
Rollback-Free Value Prediction with Approximate Loads
Bradley Thwaites Gennady Pekhimenko§ Amir Yazdanbakhsh Jongse Park Girish Mururu

Hadi Esmaeilzadeh Onur Mutlu§ Todd Mowry§

Georgia Institute of Technology §Carnegie Melon University
{bthwaites,a.yazdanbakhsh,jspark,girishmururu}@gatech.edu gpekhime@cs.cmu.edu

hadi@cc.gatech.edu onur@cmu.edu tcm@cs.cmu.edu
ABSTRACT
This paper demonstrates how to utilize the inherent error resilience
of a wide range of applications to mitigate the memory wall—
the discrepancy between core and memory speed. We define a
new microarchitecturally-triggered approximation technique called
rollback-free value prediction. This technique predicts the value
of safe-to-approximate loads when they miss in the cache without
tracking mispredictions or requiring costly recovery from misspec-
ulations. This technique mitigates the memory wall by allowing the
core to continue computation without stalling for long-latency mem-
ory accesses. Our detailed study of the quality trade-offs shows that
with a modern out-of-order processor, average 8% (up to 19%) per-
formance improvement is possible with 0.8% (up to 1.8%) average
quality loss on an approximable subset of SPEC CPU 2000/2006.

1 Introduction
Due to diminishing gains from CMOS scaling and the overwhelm-
ing growth of data, a growing body of recent work [6, 9, 11, 1, 10,
4, 8, 13, 3, 15] investigates approximation techniques in general-
purpose computing that trade Quality of Result (QoR) for gains
in performance and efficiency. These techniques exploit the in-
herent error resiliency of a wide range of applications including
web search, data analytics, image processing, cyber-physical sys-
tems, recognition, and optimization to improve performance and ef-
ficiency through approximation. Instances of these approximation
techniques include (i) voltage over-scaling [9, 4]; (ii) loop perfora-
tion [15]; (iii) loop early termination [3]; (iv) computation substitu-
tion [11, 8, 2, 1, 3]; (v) limited fault recovery [6]; and (vi) approxi-
mate storage design [10, 13]. We define a new technique, rollback-
free value prediction, which operates at the fine granularity of a sin-
gle load instruction. We exclusively focus on mitigating the effects
of cache misses through exploiting application error-tolerance. A
unique characteristic of our technique is its trigger. Microarchitec-
tural events, namely cache misses, invoke the approximation rather
than explicit software invocation as in other techniques. Despite
these differences, our technique may be effectively combined with
prior work on approximation due to its concentrated and limited
use of approximation. Rollback-free value prediction speculates on
the value of an approximate load that misses in the cache, allow-
ing computation to continue with speculative values without roll-
back from mispredictions1. We define approximate loads as instruc-
tions that with low probability may return values other than what is
1The work in [16] explores recovery-free value prediction for
prefetch generation, but the speculative values never affect the mi-
croarchitectural state as in our technique.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). Copyright is held by the author/owner(s).
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
ACM 978-1-4503-2809-8/14/08.
http://dx.doi.org/10.1145/2628071.2628110 .

stored in the memory. Thus, due to the approximate load semantics,
tracking mispredictions and costly rollback from misspeculations is
avoided. However, our design principle for rollback-free value pre-
diction is to restrain the effects of approximation to low levels and
only utilize approximation when it is most beneficial.

