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Abstract—In commercial-off-the-shelf (COTS) multi-core sys-
tems, a task running on one core can be delayed by other tasks
running simultaneously on other cores due to interference in the
shared DRAM main memory. Such memory interference delay
can be large and highly variable, thereby posing a significant
challenge for the design of predictable real-time systems. In this
paper, we present techniques to provide a tight upper bound on
the worst-case memory interference in a COTS-based multi-core
system. We explicitly model the major resources in the DRAM
system, including banks, buses and the memory controller. By
considering their timing characteristics, we analyze the worst-
case memory interference delay imposed on a task by other
tasks running in parallel. To the best of our knowledge, this is
the first work bounding the request re-ordering effect of COTS
memory controllers. Our work also enables the quantification
of the extent by which memory interference can be reduced
by partitioning DRAM banks. We evaluate our approach on a
commodity multi-core platform running Linux/RK. Experimental
results show that our approach provides an upper bound very
close to our measured worst-case interference.

I. INTRODUCTION

In multi-core systems, main memory is a major shared
resource among processor cores. Tasks running concurrently
on different cores contend with each other to access main
memory, thereby increasing their execution times. As memory-
intensive applications are becoming more prevalent in real-
time embedded systems, an upper bound on the memory
interference delay is needed to evaluate their schedulability.
Moreover, the reduction of this interference is critical to make
effective use of multicore platforms.

Previous studies on bounding memory interference de-
lay [9, 43, 32, 37, 5] model main memory as a black-
box system, where each memory request takes a constant
service time and memory requests from different cores are
serviced in either Round-Robin (RR) or First-Come First-
Serve (FCFS) order. This memory model, however, is not
safe for commercial-off-the-shelf (COTS) multi-core systems
because it hides critical details necessary to place an upper
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bound on its timing. Specifically, in modern COTS-based sys-
tems, the main memory typically consists of DRAM to cope
with high performance and capacity demands. The DRAM
system contains multiple resources such as ranks, banks and
buses, and the access time varies considerably depending on
the requested address and the rank/bank states. In addition,
memory requests are scheduled by an on-chip, out-of-order
memory controller based on the First-Ready First-Come First-
Serve (FR-FCFS) policy [35, 29, 25, 45], where memory
requests arriving early may be serviced later than ones arriving
later if the memory system is not ready to service the former.
Therefore, the over-simplified memory model used by previous
studies may produce pessimistic or optimistic estimates on the
memory interference delay in a COTS multicore system.

In this paper, we propose a white-box approach for bound-
ing memory interference. By explicitly considering the tim-
ing characteristics of major resources in the DRAM sys-
tem, including the re-ordering effect of FR-FCFS and the
rank/bank/bus timing constraints, we obtain a tight upper
bound on the worst-case memory interference delay for a task
when it executes in parallel with other tasks. Our technique
combines two approaches: a request-driven and a job-driven
approach. The request-driven approach focuses on the task’s
own memory requests, and the job-driven approach focuses
on interfering memory requests during the task’s execution.
Combining them, our analysis yields a tight upper bound
on the worst-case response time of a task in the presence
of memory interference. To reduce the negative impact of
memory interference, we propose to use software DRAM bank
partitioning [22, 39]. We consider both dedicated and shared
bank partitions due to the limited availability of DRAM banks,
and our analysis results in an upper bound on the interference
delay in both cases.

Our approach does not require any modifications to hard-
ware components or application software. Therefore, it is
readily applicable to COTS-based multicore real-time systems.
In the evaluation section, we show the effect of our approach
on a well-known COTS multicore platform.

The rest of this paper is organized as follows. Section II ex-
plains how modern DRAM systems work. Section III describes
the system and task model used in this paper. Section IV
presents how we bound memory interference. A detailed
evaluation is provided in Section V. Section VI reviews related
work, and Section VII concludes the paper.
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Fig. 1: Modern DDR SDRAM systems

II. BACKGROUND ON DRAM SYSTEMS

The memory interference delay in a DRAM system is
largely affected by two major components: (i) the DRAM
chips where the actual data are stored, and (ii) the memory
controller that schedules memory read/write requests to the
DRAM chips. In this section, we provide a brief description
of these two components. Our description is based on DDR3
SDRAM systems, but it generally applies to other types
of COTS DRAM systems. For more information, interested
readers may refer to [35, 29, 25, 27].

A. DRAM Organization

A DRAM system as shown in Figure 1(a) is organized as a
set of ranks, each of which consists of multiple DRAM chips.
Each DRAM chip has a narrow data interface (e.g. 8 bits),
so the DRAM chips in the same rank are combined to widen
the width of the data interface (e.g. 8 bits x 8 chips = 64 bits
data bus). A DRAM chip consists of multiple DRAM banks
and memory requests to different banks can be serviced in
parallel. Each DRAM bank has a two-dimensional array of
rows and columns of memory locations. To access a column
in the array, the entire row containing the column first needs to
be transfered to a row-buffer. This action is known as opening
a row. Each bank has one row-buffer that contains at most one
row at a time. The size of the row-buffer is therefore equal
to the size of one row, which is 1024 or 2048 columns in a
DDR3 SDRAM chip [12].

