
SAFARI Technical Report No. 2010-001 (December 29, 2010)

CHIPPER: A Low-complexity Bufferless Deflection Router

Chris Fallin Chris Craik Onur Mutlu
cfallin@cmu.edu craik@cmu.edu onur@cmu.edu

Computer Architecture Lab (CALCM)
Carnegie Mellon University

SAFARI Technical Report No. 2010-001

December 29, 2010

Abstract

As Chip Multiprocessors (CMPs) scale to tens or hundreds of nodes, the interconnect becomes a significant factor
in cost, energy consumption and performance. Recent work has explored many design tradeoffs for networks-on-
chip (NoCs) with novel router architectures to reduce hardware cost. In particular, recent work proposes bufferless
deflection routing to eliminate router buffers. The high cost of buffers makes this choice potentially appealing,
especially for low-to-medium network loads.

However, current bufferless designs usually add complexity to control logic. Deflection routing introduces a
sequential dependence in port allocation, yielding a slow critical path. Explicit mechanisms are required for livelock
freedom due to the non-minimal nature of deflection. Finally, deflection routing can fragment packets, and the
reassembly buffers require large worst-case sizing to avoid deadlock, due to the lack of network backpressure. The
complexity that arises out of these three problems has discouraged practical adoption of bufferless routing.

To counter this, we propose CHIPPER (Cheap-Interconnect Partially Permuting Router), a simplified router mi-
croarchitecture that eliminates in-router buffers and the crossbar. We introduce three key insights: first, that deflection
routing port allocation maps naturally to a permutation network within the router; second, that livelock freedom re-
quires only an implicit token-passing scheme, eliminating expensive age-based priorities; and finally, that flow control
can provide correctness in the absence of network backpressure, avoiding deadlock and allowing cache miss buffers
(MSHRs) to be used as reassembly buffers. Using multiprogrammed SPEC CPU2006, server, and desktop applica-
tion workloads and SPLASH-2 multithreaded workloads, we achieve an average 54.9% network power reduction for
13.6% average performance degradation (multiprogrammed) and 73.4% power reduction for 1.9% slowdown (multi-
threaded), with minimal degradation and large power savings at low-to-medium load. Finally, we show 36.2% router
area reduction relative to buffered routing, with comparable timing.

This technical report is an extended version of our HPCA-17 paper [15]. We have included additional background
in § 2.2.4 and and more detailed descriptions of the router microarchitecture in § 4.4.

1 Introduction
In recent years, NoCs have become a focus of intense interest in computer architecture. Moore’s Law compels us
toward larger multicore processors. As tiled CMPs [41, 4, 27, 2] are adopted, on-chip interconnect becomes critically
important. Future tiled CMPs will likely contain hundreds of cores [42, 22, 6], and one current chip already contains
100 cores [51]. At this density, a commonly proposed on-chip interconnect is the 2D mesh: it maps naturally to the
tiled CMP architecture [2] and allows for simple routing algorithms and low-radix router architectures.

Traditionally, interconnection network designs have been motivated by and tuned for large, high performance
multiprocessors [30, 9]. As interconnects migrate to the on-chip environment, constraints and tradeoffs shift. Power,
die area and design complexity become more important, and link latencies become smaller, making the effects of
router latency more pronounced. As a consequence, any competitive router design should have a short critical path,
and should simultaneously minimize logic and buffer footprint.

1

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Low-cost NoC designs have thus become a strong focus. In particular, one line of recent work has investigated
how to eliminate in-router buffers altogether [38, 19, 16], or minimize them with alternative designs [25, 26, 39]. The
completely bufferless designs either drop [19, 16] or misroute (deflect) [38] flits when contention occurs. Eliminating
buffers is desirable: buffers draw a significant fraction of NoC power [21] and area [17], and can increase router
latency. Moscibroda and Mutlu [38] report 40% network energy reduction with minimal performance impact at low-
to-medium network load. For a design point where interconnect is not highly utilized, bufferless routers can yield
large savings.

Bufferless deflection routing thus appears to be promising. However, that work, and subsequent evaluations [36,
19], note several unaddressed problems and complexities that significantly discourage adoption of bufferless designs.
First, a long critical path in port allocation arises because every flit must leave the router at the end of the pipeline,
and because deflection is accomplished by considering flits sequentially. Second, livelock freedom requires a priority
scheme that is often more complex than in buffered designs: for example, in Oldest-First arbitration, every packet
carries a timestamp, and a router must sort flits by timestamps. Finally, packet fragmentation requires reassembly
buffers, and without additional mechanisms, worst-case sizing is necessary to avoid deadlock [36].

In this paper, we propose a new bufferless router architecture, CHIPPER, that solves these problems through three
key insights. First, we eliminate the expensive port allocator and the crossbar, and replace both with a permutation net-
work; as we argue, deflection routing maps naturally to this arrangement, reducing critical path length and power/area
cost. Second, we provide a strong livelock guarantee through an implicit token passing scheme, eliminating the cost
of a traditional priority scheme. Finally, we propose a simple flow control mechanism for correctness with reasonable
reassembly buffer sizes, and propose using cache miss buffers (MSHRs [29]) as reassembly buffers. We show that at
low-to-medium load, our reduced-complexity design performs competitively to a traditional buffered router (in terms
of application performance and operational frequency) with significantly reduced network power, and very close to
baseline bufferless (BLESS [38]) with a reduced critical path.

Our contributions are:
• Cheap deflection routing by replacing the allocator and crossbar with a partial permutation network. This design

parallelizes port allocation and reduces hardware cost significantly.
• A strong livelock guarantee through implicit token passing, called Golden Packet (GP). By replacing the Oldest-

First scheme for livelock freedom [38], GP preserves livelock freedom while eliminating the need to assign and
compare timestamps.

• A flow-control scheme, Retransmit-Once, that avoids worst-case reassembly buffer sizing otherwise necessary to
avoid deadlock. Use of MSHRs as reassembly buffers, allowing packet fragmentation due to deflection routing
without incurring additional buffering cost.

• Evaluation over multiprogrammed SPEC CPU2006 [49] and assorted desktop and server (web search, TPC-C)
applications, and multithreaded SPLASH-2 [57] workloads, showing minimal performance degradation at low-
to-medium network load with significant power, area and complexity savings.

2 Bufferless Deflection Routing

2.1 Why Bufferless? (and When?)
Bufferless1 NoC design has recently been evaluated as an alternative to traditional virtual-channel buffered routers [38,
19, 16, 31, 52]. It is appealing mainly for two reasons: reduced hardware cost, and simplicity in design. As core count
in modern CMPs continues to increase, the interconnect becomes a more significant component of system hardware
cost. Several prototype manycore systems point toward this trend: in MIT RAW, interconnect consumes ∼40% of
system power; in the Intel Terascale chip, 30%. Buffers consume a significant portion of this power. A recent work [38]
reduced network energy by 40% by eliminating buffers. Furthermore, the complexity reduction of the design at the
high level could be substantial: a bufferless router requires only pipeline registers, a crossbar, and arbitration logic.
This can translate into reduced system design and verification cost.

Bufferless NoCs present a tradeoff: by eliminating buffers, the peak network throughput is reduced, potentially
degrading performance. However, network power is often significantly reduced. For this tradeoff to be effective, the
power reduction must outweigh the slowdown’s effect on total energy. Moscibroda and Mutlu [38] reported minimal

1More precisely, a “bufferless” NoC has no in-router (e.g., virtual channel) buffers, only pipeline latches. Baseline bufferless designs, such as
BLESS [38], still require reassembly buffers and injection queues. As we describe in § 4.3, we eliminate these buffers as well.

2

SAFARI Technical Report No. 2010-001 (December 29, 2010)

performance reduction with bufferless when NoC is lightly loaded, which constitutes many of the applications they
evaluated. Bufferless NoC design thus represents a compelling design point for many systems with low-to-medium
network load, eliminating unnecessary capacity for significant savings.

2.2 BLESS: Baseline Bufferless Deflection Routing
Here we briefly introduce bufferless deflection routing in the context of BLESS [38]. BLESS routes flits, the minimal
routable units of packets, between nodes in a mesh interconnect. Each flit in a packet contains header bits and can
travel independently, although in the best case, all of a packet’s flits remain contiguous in the network. Each node
contains an injection buffer and a reassembly buffer; there are no buffers within the network, aside from the router
pipeline itself. Every cycle, flits that arrive at the input ports contend for the output ports. When two flits contend for
one output port, BLESS avoids the need to buffer by misrouting one flit to another port. The flits continue through
the network until ejected at their destinations, possibly out of order, where they are reassembled into packets and
delivered.

Figure 1 summarizes router operation in such a network, and Figure 2 shows an example of deflection routing in
a 3x3-mesh network (a small configuration for the sake of the example). The example demonstrates deflection: when
two flits contend for the same output link at a router, one of them takes a non-productive path, adding two cycles to its
path. In contrast, a traditional buffered network would have buffered one of the flits at the center router (1,1) for one
cycle. Bufferless deflection routing introduces this non-minimal routing in order to eliminate such in-router buffers,
so that when contention is rare, deflection will yield less penalty than the static and dynamic hardware costs of router
buffers. In a sense, bufferless routers spread contention in space rather than in time, as buffered routers do.

Router Datapath/Pipeline

to North

to South

to East

to West

from North

from South

from East

from West

CrossbarRouting
Logic

Flit 1: wants N, priority 0

Flit 2: wants N,E, priority 3

Flit 3: wants W, priority 1

Flit 4: wants W, priority 4

consider flit 1: take N (productive)
consider flit 3: take W (productive)
consider flit 2: take E (productive)
consider flit 4: take S (deflected)

 FLIT-BLESS

for each input flit,
 in priority order:

 if a productive output port
 is available
 then
 send flit to this port
 else
 deflect flit to first
 available port
 end if
end for

Example

Figure 1: Summary of bufferless deflection routing (BLESS) as posed in [38]. The baseline router has a 2-cycle
latency, in which the routing algorithm (FLIT-BLESS shown here) arbitrates between flits. Injection and ejection are
omitted for clarity.