Following this design principle, we have identified the following
three challenges that must be addressed in order to effectively real-
ize the rollback-free value prediction approximation technique.
(i) Targeting performance-critical and safe loads. A framework
needs to be developed that only employs rollback-free value predic-
tion on performance-critical loads. To this end, we develop a profile-
driven approach that identifies a limited set of performance-critical
loads as candidates for rollback-free prediction. The profiling pass
identifies which loads cause the majority of cache misses, and which
ones may be approximated at low quality cost. We then utilize ex-
plicit programmer oversight to only approximate loads whose ap-
proximation will never lead to program crashes (Section 2).
(ii) Utilizing fast-learning load value predictors. Due to the single-
load granularity of our technique, the prediction mechanisms should
be light weight and fast learning. We investigate using two-delta [7]
and stride [14] predictors and show that two-delta provides signifi-
cant performance gains with very low quality degradation.
(iii) Integrating the rollback-free prediction in the architecture.
Both low-overhead microarchitectural and architectural extensions
are needed to intercept cache misses for approximate loads and con-
tinue execution. Section 3 provides details about our design.
2 Profile-Directed Approximation
Providing safety guarantees. Any viable approximation technique
needs to provide strict guarantees that the program will only expe-
rience graceful quality degradation without catastrophic failure. We
define a safety violation as an execution which, due to approxima-
tion, leads to a catastrophic failure such as segmentation fault, in-
valid jump address, memory out of bounds error, or infinite loop.
As other approximation techniques [9, 3, 13, 12], the programmer
is responsible for identifying the safe-to-approximate loads through
programming language constructs. However, to reduce program-
mer effort, our profiling pass presents an initial set of performance-
critical loads to the programmer as described below.
Targeting performance-critical loads. To limit the undesirable
effects of approximation to the lowest level, we develop an auto-
mated compile-time profiling pass that consists of two stages. The
first stage determines the set of load instructions which account for
the largest portion of cache misses. As prior work has shown [5]
and our own experiments corroborate, a few load instructions tend
to produce a large majority of cache misses. Since our prediction
hardware has limited resources, we select as candidates only those
loads which can provide significant benefit with approximation, typ-
ically 15-20 of them. The second profiling pass further prunes this
subset by examining whether individually approximating these can-
didate loads will lead to significant quality degradation or increase
in runtime. The profiler observes the resulting output quality and
eliminates any candidate load which significantly degrades quality
or causes an increase in runtime relative to a fully precise baseline.

3 Rollback Free Value Prediction
While profiling identifies approximate loads at compile time, the
architecture support enables rollback-free prediction at runtime.
ISA support and semantics. To avoid exposing memory subsys-
tem or value prediction details to the compiler, we define a proba-
bilistic semantic for approximate loads and provide a simple hard-
ware/software interface. For all load instructions in the ISA, we
introduce a dual approximate variant. A bit in the opcode identifies
whether the load is precise or approximate. Semantically, executing
the load.approx Reg<id>, MEMORY<address> instruction will
assign Reg<id> the exact value stored in MEMORY<address>
with probability p, and an arbitrary value with probability 1 − p.
In practice, p is usually high with our approximation technique for
two reasons. First, our technique is only triggered by cache misses.
Loads which hit in the cache will always return the correct value,
a common case for modern architectures with high cache hit rate.
Second, even when a cache miss happens, the value predictor can
predict the correct value or at least a reasonably close value. These
effects inherently limit the undesirable effects of approximation.
Microarchitecture integration. When an approximate load misses
in the cache, the value predictor intercepts the event and generates
a prediction value. The predictor writes this value to the physical
register, then sends a broadcast message to the reservation stations.
The approximate load then commits normally. However, the data re-
quest is still sent to the memory.2 When the data for an approximate
load arrives, the core updates the prediction tables without checking
the status of the approximate load that generated the request.
Predictor design. We examine both two-delta [7] and stride value
predictors [14]. Two-delta is an extension of the stride predictor in
which the stride value is only updated when the same stride is ob-
served twice or more in a row. Although we used these predictors,
our technique is independent of the specific prediction mechanism.
Since our profiling pass produces a small number of load instruc-
tions for approximation, we use a prediction table with only 256
entries (6 KB overhead). The table index is a hash of the load PC.
4 Methodology and Results
We use an approximable subset of SPEC CPU 2000/2006 to evalu-
ate our technique. Similar to [15], we define a quantitative metric to
understand the quality degradation. For each SPEC benchmark, we
compare the relevant numerical outputs and compute the normalized
root mean square error. For profiling and quality evaluations, we use
Valgrind with Cachegrind. For performance evaluations, we use the
Marssx86 cycle-accurate simulator. The core is modeled after the
Nehalem microarchitecture. The baseline memory system includes
a 32 KB L1 cache and a 2 MB L2 with a 200-cycle memory la-
tency. In modern processors, the LLC cache size is usually 2 MB
× number of cores. Thus, a 2 MB LLC is used for our single core
experiments. We sweep LLC size and issue width to investigate how
our technique performs under increased memory pressure. We use
Simpoint to identify the representative application phases.