The DRAM access latency varies depending on which row
is currently stored in the row-buffer of a requested bank. If
a memory request accesses a row already in the row-buffer,
the request is directly serviced from the row-buffer, thereby
resulting in a short latency. This case is called a row hit. If the
request is to a row that is different from the one in the row-
buffer, the currently open row should be closed by a precharge
command and the requested row should be delivered to the

row-buffer by an activate command. Then the request can be
serviced from the row-buffer. This case is called a row conflict
and results in a much longer latency. In both cases, transferring
data through the data bus incurs additional latency. The data is
transferred in a burst mode and a burst length (BL) determines
the number of columns transferred per read/write access.

B. Memory Controller

Figure 1(b) shows the structure of a memory controller
in a modern DRAM system. The memory controller is a
mediator between the last-level cache of a processor and
the DRAM chips. It translates read/write memory requests
into corresponding DRAM commands and schedules the com-
mands while satisfying the timing constraints of DRAM banks
and buses. To do so, a memory controller consists of a
request buffer, read/write buffers, and a memory scheduler.
The request buffer holds the state information of each memory
request, such as an address, a read/write type, a timestamp and
its readiness status. The read/write buffers hold the data read
from or to be written to the DRAM. The memory scheduler
determines the service order of the pending memory requests.

The memory scheduler has a two-level hierarchical struc-
ture.1 As shown in Figure 1(b), the first level consists of per-
bank priority queues and bank schedulers. When a memory
request is generated, the request is enqueued into the priority
queue that corresponds to the request’s bank index. The
bank scheduler determines priorities of pending requests and
generates a sequence of DRAM commands to service each
request. The bank scheduler also tracks the state of the bank.
If the highest-priority command does not violate any timing
constraints of the bank, the command is said to be ready for the
bank and is sent to the next level. The second level consists of

1The physical structure of priority queues, bank schedulers, and the channel
scheduler depends on the implementation. They can be implemented as a
single hardware structure [29].



a channel scheduler. It keeps track of DRAM commands from
all bank schedulers, and monitors the timing constraints of
ranks and address/command/data buses. Among the commands
that are ready with respect to such channel timing constraints,
the channel scheduler issues the highest-priority command.
Once the command is issued, the channel scheduler signals
ACK to the corresponding bank scheduler, and then the bank
scheduler selects the next command to be sent.

Memory Scheduling Policy: Scheduling algorithms for COTS
memory controllers have been developed to maximize the data
throughput and minimize the average-case latency of DRAM
systems. Specifically, modern memory controllers employ
First-Ready First-Come First-Serve (FR-FCFS) [35, 29] as
their base scheduling policy. FR-FCFS first prioritizes ready
DRAM commands over others, just as the two-level scheduling
structure does. At the bank scheduler level, FR-FCFS re-orders
memory requests as follows:
1) Row-hit memory requests have higher priorities than row-

conflict requests.
2) In case of a tie, older requests have higher priorities.
At the channel scheduler level, FR-FCFS issues DRAM com-
mands in the order of their arrival time. Therefore, under FR-
FCFS, the oldest row-hit request has the highest priority and
the youngest row-miss request has the lowest priority.

C. Bank Address Mapping and Bank Partitioning

In modern DRAM systems, physical addresses are inter-
leaved among multiple banks (and ranks) to exploit bank-
level parallelism for average-case performance improvement.
The granularity of address interleaving is typically equal to
the size of one row, because mapping adjacent addresses to
the same row may provide better row-buffer locality. This
strategy is called a row-interleaved address mapping policy
and it is widely used in many COTS systems. As an example,
Figure 1(c) shows the address mapping of the system equipped
with the Intel i7-2600 processor which follows the row-
interleaved policy.2 In this system, bits 13 to 16 of the physical
address are used for the rank and bank indices.

The row-interleaved policy, however, can significantly in-
crease the memory access latency in a multi-core system [26,
22, 13]. For instance, multiple tasks running simultaneously
on different cores may be mapped to the same DRAM banks.
This mapping can unexpectedly decrease the row-buffer hit
ratio of each task and introduce re-ordering of the memory
requests, causing significant delays in memory access.

Software bank partitioning [22, 39] is a technique used
to avoid the delays due to shared banks. By dedicating a
specific DRAM bank to each task (or a set of tasks running on
the same core), bank partitioning can prevent the unexpected
eviction of the currently open row and the negative effect of
request re-ordering. The key to this technique is in the mapping
between physical addresses and rank-bank indices. If a task is
assigned only physical pages with a specific rank-bank index b,

2The DRAM mapping of Figure 1(c) is for the single-channel configuration
in this system. More details on this system will be given in Section V.