Deflection routing is not new: it was first proposed in [3], and is used in optical networks because of the cost of
optical buffering [8]. It works because a router has as many output links as input links (in a 2D mesh, 4 for neighbors
and 1 for local access). Thus, the flits that arrive in a given cycle can always leave exactly N cycles later, for an N-stage
router pipeline. If all flits request unique output links, then a deflection router can grant every flit’s requested output.
However, if more than one flit contends for the same output, all but one must be deflected to another output that is free.

2.2.1 Livelock Freedom

Whenever a flit is deflected, it moves further from its destination. If a flit is deflected continually, it may never reach its
destination. Thus, a routing algorithm must explicitly avoid livelock. It is possible to probabilistically bound network
latency in a deflection network [28, 7]. However, a deterministic bound is more desirable. BLESS [38] uses an Oldest-
First prioritization rule to give a deterministic bound on network latency. Flits arbitrate based on packet timestamps.
Prioritizing the oldest traffic creates a consistent total order and allows this traffic to make forward progress. Once

3

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Cycle 1:
Flit A (1,0)->(1,1)

(0,0) (1,0) (2,0)

(0,1) (1,1) (2,1)

(0,2) (1,2) (2,2)

Cycle 0: inject
Flit A -> (2,1)

Cycle 0: inject
Flit B -> (2,1)

Cycle 1:
Flit B (0,1)->(1,1)

Cycle 2:
Flit B (1,1)->(1,2)
 (DEFLECT)

Cycle 2:
Flit A (1,1)->(2,1)

Cycle 3:
Flit B (1,2)->(2,2)

Cycle 4:
Flit B (2,2)->(2,1)

Figure 2: An example of bufferless deflection routing. Two nodes, (0,1) and (1,0), inject flits destined to (2,1) in the
same cycle 0. When the two flits arrive at (1,1) in cycle 1, one wins arbitration for the link toward (2,1), and the other
is deflected.

the oldest packet arrives, another packet becomes oldest. Thus livelock freedom is guaranteed inductively. However,
this age-based priority mechanism is expensive [36, 19] both in header information and in arbitration critical path.
Alternatively, some bufferless routing proposals do not provide or explicitly show deterministic livelock-freedom
guarantees [19, 16, 52]. This can lead to faster arbitration if it allows for simpler priority schemes. However, a
provable guarantee of livelock freedom is necessary to show system correctness in all cases.

2.2.2 Injection

BLESS guarantees that all flits entering a router can leave it, because there are at least as many output links as input
links. However, this does not guarantee that new traffic from the local node (e.g., core or shared cache) can always
enter the network. A BLESS router can inject a flit whenever an input link is empty in a given cycle. In other words,
BLESS requires a “free slot” in the network in order to insert new traffic. When a flit is injected, it contends for output
ports with the other flits in that cycle. Note that the injection decision is purely local: that is, a router can decide
whether to inject without coordinating with other routers.

2.2.3 Ejection and Packet Reassembly

A BLESS router can eject one flit per cycle when that flit reaches its destination. In any bufferless deflection network,
flits can arrive in random order; therefore, a packet reassembly buffer is necessary. Once all flits in a packet arrive, the
packet can be delivered to the local node. Importantly, this buffer must be managed so that it does not overflow, and in
such a way that maintains correctness. The work in [38] does not consider this problem in detail. Instead, it assumes
an infinite reassembly buffer, and reports maximum occupancies for the evaluated workloads. We will return to this
point in § 3.3.

2.2.4 Microarchitecture

Baseline BLESS makes use of a two-cycle router pipeline, as described in [38]. The original proposal also describes
how a 1-cycle router latency may be attained through lookahead traversal of flit headers.

However, as described, the pipeline combines route computation (determining productive directions) with arbi-
tration (assigning output ports) in one cycle time. We find that this critical path is too long for a high-speed router.

4

SAFARI Technical Report No. 2010-001 (December 29, 2010)

For our BLESS hardware model used by our comparisons in § 5.7, we split route computation and arbitration into
two separate cycles. We then make use of the lookahead link traversal technique described in [38] for flit headers to
recover one cycle, yielding two cycles overall router latency. This pipeline arrangement is shown in Fig. 3.

RC ARB Control-LT

XT Data-LT

Control Pipeline

Data Pipeline

Figure 3: Pipeline structure for baseline BLESS [38]. In our hardware implementation for evaluation, we split routing
logic into two stages, Route Compute (RC) and Arbitration (ARB), but make use of the flit-header lookahead traversal
described in [38] to retain a two-cycle router latency.

While route computation is straightforward – a comparison of destination address to the current location, and a
decision based on XY-routing [12] – the arbitration stage merits special attention. As depicted in Fig. 1, the FLIT-
BLESS algorithm considers each flit in turn, from highest to lowest priority, to allocate output ports. Each flit then
receives a port according to two rules: it obtains a productive port, if one is available. If not, it obtains any other port,
in order to deflect.

Considering flits in priority order requires a sort function. This is best implemented in hardware as a sort net-
work [5], in which each stage selectively performs a series of swaps based on pairwise comparisons. A three-stage
network is sufficient to sort four flits by priority. Such a network is depicted in Fig. 4. This network implements
bitonic sort: the arrow direction in each 2x2 module indicates the sort direction (increasing or decreasing). The
module contains a comparator, and either passes or swaps its inputs to its outputs according to this sort direction.

N

S

E

W

1 (highest)

2

3

4 (lowest)

Figure 4: Bitonic sort network [5] for full priority-sort in a bufferless deflection arbiter.

Once flits are sorted, logic must allocate ports in priority order. The most straightforward implementation of this
output port allocation consists of a series of allocator modules, one per flit. Each module receives the set of available
(unallocated) ports from the previous stage as a bitvector, allocates one port for its associated flit, and then passes the
remaining port information to the next stage. Such an arrangement is shown in Figure 5.

Note that it is possible to parallelize the sort network and port allocation logic by precomputing port allocations
for all possible permutations of input flit priorities. The final port allocation decision is then determined by selecting
the output of the appropriately permuted port allocator. However, this incurs significant expense in control logic
area, because there are 24 (4!) possible permutations of flit priorities for the 4-input routing problem (in a 2D-mesh),
requiring 24 separate port allocators. We thus do not consider it further in our baseline bufferless deflection routing
model.

3 Deflection Routing Complexities
While bufferless deflection routing is conceptually and algorithmically simple, a straightforward hardware implemen-
tation leads to numerous complexities. In particular, two types of problem plague baseline bufferless deflection routing:
high hardware cost, and unaddressed correctness issues. The hardware cost of a direct implementation of bufferless
deflection routing is nontrivial, due to expensive control logic. Just as importantly, correctness issues arise in the
reassembly buffers when they have practical (non-worst-case) sizes, and this fundamental problem is unaddressed by
current work. Here, we describe the major difficulties: output port allocation, expensive priority arbitration, and
reassembly buffer cost and correctness. Prior work cites these weaknesses [36, 19]. These problems directly lead to
the three key insights in CHIPPER. We will describe in each in turn.

5

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Crossbar
Configuration

From
Sort
Network

Available Ports

Available Ports

Available Ports

Available Ports (all)

Flit 0

Flit 1

Flit 2

Flit 3

Available PortsPort Request

Allocator ModuleSequential Port Allocator

5 5

Highest Bit

5

5

Allocated
Port

Highest Bit

5

=0

deflect? 0 1

5

Remaining
Ports

Figure 5: Bufferless deflection arbiter detail: sequential port allocation logic.

N

S

E

W

N

S

E

W

Arb

Arb

Arb

Arb

Arbiters make
local decisions

Flits request
output ports

(a) Buffered router port allocator

N

S

E

W

Sequential
assignment

Priority sort
over all inputs

Port Alloc

Port Alloc

Port Alloc

Port Alloc

N

S

E

W

Priority
Sort

(b) Bufferless deflection router port allocator

Figure 6: Port allocator structures: deflection routing requires more complex logic with a longer critical path.

3.1 Output Port Allocation
Deflection-routing consists of mapping a set of input flits, each with a preferred output and some priority, to outputs
such that every flit obtains an output. This computation is fundamentally difficult for two reasons: (i) every non-ejected
input flit must take some output, since flits are never buffered or dropped; and (ii) a higher-priority flit might take a
lower-priority flit’s preferred output, so the routing for a given flit involves an inherently sequential dependence on all
higher-priority flits’ routing decisions (as noted in [36] and [19]). In other words, the routing decision depends on the
earlier port allocations; furthermore, the notion of “earlier” depends on the sorted ordering of the inputs. Thus, flits
must be sorted by priority before port allocation. A carry-select-like parallel optimization [19] can reduce the critical
path by precomputing deflections (e.g., for all possible permutations of flit priorities), but the sequential dependence
for final port allocation remains a problem, and the area and power cost of the redundant parallel computations is very
high with this scheme.

Fig. 6 shows a high-level comparison of the buffered and bufferless port allocation problems. In a traditional
buffered router, each output port can make its arbitration decision independently: multiple flits request that output
port, the port arbiter chooses one winner, and the remaining flits stay in their queues. In contrast, port allocation
is inherently more difficult in a bufferless deflection router than in a buffered router, because the decision is global

6

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Reassembly Buffer

Bufferless Deflection Network

Packets E,F
refused ejection:
remain in network

Cannot inject:
network full

Node 3Node 0

Injection
Queue

A

B

C

D

A0 A2 A3

B0 B1 B2

C2C0 C3

D0 D1 D2 A1

E0

E1

E2

Node 1

Injection
Queue

E3

F0

F1

F2

Node 2

Injection
Queue

F3

All network links filled with flits

All reassembly
slots allocated

A1 must inject
to reach Node 0
and free a
reassembly slot

1. All nodes send
 packets to Node 0

2. Partial packets occupy
 all reassembly buffers
 in Node 0

3. Other packets cannot
 eject into Node 0, and
 fill the network by
 continuously deflecting

4. Remaining flits of
 partially-received
 packets (e.g., A)
 cannot inject

Figure 7: Deadlock due to reassembly-buffer overflow.

over all outputs. The algorithm requires that we obey priority order, and so flits must pass through a sort network
before allocating ports. Then, port allocation occurs sequentially for each flit in priority order. Because flits that lose
arbitration deflect to other ports, lower-priority flits cannot claim outputs until the deflection is resolved. Thus, the port
allocator for each flit must wait for the previous port allocator. The sequential dependence creates a long critical path;
the worst case, in which all flits contend for one port, limits router speed. Finding a full permutation with deflections,
in a bufferless router, has inherently less parallelism, and more computation, than port allocation in a buffered router.