Figure 1 shows how different value prediction mechanisms, in
particular stride [14] and two-delta prediction, affect quality of re-
sults. With stride prediction, the average quality loss is 10.8%, but
with two-delta prediction, the average loss is reduced to 0.8%. Fig-
ure 2 shows the application speedup for each configuration studied.
We observe that rollback-free value prediction improves application
performance with the default system (first bar) by as much as 19.2%
(geometric mean: 8.1%). As expected, the observed benefits are
inversely correlated with the degree of memory pressure (e.g., the
smaller the cache and/or the larger the width, the higher the bene-
2Our current scheme merely targets reducing effective memory la-
tency. However, we are exploring designs that drop a certain frac-
tion of the requests to reduce memory bandwidth requirements.

coverage

Quality Error TwoDelta Prediction

used reduction “destructive”
quality analysis

coverage safety analysis safety analysis
coverage

ref Last value Stride TwoDelta Stride TwoDelta total read ref total read misses L1$ read misses L1$ read hits predicted misses L1$ read misses -
not predicted

Correct
predictions

Incorrect
predictions

L1$ read misses -
not predicted

Correct
predictions

Incorrect
predictions

171.swim 71.8% 28.2% 22.3% 56.8% 21.0% 79.0% 99.8% 2.0% 17.7% 0.2% 82.3% 99.8% 76993297 2242462 2.9% 97.1% 1409014.0 833448.00 32.00 1408982.0 1.082% 0.000% 1.830%

191.fma3d 95.8% 4.2% 3.4% 77.2% 19.4% 80.6% 15.4% 1.6% 84.6% 98.4% 83371105 1885774 2.3% 97.7% 1600881.0 284893.00 604667.00 996214.0 0.342% 0.725% 1.195%

410.bwaves 48.3% 51.7% 38.0% 35.5% 26.6% 73.4% 98.2% 12.4% 2.8% 1.8% 97.2% 98.2% 78457519 3055643 3.9% 96.1% 2917365.0 138278.00 72015400.00% 2197211.0 0.176% 0.918% 2.801%

429.mcf 3.1% 96.9% 1.3% 0.0% 98.7% 1.3% 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 243842099 40989708 16.8% 83.2% 7263.0 40982445.00 726300.00% 0.0 16.807% 0.003% 0.000%

436.cactusADM 100.0% 0.0% 0.0% 92.4% 7.6% 92.4% 99.7% 10.3% 18.3% 0.3% 81.7% 99.7% 205447651 7373840 3.6% 96.4% 785418.0 6588422.00 24734500.00% 538073.0 3.207% 0.120% 0.262%

450.soplex 53.6% 46.4% 18.4% 21.3% 60.2% 39.8% 98.3% 9.3% 19.5% 1.8% 80.5% 98.3% 58107779 5734046 9.9% 90.1% 1730429.0 4003617.00 518756.00 1211673.0 6.890% 0.893% 2.085%