TABLE I: DRAM timing parameters [1]

Parameters Symbols DDR3-1333 Units
DRAM clock cycle time tCK 1.5 nsec
Precharge latency tRP 9 cycles
Activate latency tRCD 9 cycles
CAS read latency CL 9 cycles
CAS write latency WL 7 cycles
Burst Length BL 8 columns
Write to read delay tWTR 5 cycles
Write recovery time tWR 10 cycles
Activate to activate delay tRRD 4 cycles
Four activate windows tFAW 20 cycles
Refresh to activate delay tRFC 160 nsec
Average refresh interval tREFI 7.8 µsec

all the memory accesses of that task are performed on the
rank-bank b. By controlling the physical page allocation in
the OS, the physical memory space can be divided into bank
partitions and a specific bank partition can be assigned to a
task. However, since the number of DRAM banks available
in a system is growing much slower than the number of
processor cores, it may not be feasible to assign a dedicated
DRAM bank to each core’s taskset. In our work, we therefore
consider not only dedicated DRAM banks to reduce memory
interference delay but also shared banks to cope with their
limited availability.

III. SYSTEM MODEL

Our system model assumes a multi-core system with the
DDR SDRAM sub-system presented in Section II. Specifi-
cally, the memory controller uses the FR-FCFS policy, and the
arrival times of memory requests are assumed to be recorded
when they arrive at the memory controller. For simplicity, we
assume that DRAM consists of a single rank, but systems with
multiple ranks can also be analyzed by our proposed method.
The memory controller uses an open-row policy which keeps
the row-buffer open. We assume that the DRAM is not put
into a low-power state at any time.

Four DRAM commands are considered in this work:
precharge (PRE), activate (ACT), read (RD) and write (WR).
Depending on the current state of the bank, the memory
controller generates a sequence of DRAM commands for a
single read/write memory request as follows:
• Row-hit request: RD/WR
• Row-conflict request: PRE, ACT and RD/WR
Note that the auto-precharge commands (RDAP/WRAP) are
not generated under the open-row policy. We do not consider
the refresh (REF) command because the effect of REF in
memory interference delay is rather negligible compared to
that of other commands.3 The DRAM timing parameters used
in this work are summarized in Table I and are taken from
Micron’s datasheet [1].

3The effect of REF (ER) in memory interference delay can be roughly
estimated as Ek+1

R = d{(total delay from analysis)+Ek
R}/tREFIe·tRFC ,

where E0
R = 0. For the DDR3-1333 with 2Gb density below 85°C,

tRFC/tREFI is 160ns/7.8µs = 0.02, so the effect of REF results in only
about 2% increase in the total memory interference delay. A more detailed
analysis on REF can be found in [7].



The system is equipped with a single-chip multi-core pro-
cessor that has NP identical cores running at a fixed clock
speed. The processor has a last-level cache (LLC), and the
LLC and the DRAM are connected by a single memory
channel. We assume that all memory requests sent to the
DRAM system are misses in the LLC, which is valid in
cache-enabled systems. A missed cache-line can be fetched
from the DRAM by a single memory request because of the
burst-mode data transfer. Therefore, the number of memory
requests is equal to the number of LLC misses, and the
addresses of memory requests to each DRAM bank are aligned
to the size of BL (burst length). In this paper, we assume
that each core has a fully timing-compositional architecture
as described in [40]. This means that each core is in-order
with one outstanding cache miss and any delays from shared
resources are additive to the task execution times.

We focus on partitioned fixed-priority preemptive task
scheduling because it is widely used in many commercial real-
time embedded OSes such as OSEK [2] and VxWorks [41].
For the task model, we assume sporadic tasks with constrained
deadlines. We do not make any assumptions on the priority
assignment schemes, so any fixed-priority assignment can be
used, such as Rate Monotonic [21]. Tasks are ordered in
decreasing order of priorities, i.e. i < j implies that task τi has
higher priority than task τj . Each task has a unique priority
and n is the lowest priority. We assume that tasks fit in the
memory capacity. It is also assumed that tasks do not suspend
themselves during execution and do not share data.4 Task τi
is thus represented as follows:

τi = (Ci, Ti, Di, Hi)

• Ci: the worst-case execution time (WCET) of any job of
task τi, when τi executes in isolation.

• Ti: the minimum inter-arrival time of each job of τi
• Di: the relative deadline of each job of τi (Di ≤ Ti)
• Hi: the maximum number of DRAM requests generated by

any job of τi
Note that no assumptions are made on the memory access
pattern of a task (e.g. access rate). Parameters Ci and Hi

can be obtained by either measurement-based or static-analysis
tools. It is assumed that task preemption does not incur cache-
related preemption delay (CRPD), so Hi does not change due
to preemption. This assumption is easily satisfied in COTS
systems by using cache coloring [16]. However, it is worth
noting that our analysis can be easily combined with CRPD
analyses such as in [4]. As we only use the number of memory
accesses rather than access patterns, the memory interference
of additional cache reloads due to preemption can be bounded
by the maximum number of cache reloads that CRPD analyses
provide.

Bank partitioning is considered to divide DRAM banks into
NBP partitions. Each bank partition is represented as a unique
integer in the range from 1 to NBP . It is assumed that the
number of bank partitions assigned to a task does not affect the

4These assumptions will be relaxed in future work.

task’s WCET. Bank partitions are assigned to cores and tasks
running on the same core use the same set of bank partitions.
Depending on assignment, bank partitions may be dedicated
to a specific core or shared among multiple cores.

