
Techniques for Bandwidth-Efficient Prefetching of Linked Data Structures in

Hybrid Prefetching Systems

Eiman Ebrahimi† Onur Mutlu§ Yale N. Patt†

†Department of Electrical and Computer Engineering

The University of Texas at Austin

{ebrahimi, patt}@ece.utexas.edu

§Computer Architecture Laboratory (CALCM)

Carnegie Mellon University

onur@cmu.edu

Abstract

Linked data structure (LDS) accesses are critical to the perfor-

mance of many large scale applications. Techniques have been pro-

posed to prefetch such accesses. Unfortunately, many LDS prefetching

techniques 1) generate a large number of useless prefetches, thereby

degrading performance and bandwidth efficiency, 2) require signifi-

cant hardware or storage cost, or 3) when employed together with

stream-based prefetchers, cause significant resource contention in

the memory system. As a result, existing processors do not employ

LDS prefetchers even though they commonly employ stream-based

prefetchers.

This paper proposes a low-cost hardware/software cooperative

technique that enables bandwidth-efficient prefetching of linked data

structures. Our solution has two new components: 1) a compiler-

guided prefetch filtering mechanism that informs the hardware about

which pointer addresses to prefetch, 2) a coordinated prefetcher throt-

tling mechanism that uses run-time feedback to manage the interfer-

ence between multiple prefetchers (LDS and stream-based) in a hy-

brid prefetching system. Evaluations show that the proposed solu-

tion improves average performance by 22.5% while decreasing mem-

ory bandwidth consumption by 25% over a baseline system that em-

ploys an effective stream prefetcher on a set of memory- and pointer-

intensive applications. We compare our proposal to three different

LDS/correlation prefetching techniques and find that it provides sig-

nificantly better performance on both single-core and multi-core sys-

tems, while requiring less hardware cost.

1.. Introduction

As DRAM speed improvement continues to lag processor speed
improvement, memory access latency remains a significant system
performance bottleneck. As such, mechanisms to reduce and toler-
ate memory latency continue to be critical to improving system per-
formance. Prefetching is one such mechanism: it attempts to predict
the memory addresses a program will access, and issue memory re-
quests to them before the program flow needs the data. In this way,
prefetching can hide the latency of a memory access since the pro-
cessor either does not incur a cache miss for that access or it incurs a
cache miss that is satisfied earlier (because prefetching already started
the memory access). Prefetchers that deal with streaming (or striding)
access patterns have been researched for decades [12, 18, 27] and are
implemented in many existing processor designs [13, 38, 10]. Aggres-
sive stream prefetchers can significantly reduce the effective memory
access latency of many workloads. However, costly last-level cache
misses do not always adhere to streaming access patterns. Access pat-
terns that follow pointers in a linked data structure (i.e., chase pointers
in memory) are an example. Since pointer-chasing access patterns are
common in real applications (e.g., databases [9] and garbage collec-
tion [21]), prefetchers that are able to efficiently predict such patterns
are needed. Our goal in this paper is to develop techniques that 1)
enable the efficient prefetching of linked data structures and 2) effi-
ciently combine such prefetchers with commonly-employed stream-
based prefetchers.

To motivate the need for prefetchers for linked data structures
(LDS), Figure 1 (top) shows the performance improvement of an ag-

gressive stream prefetcher and the fraction of last-level cache misses it
prefetches (i.e. coverage) on a set of workloads from the SPEC 2006,
SPEC 2000, and Olden benchmark suites. The stream prefetcher sig-
nificantly improves the performance of five benchmarks. However,
in eight of the remaining benchmarks (mcf, astar, xalancbmk,
omnetpp, ammp, bisort, health, pfast), the stream prefetcher
eliminates less than 20% of the last-level cache misses. As a re-
sult, it either degrades or does not affect the performance of these
benchmarks. In these eight benchmarks, a large fraction of the cache
misses are caused by non-streaming accesses to LDS that cannot be
prefetched by a stream prefetcher. Figure 1 (bottom) shows the po-
tential performance improvement possible over the aggressive stream
prefetcher if all last-level cache misses due to LDS accesses were ide-
ally converted to cache hits using oracle information. This ideal exper-
iment improves average performance by 53.7% (37.7% w/o health),
showing that significant performance potential exists for techniques
that enable the prefetching of linked data structures.

-50

-25

0

25

50

75

100

125

150

175

Coverage (%) 38

IP
C

 D
el

ta
 o

f
S

tr
.

P
re

f.

o
v

er
 N

o
 P

re
f.

 (
%

)
57 14 12 14 18 70 68 8 17 8 20 84 70 8 24

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

IP
C

 D
el

ta
 o

f
Id

ea
l

L
D

S
 P

re
f.

 (
%

) 615.5

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

Figure 1. Potential performance improvement of ideal LDS prefetching

Previous work [5, 17, 30, 7, 31, 9, 43, 23] proposed techniques that
prefetch non-streaming accesses to LDS. Unfortunately, many of these
prefetchers have not found widespread acceptance in current designs
because they have one or both of the following two major drawbacks
that make their implementation difficult or costly:

1- Large storage/hardware cost: Some LDS prefetchers need
very large storage to be effective because they usually need to store

the pointers that will be prefetched.1 Examples include jump pointer
prefetchers [31], the pointer cache [7], and hardware correlation
prefetchers [5, 17, 20]. Since the pointer working set of applications
is usually very large, keeping track of it in a hardware structure re-
quires a large amount of storage. Other, pre-execution based, LDS
prefetchers (e.g., [43, 23, 6, 8]) are also costly because they require
an extra thread context or pre-computation hardware to execute helper
threads. As energy and power consumption becomes more pressing

1By “prefetching a pointer”, we mean issuing a prefetch request to the ad-

dress the pointer points to.

with each processor generation, simple prefetchers that require small
storage cost and no additional thread context become desirable and
necessary.

2- Large number of useless prefetch requests: Many LDS
prefetchers (e.g., [5, 17, 9]) generate a large number of requests to
effectively prefetch pointer addresses. An example is content-directed
prefetching (CDP) [9]. CDP is attractive because it requires neither
state to store pointers nor a thread context for pre-execution. Instead,
it greedily scans values in accessed cache blocks to discover pointer
addresses and generates prefetch requests for all pointer addresses.
Unfortunately, such a greedy prefetch mechanism wastes valuable
memory bandwidth and degrades performance due to many useless
prefetches and cache pollution. The large number of generated useless
prefetch requests makes such LDS prefetchers undesirable, especially
in the bandwidth-limited environment of multi-core processors.

Designing a Hybrid Prefetching System Incorporating LDS
Prefetching: This paper first proposes a technique that overcomes
the problems mentioned above to make LDS prefetching low-cost and
bandwidth-efficient in a hybrid prefetching system. To this end, we
start with content-directed prefetching, which is stateless and requires
no extra thread context, and develop a technique that reduces its use-
less prefetches. Our technique is hardware/software cooperative. The
compiler, using profile and LDS data layout information, determines
which pointers in memory could be beneficial to prefetch and con-
veys this information as hints to the content-directed prefetcher. The
content-directed prefetcher, at run-time, uses the hints to prefetch ben-
eficial pointers instead of indiscriminately prefetching all pointers.
The resulting LDS prefetcher is low hardware-cost and bandwidth-
efficient: it neither requires state to store pointer addresses nor con-
sumes a large amount of memory bandwidth.

Second, since an efficient LDS prefetcher is not intended for
prefetching streaming accesses, any real processor implementation re-
quires such a prefetcher to be used in conjunction with an aggres-
sive stream prefetcher, which is already employed in modern proces-
sors. Unfortunately, building a hybrid prefetcher by naively putting
together two prefetchers places significant pressure on memory sys-
tem resources. Prefetch requests from the two prefetchers compete
with each other for valuable resources, such as memory bandwidth,
and useless prefetches can deny service to useful ones by causing
resource contention. If competition between the two prefetchers is
not intelligently managed, both performance and bandwidth-efficiency
can degrade and full potential of the prefetchers cannot be exploited.
To address this problem, we propose a technique to efficiently man-
age the resource contention between the two prefetchers: our mecha-
nism throttles the aggressiveness of the prefetchers intelligently based
on how well they are doing in order to give more memory system
resources to the prefetcher that is more effective at improving per-
formance. The resulting technique is a bandwidth-efficient hybrid
(streaming and LDS) prefetching mechanism.

Our evaluation in Section 6 shows that the combination of the
techniques we propose in this paper (efficient content-directed LDS
prefetching and coordinated prefetcher throttling) improves average
performance by 22.5% (16% w/o health) while also reducing average
bandwidth consumption by 25% (27.1% w/o health) on a state-of-the-
art system employing an aggressive stream prefetcher.

Contributions: We make the following major contributions:

1. We propose a very low-hardware-cost mechanism to bandwidth-
efficiently prefetch pointer accesses without requiring any storage for
pointers or separate thread contexts for pre-execution. Our solution
is based on a new compiler-guided technique that determines which
pointer addresses to prefetch in content-directed LDS prefetching. To
our knowledge, this is the first solution that enables us to build not
only very low-cost but also bandwidth-efficient, yet effective, LDS
prefetchers by overcoming the fundamental limitations of content-
directed prefetching.

2. We propose a hybrid prefetching mechanism that throttles mul-
tiple different prefetchers in a coordinated fashion based on run-time
feedback information. To our knowledge, this is the first proposal to
intelligently manage scarce off-chip bandwidth and inter-prefetcher
interference cooperatively between different types of prefetchers (e.g.,
LDS and stream prefetchers). This mechanism can be used in con-

junction with any form of hybrid prefetching.
3. We show that our proposal is effective for both single-core

as well as multi-core processors. We extensively compare our pro-
posal to previous techniques and show that it significantly outperforms
hardware prefetch filtering and three other forms of LDS/correlation
prefetching, while requiring less hardware storage cost.

