving metric in our throttling algorithm, we need to have a way to compute it easily in
hardware. Fortunately, the design of the CPU core and bufferless NoC router allows for another measurement that
corresponds to the inverse of IPF, or FPI (Flits per Instruction): the length of the request queue (QueueLength) of
the core. The request queue is the injection queue into the network that buffers outstanding flits that are waiting to
be injected. Its length correlates with FPI because 1) the outstanding requests at any given time correspond to cache
misses from the current instruction window (a fixed-size buffer that bounds the number of pending instructions), and
2) in a congested network, most time is spent waiting in the queue to inject, and so the queue length is representative of
the number of outstanding requests. The correlation is not exact, but we find in practice that using the average queue
length to rank applications in IPF order works very well. Figure 6 shows the correlation between QueueLength and
IPF for our set of workloads. (The outlier at FPI = 0.3 is omnetpp, which exhibits high average queue length due to
bursty behavior.)

 0

 1

 2

 3

 4

 5

 0 0.2 0.4 0.6 0.8 1

av
er

ag
e

qu
eu

e
le

ng
th

FPI (flits per instruction)

Figure 6: Correlation between FPI (Flits-per-Instruction) and average queue length for our set of benchmarks.

7 Evaluation
We evaluate the effectiveness of our congestion-control mechanism to address both the high-load problem in small
NoCs (4x4 and 8x8) and the scalability problem in large NoCs (up to 64x64). We show results for the former in § 7.2
and the latter in § 7.3.

7.1 Methodology
We use a closed-loop model of a complete network-processor-cache system, so that the system is self-throttling as in
a real multi-core system (parameters in Table 2). In other words, by modeling the instruction windows and tracking
outstanding cache-miss requests as in a real system, we capture system behavior more accurately. For each application,

13

SAFARI Technical Report No. 2011-003 (July 20, 2011)

-5
 0
 5

 10
 15
 20
 25
 30

0.0 0.2 0.4 0.6 0.8 1.0

%
 I

m
pr

ov
em

en
t

baseline average network utilization

(a) 4x4 and 8x8 All Workloads.

-5
 0
 5

 10
 15
 20
 25
 30

All
H HM HM

L
M HL M

L
L%

 I
m

pr
ov

. (
m

in
/a

vg
/m

ax
)

4x4
8x8

(b) Workload Category Breakdown.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Average Starvation Rate

CControl
Baseline

(c) CDF of Starvation Rates.

Figure 7: Percentage improvement in overall system throughput and starvation provided by our mechanism for all workloads (4x4
& 8x8).

we capture an instruction trace of a representative execution slice (chosen using PinPoints [40]) and replay each trace
in its respective CPU core model during simulation. All workloads are run for 500K cycles; although this run length
is very short by architecture-community standards, we find that because the only state is in small private caches and in
the interconnect, the system warms to a steady state quickly. The short run-length makes evaluations at our very large
design points (4096 nodes) possible.

Workloads and Their Characteristics: We evaluate 875 multiprogrammed workloads (700 16-core, 175 64-
core), where each workload is a multiprogrammed combination of applications, which is a realistic expectation for
large CMPs (e.g., cloud computing [23] might place many applications on one substrate). These applications include
SPEC CPU2006 [44], a standard benchmark suite in the architecture community, as well as various desktop, worksta-
tion, and server applications. We classify the applications (Table 1) into three categories based on their IPF values:
H=Heavy, M=Medium, L=Light and systematically ensure a balanced set of multiprogrammed workloads, which is
important for evaluation of many-core systems (e.g., for cloud computing [23]). To do this, seven categories are
created based on randomly mixing applications of specific intensities: {H,M,L,HML,HM,HL,ML}.

Congestion Control Parameters: We empirically determined that the following control algorithm parameters
work well: We set the update period to T = 10K cycles and the starvation computation window to W = 128. The
minimum and maximum starvation rate thresholds are βstarve = 0.35 and γstarve = 0.8 with a scaling factor of αstarve =
50. We set the throttling minimum and maximum to βthrottle = 0.45 and γthrottle = 0.75 with scaling factor αthrottle =
0.2.

7.2 Application Throughput in Small NoCs

System Throughput Results: We first present the effect of our mechanism on overall system/instruction throughput
(average IPC, or instructions per cycle, per node, as defined in §4.1) for both 4x4 and 8x8 systems. To present a
clear view of the improvements at various levels of network load, we evaluate gains in overall system throughput
plotted against the average network utilization (measured without throttling enabled). Fig. 7 presents a scatter plot that
shows the percentage gain in overall system throughput with our mechanism in each of the 875 workloads on the 4x4
and 8x8 system. The maximum performance improvement under congestion (e.g., load >0.7) is 27.6%, and average
improvement over these workloads is 14.7%.