Lastly, each task is assumed to have sufficiently cache space
of its own to store one row of each DRAM bank assigned to it.5

This is a reasonable assumption in a modern multi-core system
which typically has a large LLC. For instance, Figure 1(c)
shows a physical address mapping to the LLC and the DRAM
in the Intel Core-i7 system. For the LLC mapping, the last 6
bits of a physical address are used as a cache line offset, and
the next 11 bits are used as a cache set index. For the DRAM
mapping, the last 13 bits are used as a column index and the
next 4 bits are used as a bank index. In order for a task to
store one row in its cache, consecutive 213−6 = 128 cache
sets need to be allocated to the task. If cache coloring is used,
this is equal to 2 out of 32 cache partitions in the example
system.

We use the following notation for convenience:
• hp(τi): the set of tasks with higher priorities than i
• proc(τi): the processor core index where τi is assigned
• task(p): the set of tasks assigned to a processor core p
• bank(p): the set of bank partitions assigned to a core p
• shared(p, q): the intersection of bank(p) and bank(q)

IV. BOUNDING MEMORY INTERFERENCE DELAY

The memory interference delay that a task can suffer from
other tasks can be estimated by using either of two factors: (i)
the number of memory requests generated by the task itself,
and (ii) the number of interfering requests generated by other
tasks that run in parallel. For instance, if a task τi does not
generate any memory requests during its execution, this task
will not suffer from any delays regardless of the number of
interfering memory requests from other tasks. In this case, the
use of factor (i) will give a tight estimate. Conversely, assume
that other tasks simultaneously running on different cores do
not generate any memory requests. Task τi will not experience
any delays because there is no extra contention on the memory
system from τi’s perspective, so the use of factor (ii) will give
a tight estimate in this case.

In this section, we present our approach for bounding
memory interference based on the aforementioned observation.
We first analyze the memory interference delay using two dif-
ferent approaches: request-driven (Sec. IV-A) and job-driven
(Sec. IV-B). Then by combining them, we present a response-
time-based schedulability analysis that tightly bounds the
worst-case memory interference delay of a task.

A. Request-Driven Bounding Approach

The request-driven approach focuses on the number of
memory requests generated by a task τi (Hi) and the amount of
additional delay imposed on each request of τi. In other words,
it estimates the total interference delay by Hi×(per-request

5This assumption is required to bound the re-ordering effect of the memory
controller, which will be described in Section IV-A.
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interference delay), where the per-request delay is bounded
by using DRAM and processor parameters, not by using task
parameters of other tasks.

The interference delay for a memory request generated by
a processor core p can be categorized into two types: inter-
bank and intra-bank. If there is one core q that does not share
any bank partitions with p, the core q only incurs inter-bank
memory interference delay to p. If there is another core q′

that shares bank partitions with p, the core q′ incurs intra-
bank memory interference. We present analyses on the two
types of interference delay and calculate the total interference
delay based on them.

Inter-bank interference delay: Suppose that a core p is
assigned dedicated bank partitions. When a memory request
is generated by one task on p, the request is enqueued into
the request queue of the appropriate DRAM bank. Then, a
sequence of DRAM commands is generated based on the
type of the request, i.e., one command (RD/WR) for a row-
hit request, and three commands (PRE, ACT, RD/WR) for
a row-conflict request. At the bank scheduler, there is no
interference delay from other cores because p does not share
its banks. In contrast, once a command of the request is sent
to the channel scheduler, it can be delayed by the commands
from other banks, because the FR-FCFS policy at the channel
scheduler issues ready commands (with respect to the channel
timing constraints) in the order of arrival time. The amount
of delay imposed on each DRAM command is determined by
the following factors:
• Address/command bus scheduling time: Each DRAM

command takes one DRAM clock cycle on the ad-
dress/command buses. For a PRE command, as it is not
affected by other timing constraints, the delay caused by
each of the commands that have arrived earlier is:

LPREinter = tCK

• Inter-bank row-activate timing constraints: The JEDEC
standard [12] specifies that there be a minimum separation
time of tRRD between two ACTs to different banks, and no
more than four ACTs can be issued during tFAW (Figure 2).
Thus, in case of an ACT command, the maximum delay
from each of the commands that have arrived earlier is:

LACTinter = max(tRRD, tFAW − 3 · tRRD) · tCK

• Data bus contention and bus turn-around delay: When a
RD/WR command is issued, data is transfered in burst mode
on both the rising and falling edges of the DRAM clock
signal, resulting in BL/2 of delay due to data bus contention.
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Fig. 3: Data bus contention and bus turn-around delay

In addition, if a WR/RD command comes after an RD/WR
command, the data flow direction of the data bus needs to be
reversed, resulting in data bus turn-around delay. Figure 3
depicts the data bus contention and bus turn-around delay
in two cases. In case of WR-to-RD, RD needs to wait WL+
BL/2 + tWTR cycles. In case of RD-to-WR, WR needs to
wait CL+BL/2+2−WL cycles.6 Therefore, for a WR/RD
command, the maximum delay from each of the commands
that have arrived earlier is:

LRWinter = max(WL + BL/2 + tWTR,

CL + BL/2 + 2−WL) · tCK
Using these parameters, we derive the inter-bank interfer-

ence delay imposed on each memory request of a core p.
Recall that each memory request may consist of up to three
DRAM commands: PRE, ACT and RD/WR. Each command
of a request can be delayed by all commands that have arrived
earlier at other banks. The worst-case delay for p’s request
occurs when (i) a request of p arrives after the arrival of the
requests of all other cores that do not share banks with p,
and (ii) each previous request causes PRE, ACT and RD/WR
commands. Therefore, the worst-case per-request inter-bank
interference delay for a core p, RDinter

p , is given by:

RDinter
p =

∑
∀q: q 6=p∧

shared(q,p)=∅

(
LPREinter + LACTinter + LRWinter

)
(1)

Intra-bank interference delay: Memory requests to the same

6The bound can be made tighter if we know the exact write-handling policy.
Many controllers handle the write requests in batches when the write buffer is
close to full so that the bus turn-around delay can be amortized across many
requests [20].
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bank are queued into the bank request buffer and their service
order is determined by the bank scheduler. A lower-priority
request should wait until all higher priority requests are com-
pletely serviced by the bank. The delay caused by each higher-
priority request includes (i) the inter-bank interference delay
for the higher priority request, and (ii) the service time of the
request within the DRAM bank. The inter-bank interference
delay can be calculated by Eq. (1). The service time within
the DRAM bank depends on the type of the request:

• Row-hit service time: The row-hit request is for a requested
column already in the row-buffer. Hence, it can simply
read/write its column. In case of read, RD takes CL+BL/2
for data transfer and may cause 2 cycles of delay to the
next request for data bus turn-around time [12]. In case of
write, WR takes WL+BL/2 for data transfer and may cause
max(tWTR, tWR) of delay to the next request for bus turn-
around or write recovery time, depending on the type of the
next request. Thus, in the worst case, the service time for
one row-hit request is:

Lhit =max{CL + BL/2 + 2,

WL + BL/2 + max(tWTR, tWR)} · tCK
• Row-conflict service time: The row-conflict request must

issue PRE and ACT commands to open a row before
accessing a column, and it takes tRP + tRCD. Thus, the
worst-case service time for one row-conflict request is:

Lconf = (tRP + tRCD) · tCK + Lhit

• Consecutive row-hit requests: If m row-hit requests are
present in the memory request buffer, their service time
is much smaller than m · Lhit. Due to the data bus turn-
around time, the worst-case service time happens when the
requests alternate between read and write, as depicted in
Figure 4. WR followed by RD causes WL + BL/2 + tWTR

of delay to RD, and RD followed by WR causes CL
of delay to WR. As WR-to-RD causes larger delay than
RD-to-WR in DDR3 SDRAM [12, 20], m row-hits takes
dm2 e·(WL+BL/2+tWTR)+bm2 c·CL cycles. In addition, if
a PRE command is the next command to be issued after the
m row-hits, it needs to wait an extra tWR − tWTR cycles
due to the write recovery time. Therefore, the worst-case
service time for m consecutive row-hit requests is:

Lconhit(m) = { dm/2e · (WL + BL/2 + tWTR)+

bm/2c · CL + (tWR − tWTR)} · tCK

Under the FR-FCFS policy, the bank scheduler serves row-
conflict requests in the order of their arrival times. When row-
hit requests arrive at the queue, the bank scheduler re-orders
memory requests such that row-hits are served earlier than
older row-conflicts. For each open row, the maximum row-
hit requests that can be generated in a system is represented
as Ncols/BL, where Ncols is the number of columns in one
row. This is due to the fact that, as described in the system
model, (i) each task is assumed to have enough cache space
to store one row of each bank assigned to it, (ii) the memory
request addresses are aligned to the size of BL, and (iii) tasks
do not share memory. Once the tasks that have their data in
the currently open row fetch all columns in the open row into
their caches, all the subsequent memory accesses to the row
will be served at the cache level and no DRAM requests will
be generated for those accesses. If one of the tasks accesses a
row different from the currently open one, this memory access
causes a row-conflict request so that the re-ordering effect no
longer occurs. In many systems, as described in [27, 25, 6],
the re-ordering effect can also be bounded by a hardware
threshold Ncap, which caps the number of re-ordering between
requests. Therefore, the maximum number of row-hits that can
be prioritized over older row-conflicts is:

Nreorder = min (Ncols/BL, Ncap) (2)

We now analyze the intra-bank interference delay for each
memory request generated by a processor core p. Within a
bank request buffer, each request of p can be delayed by both
the re-ordering effect and the previous memory requests in
the queue. Therefore, the worst-case per-request interference
delay for a core p (RDintra

p ) is calculated as follows:

RDintra
p = reorder(p) +

∑
∀q: q 6=p∧

shared(q,p) 6=∅

(
Lconf +RDinter

q

)
(3)

reorder(p) =
0 if @q : q 6= p ∧ shared(q, p) 6= ∅
Lconhit(Nreorder) +

∑
∀q: q 6=p∧

shared(q,p)=∅

LRWinter ·Nreorder otherwise
(4)

In (3), the summation part calculates the delay from memory
requests that can be queued before the arrival of p’s request.
It considers processor cores that share bank partitions with
p. Since row-conflict causes a longer delay, the worst-case
delay from each of the older requests is the sum of the



row-conflict service time (Lconf ) and the per-request inter-
bank interference delay (RDinter

q ). The function reorder(p)
calculates the delay from the re-ordering effect. As shown in
(4), it gives zero if there is no core sharing bank partitions with
p. Otherwise, it calculates the re-ordering effect as the sum of
the consecutive row-hits’ service time (Lconhit(Nreorder)) and
the inter-bank delay for the row-hits (

∑
LRWinter ·Nreorder).

Total interference delay: A memory request from a core p
experiences both inter-bank and intra-bank interference delay.
Hence, the worst-case per-request interference delay for p,
RDp, is represented as follows:

RDp = RDinter
p +RDintra

p (5)

Since RDp is the worst-case delay for each request, the total
memory interference delay of τi is upper bounded by Hi·RDp.

B. Job-Driven Bounding Approach

The job-driven approach focuses on how many interfering
memory requests are generated during a task’s job execution
time. In the worst case, every memory request from other cores
can delay the execution of a task running on a specific core.
Therefore, by capturing the maximum number of requests
generated by the other cores during a time interval t, the job-
driven approach bounds the memory interference delay that
can be imposed on tasks running on a specific core in any
time interval t.

We define Ap(t), which is the maximum number of memory
requests generated by the core p during a time interval t as:

Ap(t) =
∑

∀τi∈task(p)

⌈
t

Ti

⌉
·Hi (6)

Note that this calculation is not overly pessimistic, because
we do not make assumptions on memory access patterns
(e.g. access rate or distribution). It is possible to add this
type of assumption, such as the specific memory access
pattern of the tasks [9, 5] or using memory request throttling
mechanisms [44, 10, 43]. This will help us to calculate a
tighter Ap(t), while other equations in our work can be used
independent of such additional assumptions.

Inter-bank interference delay: The worst-case inter-bank
interference delay imposed on a core p during a time interval
t is represented as follows:

JDinter
p (t) =

∑
∀q: q 6=p∧

shared(q,p)=∅

Aq(t) ·
(
LACTinter + LRWinter + LPREinter

)
(7)

In this equation, the summation considers processor cores that
do not share bank partitions with p. The other cores sharing
banks with p will be taken into account in Eq. (8). The
number of memory requests generated by other cores (Aq(t))
is multiplied by the maximum inter-bank interference delay
from each of these requests (LACTinter + LRWinter + LPREinter).

Intra-bank interference delay: The worst-case intra-bank

interference delay imposed on a core p during t is as follows:

JDintra
p (t) =

∑
∀q: q 6=p∧

shared(q,p)6=∅

(
Aq(t) · Lconf + JDinter

q (t)
)

(8)

Eq. (8) considers other cores that share bank partitions with
p. The number of requests generated by each of these cores
during t is calculated as Aq(t). Since a row-conflict request
causes larger delay than a row-hit one, Aq(t) is multiplied by
the row-conflict service time Lconf . In addition, JDinter

q is
added because each interfering core q itself may be delayed
by inter-bank interference depending on its bank partitions.
Note that the re-ordering effect of the bank scheduler does
not need to be considered here because Eq. (8) captures the
worst case where all the possible memory requests generated
by other cores arrived ahead of any request from p.

Total interference delay: The worst-case memory interfer-
ence delay is the sum of the worst-case inter-bank and intra-
bank delays. Therefore, the memory interference delay for a
core p during a time interval t, JDp(t), is upper bounded by:

JDp(t) = JDinter
p (t) + JDintra

p (t) (9)

C. Response-Time Based Schedulability Analysis

We have presented the request-driven and the job-driven
approaches to analyze the worst-case memory interference de-
lay. Since each of the two approaches bounds the interference
delay by itself, a tighter upper bound can be obtained by taking
the smaller result from the two approaches. Based on the
analyses of the two approaches, the iterative response time
test [14] is extended as follows to incorporate the memory
interference delay:

Rk+1
i = Ci +

∑
τj∈hp(τi)

⌈
Rki
Tj

⌉
· Cj

+min

Hi ·RDp+
∑

τj∈hp(τi)

⌈
Rki
Tj

⌉
·Hj ·RDp, JDp(R

k
i )


(10)

where Rki is the worst-case response time of τi at the kth

iteration, and p is proc(τi). The test terminates when Rk+1
i =

Rki . The task τi is schedulable if its response time does not
exceed its deadline: Rki ≤ Di. The first and the second terms
are the same as the classical response time test. In the third
term, the memory interference delay for τi is bounded by using
the two approaches. The request-driven approach bounds the
delay with the addition of of Hi ·RDp and

∑
dR

k
i

Tj
e·Hj ·RDp,

which is the total delay imposed on τi and its higher priority
tasks. The job-driven approach bounds the delay by JDp(R

k
i ),

that captures the total delay incurred during τi’s response time.
We can make the following observations from our analysis:

(i) memory interference increases with the number of cores,
(ii) tasks running on the same core do not interfere with
each other, and (iii) the use of bank partitioning reduces
the interference delay. These observations lead to an efficient
task allocation under partitioned scheduling by co-locating



memory-intensive tasks on the same core with dedicated
DRAM banks. For a description of how a task allocation can
reduce memory interference, please refer to [15].