2.. Background and Motivation

We briefly describe our baseline stream-based prefetcher and
content-directed prefetching since our proposal builds upon them. We
also describe the shortcomings of content-directed prefetching that
motivate our mechanisms.

2.1. Baseline Stream Prefetcher Design
We assume that any modern system will implement stream (or

stride) prefetching, which is already commonly used in existing sys-
tems [13, 10, 38]. Our baseline stream prefetcher is based on that of
the IBM POWER4/POWER5 prefetcher, which is described in more
detail in [38, 36]. The prefetcher brings cache blocks into the L2 (last-
level) cache, since we use an out-of-order execution machine that can
tolerate short L1-miss latencies. How far ahead of the demand miss
stream the prefetcher can send requests is determined by the Prefetch
Distance parameter. Prefetch Degree determines how many requests
the prefetcher issues at once. A detailed description of our prefetcher
can be found in [36].

2.2. Content-Directed Prefetching (CDP)
Content directed prefetching (CDP) [9] is an attractive technique

for prefetching LDS because it does not require additional state to
store the pointers that form the linkages in an LDS. This mechanism
monitors incoming cache blocks at a certain level of the memory hi-
erarchy, and identifies candidate addresses to prefetch within those
cache blocks. To do so, it uses a virtual address matching predictor,
which relies on the observation that most virtual addresses share com-
mon high-order bits. If a value in the incoming cache block has the
same high-order bits as the address of the cache block (the number of
which is a static parameter of the prefetcher design; Cooksey et al. [9]
refer to these bits as compare bits), the value is predicted to be a virtual
address (pointer) and a prefetch request is generated for that address.
This prefetch request first accesses the last-level cache; if it misses, a
memory request is issued to main memory.

CDP generates prefetches recursively, i.e. it scans prefetched cache
blocks and generates prefetch requests based on the pointers found
in those cache blocks. The depth of the recursion determines how
aggressive CDP is. For example, a maximum recursion depth of 1
means that prefetched cache blocks will not be scanned to generate
any more prefetches.

2.3. Shortcomings of Content-Directed Prefetching
Although content-directed prefetching is attractive because it is

stateless, there is a major deficiency in its identification of addresses to
prefetch, which reduces its usefulness. The intuition behind its choice
of candidate addresses is simple: if a pointer is loaded from mem-
ory, there is a good likelihood that the pointer will be used as the data
address of a future load. Unfortunately, this intuition results in a sig-
nificant deficiency: CDP generates prefetch requests for all identified
pointers in a scanned cache block. Greedily prefetching all pointers
results in low prefetch accuracy and significantly increases bandwidth
consumption because not all loaded pointers are later used as load ad-
dresses by the program.

Figure 2 and Table 1 demonstrate the effect of this deficiency on
the performance, bandwidth consumption, and accuracy of CDP. Fig-
ure 2 shows the performance and bandwidth consumption (in terms
of BPKI - bus accesses per thousand retired instructions) of 1) us-
ing the baseline stream prefetcher alone, and 2) using both the base-

line stream prefetcher and CDP together.2 Adding CDP to a sys-
tem with a stream prefetcher significantly reduces performance (by

2For this experiment we use the same configuration as that of the original

CDP proposal [9], which is described in Section 5.

2

Benchmark perlbench gcc mcf astar xalancbmk omnetpp parser art ammp bisort health mst perimeter voronoi pfast

CDP Accuracy (%) 28.0 6.0 1.4 29.1 0.9 8.4 13.3 1.9 22.3 3.4 58.9 1.4 83.3 47.0 37.4

Table 1. Prefetch accuracy of the original content-directed prefetcher

14%) and increases bandwidth consumption (by 83.3%). Even though
CDP improves performance in several applications (gcc, astar,
health, perimeter, and voronoi), it causes significant perfor-
mance loss and extra bandwidth consumption in several others (mcf,
xalancbmk, bisort, and mst). These effects are due to CDP’s
very low accuracy for these benchmarks (shown in Table 1), caused
by indiscriminate prefetching of all pointer addresses found in cache
lines. Cache pollution resulting from useless prefetches is the ma-
jor reason why CDP degrades performance. In fact, we found that
if cache pollution were eliminated ideally using oracle information,
CDP would improve performance by 29.4% and 30.4% on bisort

and mst respectively.

To provide insight into the behavior of CDP, we briefly describe
why it drastically degrades performance in bisort. Section 3 pro-
vides a detailed explanation of the performance degradation in mst.
bisort performs a bitonic sort of two disjoint sets of numbers stored
in binary trees. As a major part of the sorting process, it swaps sub-
trees very frequently while traversing the tree. Upon a cache miss to a
tree node, CDP prefetches pointers under the subtree belonging to the
node. When this subtree is swapped with another subtree of a sepa-
rate node, the program starts traversing the newly swapped-in subtree.
Hence, almost all of the previously prefetched pointers are useless be-
cause the swapped-out subtree is not traversed. Being unaware of the
high-level program behavior, CDP indiscriminately prefetches point-
ers in scanned cache blocks, significantly degrading performance and
wasting bandwidth in such cases.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

In
st

ru
ct

io
n

s
P

er
 C

y
cl

e Stream Prefetcher Only

Stream and CDP

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80

B
P

K
I

Stream Prefetcher Only

Stream and CDP

375.1

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

Figure 2. Effect of the original CDP on performance and memory bandwidth

Our goal: In this paper, we aim to provide an effective, bandwidth-
efficient, and low-cost solution to prefetching linked data structures
by 1) overcoming the described deficiencies of the content-directed
prefetcher and 2) incorporating it efficiently in a hybrid prefetching
system. To this end, we propose techniques for efficient content-
directed LDS prefetching (Section 3) and hybrid prefetcher manage-
ment via coordinated throttling of prefetchers (Section 4).

3.. Efficient Content-Directed LDS Prefetching

The first component of our solution to efficient LDS prefetching is
a compiler-guided technique that selectively identifies which pointer
addresses should be prefetched at run-time. In our technique, effi-
cient CDP (ECDP), the compiler uses its knowledge of the location
of pointers in LDS along with its ability to gather profile information
about the usefulness of prefetches to determine which pointers would
be beneficial to prefetch. The content-directed LDS prefetcher, at run-

time, uses this information to prefetch beneficial pointers instead of
indiscriminately prefetching all pointers.

Terminology: We first provide the terminology we will use to de-
scribe ECDP. Consider the code example in Figure 3(a). The load
labeled LD1 accesses the data cache to obtain the data field of the
node structure. When this instruction generates a last-level cache
miss, the cache block fetched for it is scanned for pointers by the
content-directed prefetcher. Note that the pointers that exist in the
accessed node (i.e., the left and right pointers) are always at the
same offset from the byte LD1 accesses. For example, say LD1 ac-
cesses bytes 0, 16, and 32 respectively in cache blocks 1, 2, and 3, as
shown in Figure 3(b). The left pointer of the node LD1 accesses is
always at an offset of 8 from the byte LD1 accesses (i.e., the left
pointer is at bytes 8, 24, and 40 in cache blocks 1, 2, 3 respectively).
If different nodes are allocated consecutively in memory (as shown in
the figure), then each pointer field of any other node in the same cache
block is also at a constant offset from the byte LD1 accesses.

}

struct node{

(a) Code example

int key; // 4 bytes

data = node−> data;

node = node−> left;
...

...
LD1:

Manipulated Data Structure

int data; // 4 bytes

node * right; // 4 bytes

node * left; // 4 bytes

.....

P1

P2

P3

key PTRPTRdata

key PTRPTRdata key PTRPTRdata

key PTRPTRdata key PTRPTRdata

PTR

PTR

60

60

PTR
60

PG1={P1, P2, P3, etc.}

key

key

key

data

data

data

PTR

PTR

byte in block: 32

byte in block: 16

P2

P3

P1

PTR

PTR

PTR PTR

Block 1

Block 2

Block 3

byte in block: 0

(b) Cache blocks accessed by LD1

0 20 24 284 32 36 4440 48168 12

0 20 24 284 32 36 4440 48168 12

0 20 24 284 32 36 4440 48168 12 ...

...

...
left ptr

right ptr

offset:8

offset:8

offset:8

key PTRdata PTR

Figure 3. Example illustrating the concept of Pointer Groups (PGs)

Hence, the pointers in a cache block are almost always at a constant

offset from the address accessed by the load that fetches the block.3

For our analysis, we define a Pointer Group, PG(L, X), as follows:
PG(L, X) is the set of pointers in all cache blocks fetched by a load
instruction L that are at a constant offset X from the data address L ac-
cesses. The example in Figure 3(b) shows PG(LD1, 8), which consists
of the pointers P1, P2, P3. At a program-level abstraction, each PG
corresponds to a pointer in the code. For example, PG1 in Figure 3(b)
corresponds to node->left.

Usefulness of Pointer Groups: We define a PG’s prefetches to be
the set of all prefetches CDP generates (including recursive prefetches)
to prefetch any pointer belonging to that PG. For example, in Figure 3,
the set of all prefetches generated to prefetch P1, P2, P3 (and any other
pointer belonging to PG1) form PG1’s prefetches. Figure 4 shows the
breakdown of all the PGs in the shown workloads into those whose
majority (more than 50%) of prefetches are useful,4 and those whose

3We say “almost always” because dynamic memory allocations and deallo-

cations can change the layout of pointers in the cache block.
4We found PG’s with less than 50% useful prefetches usually result in per-

formance loss. Figure 10 provides more detailed analysis of PGs.