459.gemsFDTD 98.1% 1.9% 1.2% 62.3% 36.5% 63.5% 100.0% 4.3% 2.1% 0.0% 97.9% 100.0% 98566245 7724090 7.8% 92.2% 2903586.0 4820504.00 54052700.00% 2363059.0 4.891% 0.548% 2.397%

geomean 47.5% 52.5% 18.6% 29.1% 39.1% 99.3% 10.0% 10.8% 0.8% 88.8% 99.2% 105399692.3 5601249.4 5.3% 94.7% 787970.7 4813278.71 0.75% 787970.7 4.567% 0.000% 0.748%

jpeg - quality vs. coverage

coverage quality

6.5% 100%

7.0% 95.53%

7.5% 93.68%

8.4% 90.46%

8.9% 90.06%

9.3% 89.87%

9.6% 88.45%

10.0% 88.06%

10.2% 87.98%

10.5% 88.03%

10.7% 88.01%

11.0% 87.91%

11.2% 87.91%

Q
ua

lit
y

of
 o

ut
pu

t

85%

88%

91%

94%

97%

100%

Load coverage
7.0% 8.4% 9.3% 10.0% 10.5% 11.0%

gromacs - quality vs. coverage

coverage quality error

13.4% 99.84% 0.16%

15.8% 99.84% 0.16%

17.6% 99.84% 0.16%

18.4% 99.84% 0.16%

19.2% 99.84% 0.16%

20.0% 99.84% 0.16%

20.5% 99.84% 0.16%

20.8% 99.84% 0.16%

21.0% 99.84% 0.16%

21.2% 99.84% 0.16%

21.4% 99.84% 0.16%

21.5% 99.84% 0.16%

21.6% 99.84% 0.16%

21.96% 0% 100%

Q
ua

lit
y

of
 o

ut
pu

t

0%

20%

40%

60%

80%

100%

Load coverage

17.6% 20.0% 21.0% 21.5%

0%

25%

50%

75%

100%

17
1.s

wim

41
0.b

wav
es

42
9.m

cf

43
5.g

rom
ac

s

43
6.c

ac
tus

ADM

45
0.s

op
lex

45
9.g

em
sF

DTD

jpe
g2

00
0e

nc

ge
om

ea
n 0.0%

33.3%

66.7%

100.0%

171.swim 429.mcf 459.gemsFDTD

Pe
rc
en
ta
ge
)o
f)L
oa
ds

80%

85%

90%

95%

100%

L1)Read)Hits
Not)Predicted)L1)Read)Misses
Correct)Predic;ons
Incorrect)Predic;ons

17
1.s
wi
m

41
0.b
wa
ve
s

42
9.m

cf

43
6.c
ac
tus
AD
M

45
0.s
op
lex

45
9.g
em
sFD

TD

ge
om
ea
n

0%

25%

50%

75%

100%
Stride TwoDelta

swim bwaves mcf cactus soplex gems average

Pe
rc
en
ta
ge
)o
f)E

xc
lu
de

d)
Lo
ad
)M

iss
es

0%

25%

50%

75%

100%

Safety)Analysis
Quality)Analysis

17
1.s
wi
m

41
0.b
wa
ve
s

42
9.m

cf

43
6.c
ac
tus
AD
M

45
0.s
op
lex

45
9.g
em
sFD

TD

19
1.f
ma
3d

19
1.f
ma
3d

fma3d

17
.7
%

15
.4
%

2.
8%

18
.3
%

19
.5
%

2.
1%

10
.8
%

Er
ro
r

Figure 1: Error with stride and two-delta predictors.

speedup

2 MB + 5 wide issue
(perfect coverage)

2 MB + 4 wide issue 2 MB + 2 wide issue 512 KB + 4 wide issue 512 KB + 2 wide
issue

171.swim 1.4365778 1.1923788 1.1960432 1.2743799 1.1890907
191.fma3d 1.0450439 1.0450078 1.044932 1.0465644 1.0462457
410.bwaves 1.10417944822011 1.1023849 1.1025668 1.1021917 1.1030903
429.mcf 1.54555360475321 0.9999088 0.9999479 1.1139221 0.9998926
436.cactusADM 1.17574035554821 1.078705 1.0790987 1.1025736 1.0754401
450.soplex 1.28921343087982 1.0827386 1.2541963 1.4009581 1.2969719
459.gemsFDTD 1.28555685982408 1.073017 1.0731321 1.0679041 1.06824
geomean 1.25822780750877 1.08067308227631 1.1041865066007 1.15252095662627 1.10757015693187