3.2 Priority Arbitration
The priority arbitration problem – computing a priority order on incoming flits – also becomes more costly in a
bufferless deflection network. In particular, the network must explicitly avoid livelock through careful design of its
priority scheme. One option (used in [38]) is an Oldest-First priority scheme to guarantee flit delivery: the oldest flit
will always make forward progress, and once it is delivered, another flit becomes the oldest. However, this scheme
requires an age field in every packet header, and the field must be wide enough to cover the largest possible in-flight
window. The arbiter then needs to sort flits by priorities in every cycle. A bitonic sort network [5] can achieve this sort
in three stages for 4 flits. Unfortunately, this is a long critical path in a high-speed router, especially when combined
with the port allocator; alternately, pipelining the computation yields a longer router latency, impacting performance
significantly.

3.3 Reassembly Buffers
A bufferless deflection network must provide buffer space at network entry and exit: injection and reassembly buffers,
respectively. Injection buffers are necessary because injection can only occur when there is an empty slot in the net-
work, so new traffic must wait its turn; reassembly buffers are needed because deflection routing may fragment packets
in transit. Injection buffers pose relatively little implementation difficulty: a node (e.g., a core or a shared cache) can
stall when its injection FIFO fills, and can generate data on demand (e.g., from the cache, in the case of a cache-
miss request). However, reassembly buffers lead to correctness issues that, without a more complex solution, yield
large worst-case space requirements to avoid deadlock. Worst-case sizing is impractical for any reasonable design;
therefore, this is a fundamental problem with bufferless deflection networks that must be solved at the algorithmic
level.

Despite the fundamental nature of this problem in deflection routing, management of reassembly buffer space
has not yet been considered in existing deflection-routed NoCs. BLESS [38] assumes infinite buffers, and then gives
data for maximum reassembly buffer occupancy. In a real system, buffers are finite, and overflow must be handled.
Michelogiannakis et al. [36] correctly note that in the worst case, a reassembly buffer must be sized to reassemble all
packets in the system simultaneously.

To see why this is the case, observe the example in Fig. 7. Assume a simple reassembly-slot allocation algorithm
that assigns space as flits arrive, and frees a packet’s slot when reassembly is completed. The key observation is that

7

SAFARI Technical Report No. 2010-001 (December 29, 2010)

a bufferless deflection network has no flow control: whereas in a buffered network, credits flow upstream to indicate
free downstream buffer space (for both in-network buffers and final endpoint reception), nodes in a bufferless network
are free to inject whenever there is a free outbound link at the local node. Thus, a reassembly buffer-full condition is
not transmitted to potential senders, and it is possible that many packets are sent to one destination simultaneously.
When all packets are sent to this single node (e.g., Node 0), the first several flits to arrive will allocate reassembly slots
for their packets. Once all slots are taken, flits from other packets must remain in the network and deflect until the first
packets are reassembled. Eventually, this deflecting traffic will fill the network, and block further injections. If some
flits constituting the partially reassembled packets flits have not been injected yet (e.g., packet A), deadlock results.
We have observed such deadlock for reasonable reassembly buffer sizes (up to 4 packet slots) in realistic workloads of
network-intensive applications.

Fundamentally, this deadlock occurs because of a lack of backpressure (i.e., buffer credits) in the network. In
other words, reassembly buffers have no way to communicate to senders that they are full, and so the only way to
avoid oversubscription is worst-case provisioning. A bufferless network provides backpressure only in local injection
decisions [23] – i.e., when the network is locally busy, a node cannot inject – which is not sufficient to prevent
deadlock, as we just argued.

To build an effective bufferless deflection NoC, we must guarantee correctness with a reasonable reassembly buffer
size. As argued above, the naı̈ve locally-controlled buffer allocation leads to worst-case sizing, which can significantly
reduce the area and energy benefits of bufferless routing. Because reassembly buffers are a necessary mechanism for
deflection routing, and because the lack of flow control might allow deadlock unless buffers are unreasonably large,
we consider the reassembly-buffer problem to be fundamentally critical to correctness, just as efficient port allocation
and priority arbitration are fundamental to practicality. These three complexities directly motivate the key insights
and mechanisms in our new router, CHIPPER.

4 CHIPPER: Mechanisms
As we have seen, bufferless deflection routing introduces several complexities that are not present in traditional
buffered networks. Here, we introduce CHIPPER (Cheap-Interconnect Partially Permuting Router), a new router
microarchitecture based on the key insight that these complexities are artifacts of a particular formulation of deflec-
tion routing, rather than fundamental limitations. By introducing a new architecture based on a permutation network,
and two key algorithms, Golden Packet and Retransmit-Once, we provide a feasible implementation of bufferless
deflection routing.

Permute

Inject

Inject

Eject

Eject

Ejector
Tree
(a)

Ejector
Kill
(b)

Injector
Muxes

(c)

Permuter
Blocks

(d)

Input
Links

Output
Links

N

S
E

W

N
S
E
W

Arbiter Block

1. Pick winner by
 priority (GP)

2. Send winner to
 desired port

3. Send loser to
 remaining port

Figure 8: CHIPPER architecture: a permutation network replaces the traditional arbitration logic and crossbar.

4.1 Permutation Network Deflection Routing
Section 3.1 describes how deflection routing can lead to inefficient port allocation, because of the sequential depen-
dence that deflection implies. We observe that sequential port allocation is not necessary for ensuring mutual exclusion
on output ports. Instead, the deflection-routing problem can map to a permutation network. A network composed of
2x2 arbiter blocks that either pass or swap their arguments will implicitly give a 1-to-1 mapping of inputs to outputs.

8

SAFARI Technical Report No. 2010-001 (December 29, 2010)

In other words, if we assign the outputs of a permutation network to the output ports of a router, mutual exclusion
naturally arises when flits contend for an output port, because at the final stage, only one flit can take the output. This
idea leads to a completely new router organization.

Fig. 8 shows the high-level CHIPPER router architecture. The pipeline contains two stages: eject/inject (parts
(a), (b), (c), described in § 4.1.1 below) and permute. As shown, the permutation network replaces the control and
data paths in the router: there is no crossbar, as each flit’s data payload travels with the header bits through the
permutation network. This leads to a more area-efficient design.

A permutation network directs deflected flits to free ports in an efficiently parallelized way. However, obeying
priority order in port allocation still requires a sequential allocator. To eliminate this problem, we relax the problem
constraints: we require only that the highest-priority flit obtains its request. As we will argue below (in § 4.2), this
constraint is sufficient for livelock freedom. This also allows the permutation network to have a simpler design (with
fewer stages) that gives only partial permutability.2 The design is fully connected: if there is only one input flit, it can
route from any input to any output. However, the single crossover limits the possible turn configurations. Note that the
assignments of input ports relative to output ports is “twisted”: N and E are paired on input, while N and S are paired
on output. This arrangement is due to the observation that straight-through router traversals (N ⇐⇒ S, or E ⇐⇒ W)
are more common than turns.3

Our second insight is that the priority sort and port allocation steps can be combined in the permutation network.
(However, note that the permutation network does not need to perform a full sort, because we only need to determine
the highest-priority flit.) The key to this arrangement is in the steering function of each 2x2 arbiter block: first, a
priority comparison determines a winning flit; then, the winning flit picks the output that leads to its desired port. The
losing flit, if present, takes the other output. This design preserves priority enforcement at least for the highest-priority
flit, since this flit will always be a winning flit. In the highest-contention case, when all four flits request the same
output, the arbiter becomes a combining tree. In the case where every flit requests a different output, the number of
correct assignments depends only on the permutability of the arbiter.

4.1.1 Injection and Ejection

We must now consider injection and ejection in this arbiter. So far, we have assumed four input ports and four output
ports, without regard to the fifth, local, router port. We could extend the permutation network to a fifth input and
output. However, this has two disadvantages: it is not a power-of-two size, and so is less efficient in hardware cost;
and more importantly, the local port has slightly different behavior. Specifically, the ejection port can only accept a
flit destined for the local node, and injection can only occur when there is a free slot (either because of an empty input
link or because of an ejection).

We instead handle ejection and injection as a separate stage prior to the arbitration network, as shown in Fig. 8.
We insert two units, the ejector and the injector, in the datapath. This allows the stages to insert and remove flits
before the set of four input flits reaches the arbiter. The ejector recognizes locally-destined flits, and picks at most one
through the ejector tree (part (a) in the figure). The ejector tree must respect the priority scheme, but as we will argue
in the next section, our Golden Packet scheme is very cheap. When a flit is chosen for ejection, the tree directs it to
the local ejection port, and the ejector kill logic (part (b)) removes it from the pipeline. Finally, when a flit is queued
for injection, the injector finds an empty input link (picking one arbitrarily if multiple are available, not shown in the
figure for simplicity) and directs the local injection port to this link via the injector muxes (part (c) in the figure). The
resulting flits then progress down the pipeline into the permute stage. As we note in § 5.7, the router’s critical path is
through the permutation network; thus, the eject/inject stage does does not impact the critical path.

4.1.2 Why Partial Permutability?

Note that the partial permutability of the CHIPPER permutation network is an important feature of the design. As
discussed above, this design decision limits the permutations (flit-turn combinations) that are possible. However, it
also simplifies the router microarchitecture in two ways. First, and most obvious, it allows for a shorter critical path,
relative to a three-stage fully permutable network. Second, and less obvious, a fully-permutable network cannot have
local steering functions. To see why, refer to the three-stage bitonic sort network previously shown in Fig. 5. For

2While this increases deflection rate, we show in our evaluations in § 5 that the impact in the common case is minimal. The critical-path and
simplicity savings thus outweigh this cost.