3

0

10

20

30

40

50

60

70

80

90

100
F

ra
ct

io
n

 o
f

P
o

in
te

r
G

ro
u

p
s

Beneficial

Harmful

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

am
ea

n

Figure 4. Harmful vs. beneficial PGs

majority of prefetches are useless. We name the former beneficial PGs
and the latter harmful PGs.

Figure 4 shows that, in many benchmarks (e.g. astar, omnetpp,
bisort, mst), a large fraction of the PGs are harmful. Generating
prefetch requests for such PGs would likely waste bandwidth and re-
duce performance. To motivate ECDP, Figure 5 provides insight into
where harmful PGs come from. This figure shows a code portion and
cache block layout from the mst benchmark. The example shows a
hash table, consisting of an array of pointers to linked lists of nodes.
Each node contains a key, multiple data elements, and a pointer to
the next node. The program repetitively attempts to find a particular
node based on the key value, using the HashLookup function shown
in Figure 5(a). Figure 5(c) shows a sample layout of the nodes in
a cache block fetched into the last-level cache when a miss happens
on the execution of ent->Key!=Key. Conventional CDP would
generate prefetch requests for all the pointers in each incoming cache
block. This is inefficient because, among the PGs shown in Figure 5,
prefetches generated by PG1 and PG2 (i.e., D1 and D2) will almost
always be useless, but those generated by PG3 (i.e., Next) could be
useful. This is because only one of the linked list nodes contains the
key that is being searched. Therefore, when traversing the linked list,
it is more likely that each iteration of the traversal accesses the Next
node (because a matching key is not found) rather than accessing a
data element of the node (as a result of a key match in the node). In
our mechanism, we would like to enable the prefetches due to PG3,
while disabling those due to PG1 and PG2.

. . . .array:

. . . .

1: HashLookup (....) {
2: HashEntry ent;

4: for (ent = array[j];
5: ent−>Key ! = Key; //check for key
6: ent = ent−> Next; //linked list traversal
7:) ;
8: if (ent) return ent−>D1;

3: j = getHashEntry(Key);

9: }

(a) Code example (b) Data structure manuipulated by the code example

Key

Key

Key

Key

D1

D1

D1

D1

D2 D2

D2D2

Key Key

Key

KeyKey

Key

Key

Key

Key

KeyKey

Key

PG1 = {A1, A2, A3, etc.}

load ent−>Key

B1 C1A1

A2 B2 C2

A3 B3 C3

NextD2D1

D2D1

D2D1 D2D1

load ent−>Key

(c) Cache blocks accessed by ent−>Key

PG1 PG2 PG3

load ent−>Key

PG3 = {C1, C2, C3, etc.}
PG2 = {B1, B2, B3, etc.}

D2D1D2D1D2D1D2D1 Next Next

Next

NextD2D1D1 D2 NextNext

Next

Next

Next

Next

D1 D2

NextD2D1

Figure 5. An example illustrating harmful Pointer Groups

ECDP Mechanism: We use a profiling compiler to distinguish
beneficial and harmful PGs. The compiler profiles the code and clas-
sifies each PG as harmful/beneficial based on the accuracy of the
prefetches the PG generates in the profiling run. Using this classifi-
cation, the compiler provides hints to the content-directed prefetcher.
At runtime, the content-directed prefetcher uses these hints such that
it generates prefetch requests only for pointers in beneficial PGs.

To accomplish this, the compiler attributes a number of PGs to each
static load instruction. For example, the static load instruction missing
in the cache block shown in Figure 5(c) will have PGs PG1, PG2 and
PG3 associated with it. During the profiling step, the compiler gathers
usefulness information about the PGs associated with each load in-

struction in the program. The compiler informs the hardware of bene-
ficial PGs of each load using a hint bit vector. This bit vector must be
long enough to hold a bit for each possible pointer in a cache block.
For example, with a 64-byte cache block and 4-byte addresses, the bit
vector is 16 bits long. Figure 6 illustrates the information contained in
the bit vector. If the nth bit of the bit vector is set, it means that the
PG at offset 4×n from the address accessed by the load is beneficial.
This bit vector is conveyed to the microarchitecture as part of the load
instruction, using a new instruction added to the target ISA which has

enough hint bits in its format to support the bit vector.5

At runtime, when a demand miss happens, the content-directed
prefetcher scans the fetched cache block and consults the missing
load’s hint bit vector. For a pointer found in the cache block, CDP
issues a prefetch request only if the bit vector indicates that prefetch-
ing that pointer is beneficial. For example, the bit vector shown in
Figure 6 has bit positions 2, 6 and 11 set. When a load instruction
misses in the last-level cache and accesses the shown cache block at
byte 12 in the block, CDP will only make prefetch requests for point-
ers it finds at offsets 8 (4×2), 24 (4×6), and 44 (4×11) from byte

12 (corresponding to bytes 20, 36 and 56 in the block).6 Note that
this compiler-guided mechanism is used only on cache blocks that are
fetched by a load demand miss. If the cache block is fetched as a re-
sult of a miss caused by a content-directed prefetch, our mechanism
prefetches all of the pointers it finds in that cache block.

1 2 3 90 4 5 6 7 8 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 01 1 1

160 4 8 12 20 24 28 32 36 40 44 48 52 56

offset 8

offset 24

offset 44

60

byte in block of address being accessed by load

Bit vector of hint bits for load

bit position

Figure 6. Correspondence of hint bits to pointers in a fetched cache block

Profiling Implementation: The profiling step needed for our
mechanism can be implemented in multiple ways. We briefly sketch
two alternative implementations. In one approach, the compiler pro-
files the program by simulating the behavior of the cache hierarchy and
prefetcher of the target machine. The simulation is used to gather use-
fulness information of the PGs. Note that this profiling approach does
not require a detailed timing simulation of the processor: it requires
only enough simulation of the cache hierarchy and the prefetcher to
determine the usefulness of PGs.

In another approach, the target machine can provide support for
profiling, e.g. using informing load operations [14]. With this sup-
port, the compiler detects whether a load results in a hit or miss and
whether the hit is due to a prefetch request. During the profiling run,
the compiler constructs the usefulness of each PG. Due to space limi-
tations we do not describe this implementation in more detail.

4.. Managing Multiple Prefetchers: Incorporating

Efficient CDP in a Hybrid Prefetching Scheme

Since stream-based prefetchers are very effective and already em-
ployed in existing processors, ECDP should be used in combina-
tion with stream prefetching. Unfortunately, naively combining these
prefetchers (or any two prefetchers) together can be problematic. The
two prefetchers contend for the same memory subsystem resources
and as a result can deny service to each other. In particular, prefetches
from one prefetcher can deny service to prefetches from another due to
resource contention, i.e., by 1) occupying memory request buffer en-
tries, 2) consuming DRAM bus bandwidth, 3) keeping DRAM banks
busy for a long time, and 4) evicting cache blocks fetched by another

5According to our evaluations, adding such a new instruction has a negligi-

ble effect on both code size and instruction cache miss rate.
6Without loss of generality, the shown bit vector encodes only positive off-

set values. Negative offset values could also exist. E.g., a pointer at byte 0

would be at an offset of -12 with respect to the byte the load accesses. In our

implementation, we use a negative bit vector as well.

4

prefetcher from the last-level cache before they are used. In our evalu-
ation, we found that resource contention increases the average latency
of useful prefetch requests by 52% when the two prefetchers are used
together compared to when each is used alone.

Resource contention between prefetchers can result in either per-
formance degradation or the inability to exploit the full performance
potential of using multiple prefetchers. In addition, it can significantly
increase bandwidth consumption due to increased cache misses and
conflicts in DRAM banks/buses between different prefetcher requests.
Therefore, we would like to decrease the negative impact of resource
contention by managing the sharing of the memory system resources
between multiple prefetchers.

We propose throttling the aggressiveness of each prefetcher in a
coordinated fashion using dynamic feedback information. We use the
accuracy and coverage of each prefetcher as feedback information that
is input to the logic that decides the aggressiveness of both prefetch-
ers. We first explain how this feedback information is collected (Sec-
tion 4.1). Then, we describe how this information is used to guide the
heuristics that throttle the prefetchers (Section 4.2). Note that, even
though we mainly evaluate it for the combination of ECDP and stream
prefetchers, the proposed coordinated throttling mechanism is a gen-
eral technique that can be used to coordinate prefetch requests from
any two prefetchers.

4.1. Collecting Feedback Information
Our mechanism uses the coverage and accuracy of each prefetcher

as feedback information. To collect this information, two counters per
prefetcher are maintained: 1) total-prefetched keeps track of the to-
tal number of issued prefetch requests, 2) total-used keeps track of
the number of prefetch requests that are used by demand requests.
To determine whether a prefetch request is useful, the tag entry of
each cache block is extended by one prefetched bit per prefetcher,
prefetched-CDP and prefetched-stream. When a prefetcher fetches a
cache block into the cache, it sets the corresponding prefetched bit.
When a demand request accesses a prefetched cache block, the total-
used counter is incremented and both prefetched bits are reset. In ad-
dition, we maintain one counter, total-misses that keeps track of the
total number of last-level cache misses due to demand requests. Using
these counters, accuracy and coverage are calculated as follows:

(1) Accuracy =
total-used

total-prefetched

(2) Coverage =
total-used

total-used + total-misses

We use an interval-based sampling mechanism similar to that pro-
posed in [36] to update the counters. To take into account program
phase behavior, we divide data collection into intervals. We define an
interval based on the number of cache lines evicted from the L2 cache.
A hardware counter keeps track of this number, and an interval ends
when the counter exceeds some statically defined threshold (8192 in
our experiments). At the end of an interval, each counter is updated as
shown in Equation 3. Then, CounterValueDuringInt is reset. Equation
3 gives more weight to the program behavior in the most recent in-
terval while taking into account the behavior in all previous intervals.
Accuracy and coverage values calculated using these counters are used
to make throttling decisions in the following interval.