Fig. 7(b) shows the maximum, average, and minimum system throughput gains on each of the workload cate-
gories. The highest average and maximum improvements are seen when all applications in the workload have High or

14

SAFARI Technical Report No. 2011-003 (July 20, 2011)

-5

 0

 5

 10

 15

 20

0.0 0.2 0.4 0.6 0.8 1.0

W
S

%
 I

m
pr

ov
em

en
t

baseline average network utilization

Figure 8: Percentage improvements in weighted speedup.

High/ Medium intensity. As expected, our mechanism provides little to no improvement when all applications in the
workload have Low or Medium/Low intensity, because in such cases, the network is adequately provisioned for the
demanded load.

Improvement in Network-level Admission: Fig. 7(c) shows the cumulative distribution function of the 4x4
workloads’ average starvation rate when the baseline average network utilization is greater than 60%, to provide insight
into the effect of our mechanism on starvation when the network is likely to be congested. Using our mechanism, only
36% of the congested 4x4 workloads have an average starvation rate greater than 30% (0.3), whereas without our
mechanism 61% have a starvation rate greater than 30%.

Effect on Weighted Speedup: In addition to instruction throughput, a common metric for evaluation is weighted
speedup [42], defined as WS = ∑

N
i

IPCi,shared
IPCi,alone

, where IPCi,shared and IPCi,alone are the instructions per cycle measure-
ments for application i when run together with other applications and when run alone, respectively. WS is N in an ideal
N-node system with no interference, and drops as application performance is degraded due to network contention. This
metric takes into account that different applications have different “natural” execution speeds; maximizing it requires
maximizing the rate of progress – compared to this natural execution speed – across all applications in the entire
multiprogrammed workload. In contrast, a mechanism can maximize instruction throughput by unfairly slowing down
low-IPC applications. To ensure that our congestion control mechanism does not significantly penalize applications in
this manner, we evaluate it using the weighted speedup metric.

Figure 8 shows weighted speedup improvements by up to 17.2% (18.2%) in the 4x4 and 8x8 workloads respec-
tively. Our proposed mechanism improves weighted speedup by up to 17.2% (18.2%) in the 4x4 (8x8) systems
respectively.

Key Findings: Overall, when evaluated in 4x4 and 8x8 networks over a range of workload intensities, our mech-
anism improves performance up to 27.6%, reduces starvation, and improves weighted speedup.

7.3 Scalability in Large NoCs
In § 4.2, we showed that even with fixed data locality, increases in network sizes lead to increased congestion and
decreased system throughput. Here, we evaluate the ability of congestion control to alleviate this congestion and
restore scalability. Ideally, per-node throughput remains fixed as the network size increases. We show that this is the
case.

We model network scalability simply with fixed exponential distributions for each node’s request destinations,
as in § 4.2. Note that real application traces are still executing in the processor/cache model to generate the request
timing; the destinations for each data request are simply mapped according to the distribution. This model allows us
to study scalability independently of the effects and interactions that more complex data distributions might have.

Figures 9, 10, 11, and 12 show the trends in network latency, network utilization, instruction throughput (IPC) and
NoC power per node as network size increases, both with and without our congestion-control mechanism active. The
baseline case mirrors what is shown in § 4.2: congestion becomes a scalability bottleneck as size increases. However,
congestion control successfully throttles the network back to a more efficient operating point, achieving essentially
flat curves for all relevant metrics per node.

We particularly note the per-node NoC power results in Figure 12. This data comes from the BLESS router power
model used in [13], and includes both router and link power. As described briefly in § 3, a unique property of on-
chip networks is that a global power budget exists. Reducing power consumption as much as possible, or at least not

15

SAFARI Technical Report No. 2011-003 (July 20, 2011)

 0

 10

 20

 30

 40

 50

 60

16 64 256 1024 4096A
v
g

 N
et

 L
at

en
cy

 (
cy

cl
es

)

Number of Cores

Throttling
Baseline

Figure 9: Average network latency with scale.

 0

 0.2

 0.4

 0.6

 0.8

 1

16 64 256 1024 4096

N
et

w
o

rk
 U

ti
li

za
ti

o
n

Number of Cores

Throttling
Baseline

Figure 10: Average network utilization with scale.

increasing the per-node power cost, is therefore desirable. As our results show, power per node remains constant.3

Note that router design for low power is outside the scope of this work; we simply maintain constant per-node power
with scalability by removing the congestion bottleneck.