3[25] also makes use of this observation to obtain a cheap microarchitecture in a different way.

9

SAFARI Technical Report No. 2010-001 (December 29, 2010)

a given input-output port pair, a flit has two possible paths: the arbiter blocks traversed in the first and third stages
are fixed by the port choices, but in the second stage, either arbiter block offers a path. The steering function in the
first stage must choose one path or the other (once the flit reaches the second stage, the steering function has only one
productive choice). In this first stage, the steering function has only local knowledge – it knows the desired destinations
of only two out of four input flits. Thus, it cannot direct the flit to avoid collisions in all cases. In other words, full
permutability not only requires at least three stages (for four inputs), but also requires global scheduling at some stage
of the permutation network. This may still yield a shorter critical path than a sequential port allocator. However, we
do not evaluate this design option further, due to the disproportionate complexity involved in permutation network
steering.

4.2 Golden Packet: Cheap Priorities
So far, we have addressed the port allocation problem. An efficient priority scheme forms the second half of a cheap
router. In our design, each 2x2 arbiter block must take two flits and decide the winner. The Oldest-First priority
scheme used by BLESS [38] decides this with an age comparison (breaking ties with other fields). However, this is
expensive, because it requires a wide age field in the packet header, and large comparators in the arbiter. We wish to
avoid this expense, even if it may sacrifice a little performance.

We start with the explicit goal of preserving livelock freedom, while stripping away anything unnecessary for that
property. We observe that it is sufficient to pick a single packet, and prioritize that packet globally above all other
packets for long enough that its delivery is ensured. If every packet in the system eventually receives this special
status, then every packet will eventually be delivered. This constitutes livelock freedom. We call this scheme, which
prioritizes a single packet in the system, Golden Packet.

We will introduce Golden Packet, or GP, in two pieces. First, GP provides a set of prioritization rules that assume
the golden packet is already known. Then, GP defines an implicit function of time that rotates through all possible
packets to define which is golden.

Ruleset 1 Golden Packet Prioritization Rules
Golden Tie: If two flits are golden, the lower-numbered flit (first in the golden packet) wins.
Golden Dominance: If one flit is golden, it wins over any non-golden flit.
Common Case: Contests between two non-golden flits are decided pseudo-randomly.

4.2.1 Prioritization Rules

The GP prioritization rules are given in Ruleset 1. These rules are designed to be very simple. If a flit header already
contains a bit indicating golden status, then a GP arbiter requires only a comparator as wide as the flit sequence
number within a packet – typically 2 or 3 bits – and some simple combinational logic to handle the two-golden-flit4,
one-golden-flit and the most common no-golden-flit cases. These rules guarantee delivery of the golden packet: the
golden packet always wins against other traffic, and in the rare case when two flits of the golden packet contend, the
Golden Tie rule prioritizes the earlier flit using its in-packet sequence number. However, since most packets are not
golden, the Common Case (random winner) rule will be invoked most often. Thus, Golden Packet reduces critical path
by requiring a smaller comparator, and reduces dynamic power by using that comparator only for the golden packet.

4.2.2 Golden Sequencing

We must specify which packet in the system is golden. All arbiters must have this knowledge, and must agree, for
the delivery guarantee to work. This can be accomplished by global coordination, or by an implicit function of time
computed at each router. We use the latter approach for simplicity.

We define a golden epoch to be L cycles long, where L is at least as large as the maximum latency for a golden
packet, to ensure delivery. (This upper bound is precisely the maximum Manhattan distance times the hop latency for
the first flit, and one more hop latency for each following flit, since the Golden Packet will never be misrouted and
thus will take a minimal path.) Every router tracks golden epochs independently. In each golden epoch, either zero or
one packet is golden.

4The two-golden-flit case is only possible when two flits from the single Golden Packet contend, which happens only if some flits in the packet
had been deflected before becoming golden while in flight: once the packet is golden, no other traffic can cause its flits to deflect.

10

SAFARI Technical Report No. 2010-001 (December 29, 2010)

The golden packet ID rotates every epoch. We identify packets by (sender, transaction ID) tuples (in practice, the
transaction ID might be a sender MSHR number). We assume that packets are uniquely identifiable by some such
tuple. We rotate through all possible tuples in a static sequence known to all routers, regardless of packets actually in
the network. This sequence nevertheless ensures that every packet is eventually golden, if it remains in the network
long enough, thereby ensuring its delivery. The golden sequence is given in Algorithm 2 as a set of nested loops. In
practice, if all loop counts are powers of two, a router can locally determine the currently-chosen golden packet by
examining bitfields in a free-running internal counter.

In our design, routers determine the golden-status of a packet in parallel with route computation. This check is
lightweight: it is only an equality test on packet ID. Note that packets must be checked at least once per epoch while
in transit, because they may become golden after injection. However, the check can be done off the critical path, if
necessary, by checking at one router and forwarding the result in a header bit to the next router.

Algorithm 2 Golden Epoch Sequencing (implicit algorithm at each router)
while true do

for t in Ntxn ids do
for n in Nnodes do

packet from transaction id t sent from node n is golden for L cycles
end for

end for
end while

4.3 Retransmit-Once: Flow Control for In-MSHR Buffering
As we motivated in § 3, reassembly buffers pose significant problems for bufferless deflection networks. In particular,
because there is no feedback (backpressure [23]) to senders, correct operation requires that the buffers are sized for the
worst case, which is impractical. However, a separate mechanism that avoids buffer overflow can enable the use of a
much smaller reassembly space. Along with this insight, we observe that existing memory systems already have buffer
space that can be used for reassembly: the cache miss buffers (MSHRs [29] and shared cache request queues/buffers).
In fact, the cache protocol must already allocate from a fixed pool of request buffers at shared cache nodes and
handle the buffers-full case; thus, our flow control solution unifies this protocol mechanism with network-level packet
reassembly.

4.3.1 Integration with Caches: Request Buffers

In a typical cache hierarchy, buffering exists already in order to support cache requests. At private (L1) caches,
MSHRs [29] (miss-status handling registers) track request status and buffer data as it is read from or written to the
cache data array. This data buffer is ordinarily accessible at the bus-width granularity in order to transfer data to and
from the next level of hierarchy. Similarly, at shared (L2) cache banks, an array of buffers tracks in-progress requests.
These buffers hold request state, and also contain buffering for the corresponding cache blocks, for the same reasons
as above. Because both L1 and L2-level buffers are essentially the same for flow control purposes, we refer to both as
“request buffers” in this discussion.

We observe that because these request buffers already exist and are accessible at single-flit granularity, they can
be used for reassembly and injection buffering at the NoC level. By considering the cache hierarchy and NoC designs
together, we can eliminate the redundancy inherent in separate NoC reassembly and injection buffers. In particular,
an injection queue can be constructed simply by chaining MSHRs together in injection order. Similarly, a reassembly
mechanism can be implemented by using existing data-steering logic in the MSHRs to write arriving flits to their
corresponding locations, thereby reassembling packets (cache blocks) in-place. By implementing separate injection
and reassembly buffers in this way, we can truly call the network bufferless.

4.3.2 Flow Control: Retransmit-Once

The lack of flow control in a bufferless deflection network can lead to deadlock in worst-case situations. We showed
in § 3.3 that deadlock occurs when reassembly buffers (or request buffers) are all allocated and additional traffic
requires more buffers. § 3.3 shows that a simple mechanism to handle overflow based on local router decisions can
lead to deadlock. Therefore, an explicit flow control mechanism is the most straightforward solution to allow for
non-worst-case buffering.

11

SAFARI Technical Report No. 2010-001 (December 29, 2010)

The design space for managing request buffers is characterized by two design extremes. First, a flow control
scheme could require a sender to obtain a buffer reservation at a receiver before sending a packet that requires a
request buffer. This scheme can be implemented cheaply as a set of counters that track reservation tokens. However,
reservation requests are now on the critical path for every request.

Alternately, a flow control scheme could operate opportunistically: it could assume that a buffer will always be
available without a reservation, and recover in the uncommon case when this assumption fails. For example, a receiver
might be allowed to drop a request or data packet when it does not have an available buffer. The system can then
recover either by implementing retransmit timeouts in senders or by sending a retransmit request from receiver to
sender (either immediately or when the space becomes available). This scheme has no impact on the critical path
when a request buffer is available. However, recovery imposes additional requirements. In particular, senders must
buffer data for possible retransmission, and possibly wait for worst-case timeouts.

Instead, we propose a hybrid of these two schemes, shown in Fig. 9, called Retransmit-Once. The key idea is
that the opportunistic approach can be used to establish a reservation on a request buffer, because the sender can
usually regenerate the initial request packet easily from its own state. The remainder of the transaction then holds this
reservation, removing the need to retransmit any data. This combination attains the main advantage of the opportunistic
scheme – zero critical-path overhead in the common case – while also removing retransmit-buffering overhead in most
cases. In other words, there is no explicit retransmit buffer, because only the initial request packet can be dropped and
the contents of this packet is implicitly held by the sender.

Request Data

Retransmit?

Response

Writeback }Buffer reserved
for this request

Start

Start

End

Reassembly/Request
Buffers Full: Drop packet

Requester Receiver

Request Data

Buffer Now
AvailableRegenerate

packet from
request state

Free writeback
data immediately
(no retransmit is
 ever necessary)

1
2

3

4

5

6

Figure 9: Retransmit-Once flow control scheme.

We will examine the operation of Retransmit-Once in the context of a simple transaction between a private L1
cache (the requester) and a shared L2 cache slice (the receiver). The L1 requests a cache block from the L2; the L2
sends the data, and then, after performing a replacement, the L1 sends a dirty writeback to the L2 in another data
packet. Request buffers are needed at both nodes. However, the requester (L1) initiates the request, and so it can
implicitly allocate a request buffer at its own node (and stall if no buffer is available). Thus, we limit our discussion to
the request buffer at the receiver (L2). Note that while we discuss only a simple three-packet transaction, any exchange
that begins with a single-flit request packet can follow this scheme5.