(3)CounterV alue =
1

2
CounterV alueAtTheBeginningOfInt

+
1

2
CounterV alueDuringInt

4.2. Coordinated Throttling of Multiple Prefetchers
Table 2 shows the different aggressiveness levels for each of the

prefetchers employed in this study. Each prefetcher has 4 levels of
aggressiveness, varying from very conservative to aggressive. The ag-
gressiveness of the stream prefetcher is controlled using the Prefetch
Distance and Prefetch Degree parameters (described in Section 2.1).
We use the maximum recursion depth parameter of the CDP to control
its aggressiveness as defined in Section 2.2.

Aggressiveness Level Stream Prefetcher Stream Prefetcher Content-Directed Prefetcher

Distance Degree Maximum Recursion Depth

Very Conservative 4 1 1

Conservative 8 1 2

Moderate 16 2 3

Aggressive 32 4 4

Table 2. Prefetcher Aggressiveness Configurations

The computed prefetcher coverage is compared to a single thresh-
old Tcoverage to indicate high or low coverage. The computed ac-
curacy is compared to two thresholds Ahigh and Alow and the corre-
sponding accuracy is classified as high, medium, or low. Our rules
for throttling the prefetchers’ aggressiveness are based on a set of
heuristics shown in Table 3. The same set of heuristics are ap-
plied to throttling both prefetchers. The throttling decision for each
prefetcher is made based on its own coverage and accuracy and the

other prefetcher’s coverage.7 In the following explanations and in Ta-
ble 3, the prefetcher that is being throttled is referred to as the de-
ciding prefetcher, and the other prefetcher is referred to as the rival
prefetcher. For example, when the stream prefetcher throttles itself
based on its own accuracy/coverage and CDP’s coverage, we refer to
the stream prefetcher as the deciding prefetcher and the CDP as the
rival prefetcher.

Heuristics for Coordinated Prefetcher Throttling: When the de-
ciding prefetcher has high coverage (case 1), we found that decreasing
or not changing its aggressiveness results in an overall decrease in sys-
tem performance (regardless of its accuracy or the rival prefetcher’s

coverage).8 In such cases, we throttle the deciding prefetcher up to
keep it at its maximum aggressiveness to avoid losing performance.
When the deciding prefetcher has low coverage and low accuracy
we throttle it down to avoid unnecessary bandwidth consumption and
cache pollution (case 2). If the deciding prefetcher has low coverage,
and so does the rival prefetcher, and the deciding prefetcher’s accu-
racy is medium or high, we increase the aggressiveness of the decid-
ing prefetcher to give it a chance to get better coverage using a more
aggressive configuration (case 3). When the deciding prefetcher has
low coverage and medium or low accuracy, and the rival prefetcher
has high coverage, we throttle down the deciding prefetcher (case 4).
Doing so allows the rival prefetcher to make better use of the shared
memory subsystem resources because the deciding prefetcher is not
performing as well as the rival. On the other hand, if the deciding
prefetcher has low coverage and high accuracy, and the rival prefetcher
has high coverage, we do not change the aggressiveness of the decid-
ing prefetcher (case 5). In this case, the deciding prefetcher is not
throttled down because it is highly accurate. However, it is also not
throttled up because the rival prefetcher has high coverage, and throt-
tling up the deciding prefetcher could interfere with the rival’s useful
requests.

Case Deciding Prefetcher Deciding Prefetcher Rival Prefetcher Deciding Prefetcher

Coverage Accuracy Coverage Throttling Decision

1 High - - Throttle Up

2 Low Low - Throttle Down

3 Low Medium or High Low Throttle Up

4 Low Low or Medium High Throttle Down

5 Low High High Do Nothing

Table 3. Heuristics for Coordinated Prefetcher Throttling

Tcoverage Alow Ahigh

0.2 0.4 0.7

Table 4. Thresholds used for coordinated prefetcher throttling

Table 4 shows the thresholds we used in the implementation of
coordinated prefetcher throttling. These values are determined em-

7We refer to increasing a prefetcher’s aggressiveness (by a level) as throt-

tling it up and decreasing its aggressiveness as throttling it down.
8If a prefetcher has high coverage in a program phase, it is unlikely that its

accuracy is low. This is because coverage will decrease if the accuracy is low,

since more last-level cache misses will be generated due to polluting prefetches.

5

pirically but not fine tuned. The small number of parameters used in
our mechanism makes it feasible to adjust the values to fit a particular
system. For example, in systems where off-chip bandwidth is limited
(e.g., systems with a large number of cores on the chip), or where there
is more contention for last-level cache space (e.g., the last-level cache
is relatively small or many cores share the last-level cache), Tcoverage

and Alow can be increased to trigger Case 2 of Table 3 sooner in order
to keep bandwidth consumption and cache contention of prefetchers
in check. In addition, due to the prefetcher-symmetric and prefetcher-
agnostic setup of our throttling heuristics in Table 3, the proposed
scheme can potentially be used with more than two prefetchers. Each
prefetcher makes a decision on how aggressive it should be based on
its own coverage/accuracy and the coverage of other prefetchers in the
system. The use of throttling for more than two prefetchers is part of
ongoing work and is out of the scope of this paper.

5. Experimental Methodology

We evaluate the performance impact of the proposed techniques
using an execution-driven x86 simulator. We model both single core
and multi-core (2 and 4 core) systems. We model the processor and the
memory system in detail, faithfully modeling port contention, queuing
effects, bank conflicts at all levels of the memory hierarchy, including
the DRAM system. Table 5 shows the parameters of each core. Each
baseline core employs the aggressive stream prefetcher described in
Section 2.1. Unless otherwise specified, all single-core performance
results presented in this paper are normalized to the IPC of the baseline
core. Note that our baseline stream prefetcher is very effective: it im-
proves average performance by 25% across all SPEC CPU2006/2000
and Olden benchmarks compared to no prefetching at all.

Out of order, 15 (fetch, decode, rename stages) stages, decode/retire up

to 4 instructions, issue/execute up to 8 µ-instructionsExecution Core

256-entry reorder buffer; 32-entry ld-st queue; 256 physical registers

fetch up to 2 branches; 4K-entry BTB; 64-entry return address stack;
Front End

hybrid BP: 64K-entry gshare, 64K-entry PAs, 64K-entry selector

L1 I-cache: 32KB, 4-way, 2-cycle, 1 rd port, 1 wr port; L1 D-cache:

32KB, 4-way, 4-bank, 2-cycle, 2 rd ports, 1 wr port;
On-chip Caches

L2 cache: 1MB, 8-way, 8 banks, 15-cycle, 1 read/write port; LRU re-

placement and 128B line size, 32 L2 MSHRs

Memory
450-cycle minimum memory latency; 8 memory banks; 8B-wide core-

to-memory bus at 5:1 frequency ratio;

Prefetcher
Stream prefetcher [38, 36] with 32 streams, prefetch degree 4, distance

32; 128-entry prefetch request queue per core

Multi-core
each core has a private L2 cache, on-chip DRAM controller, memory

request buffer size = 32 * (core-count)

Table 5. Baseline processor configuration

Benchmarks: We classify a benchmark as pointer-intensive if it
gains at least 10% performance when all LDS accesses are ideally
converted to hit in the L2 cache on our baseline processor. For most
of our evaluations we use the pointer-intensive workloads from SPEC
CPU2006, CPU2000 and Olden [29] benchmark suites, which consists
of 14 applications. We also evaluate one application from the bioin-
formatics domain, pfast (parallel fast alignment search tool) [3].
pfast is a pointer-intensive workload used to identify single nu-
cleotide and structural variation of human genomes associated with
disease. Section 6.7 presents results for the remaining applications in
the suites. Since health from the Olden suite skews average results,
we state average performance gains with and without this benchmark

throughout the paper.9

All benchmarks were compiled using ICC (Intel C Compiler) or
IFORT (Intel Fortran Compiler) with the -O3 option. SPEC INT2000
benchmarks are run to completion with a reduced input set [19]. For
SPEC2006/SPEC FP2000 benchmarks, we use a representative sam-
ple of 200M instructions obtained with a tool we developed using the
SimPoint [32] methodology. Olden benchmarks are all run to comple-

9Zilles [42] shows that the performance of health benchmark from the

Olden suite can be improved by orders of magnitude by rewriting the program.

We do not remove this benchmark from our evaluations since previous work

commonly used this benchmark and some of our evaluations compares previous

LDS prefetching proposals to ours. However, we do give health less weight by

presenting average results without it.

tion using the input sets described in [24]. For profiling, we use the
train input set of SPEC benchmarks and a smaller training input set for
Olden benchmarks.

Workloads for Multi-Core Experiments: We use 12 multipro-
grammed 2-benchmark SPEC2006 workloads for the 2-core experi-
ments and 4 4-benchmark SPEC2006 workloads for the 4-core ex-
periments. The 2-core workloads were randomly selected to com-
bine both pointer-intensive and non-pointer-intensive benchmarks.
The 4-core workloads are used as case studies: one workload has 4
pointer-intensive benchmarks, 2 workloads are mixed (2 intensive, 2
non-intensive), and one workload is non-pointer-intensive (1 pointer-
intensive combined with 3 non-intensive).