0.9

1

1.1

1.2

1.3

1.4
2)MB)+)4)wide)issue
2)MB)+)2)wide)issue
512)KB))+)4)wide)issue
512)KB)+)2)wide)issue

swim bwaves mcf cactus soplex gems geomean

Sp
ee
du

p

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

fma3d

17
1.s
wim

41
0.b
wa
ve
s

42
9.m
cf

43
6.c
ac
tus
AD
M

45
0.s
op
lex

45
9.g
em
sF
DT
D

ge
om
ea
n

19
1.f
ma
3d

Sp
ee
du
p

Figure 2: Speedup for different configurations with two-delta
prediction (baseline: no value prediction).
fits). The highest average improvement is 15.2% (for 512KB and
4-wide configuration), up to a maximum of 40.1%.

5 Conclusions
In the emerging landscape of computing in which mobile and cloud
services aim to provide a more personalized experience for users,
applications with error resiliency are becoming dominant. Lever-
aging this error resiliency, we introduce a new rollback-free value
prediction technique to mitigate the memory wall. Our technique
represents a new class of approximation techniques that are trig-
gered by microarchitectural events, e.g., cache misses. The microar-
chitectural trigger and our profiling technique limit the undesirable
effects of approximation to small levels, while delivering significant
gains in performance. Our sensitivity studies confirmed that when
the memory subsystem is under pressure, even greater benefits are
possible. These results suggest that our technique will be even more
effective as we enter the era of processing overwhelming amounts
of data that put more pressure on the memory subsystem.
References
[1] C. Alvarez et al., “Fuzzy memoization for floating-point multimedia

applications,” IEEE Trans. Comput., 2005.
[2] R. S. Amant et al., “General-purpose code acceleration with limited-precision

analog computation,” in ISCA, 2014.
[3] W. Baek and T. M. Chilimbi, “Green: A framework for supporting

energy-conscious programming using controlled approximation,” in PLDI, 2010.
[4] L. N. Chakrapani et al., “Ultra-efficient (embedded) SOC architectures based on

probabilistic CMOS (PCMOS) technology,” in DATE, 2006.
[5] J. D. Collins et al., “Speculative precomputation: Long-range prefetching of

delinquent loads,” in ISCA, 2001.
[6] M. de Kruijf et al., “Relax: An architectural framework for software recovery of

hardware faults,” in ISCA, 2010.
[7] R. J. Eickemeyer and S. Vassiliadis, “A load-instruction unit for pipelined

processors,” IBM JRD, 1993.
[8] H. Esmaeilzadeh et al., “Neural acceleration for general-purpose approximate

programs,” in MICRO, 2012.
[9] H. Esmaeilzadeh et al., “Architecture support for disciplined approximate

programming,” in ASPLOS, 2012.
[10] S. Liu et al., “Flikker: Saving refresh-power in mobile devices through critical

data partitioning,” in ASPLOS, 2011.
[11] M. Samadi et al., “Sage: self-tuning approximation for graphics engines,” in

MICRO, 2013.
[12] A. Sampson et al., “EnerJ: Approximate data types for safe and general

low-power computation,” in PLDI, 2011.
[13] A. Sampson et al., “Approximate storage in solid-state memories,” in MICRO,

2013.
[14] Y. Sazeides and J. E. Smith, “The predictability of data values,” in MICRO, 1997.
[15] S. Sidiroglou-Douskos et al., “Managing performance vs. accuracy trade-offs

with loop perforation,” in FSE, 2011.
[16] H. Zhou and T. M. Conte, “Enhancing memory level parallelism via

recovery-free value prediction,” in ICS, 2003.

This work was supported in part by a gift from Google.