Finally, we note that the scalability of the NoC is fundamentally dependent on the nature of the workload’s traffic
distribution. In this simple scalability analysis, we assume a fairly tight exponential distribution (λ = 1.0). If a node’s
data distribution spreads (i.e., loses locality) to a sufficient degree, scalability in per-node throughput is lost, despite
congestion control, because the bisection bandwidth of the network becomes the limiting factor. In other words,
locality is a necessary condition for scalability. Congestion control simply enables the network to efficiently handle
workloads at large scales, given that the workload has sufficient traffic locality.

7.4 Hardware Cost
Hardware Implementation: Hardware is required to measure the starvation rate σ at each node, and to throttle
injection. Our windowed-average starvation rate over W cycles requires a W -bit shift register and an up-down counter:
in our configuration, W = 128. To throttle a node with rate r, we disallow injection for N cycles every M, such that
N/M = r. This requires a free-running counter and a comparator; 7 bits provides sufficient granularity. In total,
this implementation requires only 149 bits of storage, two counters, and one comparator: a minimal cost per-router
compared to (for example) the 128KB L1 cache.

8 Related Work

8.1 Internet Congestion Control
Congestion control in traditional buffered networks is extremely well studied. Traditional mechanisms look to prevent
the congestion collapse problem first addressed by TCP [24] (and subsequently in many other works), which can
cause the throughput of all network flows to sharply drop. One difference between these protocols and our proposed
on-chip mechanism is the way congestion is detected. Given that delay increases significantly under congestion, it
has been a core metric for detecting congestion in the Internet [24, 36], and latency has been successfully used to

3We note that for a manycore system with 1K or 4K nodes to be feasible, several technology generations will likely pass, reducing system power
by a constant factor. Thus, the large total power implied by this model will scale down and should be dwarfed by core and cache power.

16

SAFARI Technical Report No. 2011-003 (July 20, 2011)

 0

 0.2

 0.4

 0.6

 0.8

 1

64 256 1024 4096T
h
ro

u
g

h
p

u
t

(I
P

C
/N

o
d

e)

Number of Cores

Throttling
Baseline

Figure 11: Average system throughput with scale.

 0

 100

 200

 300

 400

 500

16 64 256 1024 4096

P
o

w
er

 p
er

 N
o
d

e
(m

W
)

Number of Cores

Throttling
Baseline

Figure 12: Average NoC power per node with scale.

distributedly detect congestion. In contrast, we have shown that in NoCs, network latencies remain relatively stable
in the congested state. Furthermore, there is no packet loss in on-chip networks, and hence no explicit ACK/NACK
feedback. More explicit congestion notification techniques have been proposed that use coordination or feedback from
the core of the network [14, 26, 45], so that the network as a whole can more quickly converge to optimal efficiency
and avoid constant fluctuation created by dropped packets [26]. Our work is different in that it uses application-level
information, rather than information at the network-level (see Section 5), to improve system throughput and reduce
starvation in the on-chip environment.

8.2 NoC Congestion Control
There has been an expanding body of recent work in providing congestion control or prioritization in buffered NoCs.
The majority of these proposals focus on buffered NoCs and work with packets that have already entered the network,
rather than control traffic at the injection point. The problems they solve are thus different in nature. However, there
is potential to combine prioritization with admission-based congestion control. Several proposals, including Globally
Synchronized Frames [33] and Preemptive Virtual Clocks [20], implement global frameworks for packet prioritization
based on batching and network-level quality of service metrics. In these cases, prioritization serves to provide hard
or soft guarantees to applications rather than to optimize system performance under network-intensive workloads.
However, the two goals of congestion control and quality-of-service could be combined under a single framework.
Regional Congestion Awareness [18] implements a mechanism to detect congested regions in buffered NoCs and
inform the routing algorithm to avoid them if possible. Some mechanisms are designed for particular types of networks
or particular problems that arise with certain NoC designs: for example, Baydal et al. propose several techniques to
optimize wormhole routing in [4]. Duato et al. give a mechanism in [12] to avoid HOL blocking in buffered NoC
queues by using separate queues. Regional Explicit Congestion Notification [17] also aims to alleviate HOL blocking
in queues. Another mechanism, Throttle and Preempt [43], solves priority inversion in buffer space allocation by
allowing preemption by higher-priority packets and using throttling to create buffer space for such packets.