Prefetcher Configurations: In the x86 ISA, pointers are 4 bytes.
Thus, CDP compares the address of a cache block with 4-byte val-
ues read out of the cache block to determine pointers to prefetch, as
Section 2.2 describes. Our CDP implementation uses 8 bits (out of
the 32 bits of an address) for the number of compare bits parameter
and 4 levels as the maximum recursion depth parameter (described in
Section 2.2). We found this CDP configuration to provide the best per-
formance. Section 2.1 describes the stream prefetcher configuration.
Both prefetchers fetch data into the L2 cache.

6.. Experimental Evaluation

6.1. Single-Core Results and Analyses

6.1.1. Performance Figure 7 (top) shows the performance im-
provement of our proposed techniques. The performance of each
mechanism is normalized to the performance of the baseline proces-
sor employing stream prefetching. On average, the combination of our
mechanisms, ECDP with coordinated prefetcher throttling (rightmost
bars), improves performance over the baseline by 22.5% (16% w/o
health), thereby making content-directed LDS prefetching effective.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

IP
C

 N
o

rm
a

li
ze

d
 t

o
 S

tr
ea

m
 P

re
f.

Str Pref.+Orig. CDP

Str Pref.+ECDP

Str Pref.+Orig. CDP+Coord. Thrott.

Str Pref.+ECDP+Coord. Thrott.

2
.2

7
2
.2

7

1
.6

5

2
.2

1

1
.7

5

2
.5

8

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

B
P

K
I

Str Pref. Only

Str Pref.+Original CDP

Str Pref.+ECDP

Str Pref.+Orig. CDP+Coord. Thrott.

Str Pref.+ECDP+Coord. Thrott.

375.1

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

Figure 7. Performance and Bandwidth Consumption Results

Several observations are in order from Figure 7. First, the origi-
nal CDP (leftmost bars) improves performance on benchmarks such
as astar, gcc, health, perimeter, and voronoi, but signif-
icantly degrades performance on mcf, xalancbmk, bisort, and
mst. In the latter, the original CDP generates a very large number
of prefetch requests and has very low accuracy (see Figure 8). As a
result, the original CDP causes cache pollution and significantly de-
grades performance. In fact, it degrades average performance by 14%

due to its useless prefetches.10

10The original CDP proposal [9] showed that CDP improved average perfor-

mance on a set of selected traces. Our results show that CDP actually degrades

performance on pointer-intensive SPEC 2000/2006 and Olden applications. We

believe the difference is due to the different evaluated applications.

6

perlb. gcc mcf astar xalan. omnet. parser art ammp bisort health mst perim. voron. pfast gmean gmean-no-health

IPC ∆ (%) 16.3 6.5 9.8 24.7 18.9 32.4 1.0 1.3 74.9 17.2 158.4 3.9 4.8 9.0 18.5 22.5 16

BPKI ∆ -56.3 -4.5 -20.1 -38.1 -47.8 -50.6 4.3 0.7 -53.6 -33.3 7.5 -8.7 1.7 2.3 -23.3 -25.0 -27.1

Table 6. Change in IPC performance and BPKI with our proposal (ECDP and coordinated prefetcher throttling combined)

Second, our compiler-guided selective LDS prefetching technique,
ECDP (second bars from the left), improves performance by reducing
useless prefetches (and cache pollution) due to CDP in many bench-
marks, thereby providing an 8.6% (2.7% w/o health) performance im-
provement over the baseline. The large performance degradations in
mcf, xalancbmk, bisort, and mst are eliminated by using the
hints provided by the compiler to detect and disable prefetching of
harmful pointer groups. Benchmarks such as bisort, health, and
perimeter significantly gain performance due to the increased ef-
fectiveness of useful prefetches enabled by eliminating interference
from useless prefetches. Even though ECDP is effective at identify-
ing useful prefetches (as described in more detail in Section 6.1.5),
we found that in most of the remaining benchmarks ECDP alone does
not improve performance because aggressive stream prefetcher’s re-
quests interfere with ECDP’s useful prefetch requests. Our coordi-
nated prefetcher throttling technique is used to manage this interfer-
ence and increase the effectiveness of both prefetchers.

Third, using coordinated prefetcher throttling by itself with the
original CDP and the stream prefetcher (third bars from left) improves
performance by reducing useless prefetches, and increasing the ben-
efits of useful prefetches from both prefetchers. This results in a net
performance gain of 9.4% (4.5% w/o heath).

Finally, ECDP and coordinated prefetcher throttling interact posi-
tively: when employed together, they improve performance by 22.5%
(16% w/o health), significantly more than when each of them is
employed alone. Eleven of the fifteen benchmarks gain more than
5% from adding coordinated prefetcher throttling over ECDP. In
perlbench, bisort and health, throttling improves the effec-
tiveness of ECDP because the stream prefetcher throttles itself down
as it has lower coverage than CDP (due to case 4 in Table 3). This am-
plifies the benefits of useful ECDP prefetches by getting useless stream
prefetches out of the way in the memory system. In gcc, ECDP throt-
tles itself down because the stream prefetcher has very high coverage
(57% as shown in Figure 1(left)). This decreases contention caused
by ECDP prefetches and allows the stream prefetcher to maintain its
coverage of cache misses. In astar, mcf, omnetpp, and mst, the
stream prefetcher has both low coverage and low accuracy. As a result,
the stream prefetcher throttles itself down, eliminating its detrimental
effects on the effectiveness of ECDP.

We conclude that the synergistic combination of ECDP and coor-
dinated prefetcher throttling makes content-directed LDS prefetching
very effective and allows it to interact positively with stream prefetch-
ing. Hence, our proposal enables an effective hybrid prefetcher that
can cover both streaming and LDS access patterns.

6.1.2. Off-Chip Bandwidth Figure 7 (bottom) shows the ef-
fect of our techniques on off-chip bandwidth consumption. ECDP
with coordinated prefetcher throttling reduces bandwidth consump-
tion by 25% over the baseline. Hence, our proposal not only signif-
icantly improves performance (as shown previously) but also signif-
icantly reduces off-chip bandwidth consumption, thereby improving
bandwidth-efficiency.

Contrary to the very bandwidth-inefficient original CDP (which
increases bandwidth consumption by 83%), ECDP increases band-
width consumption by only 3.7% over the baseline. ECDP and co-
ordinated throttling act synergistically: together, they increase band-
width efficiency more than either of them alone. Using coordinated
prefetcher throttling with ECDP results in the lowest bandwidth con-
sumption. The largest bandwidth savings can be seen in mcf, astar,
xalancbmk, omnetpp, ammp, bisort, and pfast. In these
benchmarks, the throttling mechanism reduces the useless prefetches
generated by the stream prefetcher because it has low accuracy and
coverage. Throttling the inaccurate prefetcher reduces the pollution-
induced misses, and hence unnecessary bandwidth consumption.

Summary: Table 6 summarizes the performance improvement
and bandwidth reduction of our proposal, ECDP with coordinated

prefetcher throttling. Our efficient LDS prefetching techniques im-
prove performance by more than 5% on eleven benchmarks, while also
reducing bandwidth consumption by more than 20% on eight bench-
marks. Our mechanism eliminates all performance losses due to CDP.

6.1.3. Accuracy of Prefetchers Figure 8 shows that ECDP with
prefetcher throttling (rightmost bars) improves CDP accuracy by
129% and stream prefetcher accuracy by 28% compared to when the
stream prefetcher and original CDP are employed together. Our tech-
niques increase the accuracy of CDP significantly on all benchmarks.
Using both our techniques also increases the accuracy of the stream
prefetcher on almost all benchmarks because it 1) reduces the inter-
ference caused by useless CDP prefetches, 2) reduces useless stream
prefetches via throttling. health is an exception, where some misses
that the stream prefetcher was covering (when running alone) are
prefetched by ECDP in a more timely fashion, resulting in a decrease
in stream prefetcher’s accuracy. Increases in both prefetchers’ accura-
cies results in the performance and bandwidth benefits shown in Sec-
tions 6.1.1 and 6.1.2.

0

10

20

30

40

50

60

70

80

90

C
D

P
 A

cc
u

ra
cy

 (
%

)

Str Pref.+Orig. CDP

Str Pref.+ECDP

Str Pref.+Orig. CDP+Coord. Thrott.

Str Pref.+ECDP+Coord. Thrott.

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

am
ea

n

am
ea

n-
no

-h
ea

lth

0

10

20

30

40

50

60

70

80

90

S
tr

ea
m

 P
re

fe
tc

h
er

 A
cc

u
ra

cy
 (

%
)

Str Pref.+Orig. CDP

Str Pref.+ECDP

Str Pref.+Orig. CDP+Coord. Thrott.

Str Pref.+ECDP+Coord. Thrott.

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

am
ea

n

am
ea

n-
no

-h
ea

lth

Figure 8. Accuracy of CDP (top) and Stream Prefetcher (bottom)

6.1.4. Coverage Of Prefetchers Figure 9 shows that ECDP with
coordinated throttling slightly reduces the average coverage of both
CDP and stream prefetchers. ECDP improves CDP coverage in sev-
eral benchmarks (art, health, perimeter, and pfast) because
it eliminates useless and polluting prefetches. In some others, it de-
creases coverage because it also eliminates some useful prefetches.
Using coordinated prefetcher throttling also slightly reduces the aver-
age coverage of each prefetcher. This happens because each prefetcher
can be throttled down due to low coverage/accuracy or because the
other prefetcher performs better in some program phases. The loss in
coverage is the price paid for the increase in accuracy. We conclude
that our proposed mechanisms trade off a small reduction in CDP and
stream prefetcher coverage to significant increases in CDP and stream
prefetcher accuracy, resulting in large gains in overall system perfor-
mance and bandwidth efficiency.