In the common case, a request buffer is available and the opportunistic assumptions hold, and Retransmit-Once has
no protocol overhead. The scheme affects operation only when a buffer is unavailable. Such an example is shown in
Fig. 9. The L1 (sender) initially sends a single-flit request packet to the L2 (receiver), at 1 . The packet has a special
flag, called the start-bit, set to indicate that the transaction requires a new request buffer (this can also be implicit
in the packet type). In this example, the L2 has no request buffers available, and so is forced to drop the packet at
2 . It records this drop in a retransmit-request queue: it must remember the sender’s ID and the request ID (e.g.,

MSHR index at the sender) in order to initiate a retransmit of the proper request. (In practice, this queue can be a
bitfield with one bit per private MSHR per sender, since ordering is not necessary for correctness.)

5For more complex protocols that may send a data packet to a third party (e.g., more complex cache mapping schemes where writebacks may go
to different L2 banks/slices than where the replacement data came from), a separate control packet can make a reservation at the additional node(s)
in parallel to the critical path of the request.

12

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Some time later, a buffer becomes available, because another request completes at 3 . The receiver (L2) then
finds the next retransmit in its retransmit-request queue, and sends a packet to initiate the retransmit. It also reserves
the available buffer resource for the sender (L1). This implies that only one retransmit is necessary, because the
request buffer is now guaranteed to be reserved. The L1 retransmits its original request packet from its request state at
4 . The L2’s request buffer is reserved for the duration of the request at 5 , and the transaction continues normally:

the L2 processes the request and sends a data response packet. Finally, in this example, the L1 sends a dirty writeback
packet. This last packet has a special end-bit set that releases the request buffer reservation. Importantly, during
the remainder of the sequence, the L1 never needs to retransmit, because the L2 has reserved a request buffer with
reassembly space. Thus, no retransmit buffering is necessary. Accordingly, when the L1 sends its dirty writeback, it
can free all resources associated with the transaction at 6 , because of this guarantee.

Algorithms 3 and 4 specify flow-control behavior at the receiver for the first and last packets in a transaction. A
counter tracks available buffers.

4.3.3 Interaction with Golden Packet

Finally, we note that Retransmit-Once and Golden Packet coexist and mutually maintain correctness because they
operate at different protocol levels. Golden Packet ensures correct flit delivery without livelock. Retransmit-Once
takes flits that are delivered, and provides deadlock-free packet reassembly and request buffer management, regardless
of how flit delivery operates and despite the lack of backpressure. In particular, Golden Packet always dictates priorities
at the network router level: a packet that has a reserved buffer slot destination is no different from any other packet
from the router’s point of view. In fact, golden flits may contend with flits destined to reserved buffer spaces, and cause
them to be deflected or to not be ejected in some cycle. However, correctness is not violated, because the deflected
flits will eventually be delivered (as guaranteed by Golden Packet) and then reassembled (by Retransmit-Once).

Algorithm 3 Receiving a packet with the start-bit
if slots > 0 then

slots⇐ slots−1
allocate buffer slot and return

else
set retransmit bit for sender (node, transactionID)
drop packet

end if

Algorithm 4 Receiving a packet with the end-bit
if pending retransmits then

send retransmit request indicated by next set retransmit bit
else

slots⇐ slots+1
end if

4.4 Router Microarchitecture
4.4.1 Permutation Network

The arbiter block steering function is presented in Algorithm 5. The result of this function is a binary value: “swap”
or “no swap”. This signal drives a set of MUXes on the arbiter block outputs that either pass or swap the flit inputs.

Inputs Stage 1 Stage 2 Outputs
N N, S: output 0 N, E: output 0 N
E E, W: output 1 S, W: output 1 S
S N, S: output 0 E, N: output 0 E

W E, W: output 1 W, S: output 1 W

Table 1: Steering functions for two-stage CHIPPER permuter

The desired-output-port bits d0 and d1 are computed according to a flit’s desired router output according to the
layout of the permutation network. In the two-stage partial permutation network used in CHIPPER, there is only one
path to a given output port; the corresponding steering functions are given in Table 1. At the first stage, one output
leads to each of the two second-stage arbiter blocks, and the di bits are computed according to the second-stage block
that leads to the desired port. At the second stage, the output ports are attached directly, and so steering the winner is
trivial. If neither of the output ports is productive (i.e., if a flit is deflected in the first stage and is choosing a port at
the second stage), it can take either port.

13

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Algorithm 5 Arbiter Block Steering Algorithm
Given: GP0, GP1: golden-bit for flits 0, 1
Given: n0, n1: in-packet sequence number for flits 0, 1
Given: d0, d1: desired output port (0 or 1) for flits 0, 1
winner⇐ 0
if GP0∧GP1 then

winner⇐ (n1 > n0) ? 1 : 0
else if GP0 then

winner⇐ 0
else if GP1 then

winner⇐ 1
else

winner⇐ pseudorandom()
end if
swap⇐ (winner = 0∧d0 = 1)∨ (winner = 1∧d1 = 0)

4.4.2 Ejection

The ejection logic was summarized previously in Fig. 8. Here, we discuss the particulars of the ejector. Fig. 10 shows
the ejection tree and a single ejector block in detail. As noted previously, ejection must honor the priority scheme
as the permuter stage does, or else the livelock guarantee will be broken. When using the Golden Packet scheme
in particular, however, this functionality is very cheap. The ejector tree determines a single flit that wins the ejector
port in a given cycle among multiple potential contenders. The arbitration rules given in the ejector block detail are
exactly identical to the permuter arbiter block algorithm given in Algorithm 5 with the additional stipulation that only
locally-destined flits are considered. Finally, the ejector kill blocks remove ejected flits from the pipeline before they
advance to the injector and permuter units. This is implemented by carrying a two-bit tag with each flit through the
ejector tree to indicate input port; each ejector block watches for a match on the ejection bus, and clears the valid-bit
on the corresponding output port on a match.

Flit 0

Flit 1

Flit 2

Flit 3

kill

kill

kill

kill

To Injector

Eject Port

Flit 0

Flit 1

Output
Ejection
Arbiter

Ejection Arbitration:

1. Both flits locally-destined:
 A. Both flits golden:
 pick lower flit# (within packet)
 B. One flit golden:
 pick golden flit
 C. Neither flit golden:
 pick pseudorandomly

2. One flit locally-destined:
 pick locally-destined flit

3. No flits locally-destined:
 pick no flit

Kill Block:

1. Input flits tagged
 with port number
 through tree

2. Kill block for winning
 flit matches tag,
 clears valid bit
 on output port

Ejection Tree and Kill Blocks Ejector Block Detail

Figure 10: Ejector detail.

14

SAFARI Technical Report No. 2010-001 (December 29, 2010)

4.4.3 Injection

The injector’s job is simple: when a flit is waiting for injection, the injector control logic looks for any open slot
(cleared valid bit) on the four flit paths as they pass into the permutation network. It then directs the injection MUXes
accordingly. Conceptually, the control logic can implement a priority-encoder among empty inputs in order to select
where to place injected flits. (An alternate design could keep separate injection queues per input, but we found that
this was not necessary for adequate performance.) A detail of the injector logic is shown in Fig. 11.

Injector Port

From Ejector
To Permuter

Inject Request Inject Grant

Figure 11: Injector detail. Thin wires represent single valid-bits.

4.4.4 Request Buffers (MSHRs)

As we described in § 4.3.1, cache systems employ request buffers to track in-flight requests. In a distributed, NoC-
based architecture, these structures are placed at each node (private cache at a core, or shared cache slice). Fig. 12
illustrates these buffers in more detail. First proposed in [29] as MSHRs (miss-status handling registers), the buffers
must track the current state of the request (this will be specific to coherence and memory-system implementation),
must track the address or cache block of the request, and must contain buffer space to receive the data as it returns
from the memory system.

4.4.5 Request Buffers for Injection and Reassembly

Fig. 13 shows how the existing MSHR/request buffer structures in a shared-cache memory system are used as injection
and reassembly buffer space. We can consider the injection and reassembly structures separately. First, an injection
queue is maintained by adding a linked-list pointer (MSHR index) to each MSHR, and a queue-head pointer. These
fields create a singly-linked list of MSHRs, and the data to be injected is stored in each MSHR (or implied by its
control state, if a control packet is queued). The injection datapath requires a separate read port on the MSHR file, and
uses this read port to stream at most one flit per cycle.

Reassembly is only slightly more involved. First, the destination MSHR must be determined. An incoming flit
may either be tagged with an MSHR index if its corresponding transaction has been reserved an MSHR, or may not be
tagged. If it is tagged, its MSHR (reassembly buffer) is reserved, and the flit proceeds to that buffer. If it is not tagged,
allocation logic attempts to allocate a free MSHR. If none exists, the flit is dropped, according to the Retransmit-Once
scheme (§ 4.3).

15

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Data Buffers Valid Addr Transient State

Request Buffers

Steering / Access Logic Control Logic / State Machine

FSM

Figure 12: Request buffer detail: arrays of request buffers exist in cores’ private caches, and also in shared cache
slices, in order to track requests in flight.

Linked
List

Inject
Queue
Head

MSHRs / Request Buffers

State

Injected Flit

Data Buffers

Data is split
into flit-sized blocks

Flow-Control
Logic / Allocator

Ejected Flit

Cache Coherence
State Machine

Local Node

Shared Cache SliceCPU

MSHRs Req Queue

Demux Mux

Router

Figure 13: Integration of the existing MSHR / request buffer structures as injection and reassembly buffer space for
CHIPPER.

Note that this mechanism is guaranteed to work: Retransmit-Once ensures that all packets are either (i) control
packets that begin a transaction, are a single flit in length, and thus require no reassembly buffering, or (ii) data packets
that have a buffer reserved (i.e., have a valid destination-MSHR tag). Thus, the control logic need only handle these
two cases, and does not require any associative logic.