V. EVALUATION

In this section, we show how our analysis effectively bounds
memory interference delay in a real system. We first describe
our experimental setup and then present the results.

A. Experimental Setup

The target system is equipped with the Intel Core i7-2600
quad-core processor.7 The on-chip memory controller of the
processor supports dual memory channels, but by installing
a single DIMM, only one channel is activated in accordance
with our system model.8 The system uses a single DDR3-1333
DIMM that consists of 2 ranks and 8 banks per each rank. The
timing parameters of the DIMM are shown in Table I. We used
the latest version of Linux/RK [30, 33] for software cache
and bank partitioning [16, 39].9 Cache partitioning divides
the shared L3 cache of the processor into 32 partitions, and
bank partitioning divides the DRAM banks into 16 partitions
(1 DRAM bank per partition). For the measurement tool,
we used the Linux/RK profiler [17] that records execution
times and memory accesses (LLC misses) using hardware per-
formance counters. To reduce measurement inaccuracies, we
disabled the hardware prefetcher, simultaneous multithreading,
and dynamic clock frequency scaling of the processor. All
unrelated system services such as GUI and networking were
also disabled. In addition, we used the memory reservation
mechanism of Linux/RK [11, 18] to protect each application
against unexpected page swap-outs.

We use the eleven PARSEC benchmarks [8] and the two
types of synthetic tasks (memory-intensive and memory-non-
intensive) for our experiment.10 Our focus is on analyzing
the memory interference delays on the benchmarks. Each
benchmark is assigned to Core 1, and the three instances of
synthetic tasks are assigned to the other cores (Core 2, 3, 4)
to generate interfering memory requests. To meet the memory
size requirement of the benchmarks11, each benchmark is as-
signed 20 private cache partitions. The synthetic tasks are each
assigned 4 private cache partitions. Each of the benchmarks
and the synthetic tasks is assigned 1 bank partition, and we
evaluate two cases where tasks share or do not share bank

7Although the cores of this processor are not fully timing compositional,
in practice, the experimental results show that our analysis is effective in
bounding memory interference. Furthermore, we have not observed any timing
anomalies in our experiments.

8This is why the DRAM address mapping in Figure 1(c) does not have a
bit for channel selection.

9Linux/RK is available at https://rtml.ece.cmu.edu/redmine/projects/rk.
10Two PARSEC benchmarks, dedup and facesim, are excluded from the

experiment due to their frequent disk accesses for data files.
11Software cache partitioning simultaneously partitions the entire physical

memory space into the number of cache partitions. Therefore the spatial
memory requirement of a task determines the minimum number of cache
partitions for that task [16].
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Fig. 5: Response times with three memory-intensive tasks

partitions. When running in isolation, the synthetic memory-
intensive task generates up to 40K DRAM requests per msec12

(combination of read and write) and the memory-non-intensive
task generates up to 1K DRAM requests per msec.

B. Results

We first evaluate the response times of benchmarks with the
three memory-intensive tasks. Figure 5 compares the maxi-
mum observed response times with the calculated response
times from our analysis, when three memory-intensive tasks
are running in parallel. The x-axis of each subgraph denotes
the benchmark names, and the y-axis shows the normalized
response time of each benchmark. As each benchmark is solely
assigned to Core 1, the response time increase is equal to the
amount of memory interference suffered from other cores. The
difference between the observed and calculated values repre-
sents the pessimism embedded in our analysis. Figure 5(a)
shows the response times with a private bank partition per
core. We observed up to 4.1x of response time increase in
the target system (canneal). The results from our analysis are
only 8% more than the observed values on average. The worst
over-estimation is found in fluidanimate. We suspect that this
over-estimation comes from the varying memory access patten
of the benchmark, because our analysis considers the worst-
case memory access scenario. Recall that our analysis bounds
memory interference based on two approaches: request-driven
and job-driven. In this experiment, as the memory-intensive
tasks generate an enormous number of memory requests, the

12The memory-intensive task is a modified version of the stream bench-
mark [24]. Since it has very high row-buffer locality with little computations,
“40K requests per msec” is likely close to the maximum possible value that
a single core can generate with a single bank partition in the target system.

https://rtml.ece.cmu.edu/redmine/projects/rk
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Fig. 6: Response times with three memory-non-intensive tasks

response times of all benchmarks are bounded by the request-
driven approach. When only the job-driven approach is used,
the results are unrealistically pessimistic (>10000x; not shown
in the figure for simplicity). Thus, these experimental results
show the advantage of the request-driven approach.