6.1.5. Effect of ECDP on Pointer Group Usefulness Fig-
ure 10 provides insight into the performance improvement of ECDP
by showing the distribution of the usefulness of pointer groupswith the
original CDP and with ECDP. Recall that the usefulness of a pointer
group is the fraction of useful prefetches generated by that pointer
group (as described in Section 3). Using ECDP significantly increases
the fraction of pointer groups that are useful. In the original CDP
mechanism, only 27% of the pointer groups are very useful (75-100%

7

0

10

20

30

40

50

60

70

80
C

D
P

 C
o

v
er

a
g

e
(%

) Str Pref.+Orig. CDP

Str Pref.+ECDP

Str Pref.+Orig. CDP+Coord. Thrott.

Str Pref.+ECDP+Coord. Thrott.

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

am
ea

n

am
ea

n-
no

-h
ea

lth

0

10

20

30

40

50

60

70

80

90

S
tr

ea
m

 P
re

fe
tc

h
er

 C
o

v
er

a
g

e
(%

)

Str Pref.+Orig. CDP

Str Pref.+ECDP

Str Pref.+Orig. CDP+Coord. Thrott.

Str Pref.+ECDP+Coord. Thrott.

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

am
ea

n

am
ea

n-
no

-h
ea

lth

Figure 9. Coverage of CDP (top) and Stream Prefetcher (bottom)

useful) and 46% of the pointer groups are very useless (0-25% use-
ful), With ECDP, 68.5% of all pointer groups become very useful (75-
100% useful) whereas the fraction of very useless pointer groups drops
to only 5.2%. Hence, ECDP significantly increases the usefulness of
pointer groups, thereby increasing the performance and efficiency of
content-directed LDS prefetching. Note that this is a direct result of
the compiler discovering (via profiling) the beneficial pointer groups
for each load to guide CDP.

0

10

20

30

40

50

60

70

80

90

100

F
ra

ct
io

n
 o

f
P

o
in

te
r

G
ro

u
p

s

75-100% useful

50-75% useful

25-50% useful

0-25% useful

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

am
ea

n

0

10

20

30

40

50

60

70

80

90

100

F
ra

ct
io

n
 o

f
P

o
in

te
r

G
ro

u
p

s

75-100% useful

50-75% useful

25-50% useful

0-25% useful

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

am
ea

n

Figure 10. PG Usefulness: Original CDP Mechanism (top) ECDP (bottom)

6.1.6. Effect of Profiling Input Set The results we presented so
far were obtained by profiling a different input set from the actual one
used in experimental runs (as discussed in Section 5). To determine the
sensitivity of ECDP to the profiling input set, we also profiled the ap-
plications with the same input set used for actual runs. We found that
using the same input set for profiling as the actual input set improved
our mechanism’s performance by more than 1% only for one bench-
mark, mst (by 4%). Hence, our mechanism’s benefits are insensitive
to the input set used in the profiling phase.

6.2. Hardware Cost
Table 7 summarizes the storage cost required by our proposal. The

storage overhead of our mechanism is very modest, 2.11 KB. Neither
ECDP nor coordinated throttling requires any structures or logic that
are on the critical path of execution. They require a small amount of
combinational logic to 1) decide whether or not to prefetch a pointer
based on the prefetch hints provided by a load instruction (in ECDP),
2) update the counters used to collect prefetcher accuracy and coverage

for coordinated throttling, 3) update the prefetched bits in the cache.
The major part of the storage cost of our mechanism is due to the
prefetched bits in the cache. If these bits are already present in the
baseline processor (e.g., for profiling or feedback-directed prefetching
purposes), the storage cost of our proposal would be only 912 bits.

prefetched bits for each block in the L2 cache 8192 blocks× 2 bits/block

Counters used to estimate prefetcher coverage and ac-

curacy (coordinated prefetcher throttling)

11 counters× 16 bits/counter

Storage for recording block offset and hint bit-vector

for each MSHR entry

32 entries× (7 + 16 bits)/entry

Total hardware cost 17296 bits = 2.11 KB

Percentage area overhead (as fraction of the baseline

1MB L2 cache)

2.11KB/1024KB = 0.206%

Table 7. Hardware cost of our mechanism (ECDP with coordinated throttling)

6.3. Comparison to LDS and Correlation Prefetchers
Figure 11 compares the performance and bandwidth consumption

of our mechanism to those of a dependence based LDS prefetcher
(DBP) [30], Markov prefetcher [17], and a global-history-buffer
(GHB) based global delta correlation (G/DC) prefetcher [16]. Only the
GHB prefetcher is not used in conjunction with the stream prefetcher
because we found that GHB provides better performance when used
alone as it can capture stream-based memory access patterns as well
as correlation patterns. Previous research showed that the GHB
prefetcher outperforms a large number of other prefetching mecha-
nisms [28]. The DBP we model has a correlation table of 256 en-
tries and a potential producer window of 128 entries, resulting in a
≈3 KB total hardware storage. The Markov prefetcher uses a 1MB
correlation table where each entry contains 4 addresses. GHB uses a

1k-entry buffer and has 12KB hardware cost.11 Our mechanism’s cost
is 2.11KB.

Results in Figure 11 show that our LDS prefetching proposal pro-
vides respectively 19%, 7.2%, 8.9% (12.7%, 7.1%, 5% w/o health)
higher performance than DBP, Markov, and GHB prefetchers, while
having significantly smaller hardware cost than Markov and GHB.
Our technique consumes 22.7% and 29% (24% and 32% w/o health)
less bandwidth than DBP and Markov prefetchers and 22% (19%
w/o health) more bandwidth than GHB. We found that there are sev-
eral major reasons our proposal performs better than these previous
LDS/correlation prefetching approaches: 1) our approach is more
likely to issue useful prefetches because the compiler provides in-
formation as to which addresses are pointers that are likely to be
used, 2) our approach can prefetch pointer addresses that are not “cor-
related” with any previously seen address since it can prefetch any
pointer value that resides in a fetched cache block, whereas Markov
and GHB need to find correlation between addresses, 3) the Markov
prefetcher cannot prefetch addresses that have not been observed and
recorded previously, 4) the effectiveness of DBP is limited by the
distance between pointer producing and consuming instructions, as
shown by [30] and therefore DBP cannot prefetch far ahead enough to
cover modern memory latencies [31], 5) our mechanism uses coordi-
nated prefetcher throttling to control the interference between different
prefetching techniques whereas none of the three mechanisms provide
such a control mechanism.

Even though we provide a direct comparison to these
LDS/correlation prefetchers, our mechanism is partly orthogo-
nal to them. Both ECDP and coordinated prefetcher throttling can be
used together with any of the three prefetchers when they are used in
a hybrid prefetching system. For example, when ECDP is added to
a baseline with GHB, the combination provides 4.6% performance
improvement compared to GHB alone. Also, using coordinated
throttling on top of a hybrid of GHB and ECDP provides a further 2%
performance improvement and 6.5% bandwidth savings.

6.4. Comparison to Hardware Prefetch Filtering
Purely hardware-based mechanisms were proposed to reduce use-

less prefetches due to next sequential prefetching [41]. We compare
our techniques to Zhuang and Lee’s hardware filter [41], which dis-
ables prefetches to a memory address if the prefetch of that address

11The structures were sized such that each previous prefetcher provides the

best performance.

8

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

IP
C

 N
o

rm
a

li
ze

d
 t

o
 S

tr
ea

m
 P

re
f.

Str. Pref.+DBP (3KB)

Str. Pref.+Markov (1 MB)

GHB (12KB)

Str Pref.+ECDP+Coord. Thrott. (2.11KB)

1
.7

3

2
.3

6

1
.8

8
1
.7

5

2
.5

8

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

B
P

K
I

Str. Pref.

Str. Pref.+DBP (3KB)

Str. Pref.+Markov (1 MB)

GHB (12KB)

Str Pref.+ECDP+Coord. Thrott. (2.11KB)

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

Figure 11. Comparison to other LDS/correlation prefetching techniques

was useless in the past. Figure 12 shows the effect of using a hard-
ware filter with the original CDP (second bars from left) and in com-
bination with coordinated throttling (third bars from left). We use
an 8KB hardware filter, which provides the best performance in our
benchmarks. The hardware filter by itself improves performance by
only 4.4% (1.5% w/o health) and increases bandwidth consumption
by 1.2% (2.6% w/o health). We found that the hardware filter is very
aggressive and thus eliminates too many useful CDP prefetches. Us-
ing ECDP by itself is more effective than the hardware filter because
ECDP is more selective in eliminating prefetches. Adding coordinated
throttling on top of the hardware filter improves performance signif-
icantly, showing that the benefits of coordinated throttling are appli-
cable to hardware filtering. However, using ECDP together with co-
ordinated throttling provides better performance than using hardware
filter and coordinated throttling. On average, our proposal (ECDP and
coordinated throttling) provides 17% (14.2% w/o health) performance
improvement and 25.8% (28.7% w/o health) bandwidth savings com-
pared to simply using a hardware filter, which is more costly in terms
of hardware, alone.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

IP
C

 N
o

rm
a

li
ze

d
 t

o
 S

tr
ea

m
 P

re
f.

Str Pref.+Orig. CDP

Str Pref.+Orig. CDP+HW-Filter

Str Pref.+Orig. CDP+HW-Filter+Coord Thrott.

Str Pref.+ECDP

Str Pref.+ECDP+Coord Thrott.

2
.2

7
1
.5

5

1
.7

7

1
.6

1
2
.2

7

1
.7

5

2
.5

8

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

B
P

K
I

Str Pref. Only

Str Pref.+Original CDP

Str Pref.+Orig. CDP+HW-Filter

Str Pref.+Orig. CDP+HW-Filter+Coord Thrott.