Once the flit’s destination buffer is determined, the flit is written into the corresponding MSHR. This requires a
second write port, sustaining at most one flit per cycle of bandwidth. Because the associative match described above
may take some time, the ejection path may be pipelined.

The total cost of this integration (above a baseline MSHR structure) is thus: linked-list fields and head pointer
(log2 N bits per MSHR for N MSHRs); one additional read port, and one write port, on the MSHR file; the control
logic to implement Retransmit-Once, most likely implemented with the protocol finite-state machine; and finally, the
minimal storage space required for the retransmit-request bitfield, as described in § 4.3.

16

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Parameter Setting
System topology 8x8 mesh, dense configuration (core + shared cache at every node); 4x4 for multithreaded
Core model Out-of-order x86, 128-entry instruction window, 16 MSHRs
Private L1 cache 64 KB, 4-way associative, 64-byte block size
Shared L2 cache perfect (always hits), distributed (S-NUCA [24]), 16 request buffers (reassembly/inject buffers) per slice
Coherence protocol Simple directory-based, based on SGI Origin [30], perfect directory
Interconnect Links 1-cycle latency, 128-bit flit width (4 flits per cache block)
Baseline buffered router 2-cycle latency, 4 VCs/channel, 8 flits/VC
Baseline BLESS router 2-cycle latency, FLIT-BLESS [38]

Table 2: System parameters used in our evaluation.

5 Evaluation
Our goal is to build a cheap, simple bufferless deflection router while minimally impacting performance for our target,
low-to-medium-load applications. We evaluate two basic metrics: performance (application-level, network-level, and
operational frequency), and hardware cost (network power and area). We compare CHIPPER to a traditional buffered
NoC, as well as a baseline bufferless NoC, BLESS [38]. We will show performance results from simulation, and
hardware cost results (including per-workload power) from RTL synthesis of BLESS and CHIPPER models, as well
as ORION [55].

5.1 Methodology
We evaluate our proposed design using an in-house cycle-accurate simulator that runs both multiprogrammed and
multithreaded workloads. For multiprogrammed runs, we collect instruction traces from SPEC CPU2006 [49] appli-
cations, as well as several real-world desktop and server applications (including two commercial web-search traces).
We use PinPoints [43] to select representative phases from each application, and then collect instruction traces using
a custom Pin-tool [32]. For multithreaded workloads, we collect instruction traces from SPLASH-2 [57], annotated
with lock and barrier information to retain proper thread synchronization. Power, area and timing cost results come
from hardware models, described in § 5.7. Power results in this section are based on cycle-accurate statistics from
workload simulations and represent total network power, including links.

Each multiprogrammed simulation includes a 40M cycle warmup, and then runs until every core has retired 10M
instructions. Applications freeze statistics after 10M instructions but continue to run to exert pressure on the system.
We found that warmup counters on caches indicate that caches are completely warm after 40M cycles for our work-
loads, and 10M instructions is long enough for the interconnect to reach a steady-state. Each multithreaded simulation
is run until a certain number of barriers (e.g., main loop iterations).

5.2 System Design and Parameters
We model an 8x8-mesh CMP for our multiprogrammed evaluations and a 4x4-mesh CMP for our multithreaded
evaluations. Detailed cache, core and network parameters are given in Table 2. The system is a shared-cache hierarchy
with a distributed shared cache. Each node contains a compute core, a private cache, and a slice of shared cache.
Addresses are mapped to cache slices with the S-NUCA scheme [24]: the lowest-order bits of the cache block number
determine the home node. The system uses a directory-based coherence protocol based on the SGI Origin [30]. We
also evaluate sensitivity to cache mapping with a locality-aware scheme.

Importantly, we model a perfect shared cache in order to stress the interconnect: every access to a shared cache
slice is a hit, so that no requests go to memory. This isolates the interconnect to provide an upper bound for our
performance degradation – in other words, to report conservative results.

5.3 Workloads
Multiprogrammed: We run 49 multiprogrammed workloads, each consisting of 64 independent programs. 39 of
these workloads are homogeneous, consisting of 64 copies of one application. The remaining 10 are randomly-chosen
mixes from our set of 39 applications. Our application set consists of 26 SPEC CPU2006 benchmarks (including two
traces of mcf), three SPEC CPU2000 benchmarks (vpr, art, crafty), and 10 other server and desktop traces: health

17

SAFARI Technical Report No. 2010-001 (December 29, 2010)

 0

 10

 20

 30

 40

 50

 60

W
ei

g
h

te
d

 S
p

ee
d

u
p

Buffered
BLESS

CHIPPER

 0

 5

 10

 15

perlbench

calculix

dealII

sharepoint.1

tonto
cactusA

D
M

gcc
sjeng

h264ref

nam
d

povray

grom
acs

vpr
tpcc

search.1

M
IX

.5

M
IX

.2

bzip2

M
IX

.8

M
IX

.0

M
IX

.6

om
netpp

M
IX

.3

sphinx3

m
ilc

G
em

sFD
TD

soplex

stream

lbm
health

art
m

cf
A

V
G

N
et

w
o

rk
 P

o
w

er
 (

W
)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

S
p

ee
d

u
p

 (
n

o
rm

al
iz

ed
)

luc
cholesky

radix
fft

lun
A

V
G

 0

 0.5

 1

 1.5

 2

N
et

w
o

rk
 P

o
w

er
 (

W
)

Figure 14: Application performance and network power comparisons.

(from the Olden benchmarks [45]), matlab [33], sharepoint.1, sharepoint.2 [37], stream [34], tpcc [1], xml (an XML-
parsing application), search-1, search-2 (web-search traces from a commercial search engine).
Multithreaded: We run five applications from the SPLASH-2 [57] suite: fft, luc, lun, radix and cholesky.
As described in § 5.1, we delineate run lengths by barrier counts: in particular, we run cholesky for 3 barriers, fft
for 5, luc for 20, lun for 10, and radix for 10 barriers.

5.4 Application-Level Performance
In multiprogrammed workloads, we measure application-level performance using the weighted speedup metric [48]:

WS =
N

∑
i=1

IPCshared

IPCalone
(1)

We compute weighted speedup in all workloads using a buffered-network system as the baseline (IPCalone values).
This allows direct comparison of the networks. In multithreaded workloads, we compare execution times directly by
normalizing runtimes to the buffered-network baseline.
Overall results: For our set of multiprogrammed workloads, CHIPPER degrades weighted speedup by 13.6% on
average (49.8% max in one workload) from the buffered network, and 9.6% on average (29.9% max) from BLESS. For
our set of multithreaded workloads, CHIPPER degrades performance (increases execution time) by 1.8% on average
(3.7% max). As described above, these results are pessimistic, obtained with perfect shared cache in order to stress
the interconnect. Additionally, for the least intensive third of multiprogrammed workloads, and for the multithreaded
workloads we evaluate, performance impact is completely negligible.
Per-workload results: However, average performance degradation does not tell the whole story. Examining degra-
dation by workload intensity yields more insight. Fig. 14 shows weighted speedup (for multiprogrammed) and nor-
malized runtime (for multithreaded), as well as network power, for a representative subset of all multiprogrammed
workloads (for space reasons) and all multithreaded workloads. Behavior can be classified into two general trends.
First, for workloads that are not network-intensive, CHIPPER experiences very little degradation relative to both
buffered and BLESS networks. This is the best case for a cheap interconnect, because the application load is low,
requiring much less than the peak capacity of the baseline buffered network. As workloads begin to become more
network-intensive, moving to the right in Fig. 14, both bufferless networks (BLESS and CHIPPER) generally degrade
relative to the buffered baseline. We note in particular that the SPLASH-2 multithreaded workloads experience very
little degradation because of low network traffic. As described in [38], bufferless routing is a compelling option for
low-to-medium load cases. We conclude that at low load, CHIPPER is effective at preserving performance while
significantly reducing NoC power.

18

SAFARI Technical Report No. 2010-001 (December 29, 2010)

5.5 Power and Energy Efficiency
Power: Figure 14 shows average network power for each evaluated workload. These results demonstrate the advantage
of bufferless routing at low-to-medium load. Both CHIPPER and BLESS have a lower power ceiling than the buffered
router, due to the lack of buffers. Thus, in every case, these router designs consume less power than a buffered router.
In multiprogrammed workloads, CHIPPER consumes 54.9% less power on average than buffered and 8.8% less than
BLESS; with multithreaded workloads, CHIPPER consumes 73.4% less than buffered and 10.6% less than BLESS.
System energy efficiency: The discussion above evaluates efficiency only within the context of network power. We
note that when full-system power is considered, slowdowns due to interconnect bottlenecks can have significant neg-
ative effects on total energy. A full evaluation of this tradeoff is outside the scope of this work. However, the optimal
point depends entirely on the fraction of total system power consumed by the NoC. If this fraction is sufficiently large,
the energy tradeoffs shown here apply. For low-to-medium intensity loads, minimal performance loss coupled with
significant router power, area and complexity reduction make CHIPPER a favorable design tradeoff regardless of the
fraction of system power consumed by the NoC.

5.6 Network-Level Performance
We present latency and deflection as functions of injection rate for uniform random traffic in Figures 15a and 15b
respectively. We show in Fig. 15a that CHIPPER saturates more quickly than BLESS, which in turn saturates more
quickly than a buffered interconnect. Furthermore, CHIPPER clearly has a higher deflection rate for a given network
load, which follows from the less exhaustive port allocator.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 0.1 0.2 0.3 0.4 0.5

P
ac

k
et

 L
at

en
cy

,
U

n
if

o
rm

 R
an

d
o

m
 R

eq
u

es
ts

Injection Rate (per node per cycle)

Buffered
BLESS

CHIPPER

(a) Total latency

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.1 0.2 0.3 0.4 0.5D
ef

le
ct

io
n

 R
at

e
(p

er
 f

li
t

p
er

 c
y

cl
e)

Injection Rate (per node per cycle)

BLESS
CHIPPER

(b) Deflection rate

Figure 15: Network-level evaluations: latency and deflection with synthetic traffic.