Several techniques avoid congestion by deflecting traffic selectively (BLAM [48]), or re-routing traffic to random
intermediate locations (the Chaos router [31]), or creating path diversity to maintain more uniform latencies (Duato
et al. in [16]). We are aware of one congestion control mechanism for bufferless NoCs: Proximity Congestion
Awareness [37] extends a bufferless network to avoid routing toward congested regions. However, PCA is very light
on algorithmic details and so we cannot make a detailed comparison.

17

SAFARI Technical Report No. 2011-003 (July 20, 2011)

8.3 Throttling-based Approaches
A few congestion control approaches in buffered NoCs work by throttling sources to control network load. Prediction-
based Flow Control [38] builds a state-space model for a buffered router in order to predict its free buffer space, and
then uses this model to refrain from sending traffic when there would be no downstream space. Self-Tuned Congestion
Control [47] performs throttling to optimize network throughput. The novelty in that proposal is a feedback-based
mechanism to find the optimum throughput point dynamically. The solution is not applicable to our bufferless NoC
problem, however, since the congestion behavior is different. Also, our approach incorporates application-awareness
into throttling, unlike all these previous works.

8.4 Application Awareness
We are aware of two explicitly application-aware proposals for performance optimization in a NoC. Das et al. [10]
propose ranking applications by their intensities and prioritizing packets in the network accordingly, defining the
notion of “stall time criticality” to understand the sensitivity of each application to network behavior. Our use of the
IPF metric is similar to the use of L1 miss rate ranking in [10]. However, Das et al.’s scheme is a packet scheduling
algorithm for buffered networks that does not (attempt to) solve the problem of network congestion. In a later work,
Aérgia [11], Das et al. define packet “slack” and prioritize each request differently based on its criticality.

8.5 Scalability Studies
We are aware of relatively few existing studies of large-scale 2D mesh NoCs: most NoC work in the architecture
community focuses on smaller design points, on the order of 16 to 100 nodes, and the BLESS architecture in particular
has been evaluated up to 64 nodes [35]. Kim et al. [29] examine scalability of ring and 2D mesh networks up to 128
nodes. No work of which we are aware has evaluated scalability of bufferless 2D meshes up to 4096 nodes.

9 Summary & Conclusions
This paper studies congestion control in on-chip bufferless networks and has shown such congestion to be funda-
mentally different from those in other networks (e.g., due to lack of congestion collapse). We examine network
performance under both high application load and as the network scales, and find congestion to be the fundamental
bottleneck in both cases. We develop an application-aware congestion control algorithm and show significant improve-
ment in application-level system throughput on a wide variety of real workloads for on-chip networks from 16 to 4096
nodes. More generally, NoCs are bound to become a critical system resource in many-core processors, shared by di-
verse applications. Finding solutions to networking problems in NoCs is paramount to effective many-core computing,
and we believe the networking research community can and should weigh in on these challenges.

References
[1] Open MPI high-performance message passing library. http://www.open-mpi.org/.
[2] Appenzeller et al. Sizing router buffers. SIGCOMM, 2004.
[3] P. Baran. On distributed communications networks. IEEE Trans. on Comm., 1964.
[4] E. Baydal, P. Lopez, and J. Duato. A family of mechanisms for congestion control in wormhole networks. IEEE

Trans. on Par. and Dist. Sys., 16, 2005.
[5] L. Benini and G. D. Micheli. Networks on chips: A new SoC paradigm. Computer, 35:70–78, Jan 2002.
[6] S. Borkar. Thousand core chips: a technology perspective. DAC-44, 2007.
[7] D. E. Culler et al. Parallel Computer Architecture: A Hardware/Software Approach. Morgan Kaufmann, 1999.
[8] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.
[9] W. J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks. DAC-38, 2001.

[10] R. Das et al. Application-aware prioritization mechanisms for on-chip networks. MICRO-42, 2009.
[11] R. Das et al. Argia: exploiting packet latency slack in on-chip networks. ISCA, 2010.
[12] J. Duato, I. Johnson, J. Flich, F. Naven, P. Garcia, and T. Nachiondo. A new scalable and cost-effective congestion

management strategy for lossless multistage interconnection networks. HPCA-11, 2005.
[13] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A low-complexity bufferless deflection router. HPCA-17, 2011.

18

SAFARI Technical Report No. 2011-003 (July 20, 2011)

[14] S. Floyd. Tcp and explicit congestion notification. ACM Comm. Comm. Review, V. 24 N. 5, October 1994, p.
10-23.

[15] N. C. for Supercomputing Applications. Latency results from Pallas MPI benchmarks. http://vmi.ncsa.
uiuc.edu/performance/pmb_lt.php.

[16] D. Franco et al. A new method to make communication latency uniform: distributed routing balancing. ICS-13,
1999.