Str Pref.+ECDP

Str Pref.+ECDP+Coord Thrott.

375.1

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

Figure 12. Performance and bandwidth comparison to HW prefetch filtering

6.5. Comparison to Feedback Directed Prefetching
Feedback directed prefetching (FDP) [36] incorporates dynamic

feedback into the design of a single prefetcher to reduce the negative
effects of prefetching. It was originally proposed for stream prefetch-

ers. We compare the performance of coordinated prefetcher throt-
tling in a hybrid prefetching system comprising a stream prefetcher
and CDP. We implement and simulate FDP as explained in [36] and
use it to change the aggressiveness of both the stream prefetcher and
the bandwidth-efficient content-directed prefetcher individually. For
these experiments, we set the cache block size to 64 bytes (and use the
threshold values tuned in [36]), which we found to provide the best
performance for FDP. Figure 13 compares coordinated throttling and
FDP. Coordinated throttling outperforms FDP by 5% while consuming
11% more bandwidth on average. Coordinated throttling outperforms
FDP due to two major reasons. First, throttling decisions made by
our mechanism take into account the state of the other prefetcher(s),
hence, the interaction between multiple prefetchers. In contrast, FDP
does not coordinate the multiple prefetchers together; rather it throttles
each of them individually. As a result, FDP cannot distinguish whether
a prefetcher is performing well (or poorly) due to its own behavior or
due to its interaction with other prefetchers. Second, our mechanism
uses a smaller number of threshold values (three) than FDP, which
requires six threshold values. Finding an effective combination of a
smaller number of thresholds is easier. Therefore, our prefetcher throt-
tling proposal is not only easier to tune but also easier to implement.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

IP
C

 N
o

rm
a

li
ze

d
 t

o
 S

tr
ea

m
 P

re
f.

Str Pref. + ECDP + FDP

Str Pref. + ECDP + Coord. Thrott.

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

B
P

K
I

Str Pref. Only

Str Pref. + ECDP + FDP

Str Pref. + ECDP + Coord. Thrott.

pe
rl0

6

gc
c0

6

m
cf

06

as
ta

r

xa
la

nc

om
ne

tp
p

pa
rs

er
ar

t
am

m
p

bi
so

rt

he
al

th
m

st

pe
rim

et
er

vo
ro

no
i

pf
as

t

gm
ea

n

gm
ea

n-
no

-h
ea

lth

Figure 13. Prefetcher Throttling vs. Feedback Directed Prefetching

6.6. Effect on Multi-Core Systems

Dual-core System: Figure 14 shows the effect of combined ECDP
and coordinated throttling on performance (weighted-speedup [33])
and bus traffic on a dual-core system. Our techniques improve
weighted-speedup by 10.4%, hmean-speedup [25] by 9.9% (not
shown), while reducing bus traffic by 14.9%. The highest perfor-
mance gains are seen when two pointer-intensive benchmarks are run
together. For example, when xalancbmk and astar run together,
our mechanisms improve performance by 20% and reduces bus traffic
by 28.3%. On the other hand, when both applications are pointer-
non-intensive, the benefit of our mechanisms, as expected, is small
(e.g., 1% performance improvement for GemsFDTD and h264ref

combination). The results also show that our mechanism significantly
outperforms DBP, Markov, and GHB prefetchers on the dual-core sys-
tem. DBP is ineffective due to increased L2-miss latencies caused by
each core’s interfering requests. The Markov prefetcher (with a 1MB
table per core) improves weighted/hmean-speedup by 4.1%/4.9% but
increases bus traffic by 19.5%. GHB improves weighted/hmean-
speedup by 6.2%/1% while reducing bus traffic by 5%.

4-Core System: Figure 15 shows that ECDP with coordinated
throttling improves weighted/hmean-speedup by 9.5%/9.7% while re-
ducing bus traffic by 15.3%. These benefits are significantly larger
than those provided by Markov and GHB-based delta-correlation
prefetchers that have higher hardware cost. We conclude that our low-
cost and bandwidth-efficient LDS prefetching technique is effective in
multi-core as well as single-core systems.

9

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

W
ei

g
h

te
d

 S
p

ee
d

u
p

Str Pref. Only

Str Pref.+DBP (6KB)

Str Pref.+Markov (2MB)

GHB (24KB)

Str Pref.+ECDP+Coord. Thrott.(4.22KB)

mcf
gcc

xalan
astar

gcc
milc

astar
lesli

xalan
namd

omnet
soplx

astar
mcf

astar
h264r

pfast
xalan

omnet
perl

pfast
lesli

Gems
h264r

gmean

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

B
u

s
T

ra
ff

ic
 (

M
il

li
o

n
 c

a
ch

e
li

n
es

)

Str Pref. Only

Str Pref.+DBP (6KB)

Str Pref.+Markov (2MB)

GHB (24KB)

Str Pref.+ECDP+Coord. Thrott.(4.22KB)

mcf
gcc

xalan
astar

gcc
milc

astar
lesli

xalan
namd

omnet
soplx

astar
mcf

astar
h264r

pfast
xalan

omnet
perl

pfast
lesli

Gems
h264r

amean

Figure 14. Effect of proposed mechanisms in a dual-core system

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8

W
ei

g
h

te
d

 S
p

ee
d

u
p

Str Pref. Only

Str Pref.+DBP (12KB)

Str Pref.+Markov (4MB)

GHB (48KB)

Str Pref.+ECDP+Coord. Thrott.(8.44KB)

mcf06 astar06
xalan06 perl06

omnet06 gcc06
h264r06 milc06

tonto06 soplx06
xalan06 pfast

omnet06 namd06
tonto06 gobmk06

gmean

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30

B
u

s
T

ra
ff

ic
 (

M
il

li
o

n
 c

a
ch

e
li

n
es

)

Str Pref. Only

Str Pref.+DBP (12KB)

Str Pref.+Markov (4MB)

GHB (48KB)

Str Pref.+ECDP+Coord. Thrott.(8.44KB)

mcf06 astar06
xalan06 perl06

omnet06 gcc06
h264r06 milc06

tonto06 soplx06
xalan06 pfast

omnet06 namd06
tonto06 gobmk06

amean

Figure 15. Effect of proposed mechanisms in a four-core system

6.7. Remaining SPEC and Olden Benchmarks
We evaluated our proposal on the remaining SPEC CPU2006/2000

and Olden benchmarks that have little LDS prefetching potential. We
find that our combined proposal ECDP and coordinated throttling does
not significantly affect the performance or bandwidth consumption of
any remaining benchmark because these benchmarks do not have a
significant number of cache misses caused by LDS traversals. On aver-
age, our mechanism improves performance by 0.3% and reduces band-
width consumption by 0.1% on the remaining benchmarks.We con-
clude that our bandwidth-efficient CDP proposal does not degrade the
performance of applications that are not memory- or pointer-intensive.

7. Related Work

To our knowledge, this paper provides the first comprehensive
solution that enables both very-low-cost (≈ 2KB extra storage) and
bandwidth-efficient prefetching of linked data structures in a hybrid
prefetching system. Our proposal has two new components: 1) a
compiler-guided technique that determines which pointer addresses
to prefetch in content-directed LDS prefetching, 2) a mechanism that
throttles multiple different prefetchers (stream and LDS) in a coor-
dinated fashion based on feedback information. The second compo-
nent, coordinated prefetcher throttling, is orthogonal to LDS or any
prefetching method employed in the system and can be used in con-
junction with any hybrid prefetcher.

In previous sections, we already provided extensive quantitative
comparisons to hardware prefetch filtering [41], three methods of

LDS/correlation prefetching (dependence-based [30], Markov [17],
global-history-buffer [16]), and feedback-directed prefetching [36].
Our evaluations showed that our proposal significantly outperforms
these techniques, while requiring less hardware cost. Here, we briefly
review and provide comparisons to other related work in content-
directed prefetching, prefetch filtering, LDS prefetching, and multiple-
prefetcher systems.

7.1. Related Work in Content Directed Prefetching
Guided Region Prefetching (GRP) [39] uses static compiler anal-

ysis to produce a set of load hints for its hardware prefetching en-
gine, which includes the original CDP scheme [9]. GRP is a coarse-
grained mechanism: it enables or disables prefetching for all pointers
in cache blocks fetched by a load instruction. In contrast, our mecha-
nism is fine-grained: it selectively enables/disables the prefetching of
useful/useless pointers rather than all pointers related to a load instruc-
tion. We implemented GRP’s coarse-grained control mechanism and
found that, similarly to the results presented in [39], controlling CDP
in a coarse-grained fashion provides negligible (0.4%) performance
improvement.

Al-Sukhni et al. [2] propose a technique to statically identify values
that are pointer addresses. Our work uses compile-time information to
guide CDP in deciding which pointers to prefetch. Our proposal is or-
thogonal to theirs: static identification of pointers at compile time can
be used in conjunction with our technique of deciding which pointers
to prefetch to construct an even more accurate LDS prefetcher.

7.2. Related Work in Prefetch Filtering
Srinivasan et al. [37] use profiling to select which load instruc-

tions should initiate prefetches with a next sequential prefetcher and
a shadow directory prefetcher. For CDP, we found that disabling
prefetches on the basis of the triggering load results in the elimina-
tion of a very large number of useful prefetch requests and results in
only 1% performance improvement because it is too coarse-grained an
approach to eliminating content-directed prefetches.