Sensitivity: We evaluate sensitivity to two network parameters: golden epoch length, and reassembly buffer size.
For the former, we observe that as epoch length sweeps from 8 (less than the minimum required value for a livelock
freedom guarantee) to 8192, and synthetic injection rate sweeps from 0 to network saturation, IPC varies by 0.89%
maximum. This small effect is expected because golden flits comprise 0.37% on average (0.41% max) of router
traversals over these sweeps. The epoch length is thus unimportant for throughput.

The reassembly buffer size can have a significant effect if it is too small for the presented load. When reassembly
buffers are too small, they become the interconnect bottleneck: the opportunistic assumption of available receiver
space fails, and most requests require retransmits. With a 25 MPKI synthetic workload and only one buffer per node,
the retransmit rate is 72.4%, and IPC drops by 56.7% from the infinite-buffer case. However, IPC reaches its ideal
peak with 8 buffers per node at this workload intensity, and is flat beyond that; for a less-intensive 10 MPKI synthetic
workload, performance reaches ideal at 5 buffers per node. In the application workloads, with 16 buffers per node, the
retransmit rate is 0.0016% on average (0.021% max). Thus, we conclude that when buffers are sized realistically (16
buffers per node) the overhead of Retransmit-Once is negligible.
Effect of Locality-Aware Data Mapping: Finally, we evaluate the effects of data locality on network load, and
thus, the opportunity for a cheaper interconnect design. We approximate a locality-aware cache mapping scheme by
splitting the 8x8-mesh into sixteen 2x2 neighborhoods or four 4x4 neighborhoods: for each node, its cache blocks are

19

SAFARI Technical Report No. 2010-001 (December 29, 2010)

Buffered BLESS CHIPPER % ∆ Buffered→ CHIPPER % ∆ BLESS→ CHIPPER
Area 480174 µm2 311059 µm2 306165 µm2 36.2% reduction 1.6% reduction
Timing (crit path) 1.88ns 2.68 ns 1.90 ns 1.1% increase 29.1% reduction

Table 3: Hardware cost comparisons for a single router in a 65nm process.

striped statically across only its neighborhood. This is a midpoint between one extreme, in which every node has its
entire working set in its local shared-cache slice (and thus has zero network traffic) and the other extreme, S-NUCA
over the whole mesh, implemented in our evaluations above.

We find that for the set of 10 random-mix workloads on an 8x8-mesh (11.7% weighted speedup degradation from
buffered to CHIPPER), modifying cache mapping to use 4x4 neighborhoods reduces weighted speedup degradation to
6.8%, and using 2x2 neighborhoods reduces degradation to 1.1%. This result indicates that mechanisms that increase
locality in NoC traffic can significantly reduce network load, and provide further motivation for cheap interconnects
such as CHIPPER.

5.7 Hardware Complexity
In order to obtain area and timing results, and provide power estimates for workload evaluations, we use RTL (Verilog)
models of CHIPPER and BLESS, synthesized with the Synopsys toolchain using a commercial 65nm process. We
model the buffered baseline timing with a publicly available buffered NoC model from Stanford [50]. However,
because of an inadequate wire model, we were not able to obtain adequate area/power estimates for the flit datapath; for
this reason, we used ORION [55] to obtain estimates for the buffered baseline area/power. For both bufferless routers,
we synthesized control logic, and then added crossbar area and power estimates from ORION. CHIPPER is also
conservatively modeled by including crossbar area/power, and shrinking the permutation network to only the control-
path width; further gains should be possible with a realistic layout that routes the datapath through the permutation
network. For both bufferless models, we synthesize a single router, with parameters set for an 8x8-mesh. Finally, for
all three networks, we model link power with ORION assuming 2.5mm links (likely conservative for an 8x8-mesh).
We do not model reassembly buffers, since we use MSHRs for this purpose.

Table 3 shows area and timing results for CHIPPER, BLESS and traditional buffered routers. The reduction in
area from buffered to either of the bufferless designs is significant; this gap is dominated by buffers (35.3% of the
buffered router’s area). The additional reduction from BLESS to CHIPPER is due to simpler control logic. Altogether,
CHIPPER has 36.2% less area than the buffered baseline. Additionally, the critical path delays are comparable for
both designs: CHIPPER’s critical path, which is through the sort network, is only 1.1% longer than the critical path in
the buffered model. We conclude that CHIPPER can attain nearly the same operating frequency as a buffered router
while reducing area, power (as shown in § 5.5) and complexity significantly.

6 Related Work
Deflection routing: Deflection routing was first introduced as hot-potato routing in [3]. It has found use in optical
networks [8], where deflection is cheaper than buffering. Recently, bufferless routing has received renewed interest in
interconnect networks. BLESS [38] motivates bufferless deflection routing in on-chip interconnect for cost reasons.
However, it does not consider arbitration hardware costs, and it does not solve the reassembly-buffer problem. The
Chaos router [28] is an earlier example of deflection routing. The router is not bufferless; rather, it uses a separate
deflection queue to handle contention. The HEP multiprocessor [47] and the Connection Machine [20] used deflection
networks. Finally, [31, 52] evaluate deflection routing in several NoC topologies and with several deflection priority
schemes. However, [31] does not evaluate application-level performance or model hardware complexity, while [52]
does not show livelock freedom nor does it consider hardware cost of the deflection router control logic. Neither work
examines the reassembly-buffer problem that we solve.
Drop-based bufferless routing: BLESS [38] is bufferless as well as deflection-based. However, several networks
eliminate buffers without deflection. BPS [16] proposes bufferless routing that drops packets under contention.
SCARAB [19] builds on BPS by adding a dedicated circuit-switched NACK network to trigger retransmits. This work
evaluates hardware cost with detailed Verilog models. However, neither BPS nor SCARAB rigorously prove livelock

20

SAFARI Technical Report No. 2010-001 (December 29, 2010)

freedom. Furthermore, the separate NACK network increases link width and requires a separate circuit-switching
crossbar.
Other bufferless alternatives: Ring-based interconnects [46, 44] are particularly well-suited for bufferless operation,
because no routing is required once a flit enters the ring: it simply travels until it reaches its destination. Rings have
low complexity and cost, but scale worse than meshes, tori and other topologies beyond tens of nodes. Hierarchical bus
topologies [53] offer another alternative, especially compelling when traffic exhibits locality. Both of these non-mesh
topologies are outside the scope of this work, however.
Reducing cost and complexity in buffered routers: Elastic Buffer Flow Control [35] makes use of the buffer space
inherent in pipelined channels to reduce buffer cost. The iDEAL router [26] reduces buffering by using dual-function
links that can act as buffer space when necessary. The ViChaR router [39] dynamically sizes VCs to make more
efficient use of a buffer budget, allowing reduced buffer space for equivalent performance. In all these cases, the cost
of VC buffers is reduced, but buffers are not completely eliminated as in bufferless deflection routing. Going further,
Kim [25] eliminates VC buffers while still requiring intermediate buffers (for injection and for turning). The work
shares our goal of simple microarchitecture. Routing logic is simpler in [25] than in our design, because of buffering;
however, [25] does not use adaptive routing, and requires flow control on a finer grain than Retransmit-Once to control
injection fairness. [56] proposes buffer bypassing to reduce dynamic power and latency in a buffered router, and
[36] evaluates such a router against BLESS. The paper’s evaluation shows that with a custom buffer layout (described
in [2]), an aggressive buffered design can have slightly less area and power cost than a bufferless deflection router, due
to the overhead of BLESS arbitration and port allocation. However, our goal is specifically to reduce these very costs
in bufferless deflection routing; we believe that by addressing these problems, we show bufferless deflection routing
to be a practical alternative.
Improving performance and efficiency of bufferless NoCs: Several works improve on a baseline bufferless design
for better performance, energy efficiency, or both. Jafri et al. in [23] propose a hybrid NoC that switches between
bufferless deflection routing and buffered operation depending on load. Nychis et al. in [40] investigate congestion
control for bufferless NoCs that improves performance under heavy load. Both mechanisms are orthogonal to our
work, and CHIPPER could be combined with either or both techniques to improve performance under heavy load.
Permutation network: Our permutation network is a 2-ary 2-fly Butterfly network [12]. The ability of indirect net-
works to perform permutations is well-studied: [54] shows a lower bound on the number of cells required to configure
any permutation. (For our 4-input problem, this bound is 5, thus our design is only partially permutable.) Rather, the
new contribution of the CHIPPER deflection-routing permutation network is the realization that the deflection-routing
problem maps naturally to an indirect network, with the key difference that contention is resolved at each 2x2 cell by
misrouting rather than blocking. CHIPPER embeds these permutation networks within each node of the overall mesh
network. To our knowledge, no other deflection router has made this design choice.
Livelock: Livelock freedom guarantees can be classified into two categories: probabilistic and deterministic. BLESS [38]
proposes Oldest-First (as discussed in § 2.2.1), which yields an inductive argument for deterministic livelock freedom.
Busch et al. [7] offer a routing algorithm with a probabilistic livelock guarantee, in which packets transition between a
small set of priorities with certain probabilities. [28] also provides a probabilistic guarantee. Golden Packet provides
a deterministic guarantee, but its key difference from [7, 28] is its end goal: it is designed to be as simple as possible,
with hardware overhead in mind.
Deadlock: Deadlock in buffered networks is well-known [11] and usually solved by using virtual channels [10].
However, our reassembly-buffer deadlock is a distinct issue. Hansson et al. [18] observe a related problem due to inter-
packet (request-response) dependencies in which deadlock can occur even when the interconnect itself is deadlock-
free. Like the reassembly-buffer deadlock problem described in this paper, this occurs due to ejection backpressure:
responses to previous requests cannot be injected, and so new requests cannot be ejected. However, our problem
differs because it exists independently of inter-packet dependencies (i.e., could happen with only one packet class),
and happens at a lower level (packet reassembly). [18] proposes end-to-end flow control with token passing as a
solution to message-dependent deadlock, but assumes a window-based buffering scheme. Our flow-control scheme
is distinguished by its opportunistic common-case, lack of explicit token passing, and lack of an explicit retransmit
window due to integration into MSHRs.