[17] P. Garcia et al. Efficient, scalable congestion management for interconnection networks. IEEE MICRO, 26, 2006.
[18] P. Gratz, B. Grot, and S. W. Keckler. Regional congestion awareness for load balance in networks-on-chip.

HPCA-14, 2008.
[19] B. Grot, J. Hestness, S. Keckler, and O. Mutlu. Express cube topologies for on-chip interconnects. HPCA-15,

2009.
[20] B. Grot, S. Keckler, and O. Mutlu. Preemptive virtual clock: A flexible, efficient, and cost-effective qos scheme

for networks-on-chip. MICRO-42, 2009.
[21] M. Hayenga et al. Scarab: A single cycle adaptive routing and bufferless network. MICRO-42, 2009.
[22] Y. Hoskote et al. A 5-ghz mesh interconnect for a teraflops processor. IEEE MICRO, 2007.
[23] Intel Corporation. Single-chip cloud computer. http://techresearch.intel.com/articles/

Tera-Scale/1826.htm.
[24] V. Jacobson. Congestion avoidance and control. SIGCOMM, 1988.
[25] S. A. R. Jafri et al. Adaptive flow control for robust performance and energy. MICRO-43, 2010.
[26] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for future high bandwidth-delay product

environments. SIGCOMM, 02.
[27] J. Kim, W. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable dragonfly topology. ISCA-35, 2008.
[28] J. Kim et al. Flattened butterfly topology for on-chip networks. IEEE Computer Architecture Letters, 2007.
[29] J. Kim and H. Kim. Router microarchitecture and scalability of ring topology in on-chip networks. NoCArc,

2009.
[30] M. Kim, J. Davis, M. Oskin, and T. Austin. Polymorphic on-chip networks. ISCA-35, 2008.
[31] S. Konstantinidou and L. Snyder. Chaos router: architecture and performance. ISCA-18, 1991.
[32] J. Laudon and D. Lenoski. The sgi origin: a ccnuma highly scalable server. ISCA-24, 1997.
[33] J. Lee, M. Ng, and K. Asanovic. Globally-synchronized frames for guaranteed quality-of-service in on-chip

networks. ISCA-35, 2008.
[34] G. Michelogiannakis et al. Evaluating bufferless flow-control for on-chip networks. NOCS, 2010.
[35] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-chip networks. ISCA-36, 2009.
[36] J. Nagle. RFC 896: Congestion control in IP/TCP internetworks.
[37] E. Nilsson et al. Load distribution with the proximity congestion awareness in a network on chip. DATE, 2003.
[38] U. Y. Ogras and R. Marculescu. Prediction-based flow control for network-on-chip traffic. DAC-43, 2006.
[39] J. Owens et al. Research challenges for on-chip interconnection networks. IEEE MICRO, 2007.
[40] H. Patil et al. Pinpointing representative portions of large Intel Itanium programs with dynamic instrumentation.

MICRO-37, 2004.
[41] C. Seitz. The cosmic cube. CACM, 28, Jan 1985.
[42] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous multithreaded processor. ASPLOS-9,

2000.
[43] H. Song et al. Throttle and preempt: A new flow control for real-time communications in wormhole networks.

ICPP, 1997.
[44] Standard Performance Evaluation Corporation. SPEC CPU2006. http://www.spec.org/cpu2006.
[45] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing: A scalable architecture to approximate fair

bandwidth allocations in high speed networks. SIGCOMM, 1998.
[46] M. Taylor, J. Kim, J. Miller, and D. Wentzlaff. The Raw microprocessor: A computational fabric for software

circuits and general-purpose programs. IEEE MICRO, Mar 2002.
[47] M. Thottethodi, A. Lebeck, and S. Mukherjee. Self-tuned congestion control for multiprocessor networks.

HPCA-7, 2001.
[48] M. Thottethodi, A. Lebeck, and S. Mukherjee. Blam: a high-performance routing algorithm for virtual cut-

through networks. ISPDP-17, 2003.
[49] Tilera Corporation. Tilera announces the world’s first 100-core processor with the new tile-gx family. http:

//www.tilera.com/news_&_events/press_release_091026.php.

19

SAFARI Technical Report No. 2011-003 (July 20, 2011)

[50] University of Glasgow. Scientists squeeze more than 1,000 cores on to computer chip. http://www.gla.
ac.uk/news/headline_183814_en.html.

[51] D. Wentzlaff et al. On-chip interconnection architecture of the tile processor. IEEE Micro, 27(5):15–31, 2007.

20