7.3. Related Work in LDS Prefetching
Hardware-based approaches: Some hardware-based LDS

prefetching approaches, such as correlation prefetching [5, 17, 20],
pointer cache [7], spatial memory streaming [35], and hardware jump
pointer prefetching [31] require large storage overhead to maintain
pointer or correlation values in hardware. Specifically, correlation
prefetching requires at least 1-2MB tables [5, 17, 20], the pointer
cache requires 1.1MB of storage [7], spatial memory streaming [35]
and hardware jump pointer prefetching [31] each require at least 64KB
of storage. In contrast, our mechanism requires only 2.11KB stor-
age since it does not require storing any pointer or correlation val-
ues. In addition, most correlation-based prefetchers are only capable
of prefetching addresses that have been observed and recorded previ-
ously. Our technique can prefetch addresses that have not previously
been used by the program.

Hu et al. [15] propose a correlation prefetcher with smaller storage
requirements. This prefetcher can record only those correlations that
are in the same cache set. Unlike our mechanism, it cannot capture
across-set address correlations in LDS accesses.

Mutlu et al. [26] propose address-value delta prediction to predict
pointer addresses loaded by pointer load instructions. AVD predic-
tion is less effective when employed for prefetching instead of value
prediction [26].

Pre-execution-based approaches: Pre-execution-based LDS
prefetching techniques [6, 4, 43, 23, 8, 34, 40] use idle thread con-
texts or separate pre-execution hardware to run “threads” that help the
primary program thread. Such helper threads, constructed either by
the compiler [6, 43, 23] or the hardware [40, 8, 4], execute code that
prefetches for the primary thread. These techniques require either sep-
arate, idle thread contexts and spare resources (e.g., fetch and execu-
tion bandwidth), which are scarce when the processor is well used, or
specialized engines/hardware.

Software-based approaches: Software-based LDS prefetching
techniques (e.g. [22, 24, 31, 1]) require the programmer or the com-
piler to analyze program objects, determine objects that lead to a ma-

10

jority of the cache misses via profiling, and insert prefetch instructions
sufficiently ahead of a pointer access to hide memory latency. Most of
these approaches [22, 24, 31], while shown to be beneficial in small
benchmarks using hand-optimized code, usually require significant
programmer support to generate timely LDS prefetch requests, as de-
scribed in [24, 31]. Software techniques that do not require program-
mer support, e.g. [1], are limited to managed runtime systems with
dynamic profile feedback and are not generally applicable to C/C++
and other non-managed languages.

7.4. Related Work in Multiple-Prefetcher Systems
Gendler et al. [11] propose turning off (not throttling) all prefetch-

ers but the most accurate one based on only per-prefetcher accuracy
data obtained from the last N prefetched addresses. Unlike our coor-
dinated prefetcher throttling technique, this simplistic mechanism 1)
does not take into account prefetch coverage, 2) can disable a very
accurate, high-coverage, non-interfering prefetcher that is improving
performance while enabling a very low-coverage yet more accurate
prefetcher that does not help performance, 3) cannot capture the in-
teraction between prefetchers for different access patterns because it
does not throttle them in a coordinated fashion. We implemented this
scheme and found that it reduces average performance by 11% while
decreasing bandwidth consumption by 6.7% on our benchmarks.

8.. Conclusion

We proposed a very-low-cost and bandwidth-efficient hard-
ware/software cooperative prefetching solution for linked data struc-
tures. Our solution comprises two new techniques. First, a compiler-
guided prefetch hint mechanism that enables efficient content-directed
LDS prefetching. Second, a technique to manage the interfer-
ence between multiple prefetchers (streaming and LDS) in a hy-
brid prefetching system. We showed that our proposal significantly
improves performance and reduces memory bandwidth consumption
on both single-core and multi-core systems compared to three other
LDS/correlation prefetchers on a set of pointer-intensive applica-
tions. We conclude that our techniques enable low-cost and efficient
prefetching of linked data structures in hybrid prefetching systems.

Acknowledgments

Many thanks to Chang Joo Lee, Veynu Narasiman, other HPS
members and the anonymous reviewers for their comments and sug-
gestions. We gratefully acknowledge the support of the Cockrell Foun-
dation, Microsoft Research, and Intel Corporation. Part of this work
was done while Onur Mutlu was a researcher and Eiman Ebrahimi was
a research intern at Microsoft Research.

References
[1] A.-R. Adl-Tabatabai et al. Prefetch injection based on hardware monitor-

ing and object metadata. In PLDI, 2004.

[2] H. Al-Sukhni, I. Bratt, and D. A. Connors. Compiler directed content-

aware prefetching for dynamic data structures. In PACT-12, 2003.

[3] C. Alkan et al. Structural variation detection using high-throughput se-

quencing. In Pacific Symposium on Biocomputing, 2008.

[4] M. Annavaram et al. Data prefetching by dependence graph precomputa-

tion. In ISCA-29, 2001.

[5] M. J. Charney and A. P. Reeves. Generalized correlation-based hardware

prefetching. Technical Report EE-CEG-95-1, Cornell Univ., 1995.

[6] J. D. Collins et al. Speculative precomputation: long-range prefetching

of delinquent loads. In ISCA-28, 2001.

[7] J. D. Collins, S. Sair, B. Calder, and D. M. Tullsen. Pointer cache assisted

prefetching. In MICRO-35, 2002.

[8] J. D. Collins, D. M. Tullsen, H. Wang, and J. P. Shen. Dynamic specula-

tive precomputation. In MICRO-34, 2001.

[9] R. Cooksey, S. Jourdan, and D. Grunwald. A stateless, content-directed

data prefetching mechanism. In ASPLOS-X, 2002.

[10] J. Doweck. Inside Intel Core Microarchitecture and Smart Memory Ac-

cess – White Paper. Intel, Jul 2006.

[11] A. Gendler et al. A pab-based multi-prefetcher mechanism. International

Journal of Parallel Programming, 34(2):171–478, Apr. 2006.

[12] J. D. Gindele. Buffer block prefetching method. IBM Technical Disclo-

sure Bulletin, 20(2):696–697, July 1977.

[13] G. Hinton et al. The microarchitecture of the Pentium 4 processor. Intel

Technology Journal, Feb. 2001. Q1 2001 Issue.

[14] M. Horowitz et al. Informing memory operations: providing memory per-

formance feedback in modern processors. In ISCA-23, 1996.

[15] Z. Hu, M. Martonosi, and S. Kaxiras. TCP: Tag Correlating Prefetchers.

In HPCA-8, 2002.

[16] K. J.Nesbit and J. E.Smith. Data cache prefetching using a global history

buffer. In HPCA-10, 2004.

[17] D. Joseph and D. Grunwald. Prefetching using Markov predictors. In

ISCA-24, 1997.

[18] N. Jouppi. Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers. In ISCA-17, 1990.

[19] A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC benchmark

workload for simulation-based computer architecture research. Comp

Arch Letters, 2002.

[20] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction and dead-block

correlating prefetchers. In ISCA-28, 2001.

[21] H. Lieberman and C. Hewitt. A real-time garbage collector based on the

lifetimes of objects. ACM Communications, 26, June 1983.

[22] M. H. Lipasti et al. SPAID: Software prefetching in pointer- and call-

intensive environments. In MICRO-28, 1995.

[23] C.-K. Luk. Tolerating memory latency through software-controlled pre-

execution in simultaneous multithreading processors. In ISCA, 2001.

[24] C.-K. Luk and T. C. Mowry. Compiler-based prefetching for recursive

data structures. In ASPLOS-7, 1996.

[25] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and fair-

ness in SMT processors. In ISPASS, 2001.

[26] O. Mutlu et al. Address-value delta (AVD) prediction: Increasing the ef-

fectiveness of runahead execution by exploting regular memory alloca-

tion patterns. In MICRO-38, 2005.

[27] S. Palacharla and R. E. Kessler. Evaluating stream buffers as a secondary

cache replacement. In ISCA-21, 1994.

[28] D. G. Perez et al. Microlib: A case for the quantitative comparison of

micro-architecture mechanisms. In MICRO-37, 2004.

[29] A. Rogers et al. Supporting dynamic data structures on distributed mem-

ory machines. ACM TOPLAS, 17(2), Mar. 1995.

[30] A. Roth, A. Moshovos, and G. S. Sohi. Dependence based prefetching

for linked data structures. In ASPLOS-8, 1998.

[31] A. Roth and G. S. Sohi. Effective jump-pointer prefetching for linked data

structures. In ISCA-26, 1999.

[32] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically

characterizing large scale program behavior. In ASPLOS-X, 2002.

[33] A. Snavely and D. M. Tullsen. Symbiotic job scheduling for a simultane-

ous multithreading processor. In ASPLOS-IX, 2000.

[34] Y. Solihin, J. Lee, and J. Torrellas. Using a user-level memory thread for

correlation prefetching. In ISCA-29, 2002.

[35] S. Somogyi et al. Spatial memory streaming. In ISCA-33, 2006.

[36] S. Srinath et al. Feedback directed prefetching: Improving the per-

formance and bandwidth-efficiency of hardware prefetchers. In HPCA,

2007.

[37] V. Srinivasan et al. A static filter for reducing prefetch traffic. Technical

Report CSE-TR-400-99, University of Michigan, 1999.

[38] J. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy. POWER4 system

microarchitecture. IBM Technical White Paper, Oct. 2001.

[39] Z. Wang et al. Guided region prefetching: a cooperative hard-

ware/software approach. In ISCA-30, 2003.

[40] C.-L. Yang and A. R. Lebeck. Push vs. pull: Data movement for linked

data structures. In ICS-2000, 2000.

[41] X. Zhuang and H.-H. S. Lee. A hardware-based cache pollution filtering

mechanism for aggressive prefetches. In ICPP-32, 2003.

[42] C. Zilles. Benchmark health considered harmful. Computer Architecture

News, 29(3), 2001.

[43] C. Zilles and G. Sohi. Execution-based prediction using speculative

slices. In ISCA-28, 2001.

11