21

SAFARI Technical Report No. 2010-001 (December 29, 2010)

7 Other Applications and Future Work
While CHIPPER’s design point is appealing for its simplicity, there is a large design space that spans the gap between
large, traditional buffered routers and simple deflection routers. Several directions are possible for future work. First,
the mechanisms that comprise CHIPPER are not limited to the specific design shown here, nor are they mutually
dependent, and extensions of these techniques to other networks might allow for hardware cost reduction at other
design points. Golden Packet can be extended to any non-minimal adaptive interconnect in order to provide livelock
freedom. Likewise, the basic permutation-network structure can be used with other priority schemes, such as Oldest-
First or an application-aware scheme [14, 13], by modifying the comparators in each arbiter block. Finally, Retransmit-
Once offers deadlock freedom in any deflection network that requires reassembly buffers. In fact, it can also be
extended to provide flow control for other purposes, such as congestion control; in general, it allows receivers to
throttle senders when necessary, in a way that is integrated with the basic functionality of the network. Additionally,
we have shown only one permutation network topology. A more detailed study of the effect of partial permutability
on network-level and application-level performance would allow for optimizations that take advantage of properties
of the presented traffic load. In particular, heterogeneity in the permutation network with regard to the more likely flit
permutations (at center, edge and corner routers) might increase efficiency.

8 Conclusions
We presented CHIPPER, a router design for bufferless deflection networks that drastically reduces network power
and hardware cost with minimal performance degradation for systems with low-to-medium network load. CHIP-
PER (i) replaces the router core with a partial permutation network; (ii) employs Golden Packet, an implicit token-
passing scheme for cheap livelock freedom; and (iii) introduces Retransmit-Once, a flow-control scheme that solves
the reassembly-buffer backpressure problem and allows use of MSHRs for packet reassembly, making the network
truly bufferless. Our techniques reduce router area by 36.2% from a traditional buffered design and reduce network
power by 54.9% (73.4%) on average, in exchange for 13.6% (1.9%) slowdown, with multiprogrammed (multithreaded)
workloads. In particular, slowdown is minimal and savings are significant at low-to-medium load. We thus present a
cheap and practical design for a bufferless interconnect – an appealing design point for vastly reduced cost. It is our
hope that this will inspire more ideas and further work on cheap interconnect design.

Acknowledgments
We thank the anonymous reviewers of our HPCA-17 paper [15] for their feedback. We gratefully acknowledge mem-
bers of the SAFARI research group, CALCM, and Thomas Moscibroda at Microsoft Research for many insightful
discussions on this and related work. Chris Fallin was supported by a PhD fellowship from SRC, and subsequently
NSF, while conducting this work. We acknowledge the support of Intel, AMD, and Gigascale Systems Research
Center. This research was partially supported by an NSF CAREER Award CCF-0953246.

References
[1] TPC-C. http://www.tpc.org/tpcc/.

[2] J. Balfour and W. J. Dally. Design tradeoffs for tiled CMP on-chip networks. ICS, 2006.

[3] P. Baran. On distributed communications networks. IEEE Trans. on Comm., 1964.

[4] L. A. Barroso et al. Piranha: a scalable architecture based on single-chip multiprocessing. ISCA-27, 2000.

[5] K. Batcher. Sorting networks and their applications. AFIPS Spring Joint Comp. Conf., 32:307–314, 1968.

[6] S. Borkar. Thousand core chips: a technology perspective. DAC-44, 2007.

[7] C. Busch, M. Herlihy, and R. Wattenhofer. Hard-potato routing. STOC, 2000.

[8] T. Chich, P. Fraigniaud, and J. Cohen. Unslotted deflection routing: a practical and efficient protocol for multihop optical
networks. IEEE/ACM Transactions on Networking, 2001.

[9] D. E. Culler et al. Parallel Computer Architecture: A Hardware/Software Approach. Morgan Kaufmann, 1999.

[10] W. Dally. Virtual-channel flow control. IEEE Par. and Dist. Sys., 1992.

22

SAFARI Technical Report No. 2010-001 (December 29, 2010)

[11] W. Dally and C. Seitz. Deadlock-free message routing in multiprocessor interconnection networks. IEEE Trans. on Comp.,
1987.

[12] W. Dally and B. Towles. Principles and Practices of Interconnection Networks. Morgan Kaufmann, 2004.

[13] R. Das et al. Application-aware prioritization mechanisms for on-chip networks. MICRO-42, 2009.

[14] R. Das et al. Aérgia: exploiting packet latency slack in on-chip networks. ISCA-37, 2010.

[15] C. Fallin, C. Craik, and O. Mutlu. CHIPPER: A low-complexity bufferless deflection router. HPCA-17, 2011.

[16] C. Gómez et al. Reducing packet dropping in a bufferless noc. Euro-Par-14, 2008.

[17] P. Gratz, C. Kim, R. McDonald, and S. Keckler. Implementation and evaluation of on-chip network architectures. ICCD,
2006.

[18] A. Hansson, K. Goossens, and A. Radulescu. Avoiding message-dependent deadlock in network-based systems-on-chip. VLSI
Design, 2007.

[19] M. Hayenga, N. Jerger, and M. Lipasti. Scarab: A single cycle adaptive routing and bufferless network. MICRO-42, 2009.

[20] W. Hillis. The Connection Machine. MIT Press, 1989.

[21] Y. Hoskote et al. A 5-GHz mesh interconnect for a teraflops processor. IEEE Micro, 2007.

[22] W. W. Hwu et al. Implicitly parallel programming models for thousand-core microprocessors. DAC-44, 2007.

[23] S. A. R. Jafri et al. Adaptive flow control for robust performance and energy. MICRO-43, 2010.

[24] C. Kim, D. Burger, and S. Keckler. An adaptive, non-uniform cache structure for wire-dominated on-chip caches. ASPLOS-10,
2002.

[25] J. Kim. Low-cost router microarchitecture for on-chip networks. MICRO-42, 2009.

[26] A. Kodi, A. Sarathy, and A. Louri. iDEAL: Inter-router dual-function energy and area-efficient links for network-on-chip
(NoC) architectures. ISCA-35, 2008.

[27] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded SPARC processor. IEEE Micro, 25(2):21–29,
2005.

[28] S. Konstantinidou and L. Snyder. Chaos router: architecture and performance. ISCA-18, 1991.

[29] D. Kroft. Lockup-free instruction fetch/prefetch cache organization. ISCA-8, 1981.

[30] J. Laudon and D. Lenoski. The SGI Origin: a ccNUMA highly scalable server. ISCA-24, 1997.

[31] Z. Lu, M. Zhong, and A. Jantsch. Evaluation of on-chip networks using deflection routing. GLSVLSI-16, 2006.

[32] C.-K. Luk et al. Pin: building customized program analysis tools with dynamic instrumentation. PLDI, 2005.

[33] MathWorks. MATLAB. http://www.mathworks.com/products/matlab/.

[34] J. McCalpin. STREAM: sustainable memory bandwidth in high performance computers. http://www.cs.virginia.
edu/stream/.

[35] G. Michelogiannakis et al. Elastic-buffer flow control for on-chip networks. HPCA-15, 2009.

[36] G. Michelogiannakis et al. Evaluating bufferless flow-control for on-chip networks. NOCS, 2010.

[37] Microsoft Corporation. Microsoft SharePoint. http://sharepoint.microsoft.com/en-us/Pages/default.
aspx.

[38] T. Moscibroda and O. Mutlu. A case for bufferless routing in on-chip networks. ISCA-36, 2009.

[39] C. Nicopoulos et al. ViChaR: A dynamic virtual channel regulator for on-chip networks. MICRO-39, 2006.

[40] G. Nychis, C. Fallin, T. Moscibroda, and O. Mutlu. Next generation on-chip networks: What kind of congestion control do
we need? Hotnets-IX, 2010.

[41] K. Olukotun et al. The case for a single-chip multiprocessor. ASPLOS, 1996.

[42] J. Owens et al. Research challenges for on-chip interconnection networks. IEEE Micro, 2007.

[43] H. Patil et al. Pinpointing representative portions of large Intel Itanium programs with dynamic instrumentation. MICRO-37,
2004.

[44] D. Pham et al. Overview of the architecture, circuit design, and physical implementation of a first-generation cell processor.
J. Solid-State Circuits, 41(1):179–196, Jan 2006.

[45] A. Rogers et al. Supporting dynamic data structures on distributed shared memory machines. ACM Trans. Prog. Lang. and
Sys., 17(2):233–263, Mar 1995.

23

SAFARI Technical Report No. 2010-001 (December 29, 2010)

[46] L. Seiler et al. Larrabee: a many-core x86 architecture for visual computing. SIGGRAPH, 2008.

[47] B. Smith. Architecture and applications of the HEP multiprocessor computer system. SPIE, 1981.

[48] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simultaneous multithreaded processor. ASPLOS-9, 2000.

[49] Standard Performance Evaluation Corporation. SPEC CPU2006. http://www.spec.org/cpu2006.

[50] Stanford CVA Group. Network-on-Chip project router model. http://nocs.stanford.edu/.

[51] Tilera Corporation. Tilera announces the world’s first 100-core processor with the new TILE-Gx family. http://www.
tilera.com/news_&_events/press_release_091026.php.

[52] S. Tota et al. Implementation analysis of NoC: a MPSoC trace-driven approach. GLSVLSI-16, 2006.

[53] A. Udipi et al. Towards scalable, energy-efficient, bus-based on-chip networks. HPCA-16, 2010.

[54] A. Waksman. A permutation network. JACM, 15:159–163, Jan 1968.

[55] H. Wang et al. Orion: a power-performance simulator for interconnection networks. MICRO-35, 2002.

[56] H. Wang, L. Peh, and S. Malik. Power-driven design of router microarchitectures in on-chip networks. MICRO-36, 2003.

[57] S. Woo et al. The SPLASH-2 programs: characterization and methodological considerations. ISCA-22, 1995.

24