Figure 5(b) illustrates the response times when all cores
share the same bank partition. With bank sharing, we observed
up to 12x of response time increase in the target platform. To
calculate the response time when a bank partition is shared, the
re-ordering window size Nreorder is required. If we disregard
the re-ordering effect of FR-FCFS in this platform (Nreorder =
0), the analysis generates overly optimistic values. In case of
canneal, the analysis that does not account for the re-ordering
effect results in a 555% lower value than the observed one. As
the precise number of Nreorder is not publicly available,13 we
inferred this value based on our analysis. When Nreorder =
12, our analysis bounds all cases. This implies that the re-
ordering window size of the target hardware is at least 12.
The results in the bank sharing case shows the importance
of considering the request re-ordering effect of the DRAM
system in designing a predictable multi-core system.

We next evaluate the response times with the memory-non-
intensive tasks. Figure 6(a) and Figure 6(b) depict the response
times with a private and a shared bank partition, respectively.
In contrast to the memory-intensive case, the smallest upper-
bounds on the response times are mostly obtained by the job-
driven approach due to the low number of interfering memory
requests. The average over-estimates are 8% and 13% for
a private and a shared bank, respectively. The experimental

13As given in (2), Nreorder can be bounded without the knowledge of the
Ncap value. The DRAM used in this platform has Ncols of 1024 and BL
of 8, so the Nreorder value does not exceed 128.

results show that our analysis bounds memory interference
delay with low pessimism in a real hardware platform, under
both high and low memory contentions.

VI. RELATED WORK

With multi-core processors being the norm today, the real-
time systems research community has been increasingly inter-
ested in the impact of contention on resources in the memory
system on the timing of software.

Researchers have developed special (non-COTS) compo-
nents of memory systems for real-time systems. The Predator
memory controller [3] uses credit-based arbitration and closes
an open row after each access. The AMC memory controller
[31] spreads the data of a single cache block across all DRAM
banks so as to reduce the impact of interference by serializ-
ing all memory requests. The PRET DRAM controller [34]
hardware partitions banks among cores for predictability. Re-
searchers have also proposed techniques that modify a program
and carefully set up time-triggered schedules so that there is no
instant where two processor cores have outstanding memory
operations [36].

We have heard, however, a strong interest from software
practitioners in techniques that can use COTS multi-core
processors and existing applications without requiring mod-
ifications and, therefore, this has been the focus of this paper.
In this context, some previous work considers the entire
memory system as a single resource, such that a processor
core requests this resource when it generates a cache miss
and it must hold this resource exclusively until the data of the
cache miss are delivered to the processor core that requested
it [32, 5, 9, 37, 23]. They commonly assumed that each
memory request takes a constant service time and memory
requests from multiple cores are serviced in the order of
their arrival time. However, these assumptions may lead to
overly pessimistic or optimistic estimates in COTS systems,
where the service time of each memory request varies and the
memory controller re-orders the memory requests [25].

Instead of considering the memory system as a single
resource, recent work [42] makes a more realistic assumption
about the memory system, where the memory controller has
one request queue per DRAM bank and one system-wide
queue connected to the per-bank queues. That analysis, how-
ever, only considers the case where each processor core is
assigned a private DRAM bank. Unfortunately, the number
of DRAM banks is growing more slowly than the number of
cores, and the memory space requirement of a workload in a
core may exceed the size of a single bank. Due to this limited
availability of DRAM banks, it is necessary to consider sharing
of DRAM banks among multiple cores. With bank sharing,
memory requests can be re-ordered in the per-bank queues,
thereby increasing memory request service times. The work
in [42] unfortunately does not model this request re-ordering
effect. In this paper, we have eliminated this limitation.

Finally, there has been recent work in the architecture
community on the design of memory controllers that can dy-
namically estimate application slowdowns [38]. These designs



do not aim to provide worst-case bounds and can under-
estimate memory interference. Future memory controllers
might incorporate ideas like batching and thread prioritization
(e.g., [28, 19]). This will lead to a different analysis, which
could be interesting future work that builds on ours.

VII. CONCLUSIONS

In this paper, we have presented an analysis for bounding
memory interference in a multi-core systems. Our analysis
is based on a realistic memory model, which considers the
JEDEC DDR3 SDRAM standard, the FR-FCFS policy of
the memory controller, and shared/private DRAM banks. To
provide a tight upper-bound on the memory interference
delay, our analysis uses the combination of the request-driven
and job-driven approaches. Experimental results from a real
hardware platform show that our analysis can estimate the
memory interference delay (with only 8% of over-estimation
on average under severe memory contention).

As multi-core processors are already ubiquitous, the con-
tention on shared main memory should be seriously consid-
ered. We believe that our analysis based on a realistic memory
model can be effectively used for designing predictable multi-
core real-time systems. For future work, we plan to explore
the effect of hardware prefetchers on memory interference
delay. Considering a non-timing-compositional architecture
that allows out-of-order execution and multiple outstanding
cache misses is also an important future research issue.
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